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Abstract— Application-level multicasting (ALM) has attracted
a significant amount of attention, as it is a convincing alternative
over traditional IP multicasting. While recent work has been
focused, initially toward deploying an ALM alternative [8], [1],
and later towards scalability in terms of sustaining the protocol
for a much larger number of nodes [4], this has come at
the expense of having to maintain sophisticated state at end-
hosts. Furthermore, the use of leader-election mechanisms and
rendezvous points creates concentrated points of failure in the
overlay network and seems to be alien to the objective of
fully distributed overlay creation and maintenance. Deterministic
selection of overlay edges localizes the domain of exposure of an
overlay node causing the overlay to be susceptible to clustered
failures.

In this paper, we present a simple, light-weight, yet scalable
ALM protocol, called LARK, that allows the formation and
maintenance of overlay topologies in a completely distributed
fashion while maintaining only O(1) state at each node and
ensuring robustness in the presence of a large number of node
failures. Conceptually, members self-organize into cliques, where
a clique is a cluster of end-hosts in which each end-host is aware
of, and exchanges state with, every other end-host in the cluster.
No control message is exchanged for clique maintenance beyond
the necessary state update among members belonging to the same
clique. In addition, members are allowed to peer with randomly
selected members belonging to other distinct cliques. This ensures
that in the event that one or more members leave or fail, the
other members can re-join the group at other peers they are
aware of. We elaborate on the components of LARK and derive
certain theoretical bounds on its performance. We also validate
our design through simulations.

I. INTRODUCTION

Traditionally, many-to-many communication over the Inter-
net has been realized using IP multicast [3]. The IP multicast
primitive provides the option for any receiver with an IP
unicast address to subscribe to a common datastream relayed
by a source by specifying, as destination, a unique address
(referred to as the IP multicast address). Among the several
innovations IP multicast offers in comparison to multiple IP
unicasts to all the receivers, is the association of the IP
multicast address1 with the entire multicast. A host that is
interested in receiving packets from a multicast group notifies
its local router via the Internet Group Management Protocol

1IP multicast addresses are in fact allocated from a separate class of IP
addresses (class D).

(IGMP [5]). The local router then attempts to join the multicast
tree that is rooted at the source and grows with the use of
reverse path forwarding. Both the core and local routers must
“intercept” multicast packets and determine (via consulting to
the forwarding cache updated by a multicast routing protocol)
on which interfaces these packets should be forwarded.

From the perspective of end hosts, the semantics of IP
multicast are merely an extension to the existing IP unicast
service, and the added complexity is minimal. However this
is not the case for core routers. The functionality needed to
realize IP multicast (and hence the complexity) is actually
shifted over to the network layer. This is one of the primary
reasons why IP multicast has not delivered.2 One can also
argue that such an imposition is in violation of the time-
honored end-to-end principles [6] which discourage adding
complexity on the communication substrate. In particular,
the scalability issue arises from necessitating intermediate
routers to maintain per-group state information for downstream
receivers.

Recent attention has shifted to supporting multicast over
the application layer, and the notion of application-level
multicasting (ALM) was proposed. ALM refers to deploying
the functionality of group communication at the application
layer over end hosts rather than at the network layer. This
implies that data is not sent over the inherent network topology
but rather on an overlay topology that is constructed on-
the-fly and continually optimized. There are many flavors of
ALM depending on how much of the functionality is actually
implemented outside the network layer. For instance, YOID
[8] continues to employ IP multicast, albeit in a marginalized
role, within a cluster of members that are close to each
other under a shared-tree topology. At the other extreme,
Narada [1] adopts a completely end-system approach, with
the members maintaining all the requisite state and optimizing
paths continuously.

ALM trades a less optimal use of router topology for the
reduced overhead at the network layer. This is because the
network layer abstracts away path selection choices (that it
makes at the time of routing packets) from the application

2It must be said in its defense, however, that with the construction of
the MBone overlay network, IP multicast has met with some albeit limited
success.
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Fig. 1. Multicast on an overlay topology, Average node path stretch = 1.66 hops, percent increase in path usage = 1
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layer. Consequently, with the use of ALM, some paths are
prone to be used multiple times to relay the same packet. Fig. 1
gives an illustrative example in which an underlying network
comprising a source, seven receiver hosts and four routers is
shown. In Fig. 1(a), undirected edges represent actual host-
router/router-router connections, while directed edges depict
the actual overlay edges. The abstracted graph representation
of the overlay network is given in Fig. 1(b). As shown in
Fig. 1(a), the link (F,R3) is used multiple times to relay
packets.

