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Abstract

This technical report describes a machine checked proof of the type soundness of a subset
of the Java language called JavaS . A formal semantics for this subset has been developed by
Drossopoulou and Eisenbach, and they have sketched an outline of the type soundness proof.
The formulation developed here complements their written semantics and proof by correcting
and clarifying signi�cant details; and it demonstrates the utility of formal, machine checking
when exploring a large and detailed proof based on operational semantics. The development
also serves as a case study in the application of `declarative' proof techniques to a major
property of an operational system.
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1 Introduction

This technical report describes a machine checked proof of the type soundness of a subset of
the Java1 language called JavaS . A formal semantics for this subset has been developed by
Drossopoulou and Eisenbach, and they have sketched an outline of the type soundness proof
[DE97b]. The formulation we develop here serves two roles: it complements their written seman-
tics and proof by correcting and clarifying signi�cant details; and it demonstrates the utility

1Java is a trademark of Sun Microsystems, Inc.

2



1 INTRODUCTION

of formal, machine checking when exploring a large and detailed proof based on operational
semantics2.

This work contributes to three distinct �elds of formal reasoning:

� It contributes to our understanding of Java from a formal perspective, acting as a highly
detailed analysis of a signi�cant property of the language, and providing proofs and cor-
rections to existing proofs that are interesting in their own right.

� It contributes to the development of proof tools for formal methods by being a major case
study in `declarative' proof techniques.

� It contributes to the study of the detailed formalization of language theory, and in partic-
ular highlights some of the tools and methodology that can be applied to this task.

A familiarity with Drossopoulou and Eisenbach's work may be required to understand all the
technical details in this report. However most of the report should be clear to readers with a
simple understanding of operational semantics and formal speci�cation.

1.1 Java

Java is a rapidly spreading programming language developed by Sun Microsystems that aims to
support safe distributed programming. Its developers describe it is follows [GJS96]:

\Java is a simple robust O-O platform independent multi-threaded dynamic general
purpose programming environment. It's best for creating applets and applications
for the Internet, intranets and any other complex, distributed network."

Java is notable for its attractiveness for the existing base of C/C++ programmers, while
avoiding the features that make C/C++ unsafe (e.g. pointers); its portability (e.g. all imple-
mentations implement IEEE oating point numbers); its large standardized library; its memory
management with garbage collection; its dynamic linking and its precise language de�nition.
Even before the �rst complete language description was available, use of the language was ex-
tremely widespread and the rate of increase in usage is still steep.

The main language features of Java are primitive types (characters, integers, booleans, IEEE
oats), strings, classes with inheritance, instance/class variables and methods, interfaces for
class signatures, shadowing of instance variables, dynamic method binding, statically resolvable
overloading of methods, exceptions, arrays, subtyping through arrays, dynamic type checking of
casts and array assignments, class modi�ers (private, protected, public etc.), �nal/abstract
classes and methods, nested scopes, separate compilation, dynamic linking, extensible security
management, constructors and �nalizers.

The Java subset we consider here is that covered in version 2.01 of Drossopoulou and Eisen-
bach's paper. It includes primitive types, classes with inheritance, instance variables and in-
stance methods, interfaces, shadowing of instance variables, dynamic method binding, statically
resolvable overloading of methods, object creation, null pointers, arrays and a minimal treatment
of exceptions.

The subset excludes initializers, constructors, �nalizers, class variables and class methods,
local variables, class modi�ers, �nal/abstract classes and methods, super, strings, numeric pro-
motions and widening, concurrency, the handling of exceptions, dynamic linking, packages and

2The latest version of the proofs and speci�cations described in this document are available on the World Wide
Web at http://www.cl.cam.ac.uk/users/drs1004/java-proofs.html. This will be updated to reect further
work on the formalization.
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1 INTRODUCTION

separate compilation. An advantage of the approach to formalization we take in this report
is that as new features of the language are treated it will be possible to incrementally adjust
existing de�nitions and proofs.

1.2 What is Type Soundness for Java?

Several studies have uncovered aws in the security of the Java system, including its type
system, and have pointed out the need for a formal semantics to complement the existing
language de�nition [GJS96]. A formal treatment of many important aspects of the language
(e.g. dynamic linking) has yet to be performed.

Type soundness states that a welltyped Java program will not `go wrong' at runtime, in
the sense that it will never reach a state that violates conditions implied by the typing rules.
To illustrate, one aspect of type soundness is captured in the following statement that is taken
directly from the Java Language Speci�cation [GJS96]:

The type [of a variable or expression] limits the possible values that the variable can
hold or the expression can produce at run time. If a run-time value is a reference that
is not null, it refers to an object or array that has a class ... that will necessarily
be compatible with the compile-time type.

Type soundness is a property of particular interest for the Java language, because the type system
is the key mechanism used to ensure that Java bytecodes downloaded from untrusted sites cannot
breach the integrity of the user's machine, while still being executed without expensive runtime
checks.

In this report we are concerned with the Java language itself, rather than the Java Virtual
Machine (JVM). The two are very closely related but the di�erence is non-trivial: for example
there are JVM bytecodes that do not correspond to any Java text. Thus it remains a challenge to
formalize and verify the corresponding type soundness property for the JVM. However, the type
systems of Java and the JVM are closely related, and a comprehensive study of the former is a
useful precursor to the study of the latter. Of course, even if an abstract model of Java and/or
the JVM is veri�ed, this does not guarantee the soundness of any particular implementation,
just of the `ideal' case.

How should we formulate type soundness? The �rst question to ask is what observable
e�ects we would expect from a language with an unsound type system. In the case of C, we
expect protection violations, often in the form of `core dumps'. With Java, we tend to be
concerned with breaches of the system security policy, e.g. the transmission of private data
by some Java program. Ideally we would like to relate our notion of type soundness to the
absence of such e�ects. However, in practice the �rst step toward doing this is to look inside

the runtime mechanisms of the language, and to prove that a certain type soundness invariant

is maintained during the execution of the machine. This is the approach taken by Drossopoulou
and Eisenbach, which we also use in this report.

Thus, type soundness must initially be expressed in terms of the inner workings of the
runtime model we develop for JavaS . It is beyond the scope of this work to demonstrate that
this ensures that no security breaches occur. The precise formulation of type soundness we use
is described in Section 6.1.

Our main focus in this work is on issues associated with using a computer to help reason about
properties of programming languages. We demonstrate that with the right tools a mechanically
checked formalization of a signi�cant problem in language research can be achieved. Although
our main aim is not to �nd errors, several signi�cant errors in the formulation adopted by
Drossopoulou and Eisenbach have been discovered. We outline this error in Section 8, and
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1 INTRODUCTION

discuss the aspects of the tools and methodology that allowed its discovery. In addition to this
error, we have found other interesting mistakes and omissions, and we will note these as we
proceed. We have also independently rediscovered one fairly signi�cant omission from the Java
Language Speci�cation, described in Section 8.

1.3 The Tool: DECLARE

The work described in this document exists as part of a larger project to help develop e�ective
tools for tackling language research problems. Similar work has been attempted by researchers
for other languages, including Syme and Van Inwegen's work on Standard ML [Sym93, Van93],
Van Inwegen's work towards a proof of type soundness for Standard ML [Van97], Nipkow et
al's proofs on Mini ML [NN96] and Norrish's semantics for C in HOL [Nor97]. Much has been
learnt from these e�orts, particularly with regard to representational issues and the utility of
certain kinds of automated reasoning tools. In the past researchers have generally tackled these
problems with tools designed for other purposes (e.g. HOL, which was designed for structured
hardware veri�cation). The time seems ripe to reassess what tools are really most appropriate
to assist with reasoning about operational semantics.

The need for better tools can really only be appreciated if we consider the problems with
tools already available, and the di�culty of the task at hand. The following factors all a�ect
the utility of a tool when applied to tasks of the kind we are considering:

� What underlying logic is used, and what is its expressiveness?

� How much automated reasoning support is provided to avoid tedious reasoning?

� What language is used for speci�cations, and can speci�cations be written in a natural
style?

� How are proofs expressed, and can arguments be formulated succinctly and naturally?

� What assistance is given the construction of proofs?

� How does the tool support the maintenance of speci�cations and proofs under incremental
changes?

� Are the documents produced readable? Can they be validated by researchers unfamiliar
with the tool?

� Does the tool support exploratory modes of work?

Existing tools each fall short in a number of categories, e.g. proofs developed with HOL and PVS
are typically unreadable, and in many provers the automated support provided is weak. The
importance of the readability and clarity of proofs and speci�cation is an important feature for
the work we do in this report. Existing tools consistently force the user into expressing proofs in
a manner that is awkward, obscure and unmaintainable (the exception is where the automation
of those tools is su�cient to solve the problems in question).

