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Abstract. Recently it was proved that the problem of simultaneous 
rigid E-unification, or SREU, is undecidable. Here we show that 4 rigid 
equations with ground left-hand sides and 2 variables already imply un- 
decidability. As a corollary we improve the undecidability result of the 
3*-fragment of intuitionistic logic with equality. Our proof shows unde- 
cidability of a very restricted subset of the 33-fragment. Together with 
other results, it contributes to a complete characterization of decidability 
of the prenex fragment of intuitionistic logic with equality, in terms of 
the quantifier prefix. 

1 I n t r o d u c t i o n  

Recently it was proved that the problem of simultaneous rigid E-unification 
(SREU) is undecidable [11]. This (quite unexpected) undecidability result has 
lead to other new undecidability results, in particular that  the 3*-fragment of 
intuitionistic logic with equality is undecidable [13,15]. Here we show that  4 rigid 
equations I with ground left-hand sides and 2 variables already imply undecid- 
ability. As a corollary we improve the undecidability result of the 3*-fragment 
of intuitionistic logic with equality. Namely that  the 33-fragment is undecid- 
able. In fact, our proof shows undecidability of a very restricted subset of the 
33-fragment. Together with the result that  the 3-fragment is decidable [6], it con- 
tr ibutes to a complete characterization of decidability of the prenex fragment of 
intuitionistic logic with equality, in terms of the quantifier prefix. 

1.1 Background o f  S R E U  

Simultaneous rigid E-unification was proposed by Ga~er ,  Raatz and Snyder [21] 
as a method for automated theorem proving in classical logics with equality. It 
can be used in automatic proof methods, like semantic tableaux [18], the con- 
nection method [3] or the mating method [1], model elimination [32], and others 
that  are based on the Herbrand theorem, and use the property that  a formula 

is valid (i.e., - ~  is unsatisfiable) iff all paths through a matrix of ~ are incon- 
sistent. This property was first recognized by Prawitz [38] (for first-order logic 
without equality) and later by Kanger [28] (for first-order logic with equality). 

1 It has been noted by Gurevich and Veanes that 3 rigid equations suffices [25]. 
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In first-order logic with equality, the problem of checking the inconsistency of 
the paths results in SREU. Before SREU was proved to be undecidable, there 
were several faulty statements of its decidability, e.g. [19,24]. 

1.2 O u t l i n e  o f  t h e  P a p e r  

In Section 2 we introduce the notations used in this paper and briefly explain 
the background material. In Section 3 we prove the main result of this paper 
(Theorem 8), that  implies immediately the undecidability result of a very re- 
stricted case of SREU. In Section 4 we use this result to obtain undecidability 
of a restricted subset of the 33-fragment of intuitionistic logic with equality. Fi- 
nally, the current status about SREU is summarized and some open problems 
are listed in Section 5. 

2 P r e l i m i n a r i e s  

We introduce here the main notions and definitions used in this paper. Given a 
signature Z ,  i.e., a set of function symbols with fixed arities, the set of all ground 
(or closed) terms over Z is denoted by T~. Unless otherwise stated it is always 
assumed that  Z is nonempty, finite and includes at least one constant (function 
symbol of arity 0). We also assume certain familiarity with basic notions from 
term rewriting [16], regarding ground rewriting systems. By a substitution we 
understand a function from variables to ground terms and a substi tution is 
always denoted by 0. An application of ~ on a variable x is written as xO instead 
of e(z). 

2.1 F i n i t e  T r e e  A u t o m a t a  

Finite tree automata  [17,39] is a natural generalization of classical finite au- 
tomata  to au tomata  that  accept or recognize trees of symbols, not just strings. 
Here we adopt a definition of tree automata  based on rewrite rules. This defini- 
tion is used for example by Dauchet [4]. 