In spite of the many advantages that are accrued by employ-
ing an overlay network, several issues have to be addressed.
In particular, Narada [1] considered how to form a mesh-like
overlay network and continuously optimize its performance.
NICE [4] addressed the scalability issue and proposed a
hierarchical clustering structure among end hosts to support
large multicast groups. However, the issue of robustness
against widespread faults in the network layer has been largely
left untackled. (As a matter of fact, as will be explained
in Section V, hierarchical layering is more susceptible to
failures3 and incurs significantly more overhead in the course
of failure recovery.) A light-weight solution that suffers little
from failures and/or recovers quickly from failures is the need
of the hour.

In this paper, we propose a completely decentralized, light-
weight ALM protocol, called LARK, that aims at boosting the
robustness of ALM while at the same time ensuring scalability.
A member that is interested in receiving multicast packets
joins at a random host in the group. Members self-organize
into cliques, where a clique is a cluster of end-hosts in which
each end-host is aware of, and exchanges state with, every
other end-host in the cluster. The overlay network structure is

3We make no distinction between the member leave and the node failure
other than the fact that in the former case, the departing member may send
out an explicit “leave” message that allows other members to recognize its
absence immediately. In the case of the latter, the absence is detected by
means of a timeout.

thus restricted to one level of hierarchy. No control message
is exchanged for clique maintenance beyond the necessary
state update among members belonging to the same clique. In
addition, members also peer with randomly selected members
belonging to other distinct cliques. This ensures that in the
event that one or more members leave or fail, the other
members can re-join the group at other peers they are aware
of. Optimization in terms of path quality is achieved with
periodic state exchange between members in the clique as well
as between peering members belonging to other cliques.4

What distinguishes LARK from other existing approaches
is the almost complete absence of constraints on the behavior
of the topology, thereby achieving the requisite optimization
with regard to control traffic overhead. LARK allows any
member to recover from failure or to better optimize its
path by choosing to peer with other members without any
restriction of maintaining any specific invariant property for
the entire multicast group. LARK extends easily to work
with a multiple source scenario as the tree structure is not
coupled with the overlay graph structure. The simulation
results indicate that both the control overhead incurred in
overlay formation and maintenance and the time it takes to
recover from failure are smaller. This is achieved by trading
moderately the performance of LARK with respect to the
quality of overlay networks.

The rest of the paper is organized as follows. In Section II,
we describe the metrics used to evaluate the performance of
ALM protocols, and summarize our design objectives. Then
we present in Section III an overview of LARK, and elaborate
on its components in Section IV. In Section V, we discuss
the fault recovery mechanisms in LARK. Following that,
we present in Section VI our simulation results. Finally we
conclude the paper in Section VII.

4We shall expound on the delicate tension between optimizing for latency
and optimizing for reduced physical link stress in a later section.



II. PERFORMANCE METRICS AND DESIGN OBJECTIVES

In order to assess the overhead of ALM in relying on an
overlay network to relay packets, we use the metrics originally
defined in [1]: stretch and stress. In what follows, we first give
the definition of these performance metrics and then outline
our design objectives.

A. Performance Metrics

The stretch of a path between a pair of hosts is defined as
the ratio of the delay along a path connecting two end hosts
on the overlay network to that along the point-to-point unicast
path. The delay metrics typically used are the latency and the
hop count. For example, the hop-count value for the ALM path
and the IP multicast path between the source and a receiver is
marked at the receiver in Fig. 1(b). Since the stretch is defined
relative to IP unicast, the IP unicast path has itself an ideal
stretch of unity. In a single source multicast tree, the average
stretch is the average of the stretch values of individual paths
between receivers and the source. The objective is therefore
to minimize the average stretch.