The tool we use is called DECLARE [Sym97], and has been developed by the author over the
last year. An introduction to DECLARE is given in Appendix A.
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2 THE SEMANTICS OF JAVAS

Java � JavaS ;compiles JavaA �! JavaR � state ;(�;p) JavaR � state

# # # #
type = type = type �wdn type

Figure 1: Components of the Semantics and their Relationships

1.4 Outline

The remainder of this report is organised as follows. In Section 2 we outline the formal semantics
of JavaS that we will use as the basis for the rest of our work. This is based heavily on the
semantics developed by Drossopoulou and Eisenbach but is reproduced here for completeness
and because it contains important corrections. Section 3 outlines the six steps we need to take
to actually complete this task, and describes the tool (called DECLARE) that we used to create
and check a formal proof of the type soundness property for JavaS . In Sections 4 to 7 we
describe these steps in detail. In Section 8 the two major errors discovered in Drossopoulou and
Eisenbach's proof are described, as well as the independent rediscovery of an error in the Java
language speci�cation. Finally we summarize and discuss related work in Section 9.

2 The Semantics of JavaS

In this section we present an operational semantics for JavaS , based heavily on that developed
by Drossopoulou and Eisenbach in version 2.01 of their paper [DE97b]. The speci�cation we
present is the result of several iterations through the waterfall model of formal development that
we will outline in the next section. The description of the semantics will necessarily be brief in
places: for more details consult [DE97b].

We de�ne:

� A subset of Java containing the features listed in Section 1.1;

� A small-step term rewriting system to describe the dynamic execution of JavaS programs;

� A type inference system to describe compile-time type checking.

A picture of the components of the semantics is shown in FIgure 1. Our main concern will be
with the `annotated' language JavaA and the JavaR terms of the `runtime machine'. The main
di�erences between our semantics for JavaS and version 2.01 of Drossopoulou and Eisenbach's
are:

� We correct minor mistakes, such as missing rules for null pointers, some de�nitions that
were not well-founded (e.g. those for MSigs, FDecs and FDec), some typing mistakes and
some misleading/ambiguous de�nitions (e.g. the de�nition of MethBody, and the incorrect
assertion that any primitive type widens to the null type).

� We choose di�erent representations for environments, based on tables (partial functions)
rather than lists of declarations.

� We carefully di�erentiate between the JavaS source language and `runtime terms'. The
latter are used to model execution and have subtly di�erent typing rules.
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2 THE SEMANTICS OF JAVAS

� We adopt a suggestion by von Oheimb that well-formedness for environments be speci�ed
without reference to a declaration order.

� We allow the primitive class Object to have an arbitrary set of methods (Drossopoulou
and Eisenbach restrict Object to have no methods).

� We do not use substitution during typing, as it turns out to be unnecessary given our
representation of environments.

� At runtime we do not choose arbitrary new names for local variables when calling a proce-
dure, but use a system of `frames' of local variables that makes reasoning about substitution
much easier (and is also closer to a real implementation based on stacks and o�sets).

� We are careful to identify the types that judgments and relations operate over, as a clear
picture of this is needed when writing the machine model.

� The modelling of multi-dimensional arrays in version 2.01 of Drossopoulou and Eisenbach's
paper was not faithful to Java, where sub-array dimensions are not constant.

� Arrays in Java support methods supported by the class Object. We include this in our
model (with a non-trivial consequences for the model). However our model of arrays is still
incomplete, as in Java arrays support certain array-speci�c methods and �elds, whereas
in our treatment they do not.

� We are less stringent in our use of `well-formedness' conditions for types, as it turns out
that the widening and typing relations implicitly ensure well-formedness when required.

We are grateful to Drossopoulou and Eisenbach for the opportunity to discuss these points, and
they have incorporated many suggestions into their latest version [DE97a].

2.1 Syntax of JavaS

JavaS programs consist of a sequence of classes (see Figure 2). Each class has a name, a
super-class, a set of super-interfaces, a sequence of �eld declarations and a sequence of method
bodies. Fields have a name and a type. Methods have a return type (possibly void), a list of
parameters with types, and a sequence of statements followed by an optional return expression.
The statements considered are conditionals, assignments, blocks and expressions. Statements
always type to void. Java distinguishes between variables (which are akin to C lvalues, and
eventually correspond to locations in memory) and expressions. Variables can occur on the left
of an assignment statement, expressions cannot. Expressions include primitive values, variable
dereferencing, method calls and class and array allocation. Variables include identi�ers, �eld
lookup and array lookup. The primitive values are the obvious literals for the primitive types
bool, char, byte, short, int, long, float and double. Component types are types that form
the basis of arrays, i.e. class types, interface types and primitive types, and array types are
component types raised to some number of dimensions (unlike C, array sizes are never part
of Java array types). Reference types are classes, interfaces or arrays, and regular types are
just primitive types or reference types. Expression types may also be void (unlike Standard
ML, void is not a primitive type, e.g. an array of voids is not possible). Argument types and
method types give signatures for argument lists and method declarations. The special reference
type nullT is added to assign to null values in the source text.
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2 THE SEMANTICS OF JAVAS

prog = class1; . . . ; classn; (programs)
class = C extends Csup implements I1, . . . , In f

�eld1; . . . ; �eldn;
method1; . . . ; methodm;

g

(class declaration)

�eld = type �eld-name (�eld declaration)
method = expr-type method (type x1, . . . , type xn) f

stmt1; . . . ; stmtm
return expr?

g

(method declarations)

stmt = if expr then expr else expr (conditionals)
| var := expr (assignment)
| f stmt1; . . . ; stmtn; g (blocks)
| expr (evaluation)

Figure 2: Programs, Classes, Fields, Methods

var = id (local variable)
| expr.�eld-name (object �eld)
| expr[expr] (array element)

expr = prim (literal value)
| var (dereferencing)
| expr.method-name(expr+) (method call)
| new C (object creation)
| new comptype[expr]+[]* (array creation)

Figure 3: Expressions and Variables

primitive-type = bool | char | short | int |

long | float | double

simple-reference-type = class-name | interface-name

component-type = simple-reference-type | primitive-type

array-type = component-type[]n (n > 0)
reference-type = simple-reference-type | array-type | nullT

type = primitive-type | reference-type

expr-type = type | void

arg-type = list of type
method-type = arg-type! expr-type

Figure 4: Types
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2 THE SEMANTICS OF JAVAS

class-env = class-names
table
7�! class-dec

interface-env = interface-names
table
7�! interface-dec

variable-env = variable-names
table
7�! type

class-dec = h super: class-name;

interfaces: set of interface-names ;

�elds: �eld-names
table
7�! type;

methods: method-names� arg-types
table
7�! expr-typei

interface-dec = h superinterfaces: set of interface-names ;

methods: method-names� arg-types
table
7�! typei

Figure 5: Type checking environments

2.2 The Static Semantics

The static semantics are more complex than a simple set of inference rules. The complicating
factors are:

� Java allows the use of classes before they are de�ned. There are no restrictions on this,
except that a non-circular class and interface hierarchy must result.

� Java implementations disambiguate key pieces of information at compile-time. Method
calls may be statically overloaded (not to be confused with the object oriented late-binding
mechanism), and �elds may be hidden by superclasses. The resolution of �eld and method
references is done at compile-time. Also, widening between primitive types (not covered
here) is also decided at compile time, by inserting coercions.

To accommodate the �rst of these di�culties, Drossopoulou and Eisenbach de�ne the notion
of type-checking environment, extracted from entire programs, along with a well-formedness
condition for these. An environment contains the class and interface hierarchies, and the sub-
class, subinterface and widening (subtyping) relations can be derived from it. Well-formedness
excludes circular class and interface hierarchies, and imposes other constraints. After this, the
rules for static typing and the compile-time disambiguation of constructs can be developed.

2.2.1 Type Checking Environments

Type checking environments contain several components (Figure 5). Always present are tables of
class and interface declarations. These contain the type information extracted from the de�nition
of these constructs: we write these as records, and omit record tag names when it is obvious from
the context what is being referred to. When typechecking inside method bodies the environment
also contains a table of variable declarations. We use � for a composite environment, �V , �C

and �I its respective components, and �(x) for the lookup of x in the appropriate table. In
general it should be understood that � only contains those component environments that are
necessary for the construct at hand to make sense. We also use x 2 � to indicate that x is
de�ned in the relevant table in �.

Component types, array types, reference types and regular types are said to be well-formed,
written � ` object3syntax�category , if all classes and interfaces are in scope. We do not give the
details here, but note that the special class Object is always in scope.
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2 THE SEMANTICS OF JAVAS

2.2.2 Subclasses, Subinterfaces and Widening

Next we de�ne the subclass (vclass), subinterface (vint) and implements (:imp) relations as
shown below. All classes are a subclass of the special class Object, though we do not have to
mention this explicitly as the well-formedness conditions for environments will ensure it.

� ` C3class�name

� ` C vclass C
(reC)

�(C):super = Csup � ` Csupvclass C
0

� ` C vclass C
0

(stepC)

I 2 �
� ` I vint I

(reI)
Ik 2 �(I):interfaces � ` Ikvint I

0

� ` I vint I
0

(stepC)

Ik 2 �(C):interfaces

� ` C :imp Ik
(implements)

Subtyping in Java is the combination of the subclass, subinterface and implements relations,
and is called widening. De�ning widening accurately turns out to be a tedious but instructive
process: we de�ne it incrementally over the di�erent kinds of types, i.e. over simple reference
types (�sref ) then component types (�comp) then array types (�arr) and so on through to
regular types (�wdn). We have to be careful about this to avoid errors that creep in by other
approaches: e.g. in Drossopoulou and Eisenbach's presentation it appears that all primitive
types are narrower then Object, when in fact only reference types are. All reference types are
subtypes of Object (classes by virtue of the subclassing rule) and nullT (the type given to
null-pointers) is narrower than all reference types.