A tree automaton or TA is a quadruple A = (Q~ Z,  R, F )  where 
• Q is a finite set of constants called states, 
• Z is a signature or an input alphabet disjoint from Q, 
® R is a set of rules of the form a(q l , . . . ,  q,~) -4 q, where a E Z has arity 

n > 0 and q, q l , . . . , qn  E Q, 
• F c_ Q is the set of final states. 

A is called a deterministic TA or DTA if there are no two different rules in 
R with the same left-hand side. 

Note that  if A is deterministic then R is a reduced set of ground rewrite rules, 
i.e., for any rule s -+ t in R t is irreducible and s is irreducible with respect to 
R \ {s ~ t}. So R is a ground canonical rewrite system. In this context terms 
are also called trees. A set of terms (or trees) is called a forest. 



307 

• The forest recognized by a TA A = ( Q , Z , R , F )  is the set 

T(A) = { t E T~ l (3q e F) t *~R q }. 

A forest is called recognizable if it is recognized by some TA. 

We assume that  the reader is familiar with classical automata  theory and we 
follow Hopcroft and Ullman [27] in that  respect. 

2.2 Simultaneous Rigid E-Unification 

A rigid equation is an expression of the form E ~v s ~ t where E is a finite 
set of equations, called the left-hand side of the rigid equation, and s and t are 
arbitrary terms. A system of rigid equations is a finite set of rigid equations. A 
substitution 9 is a solution of or solves a rigid equation E kv s ~ t if 

eEE 

and 0 is a solution of or solves a system of rigid equations if it solves each 
member of that  system. Here F is classical or intuitionistic provability (for this 
class of formulas both provabilities coincide). The problem of solvability of sys- 
tems of rigid equations is called simultaneous rigid E-unification or SREU for 
short. Solvability of a single rigid equation is called rigid E-unification. Rigid 
E-unification is known to be decidable, in fact NP-complete [20]. The following 
simple lemma is useful. 

Lemma 1. Let A = (Q, ~,  R, F) be a DTA, f a binary function symbol, and cl 
and c2 constants not in Q or Z .  There is a set of ground equations E such that 
for all O such that x8 E T~, O solves E ~v f (cl ,  x) ~ c2 iff xO c T(A). 

Proof. Let E -- R U { f (c t ,q )  -+ c2 t q e F} .  It follows easily that  E is a 
canonical rewrite system, and since c2 is irreducible with respect to E we have 
in particular for all t E TE, that  (cf [16, Section 2.4]) 

E~- f ( c l , t ) ,~c2  ¢~ f (c l , t )  *)E c2. 

But 
/(el,  t) 

The rest is obvious. 

*>EC2 ¢~ (3qEF) t,,*~Rq. 
[] 

3 M i n i m a l  U n d e c i d a b l e  Case  of  S R E U  

We present yet another proof of the undecidability of SREU. At the end of this 
section we give a brief summary of the other proofs. The main idea behind this 
proof is based on a technique that  we call shifted pairing after Ptaisted [37]. 
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The idea is to express repetition explicitly by a sequence of strings (like IDs 
of a TM). The first string of the sequence fulfills some initial conditions, the 
last string some final conditions and another sequence is used to check that  the 
consequtive strings of the first sequence satisfy some relationship (like validity 
of a computation step). 

A similar technique was used already by Goldfarb in the proof of the unde- 
cidability of second-order unification [23] (which was by reduction of Hilbert's 
tenth problem) and later, adopted from that  proof, also in the third proof of 
the undecidability of SREU by Degtyarev and Ybronkov [13] (which was also 
by reduction of Hilbert's tenth problem). There the key point was to explicitly 
represent the history of a multiplication process. 

Shifted pairing bears also certain similarities to the technique tha t  is used to 
prove that  any recursively enumerable set of strings is given by the intersection 
of two (deterministic) context free languages [27, Lemma 8.6]. 