The stress on a link is defined as the number of multiple
copies of the same packet traversing a physical link when data
is forwarded along the overlay network. The stress of each
link for the IP multicast, ALM, and unicast cases is marked
alongside each link in Fig. 1(c). Since the stress of a link is
measured relative to IP multicast, IP multicast has a stress of
unity by definition. To compare the stress across topologies,
recent work [1], [4] computes

Stress =
∑

l∈E cl

|E| (1)

where cl is the number of data packet copies transmitted on
link l and E is the set of all links in the topology. Note that
this value is one for IP multicast, and the closer the value is
to one, the better the quality of the ALM protocol is.

Similar to the stress of a link, the stress of a router can be
defined as the number of multiple copies of the same packet
traversing the router per individual packet transmission using
multicast.

B. Design Goals

In this section, we describe the guiding principles behind
the design of LARK. We believe that these principles should
be followed by any ALM alternative to IP multicast.

• Support for large group sizes: In order to support
the plethora of target applications ranging from video-
conferencing to real-time stock tickers, a multicast solu-
tion needs to scale well with the size of the group. This
translates to the requirement that the control overhead,
i.e. overhead involved in creating and maintaining the
overlay, and the amount of state information stored at
each node have to be bounded or allowed to grow at
most logarithmically [4] with the group size.

• Resilience to moderate volume of node leave/failure:
The multicast solution must perform well under transient
behaviors that arise from occasional network outages or

host leave events. A direct requirement of this objective
is functional homogeneity among the participants of the
overlay network. In particular, the data delivery and fault
recovery strategies of the protocol should be independent
of individual members’ attributes. This is largely due
to the fact that dependence on leaders would provide
points of failure in the network that is impossible or
prohibitively expensive to recover from.

• Performance and Resource Utilization: An ALM so-
lution needs to approximate its multicast counterpart
closely in terms of both performance and resource utiliza-
tion. The trade-off between achieving good performance
and using minimal resources needs to be carefully bal-
anced. We will use the average stretch and the average
link stress as defined in Section II-A to measure perfor-
mance and resource utilization respectively.

• Deployability and Backward Compatibility: Finally,
a virtue of any proposed solution is its ability to be
deployed with little additional effort in existing networks,
to co-exist with solutions that are already in place and
to anticipate future modifications to adapt to varying
requirements of the problem. In this regard, ALM scores
heavily in the added abstraction of programming at the
application layer, ease of re-programming and ease of
deployment due to non-interference with the underlying
routing layer.

III. OVERVIEW OF LARK

We assume that the addresses of a limited set of already
existing group members are publicly available. One possible
method is to have early members register DNS entries that
map a multicast group DNS name to their own network
addresses. A new member that intends to join the multicast
group need only to perform a DNS lookup on the well-known
DNS group name to obtain network addresses of existing
members. The new member then issues a join request to an
arbitrarily chosen existing member (called the parent of the
new member). Functional homogeneity of nodes in the overlay
network allows each existing member to accept join requests.
The new member then joins the clique which contains its
parent, where a clique is a subset of overlay nodes that possess
and maintain control information about each other.

Constraining the size of cliques is essential to bound the
amount of per-node state and control overhead. To this end, we
have designed a conservative distributed algorithm with which
every overlay node uses to accept join requests, and to slice, if
necessary, the clique with designated bridge nodes. (We will
elaborate on the operations in Section IV-A.) Conceptually,
LARK uses two design parameters: the per-clique degree
constraint and the per-node degree constraint. The per-clique
degree constraint Dc bounds the number of nodes that belong
to a clique. Maintenance of state information is limited to
members internal to a clique, and is O(1) regardless of the
number of nodes in the overlay. Dc is an overlay network
parameter, and is universal for all the nodes. On the other hand,
we allow each node in the overlay network to forward (receive)
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and short dotted arrows, denote, respectively, join requests, join replies, and
sample data flows in the clique.

data to (from) any of its neighbors, not all of which need to
belong to the same clique as this node. This necessitates the
presence of bridge nodes that transmit data received in one
clique to neighbors belonging to another clique. In order to
constrain the data forwarding and state maintenance load at
each node, we define the per-node degree constraint Dn as
the number of neighbors each node may have. Each node can
choose its own value of Dn, as long as the following necessary
condition for the construction of a connected overlay network
holds:

Dn ≥ 2 · Dc ∀n. (2)

When a join request arrives from node m at a node � in a
full clique (Dc +1 nodes), if node � has fewer neighbors than
its constraint Dn, then node � slices itself from the clique
and forms a new clique consisting of nodes � and m. The
bridge node � continues to retain the state regarding its earlier
neighbors. Such a bridge node is counted as belonging to each
clique that it was a member of, for the purposes of enforcing
clique size constraints. We will elaborate on clique slicing in
Section IV-A.

