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1 Alternative derivation

We will focus on a particular factor fa and variable xi, with the aim of cal-
culating an exponential family message ma→i(xi;φ), parameterised by the nat-
ural parameter φ. Consider the local exclusive KL with exponential family
qi(xi; θ), with natural parameter θ. Here q\a(x) is the cavity distribution and
q\i(x\i) =

∏
j 6=i qj(xj) is the current variational distribution over variables other

than xi.

KL(qi(xi; θ)q\i(x\i)||fa(x)q\a(x)) =
∫
qi(xi; θ) log qi(xi; θ)dxi (1)

−
∫
qi(xi; θ)q\i(x\i) log fa(x)dx (2)

−
∫
qi(xi; θ)q\i(x\i) log q\a(x)dx + const. (3)

The cavity distribution itself factorises as q\a(x) = qi(xi; θ\a)q\a,i(x\i), where
qi(xi; θ\a) is the product of all the other incoming messages to xi.

KL(θ) =−H[qi(xi; θ)] (4)

−
∫
qi(xi; θ)〈log fa(x)〉∼qi(xi)dxi (5)

−
∫
qi(xi; θ) log qi(xi; θ\a)dxi + const. (6)

=θT
∂κ

∂θ
− κ(θ)− S(θ)− θ\a ∂κ

∂θ
+ κ(θ\a) + const. (7)

where we have used the fact that the expectation of the sufficient statistics of an
exponential family are given by the derivatives of κ. The variational posterior
qi(xi; θ) will be updated to ma→i(xi;φ)qi(xi; θ\a), so we have the relationship
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θ = θ\a + φ. We assume that θ\a is fixed (which is at least true once the
algorithm has converged), so differentiating wrt to θ and φ is equivalent:

∂KL
∂φ

=
∂KL
∂θ

= H(θ)θ +
∂κ

∂θ
− ∂κ

∂θ
− ∂S(θ)

∂θ
−H(θ)θ\a (8)

= H(θ)φ− ∂S(θ)
∂θ

(9)

where H(θ) is the Hessian of κ(θ). Setting this derivative to zero corresponds to
a fixed point scheme for φ, and recovers the update for φ, the gradient matching
scheme for an exponential family message.

2 NCVMP as moment matching

Gradient matching can be seen as analogous to moment matching in EP. The
gradient of the true S is

∂S(θ)
∂θ

=
∫
∂qi(xi; θ)

∂θ
〈log fa(x)〉¬qi(xi)dxi

=
∫
∂ log qi(xi; θ)

∂θ
qi(xi; θ)〈log fa(x)〉¬qi(xi)dxi

=
∫

(u(xi)− 〈u(xi)〉qi(xi;θ))qi(xi; θ)〈log fa(x)〉¬qi(xi)dxi.

Whereas the gradient of the approximate S̃ is

∂S̃(θ, φ)
∂θ

=
∫
∂qi(xi; θ)

∂θ
logma→i(xi;φ)dxi

=
∫
∂ log qi(xi; θ)

∂θ
qi(xi; θ)〈logma→i(xi;φ)dxi

=
∫

(u(xi)− 〈u(xi)〉qi(xi;θ))qi(xi; θ) logma→i(xi;φ)dxi.

We see that matching gradients is equivalent to matching moments of the true
and approximate log factors, given the current variational posterior.

3 NCVMP is parameterisation invariant

NCVMP is based on matching gradients at the current estimate

∂S̃(θ;φ)
∂θ

∣∣∣∣∣
θ=θ(t)

=
∂S(θ)
∂θ

∣∣∣∣
θ=θ(t)
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Now if we reparameterise in terms of ψ with a bijective mapping θ = g(ψ) then
we would work in terms of Sψ(ψ) = S(g(ψ)) and S̃ψ(ψ;φ) = S̃(g(ψ);φ):

∂S̃ψ(ψ;φ)
∂ψ

=
∂Sψ(ψ)
∂ψ

⇔ ∂S̃(g(ψ);φ)
∂ψ

=
∂S(g(ψ))

∂ψ

⇔ ∂S̃(θ;φ)
∂θ

∂θ

∂ψ
=
∂S(θ)
∂θ

∂θ

∂ψ

The Jacobian matrix ∂θ
∂ψ is full rank since g is bijective, so the original gradient

matching scheme is recovered.