3.1 O v e r v i e w  of  t h e  C o n s t r u c t i o n  

We consider a fixed Turing machine M, 

M = (QM, Zin, Ztape, 5, qo, b, {qacc})- 

We can assume, without loss of generality, that  the final ID of M is simply qacc 
(and tha t  qo ~ qacc), i.e., the tape is always empty when M enters the final 
state. We construct a system SM(X, y) of four rigid equations: 

sM(~,y)  = { E~d ~ ~Id . x  ~ Cld, (1) 

E m v ~ '  c m v .  y ~ Cmv, (2)  

/ I t  ~ x ~ y, (3) 

I/2 ~v x ~ (qo. eo). y } (4) 

where all the left-hand sides are ground, Cidt, Cid, Cmv~ and Cmv are constants, and 
qo. e0 is a word that  represents the initial ID of M with empty input string (e). 
We prove that  M accepts e iff SM is solvable. This establishes the undecidability 
result because all the steps in the construction are effective, 

The main idea behind the rigid equations is roughly as follows. Assume that  
there is a substitution 0 that  solves the system. 

- From 0 being a solution of (1), it follows that  x0 represents a sequence 

(vo,  v l ,  • • •,  v ~ )  

of IDs of M, where Vm is the final ID of M. 
- From 0 being a solution of (2), it follows that  yO represents a sequence 

((Wo,W+),(wl,w+),...,(Wn,W+)) 

of moves of M, i.e., wi ~-M w + for 0 < i < n. 
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<,,,~_=, v,,_~)(~,,~-1, v,,) (~,  ~) 

Fig. 1, ((vo~ vt), (v~, vz) , . . . ,  (v~, e)) is a shifted pairing of (vo, v l , . . . ,  vn). 

- From 0 being a solution of (3) it follows tha t  n = m and v~ - wi for 
0 < i < m .  

- And finally, from ~9 being a solution of (4) it follows tha t  v0 is the initial ID 
and v,i = W+_l for 1 < i < m. 

The  combination of the last two points is the so-called "shifted pairing" tech- 
nique. This is i l lustrated by Figure 1. The outcome of this shifted pairing is tha t  
x9 is a valid computat ion of M with input e, and thus M accepts ~. Conversely, 
if M accepts e then it is easy to construct a solution of the system. We now give 
a formal construction of the above idea. 

3.2 W o r d s  a n d  T r a i n s  

Words are certain terms tha t  we choose to represent strings with, and trains 
are certain terms that  we choose to represent sequences of strings with. We use 
the letters v and w to stand for strings of constants. L e t .  be a binary function 
symbol. We write it in infix notat ion and assume tha t  it associates to the right. 
For example tl • t2 • t3 stands for the te rm . ( t l ,  .(t2, t3)). 

I* We say tha t  a (ground) t e rm t is a c-word  if it has the form 

al . a 2 .  " . a n o C  

for some n _> 0 where each a/ and c is a constant.  A word  is a c-word for 
some constant c. 

We use the following convenient shorthand notat ion for words. Let t be the word 
al  • a2 . . . .  • an  • c and v the string ala2  . ."  an.  We, write v .  c for t and say tha t  t 
represen ts  v.  

I~ A term t is called a c - t ra in  if it has the form 

tl  . t 2 . ' " . t , ~ . c  

for some n > 0 where each ti is a word and c is a constant.  I f  n = 0 then t is 
said to be empty .  The t i 's  are called the words of  t. A train  is a c-train for 
some constant c. 

By the p a t t e r n  of a t rain 

(vl .  c l ) .  (v2. •. (vs.  c ,J .  c 
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we mean the string clc2 " -  ca. Let ]2 = {V~}ie I be a finite family of regular sets 
of strings over a finite set Z of constants, where I is a set of constants disjoint 
from ~U. Let U be a regular set of strings over I and let c be a constant not in 
Z o r  I. 

We let Tn02 , U, c) denote the set of all c-trains t such that  the pat tern  of t 
is in U and, for i E I, each i-word of t represents a string in V/. 