Example 1: Consider the scenario depicted in Fig. 2 in
which a clique has already been formed between nodes 1 to
5. Assume that the per-clique degree constraint, Dc, is four.
Suppose a join request is initiated from node 6 and arrives
at node 3. Node 3 has to split from its original clique to
form a new clique, as it already has 4 in-clique neighbors.
After joining the multicast group, node 6 exchanges state
information with node 3, while nodes 1 to 5, including 3,
exchange information among one another. Not all the join
requests will be successful. For example, a join request by
node 7 at node 4 may be rejected because node 4 has reached
its neighbor limit. In this case, node 4 can recommend to node
7 a set of alternate network addresses that node 7 may contact.
This set of nodes usually consists of neighbors and peers of
the replier (node 4). Node 7 randomly chooses a node from
this candidate-set (say node 3) and sends its new join request.

As noted above, members within a clique and neighboring
nodes exchange state information periodically for several
purposes. First, update messages serve as an indicator to
the receiver that the sender is alive. Second, since every
update message is acknowledged, sending an update message
and receiving the corresponding acknowledgment allows the
sender to estimate various metrics of quality on the round-trip
path, such as latency and error rates. Finally, the topologi-
cal information provided in the update message is used to
populate a peer-pool of node addresses. In Section IV-C, we
will describe in detail the nature of state messages that are
exchanged.

Peering with nodes in remote cliques, apart from serving
to optimize topology, also adds resilience, and provides fast
fault recovery to, failures. By exchanging state information
within a clique, node n can know cliques that are previously
unknown to it and/or those that are connected by high quality
links. Peering requests are sent randomly to nodes in the peer
pool. A peering relationship is formed if both the participating
nodes agree. The bound, Dp, on the number of peers that each
node can maintain is primarily a function of the resources
available at the node, and should be small enough not to
induce significant congestion on the underlying links. We will
elaborate on the peering process in detail in Section V.

With peers formed, the topology of the overlay network
can be optimized by having peers that are mutually connected
by high quality links to group together in a clique, with the
rationale that such a design uses fewer network resources and
provides better connectivity. On the other hand, in the case that
a number of nodes within a clique simultaneously fail due to
outages of the underlying network, links with peer nodes in
other cliques can serve as alternate paths for temporary data
delivery and eventual forming of new cliques.

One key advantage of LARK is that members can re-
organize their local topological structure in the case of node
failures/leaves, in a completely decentralized manner without
having to incur additional overheads such as those associated
with leader election. We will describe the failure recovery
mechanism in Section V.

IV. DETAILED DESCRIPTION OF LARK COMPONENTS

A. Member Join Mechanism

The pseudo-code for sending and replying join requests is
given in Fig. 3. A node sends a join request to a randomly
chosen node in the overlay network. If the receiver of the
request can accommodate the new node, it responds with a join
reply consisting of the network addresses of other members in
the clique. Upon receipt of a join reply, the new member pings
each of the other neighbors advertised in the join reply and
starts its update and peer timers. When a node cannot accept
a join request, it issues a join rejection consisting of a set
of alternate hosts that the joining member may contact. Upon
receipt of a join rejection, a node adds the set of alternates into
its candidate list and chooses randomly from the candidate list
the next candidate to send a join request. We will present in
Section VI simulation results of the average number of join



request join(G, new id, candidate list)
1. Randomly choose a node from candidate list and

issue a join request to that node
2. if (successful join) //Ready for data transfer

a. store the list of neighbors and peers that is returned
b. ping all the in-clique neighbors
c. start the update timer and peer timer