The full rules for widening are shown in Appendix B. Two important rules are those for
arrays: the co-variant rule eventually leads to the need for runtime typechecking.

n > 0
� ` ty[]n�arr Object

(array-object)
n > 0 � ` ty�comp ty

0

� ` ty[]n�arr ty
0[]n

(array)

2.2.3 Traversing the Class and Interface Hierarchies

The functions FDec, FDecs and MSigs traverse the subclass/subinterface graphs, starting at a
particular class/interface, to collect:

� FDec: The `�rst visible' de�nition of a �eld starting at a particular class. A set is returned,
which will have one element for well-formed environments.

� FDecs: All the �elds, including hidden ones, in the given class and its super-classes.

� MSigs: All the methods visible from a reference type. Methods with identical argument
descriptors hide methods further up the hierarchy, though return types may be di�erent.
All Object methods are visible from all interfaces and arrays.

In Drossopoulou and Eisenbach's formulation these de�nitions are given as recursive functions.
Their de�nitions only make sense for well-formed environments, as the search will not termi-
nate for circular class and interface hierarchies. However the constructs are themselves used in
the de�nition of well-formedness below. The functions are better formulated using inductively
de�ned sets. The de�nitions of these rules are given in Appendix C.

MSigs is de�ned by �rst de�ning MSigsC MSigsI and MSigsA for the visible methods from
the three di�erent reference types. The methods visible from arrays and interfaces include all
methods found in the type Object. Whether this should be the case for interfaces is the subject
of discussion in Section 8.3.
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2.2.4 Well-formedness for Type Checking Environments

We now turn to well-formedness for type checking environments. Drossopoulou and Eisenbach
originally formulated this by an incremental process, where a sequence of de�nitions built up
the entire environment, thus somewhat mimicking the process of separate compilation. We
originally followed this formulation, but von Oheimb has pointed out that this is not necessary,
since the de�nition is independent of any ordering constraints (though a �niteness constraint is
needed).

To be well formed (` TE3tyenv), every class declaration in an environment must satisfy the
following constraints, based on those in [DE97b]:

� The class Object must be de�ned and have no superclass, superinterfaces or �elds.

� Its superclass and implemented interfaces must be de�ned and no circularities can occur
in the hierarchy;

� No two methods can have the same name and argument types (ensured by construction);

� Any methods that override inherited methods (by having the same name and argument
types) must have a narrower return type;

� All interfaces must be implemented by methods that have narrower return types.

These are written as:

if �(C) = hCsup; Is;�elds;methodsi then
� ` Csup3class�name

:(� ` CsupvclassC)
8I 2 Is: I 2 �
8meth; at; rt:

methods(meth; at) = rt1 !
if � ` ((meth; at); rt2)2MSigs(Csup)
then � ` rt1�wdn rt2

and 8I 2 Is:

if � ` ((meth; at); rt1)2MSigs(I)
then 9rt2:� ` ((meth; at); rt2)2MSigs(C) ^ � ` rt2�wdn rt1

Likewise every interface declaration must satisfy the following conditions:

� All inherited interfaces must be de�ned and no circularities can occur in the hierarchy;

� No two methods can have the same name and argument types (ensured by construction);

� Any methods that override inherited methods must have a narrower return type;

These are written as:

if �(I) = hIs;methodsi then
8I 0 2 Is: I 0 2 �
8I 0 2 Is: :(� ` I 0vint I)

and 8I 0 2 Is;meth; at; rt1:

methods(meth; at) = rt1 !
if � ` ((meth; at); rt2)2MSigs(I 0)
then � ` rt1�wdn rt2

11
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2.2.5 Static Typing and Compilation Rules

We can now de�ne the static typing system for the input language. As mentioned before,
information is disambiguated in the typing process. Thus, there are conceptually two languages
and two type systems involved. No harm comes from conating the two, though later we prove
that the compilation process preserves types.

We do not give the full details of the typing rules here, since they follow the rules given by
Drossopoulou and Eisenbach very closely. As an example, the typing rule for references to local
(stack) variables in both the unannotated and annotated languages is:

VE(id) = type

� ` id : type

The typing rule for method calls in the unannotated language are:

� ` obj :C
8i: 1 � i � n! � ` argi : ati
� ` MostSpec(C;m; at)= f(at0 ! rt)g

� ` obj:m(arg1; : : : ; argn) : rt

The de�nition of MostSpec can be found in [DE97b]: it determines the set of `most special'
applicable methods given the static types of the arguments. Only one such method should exist,
otherwise a typing error occurs. Note that the resolution of methods based on static argument
types means that unique typing is essential in Java.

Now we give the typing rule for the same construct in the annotated language. Here an exact
method descriptor is given, so we simply check the argument types must match up to widening.
The corresponding rule for annotated procedure calls is:

� ` obj :C
� ` ((method; at); rt)2MSigsC(C)
size(at) = n

8i: 1 � i � n! 9ty: � ` argi : ty ^ � ` ty�wdn ati

� ` obj:method[at](arg1; : : : ; argn) : rt

This completes our presentation of the static checks performed for the JavaS language. We now
move onto the runtime model of execution.

2.3 The Runtime Semantics

Drossopoulou and Eisenbach model execution as a small step rewrite system, i.e. a con�guration
represents the expressions yet to be evaluated and also the partial results of steps executed so
far. This con�guration is progressively modi�ed by making reductions. The rewrite system
is best thought of as specifying an abstract machine, and can be considered an ine�cient but
simple interpreter for JavaS .

A small-step system is chosen over a big-step since we later want to model non-determinism
and concurrency, and we also want to reason about non-terminating programs. Unfortunately
using a small-step system imposes signi�cant overheads during the type soundness proof (e.g.
with a big-step rewrite system no intermediary con�gurations need be considered), but this
seems unavoidable.

12
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rval = prim (primitive value)
| addr option (addresses = addr | null)
| exn-packet (= id)

rvar = frame-num� id (local variable reference)
| rexp.[C]F (lookup F at class C)
| rexp[rexp] (array access)

rexp = rval (simple value)
| rvar (dereference)
| rexp.M[at](rexp+) (method call)
| new C (object creation)
| new type[rexp]+[]* (array creation)
| frstmt;rexpg (statements with return expression)

rstmt = if rexp then rexp else rexp

| rvar:=rexp

| frstmt1; : : : ; rstmtn; g
| rexp

Figure 6: The syntax of rterms

2.3.1 Con�gurations and Runtime Terms

A con�guration (s; t) of the runtime system is a state s and a runtime term (rterm) t. Runtime
terms (of the language JavaR) contain artifacts not found in the source language, notably ad-
dresses, exception packets and the bodies of methods that have been called. There are three
kinds of rterms: expressions, variables and statements, and thus there are really three di�erent
kinds of con�gurations. The top level con�guration always contains an expression, since Java
programs begin with the execution of a main static method from a given class (though how the
machine gets started is not really important).

The syntax for rterms is shown in Figure 6. All terminating expressions eventually become
values.

2.3.2 Program State

The program state consists of two components: a list of frames of local variables and a heap

containing objects and arrays. The components have quite di�erent properties and we will
distinguish them from here on. Neither frames nor heap objects are garbage collected3. Heap
objects are objects or arrays, and both are annotated with types (in the case of arrays this is
the type of values stored in the array). We use the symbol � to indicate adding a new frame
at the next available frame index, s(id) and s(addr) for looking up local variables and objects,
and s(id) val and s(addr) heap-obj for assigning things into the respective components of
the state.

3In future versions of the semantics a garbage collection rule that allows the collection of any inaccessible items
at any time may be added. Garbage collection is semantically visible in Java because of the presence of `�nally'
methods that get called before an object is deallocated.

13
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state = h frames: list of (id
table
7�! val);

heap: addr
table
7�! heap-objecti

heap-object = � fld1 7! val1; : : : ; f ldn 7! valn �
C (object)

| [[val1; : : : ; valn]]
type (array)

Figure 7: State

2.3.3 The rewrite system

The reduction of rterms is speci�ed by three relations, one for each syntax category:
exp
;(�;p),

var
;(�;p) and

stmt
; (�;p). Global parameters are an environment � (containing the class and interface

hierarchies, needed for runtime typechecking) and the program p being executed.

A term is ground if it is in normal form, i.e. no further reduction can be made. Groundedness
is actually a syntactic test that can depend on the syntax category from which a term is viewed.
For example a local variable lookup id is ground if id is a variable, but not ground if it is
an expression. This is because variables represent locations in memory, and when treated as
expressions represent the values at those locations. Formally, groundedness is de�ned as follows:

� A value is ground i� it is a primitive value or an address.

� An expression is ground i� it is a ground value.

� A variable is ground i� all its component expressions are ground.

� A statement is ground i� it is an empty block of statements or a ground expression.