Example 2. Consider the set Tn({Va, Vb, Vc}, ab*c, A). This is the set of all A- 
trains t such that  the first word of t is an a-word representing a string in Va, 
the last word of t is a c-word representing a string in V~ and the middle ones (if 
any) are b-words representing strings in Vb. 

We say that  a set of trains has 
Tn('g, U, c) with "~, U and c as 
Veanes [40]. 

a regular pattern if it is equal to some set 
above. The following theorem is proved in 

T h e o r e m  3 ( T r a i n  T h e o r e m ) .  Any set of trains with a regular pattern is rec- 
ognizable and a DTA that recognizes this set can be obtained effectively. 

3.3 Representing IDs and Moves 

Recall that  an ID of M is any string in ~apeQM,~a.pe that  doesn't  end with a 
blank (b). Let us assign arity 0 to all the tape symbols (Ztape) and all the states 
(QM) of M, and let ~ denote the signature consisting of all those constants, the 
binary function symbol ,  and four new constants eo, el, eacc and A. 

I D - t r a i n s  IDs are represented by e-words, where e is one of eo, el or eacc. 
In particular, the initial ID is represented by the word q0 • e0. The final ID 
is represented by the word qac¢. eacc and all the other IDs are represented by 
corresponding el-words. The term 

(q0.e0)* (vtoel), (v2 oel),. . .° (Vn.el), (qacc°eacc) oA 

is called an ID-train. By using Theorem 3 let 

Aid = (Qid, Z,-Rid, Fid) 

be a DTA that  recognizes the set of all ID-trains. Let C~d and Cid be new constants 
and (1) the rigid equation provided by Lemma 1, i.e., for all 8 such that  x8 E T~, 

O solves (1) ¢v xO e T(Aid). 
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M o v e - t r a i n s  Let cab be a new constant for each pair of constants a and b in the 
set ~tape i.J QM- Let also e~ and A ~ be new constants. Let now F be a signature 
tha t  consists o f . ,  all those c~b's, e2 and A t. 

For and ID w of M we let w + denote the successor of w with respect  to the 
transit ion function of M.  For technical reasons it is convenient to let q+ = e, ace 
i.e., the successor of the final ID is the empty  string. The  pair (w, w +) is called 
a move. Let w = a la2 . . . a ,~  and w + = bib2""  bn for some m _> 1 and n > 0. 
Note tha t  n • {m - 1, m,  m + 1}. Let k = max(m,  n). I f  m < n let ak = ~ and 
if n < m let bk -- b, i.e., pad the shorter of the two strings with a blank at  the 
end. 

We write (w ,w +) for the string ca~b~c~2b 2 "''Cakb~ and say tha t  the e2-word 
(w, w +) .e2 represents the move (w, w+). By a move-train we mean any te rm 

t : t 1 . t  2 * "".tn,X 

such tha t  each t~ represents a move. 

Example 4. Take Gin = {0, 1}, and let q ,p  • QM. Assume tha t  the transi t ion 
function ~ is such that ,  when the tape head points to a blank and the s tate  is q 
then a 1 is writ ten to the tape,  the tape  head moves left and M enters s ta te  p, 
i.e., 5(q, b) = (p, 1, L). Let the current ID be 00% i.e., the tape  contains the string 
00 and the t ape  head points to the bank following the last 0. So (00% 0p0i)  is a 
move. This move is represented by the te rm c00.cop, cq0. c~1.e2, or (00% 0p01).  e2 
if we use the above notation. 

I t  is easy to see tha t  the set of all strings (w, w + ) where w is an ID, is a regular 
set. By using Theorem 3 let 

Amy = (Qmv,/'~]~mv,Fmv) 

be a DTA tha t  recognizes the set of all move-trains.  Let Ctmv and Cmv be new 
constants and (2) the rigid equation provided by Lemma  1, i.e., for all 0 such 
tha t  y8 • % ,  

8 solves (2) ¢v y8 • T(Amv). 