3. else //Try again with a node in the new candidate list
a. add to candidate list list of alternate nodes returned in

the join reply
b. goto 1

join timer (t)
//t: timeout interval of the join timer
//tlast: last occurrence of the timeout
//nx: number of neighbors accepted since last timeout
1. tlast = now
2. nx = 0

receive join (G, join requester info)
//l: the receiver
//Dc: per-clique degree constraint
//Dn: per-node degree constraint
//dc: number of neighbors in the current clique
//dn: total number of neighbors in all the cliques of l
//latency(l,nbri): latency between node l and its ith neighbor
//x: k× max(latency(l, nbri)), i = 1 . . . dc, k>2
//t: last time the join timer was reset
//nx: number of neighbors accepted by l in [t, t+x]
1. if (nx ≤ Dc−dc

dc+1
− 1 or

(nx ∈ [Dc−dc
dc+1

− 1, Dc−dc
dc+1

] and y ∈ rand[0, 1], y ≤ nx))
//Accept the join request
a. Prepare a join reply and send

2. elif (Dn ≥ dn + 2 · Dc − dc)
//Slice the clique and accept join request
a. Generate new clique id, prepare join reply and send

3. else //Reject join request
a. Generate a list of alternates, prepare a join rejection and send

Fig. 3. Pseudo-code for the distributed join algorithm

failures, which a node incurs before it successfully joins the
group.

The key obstacle to a completely distributed join algorithm
is the problem of ensuring that the clique size constraint
continues to be met. Let dc denote the number of neighbors
of a node in the current clique, and dn the total number of
neighbors of the node in the current overlay network. In a naive
approach, each member of the clique can accept Dc − dc new
members while continuing to satisfy the constraint. However,
if join requests arrive at clique members simultaneously and
are accepted independently, the degree constraint of the clique
will be violated. The solution given in Fig. 3 (receive join, line
1) is motivated by the observation that since new members
have to “ping” other members in the clique that they just
joined, the time delay between the acceptance of a new
member into a clique and the arrival of its ping message
at every member of the clique is bounded by twice of the
maximum latency between any two members of the clique.
To account for varying network delays, end-system packet
processing jitter and other means, we multiply the maximum
latency by a constant k, k > 2. Intuitively, each end host
maintains a join timer with a timeout value that is k times
the current maximum latency. Within each timer interval, a
node conservatively accepts only as many requests as it can
under the assumption that every other active member in the
group would do the same. If the number of nodes that can be
accepted in one timer interval is less than one, a coin toss on
the [0,1] real line makes the decision.

When a node determines that accepting a join request would
violate its per-clique degree constraint, it attempts to accept the
request by slicing itself off its existing clique(s) and forming
another new clique, as long as the per-node degree constraint
continues to be satisfied. When a node forms a new clique, it
is necessary to ensure that the node can accommodate at least
Dc more neighbors because accepting one more neighbor into
the clique is equivalent to accepting all the nodes that this
new neighbor can accept, the number of which is bounded by

Dc. Hence a naive approach would be to allow a node to slice
itself off as long as its per-node degree allows it to accept a
clique-load of neighbors, i.e.,

Dn ≥ dn + Dc. (3)

However, this does not account for the members that could
have been already accepted by other members in the clique,
the number of which is bounded by Dc − dc. Hence, the
correct condition is Dn ≥ dn + 2Dc − dc as given in Fig. 3
(receive join, line 2).

The node that sliced itself off its old clique(s) to form
a new clique is called a bridge node as it belongs to both
the old and new cliques. It exchanges state information with
neighbors in each clique it belongs to. Control overheads
are bounded by enforcing that the state information exchange
between this bridge node and other nodes in the new clique
is transparent to members in the older cliques. In summary, a
bridge node can belong to multiple cliques and plays a role
of connecting those cliques together. The clique identifier is
assigned and maintained locally at each node for the purpose
of data delivery. For example, in Fig. 2, node 1, 2, 3, 4,
and 5 comprise one clique, and node 3, 6, and 7 comprise
another. Node 3 belongs to both clique M1 and M2. The
actual clique identifier, however, is managed at each node, e.g.,
C1 = {2, 3, 4, 5} at node 1 and C1 = {1, 2, 4, 5}, C2 = {6, 7}
at node 3.