There are 36 rules in the rewrite system. 15 of them are \redex" rules that specify the reduction
of expressions in the cases where sub-expressions have reductions. A sample is:

stmt0; s0
stmt
; (�;p) stmt1; s1

fstmt0; stmtsg; s0
stmt
; (�;p) fstmt1; stmtsg; s1

11 of the rules specify the generation of exceptions: 5 for null pointer dereferences, 4 for bad
array index bounds, one for a bad size when creating a new array and one for runtime type
checking when assigning to arrays. A simple example is:

ground(exp) ground(val)

null[exp] := val; s0
stmt
; (�;p) NullPointExc; s0

We cover the rules for array assignment and method call below. We omit the rules for �eld
dereferencing, variable lookup, class creation, �eld assignment, local variable assignment and
conditionals as they are straight forward and are covered in [DE97b]. As an example the array
access rule for the case where the index is in-bounds is:

s0:heap(addr) = [[val0 : : : valn�1]]
type

0 � k < n

addr[k]; s0
exp
;(�;p) valk; s0

14
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The array creation rule is:

each dimi is some ground non-negative integer value ki (1 � i � n)
(val; heap1) = alloc(s0:heap; type;k; m)

new type[dim1] : : : [dimn][]
m; s0

exp
;(�;p) val; (s0:frames; heap1)

Here alloc represents the process of allocating k1� : : : kn�1 arrays containing pointers to arrays,
and eventually pointing to arrays containing initial values appropriate for the type type. This
process is described in detail in [GJS96]4.

2.3.4 Runtime typechecking

Java performs runtime typechecks at just two places: during array assignment, and when casting
reference values. Runtime typechecking is needed for array assignment because of the well-known
problem with a co-variant array typing rule. Casts are not covered in this report.

Runtime typechecking is performed by simply checking that the real (i.e. runtime) type of any
reference object, as stored in the state, is narrower than the real type of the array cell it is being
assigned to. This means the runtime system must have access to the program class/interfaces
hierarchies (as the JVM does). An aside: Drossopoulou and Eisenbach's notion of runtime type
checking (weak conformance) is a little too strong, as it allows the runtime machine to check the
conformance of primitive values to primitive types: no realistic implementation of Java checks
at runtime that a primitive type such as int �ts in a given slot. We have not yet addressed this
in our model, though we plan to in the near future.

The array assignment rules that utilise runtime type-checking are:

sval is ground
s0:heap(addr) = [[val0 : : : valn�1]]

type

0 � k < n

typecheck(sval; type) fails

addr[k] := sval; s0
exp
; (�;p) ArrStoreExc; s0

sval is ground
s0:heap(addr) = [[val0 : : : valn�1]]

type

0 � k < n

typecheck(sval; type) succeeds
s1 = s0:heap(addr) [[val1 : : : valk�1; sval; valk+1; : : : valn�1]]

type

addr[k] := sval; s0
exp
; (�;p) void; s1

The function typecheck checks that the stored type is compatible with the given type. It succeeds
for an address addr, a type ty in a heap h if:

� h(addr) =� :::�C and ty is wider than C

� or h(addr) = [[:::]]ty
0

and ty is wider than ty0[]

In future versions of the semantics this will not perform compatibility checks for primitive or
null values.

4This model of array creation would need to be modi�ed if threads or constructors are considered, as array
creation is not atomic with respect to thread execution. It may also involve executing constructors (and thus may
not even terminate), and may raise an out-of-memory exception.
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2.3.5 Local Variables and Method Calls

In rterms references to local stack variables are annotated with a frame number that indicates
which instance of the variable is being referred to (this is reminiscent of de Bruijn indices, though
the lack of higher order features makes things simpler). This makes reasoning about substitution
during method call easier.

Aside from the initial rexp, rterms are created only when a method is called. The body
of the method is fetched from the program and translated to an rterm, while annotating local
variables with a fresh frame number. The rule is:

each argi is some ground value vi (1 � i � n)
s0(addr) =� :::�C

MethBody(meth; at; C; p) = �x1 : : : xn: body

s1 = s0:frames� fx1 7! v1; : : : ; xn 7! vng

addr:meth[at](arg1; : : : ; argn); s0
exp
;(�;p) [body]s0 ; s1

where [body]s0 is the process of translating input syntax body into an JavaR term, annotating
local variables with the next available frame number in s0.

3 Six Steps to a Formalized, Machine Checked, Human Read-

able Proof of Java Type Soundness

In the following sections we present the process by which we develop a formal proof of the
type soundness of JavaS. The methodology can be applied to any exploratory theorem proving
exercise. The steps are as follows:

� Step 1: Understand the Problem

� Step 2: Develop a Machine Acceptable Model

� Step 3: Validate the Model by Generating an Interpreter

� Step 4: Formulate All Key Properties

� Step 5: Sketch an Outline of the Proof

� Step 6: Convince the Machine

The methodology is somewhat like the `waterfall' methodology of software development:
each step can require a return to previous steps, and we iterate until the task is complete. Some
steps (e.g. validation) can be highly automated or skipped in later iterations.

Step 1 The �rst step is to develop a strong understanding of the problem. The tool we use,
called DECLARE [Sym97], is designed to help users express proofs and speci�cations only when
they already have a fairly good mental picture as to how the proof should proceed. The stronger
the understanding that the user has, the more e�ective their use of the tool will be.

Step 2 In the second step, we use our rough understanding of the system in question to specify
that system within higher order logic. Normally for any system that has previously only been
speci�ed on paper, this process uncovers many signi�cant errors and simpli�cations, as well
as unexpected complications that arise from the use of an insu�ciently expressive logic in the
mechanised tool. We specify the entire system before proceeding.
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Step 3 The third step involves applying some techniques to check that the logical speci�cations
we have written represent a valid model of the JavaS language. Validation of such a speci�cation
is non-trivial, and is a topic that has been often ignored by the theorem proving community. For
instance, researchers will often rely on the process of proof to debug simple translation mistakes
in their speci�cations. This tends to be slow and reduces the value of the proof performed.

In our case we use three techniques for validation: eye-balling, typechecking, and the au-
tomatic generation of an interpreter for JavaS, based directly on the speci�cation. It is not
possible to remove all mistakes in the speci�cation via this technique, but are surprising number
are caught.

Step 4 We now, hopefully, have a valid model of the JavaS language in a form that the
computer can accept. The fourth step is to formulate, in the terms of the logic, the properties
that we expect to hold of the speci�cation. Typically this involves writing and typechecking
propositions that relate various parts of the semantics. Though this may seem simple, we
typically learn a lot by doing a thorough job of this: writing properties in terms of the logic
forces us to state the problem in a logically clear and precise fashion, which is always the �rst
step toward a successful proof.

Step 5 This step involves writing a rough (i.e. not machine acceptable) proof outline in a
format close to that accepted by DECLARE. DECLARE supports the expression of proofs in a
language that resembles that used by mathematicians, and thus allows a migratory path from
a rough outline to a machine acceptable outline.

Surprisingly, this was the most valuable stage in the whole process, through which a major
aw in the original proof was discovered. An important by-product of this stage is lemma discov-

ery, where we identify the key facts about component constructs that under-pin the argument.
This is something often ignored by the theorem proving community: unless you are formalising
a well-established corpus of mathematics, the necessary lemmas are not at all obvious a priori,
and thus support for top-down proof development is essential.

Step 6 The sixth step is lengthy but completes our ultimate aim: we �ll in the details of
the rough proof outlines until the point where DECLARE's automated proof support takes over.
Again surprisingly, this process turned up many unforeseen di�culties in the speci�cations
and proofs, and contributed further to the process of lemma discovery. The end result is a
proof outline that is machine checkable, human readable and, we claim, maintainable as further
features are added to our language.

4 Developing A Machine Acceptable Model For JavaS

In Section 2 we sketched the runtime and typing semantics for the JavaS language developed
by Drossopoulou and Eisenbach. In this section we describe the formalization of this within
simple type theory. We have used the DECLARE system to do this and here we give examples
of the documents that have been written and machine checked. The documents described here
are abstracts, i.e. summaries of theories that are checked to be consistent extensions of higher
order logic.

Beside the model itself, what makes formalization interesting is that it uncovers many am-
biguities in the formal de�nition. The results of this disambiguation process have already been
presented in the modi�ed semantics of Section 2. Here we will simply present some small ex-
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amples of the process of formalization for the bene�t of readers who are unfamiliar with these
techniques.

4.1 Comments on the process of machine formalization

Speci�cation within a fully formal framework requires attention to detail that is normally glossed
over in written mathematics. In particular, many notational conveniences traditionally used by
mathematicians are not available in most formal systems. The use of such conveniences is
essential to the readability of a journal presentation of a proof, but they must be discarded in a
machine presentation.

In addition, a journal presentation of operational semantics will frequently rely on a concrete
means of describing a construct. A good example is the representation of environments in JavaS :
in the journal presentation environments are represented as a list of declarations where each
declaration is for a class, interface or variable. Logically this is �ne, though at the expense
of having to explicitly disallow repeated declarations of a class or variable. In the previous
section we used a more abstract representation in terms of partial functions. This representation
automatically excludes many ill-formed environments, and clari�es our mechanized presentation.