3.4 Shifted Pairing 

We continue with the contruction of SM. What  has remained to define is II1 
and //~. These are defined as sets of equations corresponding to the following 
canonical rewrite systems. 

111 = {cab --~ a fa,  b E ~tape UQM } U 

{ el ~ eo, e2 -+ eo, eacc -+ eo, A ~ -+ A, b.  eo -~ eo } 

II2 = {Cab -'+ b la,  bE Ztape UQM } U 

{e l  -+ eo, e2 -~ eo, ea¢c ~ eo, A' -~ A, 5 . eo  -+ eo, eo • A --~ A }  

The  differences be tween / /1  and II2 are indicated in boldface. 
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L e m m a  5. / f  0 solves (3) and (4) then xO, yO E Tzur .  

Proof. By induction on the size of xO [40]. [] 

L e m m a  6. If  O solves SM(x ,y)  then xO E TE and yO E % .  

Proof. Assume tha t  0 solves SM(x,y) .  Obviously x0 E 7"zuQ~a since 0 solves (1). 
By Lemma 5 we know also that  x0 E T~ur .  But ~ ,  F and Qid don' t  share any 
constants. So x0 E Tz. A similar argument shows that  y0 E TF. [] 

L e m m a  7. If O solves SM(x ,y)  then xO is an ID-train and yO is a move-train. 

Proof. By Lemma 6, the definition of Aid and Amy and Lemma 1. D 

We have now reached the main theorem of this paper. 

T h e o r e m  8. SM(x ,y )  is solvable iff M accepts e. 

Proof, ( 0 )  Let 0 be a substitution that  solves SM(X, y). By using Lemma 7 we 
get tha t  xO and y0 have the following form: 

X0 -~- (V0o e 0 ) .  ( V l o  e l )  . ' ' '  • (Vm-1. e l ) .  (Vm. eaee)  • d 

y0 = ((wo, Wo+). e2). ((~1, ~1+). e2). -. •. ((.~, ~+). e2). J' 

where all the vi's and wi's are IDs of M, vo = qo and vm = qacc. 
Since 0 solves (3) it follows that  the normal forms of x0 and y0 under //1 

must coincide. The normal form of x0 under/-/1 is 

(v0. e0). (v~. e o ) . . .  (v~_l.  eo). (v~. eo). A. 

The normal form of y0 under H1 is 

(~o. ~o). (w~. ~o).'" • (~.-~ • eo). ( ~ .  ~o). A. 

1 ! Note tha t  each term (w~,w+).  e2 reduces first to w, i . eo where w i = wi or 
w~ = wib. The extra  blank at the end is removed with the rule b, eo -+ eo. So 

vo = qo, vn = qacc, vi = wi (O < i < n = m). (5) 

Since 0 solves (4) it follows that  the normal forms of x0 and (q0 ,e0) .y0 unde r / /2  
must coincide. The normal form of x0 under / /2  is the same as under / /1  because 
x0 doesn't  contain any constants from/~ and the rule eo.A --+ A is not applicable. 
Prom w~ = qacc follows that  w + = e and thus (w~, w+) .  eo --- c q ~ .  eo. But 

(cq~oo~. eo) .  A ~n2 (~. eo).  A - - + ~  eo.  A ~m A. 

The normal form of (qo, eo) • yO unde r / / 2  is thus 

. . . . . . .  (w,_ l  • So). A. (qo eo) (~o + eo) (~+ e o ) . . .  + 
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It follows that 
w + = v +l (0 < i < (6) 

From (5) and (6) follows that (v0, v l , . . . ,  v,0 is a valid computation of M, and 
thus M accepts c. 

(~ )  Assume that M accepts e. So there exists a valid computation 

of M where Vo = qo, v~ = qacc and v + = vi+l for 0 < i < n. Let 0 be such that 
xO is the corresponding ID-train and yO the corresponding move-train. It follows 
easily that 0 solves SM(X, y). [:] 

The "shifted pairing" technique that is used in Theorem 8 is illustrated in Fig- 
ure 1. 