B. Data Delivery

The clique-based overlay structure of LARK allows a simple
and scalable data delivery mechanism. The mechanism is
given in Fig. 4 and does not require any global topological
information other than the limited state information on a
node’s neighbors. Given a data source, the data delivery path
is built in the form of a source-specific tree on the clustered
overlay topology. Each node forwards data packets received
from a neighbor in a clique to other neighbors in different



multicast data forward (s, p)
// Data forwarding operation at a host r for a data

packet p received from a host s
// r: this host
// s: the node that sends p to r
// m: # of cliques which r belongs to
// Cr

i : a set of host r’s neighbors in clique i
1. for (each i ∈ [1, 2, ..., m])

1.1 if (s /∈ Cr
i )

a. Forward the data packet p to hosts in Cr
i

Fig. 4. Pseudo-code for the data forwarding mechanism.
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cliques it also belongs to. Fig. 5 depicts an example scenario
that demonstrate how multicast packets are delivered.

C. Exchange of Update Messages

Each update message from node n is sent to all of its
neighbors and peers. Update messages can be used in several
ways. First, update messages and associated acknowledgments
contain timestamps allowing the sender to obtain accurate
estimates of path quality such as round trip latency and path
loss rate. The path loss rate can be estimated by keeping a
per-neighbor(peer) counter that keeps track of the fraction
of un-acknowledged packets within the last T seconds. To
accommodate measurement variations, a low-pass filter with
an exponentially weighted moving average can be used in
the latency calculation to obtain a weighted average of a few
recent path loss estimates [11].

Second, update messages can be used to detect neighbor
(peer) failures. A node maintains a counter for each neighbor
(peer) that it directly communicates with. The counter value
is incremented when the current node sends an update to the
peer and is reset when an update is received from the peer.
A counter value, say k, means that the current node has not
heard from the peer in the last k update intervals. When the
value of k reaches an upper bound kmax, its neighbor(peer)
is no longer alive and/or active.

Finally, an update message consists of partial link-state
information about its neighbors and peers which can be used,
if desirable, by other neighbors to populate their peer pool
for both the purpose of topology optimization and random

peering. We will elaborate on how update messages are used
for topology optimization and random peering in Section V.

Each node in the overlay network maintains a constant
amount of state that is bounded by O(Dn + Dp), where
Dp is the degree constraint on the number of peers. The
control overhead at each node is expected to mainly come from
exchanging update messages because the update messages are
generated periodically at each node and sent to all its neighbors
and peers.

V. RANDOM PEERING AND ITS USE IN FAILURE

RECOVERY

An essential component of LARK is random peering per-
formed by the members in the multicast group. The technical
motivation for random peering is best illustrated by consid-
ering the failure-handling technique used in NICE [4]. NICE
builds a hierarchy of members within the multicast group. In
the case of member leave/failure, members within the cluster
elect a leader based on who they perceive the “center” of
the cluster to be. This election is reconciled with multiple
messages being exchanged between each of the candidate
leaders and finally, a unique leader is elected. There are two
potential disadvantages with such an approach. First, member
leave/failure incurs O(k2) messages among the remaining
members in the election process, where k is the number
of members in the cluster. During this period, all members
do not have parents and hence do not receive any multicast
packets. A second disadvantage is the inability to handle a
large number of failures across multiple levels of the hierarchy.
Specifically, let n denote the number of members in the
multicast group. Given a particular cluster under the NICE
infrastructure, suppose O(k log n) member leaves/failures are
induced in such a way that there are O(k) leaves/failures
in every layer-i cluster, then the complete path information
from any recipient to the root is lost with high probability.
This is because, while each cluster is able to recover from
one leave/failure by means of electing a new leader, the new
leader has no means of recovering from the partition in all
the other clusters its belongs to. Moreover, once the new
leader is elected, it may no longer remain a member of all the
clusters the previous leader was, as the criteria for choosing
the cluster head depend upon the “centerness” of the member
in the cluster. Consequently, this can lead to a breakdown in
the entire hierarchy.