4.2 The Speci�cation in DECLARE

DECLARE speci�cations act as high-level speci�cations that can be interpreted as axioms in
an appropriate logic, or as a speci�cation of an interpreter, if the rules are executable. The
declarative forms available are simple (non-recursive) de�nitions, recursive datatype de�nitions
(mutually recursive and recursive through positive type functions like list), inductive relations
(again mutually recursive, with any monotonic operators), and recursive functions with a well-
founded measure.5

The syntax classes described in Section 2 are easily de�ned in DECLARE as datatypes - we
will not give an example here. Inductive relations are formulated by specifying a set of rules,
and giving a name to each. When treated as a logical speci�cation, DECLARE generates the
appropriate axioms for the least �xed point of the set of rules (these axioms could be derived
conservatively by well-known techniques [CM92, Pau94]).

For example, the 3class�name and vclass relations are de�ned by the text

least_fixed_point wf_class

(Object) [rw,prolog]

------------------------------------

TE |- "Object" wf_class

(Decl) [rw,prolog]

Cdec(TE,C) = SOME(classdec)

------------------------------------

TE |- C wf_class

least_fixed_point subclass_of

(Refl) [rw,prolog]

------------------------------------

TE |- C subclass_of C

5Not all the features listed here are fully implemented in the current version of DECLARE, for example
monotonicity conditions are not currently checked.
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(Step) [prolog]

Cdec(TE,C) = SOME(CLASS(C',_,_,_)) &

TE |- C' subclass_of C''

------------------------------------

TE |- C subclass_of C''

Here TE is the type environment, and contains a partial function (i.e. a table) from class-names
to class declarations. Note the necessity of extra syntactic detail that would be omitted in a
written presentation, such as SOME to indicate that the class is actually in the domain of CE.

Pragmas such as rw and prolog provide interpretative information to proof tools when the
speci�cation is interpreted as a set of logical axioms: in particular rw indicates that the rule
can be safely used as a (conditional) rewrite, and prolog that the rule can be safely used as a
backchaining Prolog-style rule.

Formalizing the static semantics, compilation, the runtime rewrite system and runtime typ-
ing for runtime terms is relatively straight forward given DECLARE's collection of background
theories. Iterated constructs are replaced by (bounded) universal quanti�cation, thus a side
condition like:

each argi is some ground value vali (1 � i � n)

becomes

8i. i < n ! ground(EL(i)(args)) &

LEN(vals) = LEN(args) &

8i. i < n ! EL(i)(args) = RValue(EL(i)(vals))

Note the index change to take advantage of the inbuilt theory of natural numbers and zero-
indexed lists, the inclusion of the syntax constructor RValue that injects values into the domain
of expressions, and the use of the inbuilt list operators EL and LEN.

The machine-acceptable speci�cation runs to around 2500 lines in total. The speci�cation
was easily read and understood by the authors of the original journal paper when shown to
them.

5 Validating the Model

We claim the speci�cation developed in the previous section is a correct formulation of the
language semantics presented in Section 2. But how do we know that this speci�cation represents
a model of the Java subset we are considering, and in what sense does it do so? Are our de�nitions
even logically consistent?

Because of the style of de�nition we have used, relying on least �xed point and simple
recursive de�nitions, consistency of our speci�cation is essentially trivial. Validity is a harder
question: we have to measure this against the Java language standard [GJS96], in addition to
our own understanding of the meaning of constructs in the subset.

We use three techniques to validate the speci�cation:

1. Eye-balling;

2. Type checking of higher order logic;

3. Compiling to ML and running test cases.
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Here we concentrate on the third of these. In the appendix we describe how, by compiling `man-
ifestly executable' speci�cations down to executable ML code, we can generate an interpreter for
the language based directly on our de�nitions. The interpreter is able to typecheck and execute
concrete JavaS programs if given a concrete environment. The interpreter is not e�cient, but is
su�cient to test small programs.

An example is required. The vclass relation shown in Sections 2.2.2 and 4.2 compiles to a
ML function that is semantically equivalent to the following (we use CaML syntax as that is
our target variant of ML):

let rec subclass_of CE C =

(fun () -> if wf_class(C) then seq_cons(C,seq_nil) else fail()) seq_then

(fun () -> match (PLOOKUP CE C) with

NONE -> fail()

| SOME(C',_,_,_) -> subclass_of CE C');

where seq nil, seq cons and the in�x operator seq then are the obvious operations on lazy
lists, which we use to implement backtracking. Thus subclass of will return a lazy list of
identi�ers and acts as a non-standard model of the relation de�ned by the inductive rules.
Likewise we translate recursive functions to ML code, though no backtracking is needed here.

Of course, not all inductive relations or higher order logic terms are executable under this
scheme. The exact executable subset is large, but importantly only inductive relations that
satisfy strict mode constraints are allowed. That is, arguments must be divisible into inputs
and outputs, and inputs must always be de�ned by previous inputs or generated outputs. This
concept is familiar from Prolog: the mode constraints for the vclass relation are (+,+,-). We
choose not to translate directly to Prolog rules as uni�cation is almost never required when
expressing `manifestly executable' rules. The elimination of all implicit uni�cation steps is one
way in which the existence of an algorithm is demonstrated.

We can now validate the semantics we have written for JavaS . DECLARE produces a CaML
module for each abstract we have written. The modules are compiled together and linked against
a module which implements core functionality. Test cases are expressed as higher order logic
expressions (though better would be the ability to parse, compile and run Java programs directly
from the source code).

Approximately 40 errors were discovered by using these techniques. The breakdown of these
was as follows:

� Around 30 typing mistakes which led to mode violations.

� Around 5 logical mistakes in the typing rules.

� Around 5 logical mistakes in the runtime rules.

6 Formulating Key Properties

Our next step is to formulate, in the terms of the validated machine acceptable model, the
properties that we expect to be true. In particular we will outline the formulation of the type
soundness property.

6.1 Type Soundness

Loosely speaking, this theorem says that as evaluation progresses the con�guration of our rewrite
system always conforms to the types we expect, and that terms only ever narrow in type. The
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formulation di�ers from Drossopoulou and Eisenbach's because we assume a reduction is made,
rather than deriving one for every non-ground term. This formulation will `scale up' to the
non-deterministic, threaded language constructs.

A frame typing F is a list of tables of types for local variables. A frame typing indicates
what types we expect local variables to conform to. We will de�ne the auxiliary concepts of
typing for rterms, conformance (*)) between frame typings and states, self-consistency of a heap
(3heap) and widening between two heaps (�heap) and two frame typings (�ftyp) in the sections
that follow.

Theorem 1 Type Soundness Given a state s0 that conforms to some frame typing F0, if a

well-typed term t0 rewrites to some t1 and a new state s1, then either t1 represents a raised

exception, or there exists a new, larger frame typing F1 such that t1 has some narrower type

than t0 in the new state and environment, and s1 conforms to F1. That is, if

� s0 = (f0; h0)

� � ` h03

� �; h0 ` f0*)F0

� �; h0; F0 ` t0 : ty0 and

� t0; s0 ;(�;p) t1; s1 with s1 = (f1; h1)

then t1 represents an exception or there exists F1 and ty1 such that

� � ` h13

� �; h1 ` f1*)F1

� �; h1; F1 ` t1 : ty1,

� h1 �heap h0,

� F1 �ftyp F0 and

� � ` ty1�wdn ty0.

The proof is by induction on the derivation of the typing judgement for t0. The outline sketched
by Drossopoulou and Eisenbach is a good guide, but is `rough around the edges.'

Drossopoulou and Eisenbach limit their invariant to state conformance. In fact, a much
stronger invariant, `widening between heaps', is needed to ensure type soundness. We will
discuss this further in Section 8.

6.1.1 Typing for rterms

We have yet to de�ne what we mean by typing for rterms. This is a central consideration
somewhat overlooked by Drossopoulou and Eisenbach, and led in part to an error in their proof
(described in Section 8). The typing rules for rterms generally follow those for annotated JavaS
expressions, with the addition of rules for addresses (these make the typing relation dependent
on the current heap):

h(addr) =� :::�C

�; h ` addr :C

s(addr) = [[:::]]ty

�; h ` addr : ty[]
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�; h ` null :C �; h ` null : I

n > 0

�; h ` null : ty[]n

Note that we no longer demand unique typing: null values can be considered to have any refer-
ence type. The rule for assignments must also be di�erent: the new rule drops the requirement
that the source type be narrower than the target type in the case of array assignments, since
this will be checked by runtime type checking. We will return to this issue in Section 8. The
rule for local variables is:

�; h ` e : tye
�; h ` (�dx; id) : tyv
�; h ` tye�wdn tyv

�; h ` (�dx; id) := e : void

While the rule for arrays is:

�; h ` e : tye
�; h ` arr[idx] : tyv

�; h ` arr[idx] := e : void

6.1.2 Conformance

The notion of a state conforming to a frame typing was used in the statement of the type
soundness theorem, and is de�ned as follows. The de�nitions are a corrected version of those
found in [DE97b]. A value v weakly conforms to a type ty with a heap h and type environment
� if

� ty is a primitive type and v is an element of that primitive type; or

� ty is a reference type and v is a null pointer; or

� v is an address, h(v) is an instance of a class type C and � ` C �wdn ty; or

� v is an address, h(v) is an array with element type ty0[]n and � ` ty0[]n+1�wdn ty.