The following result is an immediate consequence of Theorem 8 because all 
the constructions involved with it are effective. 

Corollary 9. SREU is undecidable if the left-hand sides are ground, there are 
two variables and four rigid equations. 

It was observed by Gurevich and Veanes that the two DTAs Aid and Amy can be 
combined into one DTA (by using elementary techniques of finite tree automata 
theory [22]), and by this way reducing the number of rigid equtions in SM 
into three [25]. It is still an open question if SREU with two rigid equations is 
decidable. 

3.5 Previous Undecidability Proofs of  SREU 

The first proof of the udecidability of SREU [11] was by reduction of the monadic 
semi-unification [2] to SREU. This proof was followed by two alternative (more 
transparent) proofs by the same authors, first by reducing second-order uni- 
fication to SREU [10,15], and then by reducing Hilbert's tenth problem to 
SREU [14]. The undecidability of second-order unification was proved by Gold- 
farb [23]. Reduction of second-order unification to SREU is very simple, showing 
how close these problem are to each other. Plaisted took the Post's Correspon- 
dence Problem and reduced it to SREU [37]. From his proof follows that SREU 
is undecidable already with ground left-hand sides and three variables. He uses 
several function symbols of arity 1 and 2. 

3.6 Herbrand Skeleton Problem 

The Herbrand skeleton problem of multiplicity n is a fundamental problem in 
automated theorem proving [7], e.g., by the method of matings [1], the tableaux 
method [18], and others. It can can be formulated as follows: 

Given a quantifier free formula ~(x) ,  does there exist a sequence of 
ground terms t l , . . .  , t ,  such that the disjunction ~p(tl) V . . .  V ~(t~) is 
valid? 
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The undecidability of this problem was established recently by Voda and Ko- 
mara [41] by a technique similar to the one used in the reduction of Hilbert's 
tenth problem to SREU [14]. Their proof is very complicated and (contrary 
to their claim) it is shown in Gurevich and Veanes [25] by using a novel logical 
lemma that the Herbrand skeleton problem of any fixed multiplicity reduces eas- 
ily to SREU. As a corollary (by using Theorem 8) improving the result in [41], 
by proving the undecidability of this problem for a restricted Horn fragment of 
classical logic (where variables occur only positively). 

4 U n d e c i d a b i l i t y  o f  t h e  3 S - f r a g m e n t  o f  I n t u i t i o n i s t i c  
L o g i c  w i t h  E q u a l i t y  

Undecidability of the 3*-fragment of intuitionistic logic with equality was es- 
tablished recently by Degtyarev and Voronkov [13,15]. We obtain the following 
improvement of this result. Let Fi stand for provability in intuitionistic predi- 
cate calculus with equality and let ~-c stand for provability in classical predicate 
calculus (with equality). 

T h e o r e m  10. The class of formulas in intuitionistic logic with equality of the 
form 3x3y 9~(x, y) where ~ is quantifier free, and 

- the language contains (besides constants) a function symbol of arity >_ 2, 
- the only connectives in ~ are %' and ' 0 '  and 
- the antecedents of all implications in ~ are closed, 

is undeeidable. 

Proof. Let SM(X, y) be the system of rigid equations given by Theorem 8. So 

SM(x,y) = { E ~ s ~ t ~ ] l < i < 4 } ,  

where each E~ is a set of (ground) equations. Let ¢~ = AeeE~ e for 1 < i < 4. 
Note that each ¢i is closed. Let 

= A (¢, s, t,) 
1 < i < 4  

The construction of ~ from SM and thus from M is clearly effective. To prove 
the theorem it is enough to prove the following statement: 

e E L(M) ¢:~ Fi 3x3y~(x,y).  