To solve this issue, we propose to decouple failure recovery
from any underlying structure constraints. By this, we mean
that any attempt to recover from failure/member leave should
not depend upon constraints imposed by the solution upon
the participating entities. For instance, in the case of NICE,
failure recovery is difficult, and sometimes impossible, to
achieve since members are still required to remain in the same
cluster as they were, and do not instead capitalize on the local
nature of the failure by leaving the cluster and joining other
clusters. The protocol is forced to necessarily work around a
single point of failure, i.e. the cluster leader, thereby causing
unbounded delay in repairing the partition.
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Fig. 6. Random peering and failure recovery. Dashed edges represent peering relations. (a) A sample LARK topology. The circled nodes 0 and 5 are about
to leave the group. (b) Nodes 1 and 2 are trying to recover from the partition by joining one of their peers. (c) Node 1 moved to some other clique, and node
2 accompanied its children in the previous clique to another clique.

We tackle this problem by requiring that members contin-
uously attempt to peer with as many random members from
other cliques as possible (Fig. 6(a)). This can be achieved
separately in the background and with a low period so as not
to impose on the control channel bandwidth. The number of
peering relations that a member wishes to have has no bearing
on its actual degree. Subsequently, a member can choose to
peer with as many members from distinct cliques that it can
find. This approach differs markedly from NICE where a
degree bound is enforced upon members in the same cluster
and no requirement that they peer with members from other
clusters is made.

To obtain the information on random peer candidates, nodes
include members that belong to different cliques as part of
their update message. As the group grows in size, more
cliques are formed by members splitting from the existing
cliques. However, since these bridge nodes continue to remain
neighbors of members in the old cliques, they can provide
members belonging to their different cliques with information
about each other.

Fig. 6 gives an example of partition detection and failure
recovery. With the clustered overlay structure of LARK, a
partition occurs when a bridge node leaves the multicast
group or fails. In this case, each remaining neighbor still
retains the capability to recover from the partition, as each
member has already peered with a number of members in
other distinct cliques. We stress here that no member needs to
renew acquaintance with members in the current clique since
every member has peered with another member in a distinct
clique. One requirement here is that each member responsible
for failure recovery should contact only peers over the dead
bridge node to recover from the partition correctly.

With the leave/failure of a bridge node in a clique, the clique
is more or less “disbanded” with each member requesting to
join other cliques they knew of. However, if every members in
this clique joins other cliques, repeated partitions may occur
at adjacent cliques. To prevent further partition from taking
place, the failure recovery algorithm was devised to minimize

the number of members attempting to move to other cliques.
To this end, each member maintains the address of its parent
node, i.e., the node at which it joined. If a member leaves
a clique, whether it leaves the multicast group or moves to
some other clique, each child member replaces it with the
living ancestor member in the same clique, if exists, as the
new parent. For example, the parent of node 6 is changed
from node 5 to node 7 in Figs. 6(a) and 6(b). Only those
child members any of whose living ancestor members are not
in the same clique will join other cliques (node 1 and 2 in
Fig. 6(b)). Moreover, they leave the current clique only if they
do not have their own descendants in that clique (Fig. 6(c)).

VI. PERFORMANCE EVALUATION

We have conducted an event-driven simulation study to
evaluate the performance of LARK. Our simulation is carried
out on a transit-stub topology of approximately 10,000 nodes
generated using the GT-ITM topology generator [13]. The
end-hosts for the multicast group are chosen randomly from
nodes in the stub domain, and the group sizes were varied
from 50 to 1000 hosts. All the members join the multicast
group randomly between simulation time 0 and 200 seconds.
To rule out second-order effects, we assume there is no data
loss and/or excessive queuing delay due to congestion.

To compare fairly with NICE, we used the same network
topology and unicast routing protocol for both NICE and
LARK. Moreover, the same update period of 5 seconds is
enforced. The period with which random peering requests are
sent by each host in LARK is also set to 5 seconds. (Note that
we observe the period with which random peering requests
are made could be set to a larger value, without degrading
the performance significantly.) We experiment with different
per-clique constraint Dc and per-node degree constraint Dn.
However, due to the page limit, we report below only results
with Dc = 5 and Dn = 25. Each simulation run lasts for
1000 seconds so as to allow an appropriate overlay topology
to stabilize.
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Fig. 7. The distribution of node degree under various group sizes in the
overlay network.