Value conformance states that the components of an object or array weakly conform. A value v
conforms to a type ty with heap h and type environment � if v weakly conforms to ty and

� if v is an address then h(v) =� dvals �C and for each (�eld; idx; ty0) 2 FDecs(C)
dvals(�eld) is de�ned and weakly conforms to ty0; and

� if v is an address then h(v) = [[vec]]ty
0

and each val 2 vec weakly conforms to ty0.

A heap h conforms (i.e. is self-consistent) in �, written � ` h3 if these hold:

� if addr is an address and h(addr) =� dvals�C then addr conforms to C.

� if addr is an address and h(addr) = [[vec]]ty
0

then addr conforms to ty0[].

A set of frames f conforms to a frame typing F (with a heap h and in �), written �; h ` f*)F if

� every local variable in every frame of f conforms to the corresponding type given in F ;
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6.2 Heap Widening

We now de�ne the notion of widening between heaps: this is a notion new to this report
and is required for the induction invariant of the type soundness proof. Heap widening is a
strong property, and is essential for proving the maintenance of types under state changes.
We expect heaps to maintain value conformance in the following way: for in environment � a
heap h1 is narrower than a heap h0 (i.e. h0 is wider than h1) at a set of addresses A, written
�; A ` h1�heap h0 if

� for every addr in both A and h0, if addr conformed to some type ty in the context of h0,
then addr also conforms to ty in the context of h1.

We restrict the de�nition to a set of addresses A to allow for the possibility of garbage collection:
we would then demand continued conformance only at a set of `active addresses'. Our current
working de�nition makes A universal.

6.3 Formalized Type Soundness

Type soundness as expressed in Section 6.1 is in fact three properties, one for each syntax
category within rterms. For variables the property is stated in DECLARE as follows:

TE wf_tyenv ^
TE |- heap0 frames_conform_to F0 ^
TE |- heap0 heap_conforms ^
TE |- p prog_hastype ^
s0 = (frames0,heap0) ^
s1 = (frames1,heap1) ^
(var0,s0) var_reduce(TE,p) (var1,s1) ^
(TE,F0,heap0) |- var0 rvar_hastype ty0

!
exceptional_var(var1)

_ 9F1 ty1.

F1 ftyenv_leq F0 ^
heap1 heap_leq heap0 ^
(TE) |- frames1 frames_conform_to F1 ^
(TE) |- heap1 heap_conforms ^
(TE,F1,heap1) |- var1 rvar_hastype ty1 ^
TE |- ty1 widens_to ty0)

The formulation is a straight-forward transcription of the property expressed in Section 6.1. The
property is expressed similarly for expressions and statements. The latter two syntax categories
do not have types, thus the statements are simpler.

When we actually prove type soundness, we strengthen the induction invariant in the fol-
lowing ways:

� If t0 is a �eld variable, then t1 is also and ty0 = ty1. This is needed because �eld types on
the left of assignments cannot narrow, otherwise runtime typechecking would be needed.

� If t0 is an array variable, then t1 is also, and similarly for stack variables.

6.4 Key Lemmas

The following is a selective list of the lemmas that have been proved that form the basis for the
type soundness proof.
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6 FORMULATING KEY PROPERTIES

Object is the least class

� If ` TE3tyenv and TE ` ObjectvclassC then C = Object.

Widening is transitive and reexive

� This result holds for the vclass, vint, �ref , �comp, �arr and �wdn relations.

� The transitivity results only holds for well-formed environments.

Visibility is maintained at narrower types

� If ` TE 3tyenv, TE ` C1vclassC0 and ((Cf ; d); vt) 2 FDecs(�; C0) then ((Cf ;d); vt) 2
FDecs(�; C1).

� Similarly if ` TE 3tyenv, TE ` t1�ref t0 and (m;at ! rt0) 2 MSigs(TE; t0) then there
exists some rt1 with TE ` rt1�wdn rt0 and (m; at ! rt1) 2 MSigs(TE; t1) (i.e. methods
are still visible though with possible narrower return types).

Method fetching behaves correctly

� If ` TE 3tyenv, TE ` prog3 , (m;at ! rt) 2 MSigs(TE; t) and MethBody(m;at; t; p) =
method then TE ` method : rt.

� That is, fetching the body of a method at runtime results in a method of the type we
expect.

Relations are monotonic under �heap and �ftyp

� This holds for the typing, value conformance and frame conformance relations.

State manipulations preserve �heap and heap/frame conformance

� Holds for object and array allocation.

� Also holds for �eld and array and local variable assignment, and method call.

6.5 Type Soundness of Compilation

To complement the type soundness proof, we must prove that the process of compile-time
disambiguation preserves types. This is easy to state:

(CE,IE) wf_tyenv ^
(CE,IE) |- p prog_hastype ^
(CE,IE) |- p prog_compiles_to p'

!
(CE,IE) |- p' prog_hastype

This property is proved by demonstrating that a similar property holds for all syntax classes
from expressions through to class bodies.
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7 Sketching Outlines of the Proofs

We are now ready to begin the proof of the type soundness theorem formulated in the previous
section. The reader should keep in mind that when this proof was begun, the only guide available
was the rough proof outline in [DE97b], and this was based on a formulation of the problem
that was subsequently found to be awed. Thus the process is very much one of proof discovery
rather than proof transcription. In this section we describe the process of proof discovery, and
in Section 8 a major aw in the proof discovered by this technique is described.

The proof of type soundness proceeds by the derivation of the typing judgment for the term
t - this is clear. We have to consider one case for each rule in that inductive relation. Our aim
is to write out some of the cases of the proof in a language that is close to DECLARE's proof
language, and at a level that is close to that which will be machine checkable.

7.1 Sketching v. Machine Checking

We will give an example that demonstrates the di�erence between a scratch proof outline, and
a machine checkable version of the same case of the proof. Below is an the scratch outline for a
trivial case:

case StackVar

"var0 = RStackVar(fidx,id)"

// var0 has a reduction, but stack vars do not (until they are resolved)

contradiction by <var0_reduces>;

The machine-acceptable form of the typing rule that this case of the induction is based on is:

fidx < LEN(FT) &

PLOOKUP(EL(fidx)(FT))(id) = SOME(varty)

--------------------------------------------------------

(CE,IE,FT,s) |- RStackVar(fidx,id) rvar_hastype SOME(varty)

The �nal, machine-acceptable version of the proof is

case StackVar

"var0 = RStackVar(fidx,id)" [auto]

"fidx < LEN(FT0)"

"PLOOKUP(EL(fidx)(FT0))(id) = SOME(var0_ty)"

contradiction by rule cases on <var0_reduces>;

Several things have been added to get the machine to accept the proof. For various reasons,
DECLARE demands that all inductive hypotheses be listed for each induction case, It gives
assistance in constructing these, but they must be listed in the document. Secondly, an extra
fact (that rule case analysis must be applied) has been added to the justi�cation of the claim that
a contradiction has arisen; and the tag [auto] has been added to implicitly include the given
fact in all future justi�cations. These are typical examples of how machine checking requires
that the user be more precise and/or helpful in small ways.
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7.2 A More Complicated Case

Below is the scratch proof outline for the case of �eld access variables. The proof decomposes
into two cases, one for when each sub-expression reduces. The proof outline is deliberately left
scratchy, with documentation notes included.

case Field

"var0 = RField(obj0,C',fld)"

"ihyp for (TE,FT,s) |- obj0 rexp_hastype SOME(VT(Class(C0),0N))" <ihyp>

"(TE,FT0,s0) |- obj0 rexp_hastype SOME(VT(Class(C0),0N))" <obj0_types>

"TE |- C0 subclass_of C'" <C0_subclass>

"Cdec(TE,C') = SOME(CLASS(C'',Is,fields,methods))" <C_lookup>

"PLOOKUP(fields)(fld) = SOME(var0_ty)" <fld_lookup>

let "obj0_ty = SOME(VT(Class(C0),0N))";

// do case analysis on whether obj0 has a reduction:
suppose "(obj0,s0) exp_reduces (obj1,s1)" <obj0_reduces>

// did obj0 give an exception?
per cases by <ihyp>,<obj0_reduces>

case "exceptional_exp(obj1)"

// easy - var1 will also be exceptional

// in this case, obj0 reduces conformantly, to something narrower.
case "FT0 ftyenv_leq FT1"

"TE |- s1 state_conforms_to FT1"

"(TE,FT1,s1) |- obj1 rexp_hastype obj1_ty"

"TE |- obj1_ty widens_to obj0_ty"

// obj1 will be a class, and indeed some subclass of C0
// Note: we have to make sure we didn't start with an Object and �nish
// with an array. But C can't be "Object", 'cos its got a �eld.
// We'll need a lemma for this.
have `C0 <> "Object"` [auto] by <Object-field-lemma>,...;

consider C1 st

"obj1_ty = SOME(VT(Class(C1),0N))"

"TE |- C1 subclass_of C0" <C1_subclass> by <class-widens-lemma>,...;

// and this makes C1 a subclass of C0
have "TE |- C1 subclass_of C'" <C_subclass1>

by <subclass-trans>,<C1_subclass>,<C0_subclass>;;

// Now we can proce the typing judgment for var1.
// It will have the same type as before, as �eld types never change.
have "(TE,FT1,s1) |- var1 rexp_hastype var0_ty" by ...;

// and that's all folks!
qed by <bits-n-pieces>;

end;

otherwise

// var0 is ground, and the access is left unresolved until var0 is used.
contradiction by not <obj0_reduces>, ...;

The proof outline follows the same discipline that any mathematician or computer scientist
is taught: decompose the problem; assess the information that is available; assess what is to
be proved; determine the correct plan of action based on this; determine the lemmas that are
required; and construct the solution accordingly. We are simply using a di�erent medium to
pen-and-paper, and progressively heading toward a machine checked proof.
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7.3 Detailed Machine Checking of the Proofs

In the previous section we outlined two cases of the type soundness proof, and also indicated
what is involved in getting DECLARE's proof checker to accept the proof. This process is
repeated for all 36 major cases of the type soundness proof.