4 Optimising the variational parameter for the
quadratic softmax bound

The quadratic softmax bound is

log
K∑
k=1

exk ≤ a+
K∑
k=1

xk − a− tk
2

+ λ(tk)[(xk − a)2 − t2k]− log σ(−tk) (10)

where t are new variational parameters and λ(t) = 1
2t

[
1

1+e−t − 1
2

]
. Taking the

expectation wrt to x we have

〈log
K∑
k=1

exk〉 ≤ F (a) = a+
K∑
k=1

mk − a− tk
2

+ λ(tk)[(mk − a)2 + vk − t2k]− log σ(−tk)

(11)

Setting the derivatives of wrt a and t equal to zero gives the following fixed
point updates for a and t to make the bound as tight as possible:

a←
2
∑K
k=1mkλ(tk) +K/2− 1

2
∑K
k=1 λ(tk)

(12)

t2k ← m2
k + vk − 2mka+ a2 ∀k (13)

For small dimensionality and counts these fixed point iterations converge very
fast. However, for large counts and dimensionality K we found that the coupling
between t and α was very strong and co-ordinate-wise optimization was highly
inefficient. In this regime an effective solution is to substitute the expression for
tk in Equation 13 into the objective function to give a univariate optimization
problem in α, which can solved efficiently using Newton’s method. See the
supplementary material for details. The overall bound for the factor is

log f(d|x) ≥
K∑
k=1

dkxk − a−
K∑
k=1

[
xk − a− tk

2
+ λ(tk)[(xk − a)2 − t2k]− log σ(−tk)

]
(14)
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Calculating the messages to x and p, and the evidence, are now conjugate oper-
ations. The message to xk will have precision 2Sλ(tk) and mean times precision
dk − 1− ( 1

2 − 2aλ(tk)). At the minimum we have

tk(a) =
√

(mk − a)2 + vk (15)

Using this expression we can simplify Equation 11 to get

F (a) = a+
K∑
k=1

mk − a− tk
2

− log σ(−tk) (16)

The derivatives of tk wrt a are

t′k(a) = −(mk − a)/tk(a) (17)

t′′k(a) = 1/tk(a)− (mk − a)2/tk(a)3 (18)

Using the chain rule we now find:

F ′(a) = 1 +
∑
k

−(1 + t′k(a))/2 + t′k(a)σ(tk(a)) (19)

F ′′(a) =
∑
k

t′′k(a)(σ(tk(a))− .5) + t′k(a)2σ(tk(a))σ(−tk(a)) (20)

We can then use a Newton algorithm with LM line search to cope with small
F ′′(a).

5 Derivation of tilted bound

The tilted bound can be derived as follows, analogously to the univariate bound

〈log
∑
i

exi = 〈log e
∑

j ajxje−
∑

j ajxj
∑
j

exi〉 (21)

≤
∑
i

ajmi + log
∑
i

〈exi−
∑

j ajxj 〉 (22)

≤ 1
2

∑
j

a2
jvj + log

∑
i

emi+(1−2ai)vi/2 =: T (m, v, a) (23)

Taking derivatives wrt ak gives

∇ak
T (m, v, a) = akvk − vkσk

[
m +

1
2

(1− 2a) · v
]

(24)

Setting this expression equal to zero results in the fixed point update

a := σ

[
m +

1
2

(1− 2a) · v
]

(25)
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6 Taylor series expansion for log-sum-exp

We can use a Taylor series expansion about the mean of x. This will not give a
bound, but may be more accurate and is cheap to compute.

log
∑
i

exi ≈ log
∑
i

emi +
∑
i

(xi −mi)σi(m) +
1
2

∑
i

(xi −mi)2σi(m)[1− σi(m)]

We ignore the cross terms of the Hessian because we are using a fully factorised
variational posterior for x. Taking expectations we find

〈log
∑
i

exi〉q ≈ log
∑
i

emi +
1
2

∑
i

viσi(m)[1− σi(m)] (26)

This approximation is similar in spirit to Laplace’s approximation, expect that
we calculate the curvature around an approximation mean (calculated using
VMP) rather than the MAP. Using the notation in the paper the messages to
xk will be given by:

1
vkf

= (d. −K)σk(m)(1− σk(m)) (27)

mkf

vkf
= dk − 1 +

mk

vkf
− (d. −K)σk(m) (28)

This message will always be proper (have positive variance) but there is no
guarantee of global convergence since this approximation is not a bound.

7 Bohning’s bound

Bohning’s bound has the same form as the Taylor series expansion, only with a
different approximation to the Hessian matrix H of log

∑
exp, specifically using

the bound

H ≥ 1
2

(I − 11T /K) =: HB (29)

the following bound on log
∑

exp:

log
∑
i

exi ≤ log
∑
i

emi +
∑
i

(xi −mi)σi(m) +
1
4

∑
ij

(xi −mi)(xj −mj)(δij −
1
K

)

In the case of a fully factorised distribution on x taking expectations we have:

〈log
∑
i

exi〉q ≤ log
∑
i

emi +
1
4

∑
i

(
1− 1

K

)
vi (30)
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Analogously to the Taylor series expansion, we have the following message to
xk:

1
vkf

=
1
2

(d. −K)
(

1− 1
K

)
(31)

mkf

vkf
= dk − 1 +

mk

vkf
− (d. −K)σk(m) (32)

Note here that the variance is constant and depends only on d. and K, and is
always less than or equal to the variance of the message calculated using the
Taylor series expansion.
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