A. Quality of Overlay Topology

Fig. 7 gives the distribution of the node degree (i.e., the
number of neighbors each host has) in the overlay networks
under different group sizes. The node degree is directly
proportional to the amount of control overhead involved in the
clique formation and maintenance. As illustrated in the figure,
a significant proportion of hosts have less than 10 neighbors,
and the average node degree is approximately 4 under all the
cases.

Figs. 8 and 9 depict the average path length and the average
link stress under LARK, NICE, and multiple unicast for the
various multicast group sizes. The measurements were made at
simulation time 1000 seconds. The performance of NICE with
respect to path length and link stress is slightly better than that
of LARK. This is, in part, because the join procedure in NICE
aggressively finds good points of attachment for new members
in the overlay topology, with the help of a rendezvous point
and cluster leaders at each layer in the hierarchy. In contrast,
in the current design of LARK, a new member joins the
multicast group at a randomly chosen member, and topology
optimization commences only after the join procedure is
completed. Moreover, topology optimization is performed in
a completely distributed manner by each host, and as a result
is likely to render a suboptimal overlay topology. As will be
discussed below, the fact that we deliberately do not assume
specific roles on individual members is one of the reasons
LARK is robust to, and can recover fast from, failures. In
some sense, we are trading the mild degradation in the quality
of overlay networks for better robustness.

B. Control Overhead

The control overhead is assessed by counting control mes-
sages (including messages for overlay formation and mainte-
nance as well as join and leave operations) at the access links
of end-hosts during simulation time between 500 seconds and
900 seconds. Fig. 10 gives the average control overhead at
end-hosts under LARK and NICE. Both protocols are shown
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Fig. 9. Average link stress under LARK, NICE, and multiple-unicast under
different group sizes in a network of 100 end-hosts.

to incur low control overhead and scale well to large groups.
Although the average control overhead for moderate group
sizes is lower under NICE, it increases comparatively faster
with the group size. In particular, most of the control overhead
is concentrated at cluster leaders in NICE. According to the
analysis of NICE [4], the control overhead at cluster leaders
increase logarithmically with the increase in the group size. On
the other hand, the control overhead is constant under LARK
regardless of the group size. This is because the number of
control message exchanges at each host is bounded by the
number of its neighbors and peers (which is a constant even
for a very large group size). As a result, LARK scales better
than NICE in the case of extremely large groups.

C. Failure Recovery

To investigate the effect of member leave/failure, we carry
out several simulation runs with a varying number of members
that leave the multicast group. After the overlay network is
stabilized with 100 members, a set of randomly chosen n
members leave the group without notifying other members.
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Then the time it takes for receivers to restore their data paths
(i.e., the time elapsed before all the remaining group members
receives data packets) is recorded.

Fig. 11 depicts simulation results when 10, 30, 50, and 70
hosts out of 100 end-hosts fail. As shown in this figure, LARK
recovers from the failures much faster than NICE under all the
cases. Furthermore, the time to recover from failures is almost
constant, regardless of the number of host failures. This results
from the fact that failure recovery in LARK is performed by
allowing members that detect the failure to independently join
one of their peers in some other cliques (which have been
known by random peering). As a result, the recovery time
has no direct relation to the number of failure. In contrast, as
previously described in Section V, under NICE single member

leave/failure requires O(k2) message exchanges to elect a new
leader, where k is the number of members in the cluster. In
particular, member leave that occurs in the higher layer may
have more severe effects on the time it takes for remaining
members to restore data path.

VII. CONCLUSION

In this paper, we have presented a simple, light-weight, and
yet scalable ALM protocol, called LARK, that allows the for-
mation and maintenance of overlay topologies in a completely
distributed fashion while only maintaining O(1) state at each
overlay node. In particular, LARK is engineered to work for
a much larger problem space than existing solutions [2], [4],
and to be resilient to high volume of node leave events as well
as to clustered outages.

In spite of its significant improvement with respect to
scalability and robustness, LARK can be further improved
with respect to the quality of overlay networks (e.g., path
length and link stress). The current design for optimizing the
overlay topology in LARK is only based on simple decision
made by each host by simply comparing the distances to its
neighbors and peers and choosing the closest member to move
into. How to optimize the overlay network topology without
compromising robustness is an issue to be investigated.
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