Typically, a �rst pass at a case of the proof will result in:

� 50% of the steps (i.e. logical leaps) in the proof are accepted immediately;

� 25% of the steps require the addition of one or two supporting facts, and occasionally some
explicit instantiations;

� 25% of the cases require more thought than anticipated.

The completed Field case is shown below. exp types is a macro for the induction invariant.

case Field

"var0 = RField(obj0,C',fld)" [auto]

"~exp_ground obj0 ==>

exp_types TE FT0 s0 obj0 (SOME(VT(Class(C0),0N)))" <ihyp0>

"(TE,FT0,s0) |- obj0 rexp_hastype SOME(VT(Class(C0),0N))" <obj0_types>

"TE |- C0 subclass_of C'" <C0_subclass>

"Cdec(TE,C') = SOME(CLASS(C'',Is,fields,methods))" <C_lookup>

"PLOOKUP(fields)(fld) = SOME(var0_ty)" <fld_lookup>

let "obj0_ty = SOME(VT(Class(C0),0N))";

// do case analysis on whether obj0 has a reduction:
suppose "(obj0,s0) exp_reduces (obj1,s1)" <obj0_reduces>

// did obj0 give an exception?
per cases by <ihyp0>,<obj0_reduces>

case "exceptional_exp(obj1)" [auto]

qed by <exceptional>;

// obj0 reduces conformantly, to something narrower.
case "FT0 ftyenv_leq FT1" <FT1_larger>

"TE |- s1 state_conforms_to FT1" <s1_conforms>

"(TE,FT1,s1) |- obj1 rexp_hastype obj1_ty" <obj1_ty>

"TE |- obj1_ty expty_widens_to obj0_ty" <obj1_narrower>

// C can't be "Object", 'cos its got a �eld.
suppose `C0 = "Object"` [auto]

contradiction by <TE_wf>,<fld_lookup>,<Object-field-lemma>;

otherwise

consider C1 st

"TE |- C1 subclass_of C0" <C1_subclass>

"obj1_ty = SOME(VT(Class(C1),0N))" [auto]

by <class-widens-lemma>,<TE_wf>,<IE_wf>,<obj1_narrower>;;

// prove var1 is welltyped, with the same type

have "TE |- C1 subclass_of C'" <C_subclass1>

by <subclass-trans>,<C1_subclass>,<C0_subclass>;;

then have "(TE,FT1,s1) |- var1 rvar_hastype var0_ty" <var1_types>

by <rstatics__Field> ["fields","methods","Is"],<obj1_ty>,

<C_lookup>,<fld_lookup>,<C_subclass1>;

qed by <FT1_larger>,<s1_conforms>,<var1_types>,<var1_narrower>;

end;

otherwise

// var0 is ground, and the access is left unresolved until var0 is used.
contradiction by not <obj0_reduces>, rule cases on <var0_reduces>;
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Machine checking the proofs up to various lemmas that were initially assumed took around 30
minutes to one hour per case.

The reader should note that although a powerful automated routine may be able to �nd the
above proof after the fact, the very process of writing the proof corrected signi�cant errors that
would have confounded even the best automated routines, and thus increased automation is of
less use before a correct formulation is found.

8 Unmasking Mistakes

In this section we describe one major error and one major omission in Drossopoulou and Eisen-
bach's presentation of the type soundness proof. The error was discovered while outlining the
proof, and the omission while performing detailed machine checking. We also describe an error
in the language spec that we independently rediscovered.

8.1 Runtime Typechecking, Array Assignments, and Exceptions

In Drossopoulou and Eisenbach's original formulation the type soundness property was stated
along the following lines (emphasis added):

Theorem 2 If a well-typed term t is not ground, then it rewrites to some t0 (and a new state

s and environment �). Furthermore, either t0 eventually rewrites to an exception, or t0 has

some narrower type than t, in the new state and environment.

The iterated rewriting was an attempted �x for a problem demonstrated by the following pro-
gram:

void silly(C arr[], C s) f
arr[1] = s;

g

At runtime, arr may actually be an array of some narrower type, say C' where C' is a subclass
of C. Then the array assignment appears to become badly typed before the exception is detected,
because during the rewriting the left side becomes a narrower type than the right. Thus they
allow the exception to appear after a number of additional steps.

However, arr can become narrower, and then subsequently fail to terminate! Then an
exception is never raised, e.g.

arr[loop()] = s;

The problem occurs in even simpler cases, e.g. when both arr and s have some narrower types
C'[] and C'. Then, after the left side is evaluated, the array assignment appears badly typed,
but will again be well typed after the right side is evaluated.

To �x this problem requires a di�erent understanding of the role of the types we assign to
rterms. Types for intermediary rterms exist just to help express the type soundness invariant
of the abstract machine, i.e. the allowable states that a well-typed instance of the machine can
reach. In particular, the array assignment rule must be relaxed to allow what appear to be badly
typed assignments, but which later get caught by the runtime typechecking mechanism.

This problem is an interesting case where the attempted re-use of typing rules in a di�erent
setting (i.e. the runtime setting rather than the typechecking setting) led to a subtle error, and
one which we believe would only have been detected with the kind of detailed analysis that
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machine formalization demands. The mistake is unmissable in that setting. It is a surprisingly
di�cult exercise to discover the exact logical step where Drossopoulou and Eisenbach's original
proof is awed.

8.2 Side E�ects on Types

A signi�cant omission in Drossopoulou and Eisenbach's proof is as follows: when a term has two
or more subterms, e.g. arr[idx] := e, and arr makes a reduction to arr', then the types of idx
and e may change (become narrower) due to side e�ects on the state. This possibility had not
been considered by Drossopoulou and Eisenbach, and requires a strengthening of the induction
invariant incorporating heap widening (�heap), and a number of signi�cant new lemmas stating
that typing is monotonic with respect to the �frame and �heap relationship, up to the �wdn

relationship. The foremost of these lemmas has been mentioned in Section 6.4. This problem
was only discovered while doing detailed machine checking of the rough proof outline, and the
proofs of these lemmas are surprisingly the most complex in the entire proof.

8.3 What Methods are visible from Interfaces?

In the process of �nishing the proofs of the lemmas described in Section 6.4 we independently
rediscovered a signi�cant aw in the Java language speci�cation that had recently been found
by developers of a Java implementation [PB97]. In theory the aw will not e�ect type sound-
ness, but the authors of the language speci�cation have con�rmed that the speci�cation needs
alteration.

The problem is this: In Java, all interfaces and arrays are considered subtypes of the type
Object, in the sense that a cast from an interface or array type to Object is permitted.
The type Object supports several \primitive" methods, such as <object>.hashValue() and
<object>.getClass() (there are 11 in total). The question is whether expressions whose static
type is some interface support these methods.

Morally speaking, interfaces should indeed support the Object methods - any class that
actually implements the interface will support these methods by virtue of being a subclass of
Object or an array. Indeed, the Sun JDK toolkit does allow these methods to be called from
static interface types, as indicated by the successful compilation (but not execution) of the code:

public interface I

public class Itest

public static void main(String args[])

I a[] = null, null ;

a[0].hashCode();

a[0].getClass();

a[0].equals(a[1]);

However, the language speci�cation clearly says that interfaces only support those methods
listed in the interface or its superinterfaces, and that there is no `implicit' superinterface (i.e.
there is no corollary to the `mother-of-all-classes' Object for interfaces:

The members of an interface type are �elds and methods. The members of an
interface are all of the following:

� Members declared from any direct superinterfaces

� Members declared in the body of the interface.
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. . .
There is no analogue of the class Object for interfaces; that is, while every class

is an extension of class Object, there is no single interface of which all interfaces are
extensions.

[GJS96], pages 87 and 185

9 Summary

This report has presented corrections to the semantics of JavaS, a machine formalization of this
semantics, a technique to partially validate the semantics, and an example of the use of new
mechanized proof techniques to prove the type soundness property for that language.

9.1 Using Formal Techniques to Specify Languages

The work developed here demonstrates in part how formal techniques can be used convincingly
to help specify a major language. Java itself is far more complicated than JavaS , but we have
covered some of the initial groundwork.