( 0 )  Assume e E L(M). By Theorem 8 there is a substitution 0 that solves 
SM(x, y). By definition, this means that Fc ~(x0, y0). But 

for this particular class of formulas. The rest is obvious. 
(~ )  Assume that ~-i 3x3y~(x, y). By the explicit definabilty property of 

intuitionistic logic there are ground terms t and s such that ~-i ~(t, s) and thus 
Fc ~(t, s). Let 0 be such that x0 = t and yO = s. It follows that 0 solves the 
system SM(x,y),  and thus e E L(M) by Theorem 8. [5 
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A closely related problem is the skeleton instantiation problem (the prob- 
lem of existence of a derivation with a given skeleton in a given proof system). 
Voronkov shows that SREU is polynomially reducible to this problem [42, The- 
orem 3.12] (where the actual proof system under consideration is a sequent cal- 
culus L J  ~ for intuitionistic logic with equality). Moreover, the basic structure 
of the skeleton is determined by the number of variables in the SREU problem 
and the number of rigid equations in it. The above corollary implies that this 
problem is undecidable already for a very restricted class of skeletons. 

In Degtyarev, Gurevich, Narendran, Veanes and Voronkov [6] it is proved that 
the 3-fragment of intuitionistic logic with equality is decidable. For further re- 
sults about the prenex fragment see Degtyarev, Matiyasevich and Voronkov [9], 
Degtyarev and Voronkov [12] and Voronkov [43,42]. Decidabilty problems for 
some other fragments of intuitionistic logic with and without equality were stud- 
led by Orevkov [35,36], Mints [34] and Lifschitz [31]. 

5 C u r r e n t  S t a t u s  a n d  O p e n  p r o b l e m s  

The first decidability proof of rigid E-unification is given in Gallier, Narendran, 
Plaisted and Snyder [20]. Recently a simpler proof, without computational com- 
plexity considerations, has been given by de Kogel [5]. We start with the solved 

ca8e8:  

- Rigid E-unification with ground left-hand side is NP-complete [30]. Rigid 
E-unification in general is NP-complete and there exist finite complete sets 
of unifiers [19,20]. 

- SREU with one variable and a fixed number of rigid equations is P-com- 
plete [6]. 

- If all function symbols have arity <_ 1 (the monadic case) then SREU is 
PSPACE-hard [24]. If only one unary function symbol is allowed then the 
problem is decidable [8,9]. If only constants are allowed then the problem is 
NP-complete [9] if there are at least two constants. 

- About the monadic case it is known that if there are more than 1 unary 
function symbols then SREU is decidable iff it is decidable with just 2 unary 
function symbols [9]. 

- If the left-hand sides are ground then the monadic case is decidable [26]. 
Monadic SREU with one variable is PSPACE-complete [26]. 

- The word equation solving [33] (i.e., unification under associativity), which 
is an extremely hard problem with no interesting known computational com- 
plexity bounds, can be reduced to monadic SREU [8]. 

- Monadic SREU is equivalent to a non-trivial extension of word equations [26]. 
- Monadic SREU is equivalent to the decidability problem of the prenex frag- 

ment of intuitionistic logic with equality with function symbols of arity 
5 1 [12]. 

- In general SREU is undecidable [11]. Moreover, SREU is undecidable under 
the following restrictions: 

• The left-hand sides of the rigid equations are ground [37]. 
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• Furthermore,  there are only two variables and three rigid equations with 
fixed ground left-hand sides [25]. 

- SREU with one variable is decidable, in fact EXPTIME-complete  [6]. 

Note also that  SREU is decidable when there are no variables, since each rigid 
equation can be decided for example by using any congruence closure algorithm 
or ground term rewriting technique. Actually, the problem is then P-complete 
because the uniform word problem for ground equations is P-complete [29]. The 
unsolved cases are: 

? Decidability of monadic SREU [26]. 
? Decidability of SREU with two rigid equations. 

Both problems are highly non-trivial. 
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