Drossopoulou and Eisenbach's formalization was the inspiration for this work and is an ex-
cellent example of the use of operational semantics. We suggest that the form of speci�cation
presented here may ultimately provide a better repository of the information presented in the
formal paper, especially when exible tools are provided to read and interpret it. The speci�ca-
tion can be used as both an interpreter and as the basis for formal proofs.

9.2 Using Formal Proofs to Find Mistakes

The disciplined approach enforced when writing a proof to be accepted by a mechanized tool
ensures errors like those described in Section 8 are detected. It also encourages a high degree of
clarity in the formalization of a problem in the �rst place.

The declarative proof language played a crucial role: it allowed the author to think clearly
about the language while preparing the proof outline for the computer. The �rst error was found
when simply preparing the proof outline, rather than when checking it in detail. However, during
this process of preparation the question `will a machine accept this proof?' was consistently
asked, and this ensured that unwarranted logical leaps were not made.

The independent rediscovery of the mistake in the language speci�cation described in Sec-
tion 8.3 indicates that such errors can indeed be discovered by the process of formal proof. The
mistake had already been discovered, presumably by implementors attempting to follow the
language speci�cation precisely.

Formal speci�cation in a logic is well known to be of value in discovering bugs in speci�-
cations. This work has demonstrated that proof sketching and proof checking within a formal
framework can also detect serious mistakes while the theoretical framework for the language is
still under development. It is interesting to note that of the three major errors, two were only
discovered at a late stage in the formal proof.

9.3 Related Work

Tobias Nipkow and David von Oheimb have been working on developing a proof of the type
soundness property for a similar subset of Java in the Isabelle theorem prover. I am extremely
grateful for the chance to talk with them and have adopted suggestions they have made. These
two works will provide a valuable case study of the utility of various theorem proving methods to
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this kind of problem. Isabelle is a mature system and has complementary strengths to DECLARE,
notably strong generic automation and manifest soundness. A tool which unites these based on
such concrete experience is an exciting prospect.

Computational Logic, Inc. have released a formal model of a subset of the Java Virtual
Machine (JVM) [Coh97]. The model is called the `defensive' JVM (or dJVM) because it includes
su�cient run-time checks to assure type-safe execution (or at least to detect and prevent any
unsafe execution). In the standard JVM these checks are not present. Any future work on
extending our work to cover type safety for the JVM could be based partly on this model.

9.4 Future Work

The model presented in this article has scope to be extended in many directions. The treatment
could be expanded to encompass features such as exceptions, constructors, access modi�ers,
static �elds and static methods without major problems, although this would involve a signi�cant
expansion in the size of the proofs. Features such as threads and Java's semantically visible
garbage collection pose greater problems, but should also be possible.

The work began as a case study for the application of a declarative proof language to opera-
tional reasoning, and there are ways in which DECLARE (or similar systems) could be improved
based on this experience. The most necessary feature is some degree of `Computer Aided Proof
Writing', as described briey in [Sym97].
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A An Introduction to DECLARE

DECLARE is a declarative proof system for polymorphic, simple higher order logic. It is designed
to aid in the production of clear, readable, maintainable speci�cation and proof documents.
DECLARE is not a complete or polished system, and has been developed with the aim of testing
various features that could be incorporated in existing, supported theorem provers such as
HOL, Isabelle and PVS. It has been inuenced heavily by Mizar [Muz93], HOL [GM93], Isabelle
[Pau90] and PVS [ORR+96]. It is not an LCF-style s ystem as not all deductions are reduced
to a primitive deductive framework. The features of interest here are:

� The declarative language used to express proof outlines.
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� The support for modularization, separate processing and top-down formalization, which
leads to a well-structured, e�cient working environment.

� The automated proof support.

A.1 The Proof Language

We try to achieve, by the simplest means possible, results that are both machine checkable and
human readable. 6

DECLARE's proof language is inspired by Mizar and work by Harrison [Muz93, Har97], and
is a way of specifying the outline of a proof using induction, case-decomposition, and arbitrary
(but substantiated) claims. The language will be demonstrated by example in Section 7.3.
Such proof languages are called declarative, to place them in contrast to `procedural' tactic
based mechanisms for specifying proofs. The use of a declarative proof language has several
advantages:

� Declarative proofs are more readable than tactic proofs.

� Proof interpretation always terminates, unlike tactic proofs which are expressed in a
Turing-complete language.

� Declarative proofs are potentially more maintainable under changes to the speci�cation
and the prover.

� Declarative proofs are potentially more portable. Speci�cation and proof documents de-
veloped with DECLARE are, in principle, portable to other proof systems.

� A declarative style may appeal to a wider class of users, helping to deliver automated
reasoning and formal methods to mathematicians and others.

A.2 The Working Environment

When using DECLARE, large bodies of work are broken into a series of articles, each of which
may have an interface called an abstract. Articles are checked relative to the abstracts they
import, and must `implement' the abstract they export. Abstracts may be pre-compiled, which,
in combination with the make system, gives us a simple yet light-weight and e�ective means for
maintaining the coherence of large collections of speci�cations and proofs. This approach also
means DECLARE typically uses only 5-6 MB of memory when executing.

A.3 Automation

DECLARE proofs are only proof outlines, and require automation to �ll in the gaps in the
argument. In this way the proof language acts as a bridge between the human and the automated
capabilities of the proof checker.

The automation we use in this report is fairly straightforward:

� We use Boyer-Moore/Isabelle style simpli�cation with conditional, higher-order rewriting
to normalize expressions. Simpli�cation is performed under the auspices of a two-sided
sequent calculus like that used by PVS. During simpli�cation we:

6Some researchers take the view that human readable proofs should be generated as output from mechanized
proofs: this may be possible, but it is a highly complex process and the results are not yet convincing. Our
approach is to make the input readable in the �rst place.
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{ Apply safe introduction and elimination rules, e.g. choosing witnesses and splitting
conjuncts in goal formulae;

{ Apply `unwinding' rules to eliminate local constants from existential and universal
formulae, and the sequent itself;

{ `Untuple' all pair, tuple and record values;

{ Case-split on constructs such as conditionals and quanti�ed structural variables (booleans,
options etc.);

{ Apply a large background set of rewrites collected from imported abstracts;

{ Normalize arithmetic expressions;

{ Use exploratory unwinding of some de�nitions, in the style of PVS.

{ Support the controlled left-right simpli�cation of certain guarded expressions, which
helps avoid common causes of non-terminating rewriting strategies.

� After simpli�cation we use a simple tableau prover (with iterative deepening and some
minor equality rules) to search for values for unknowns.

This level of automation has been su�cient during exploratory proof development, since in this
most important stage we are content with guiding the prover through the proof without expecting
complex steps, such as inductions, to be automated. The only signi�cant problems arise when
we venture into the problem space which requires both signi�cant equality and proof-search
reasoning (this is still a major research area), or equality reasoning not amenable to rewriting
(completion of DECLARE's decision procedures should help with this).

Automation in DECLARE is guided by purely declarative tags: lemmas are given once-only
`how to use me' declarations, and no weightings or other hints are speci�ed when a lemma is
used. This ensures that proof documents are not overly reliant on quirks of the underlying
prover.

B The Full Widening Rules

These rules determine the widening (subtype) relation.

� ` C vclass C
0

� ` C �sref C 0

� ` I vint I
0

� ` I �sref I 0
I 2 �

� ` I �sref Object

� ` C vclass C
0

� ` C 0
:imp I

� ` I vint I
0

� ` C �sref I 0

ty 2 prim-types

� ` ty�comp ty

ty; ty0 2 simple-ref-types

� ` ty�sref ty
0

� ` ty�comp ty0

ty 2 component-types

n > 0

� ` ty[]n�arr Object

n > 0
� ` ty�comp ty

0

� ` ty[]n�arr ty0[]
n

ty; ty0 2 array-types

� ` ty�arr ty
0

� ` ty�ref ty0

ty; ty0 2 simple-ref-types

� ` ty�sref ty
0

� ` ty�ref ty0
ty 2 ref-types

� ` nullT�ref ty

ty 2 prim-types

� ` ty�wdn ty

ty; ty0 2 ref-types

� ` ty�ref ty
0

� ` ty�wdn ty0
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C The Full Traversal Rules

These rules determine what methods and �elds are visible from a given class. The relations
evaluate graphs, which in well-formed environments determine partial functions.

�(C):ds(�eld) = ty

� ` (C; ty)2FDec(C;�eld)

�(C) = hCsup;ds; : : :i ds(�eld) = undef � ` (C 0; ty)2FDec(Csup;�eld)

� ` (C 0; ty)2FDec(C;�eld)

�(C):ds(�eld) = ty

� ` ((C;�eld); ty)2 FDecs(C)

�(C) = hCsup; : : :i � ` ((C 0;�eld); ty)2FDecs(Csup)

� ` ((C 0;�eld); ty)2FDecs(C)

�(C):meths(meth; at) = rt

� ` ((meth; at); rt)2MSigsC(C)

�(C) = hCsup; : : : ;methsi meths(meth; at) = undef � ` ((meth; at); rt)2MSigsC(Csup)

� ` ((meth; at); rt)2MSigsC(C)
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