
Concurrent library correctness
on the TSO memory model

Sebastian Burckhardt1, Alexey Gotsman2,
Madanlal Musuvathi1, and Hongseok Yang3

1 Microsoft Research
2 IMDEA Software Institute

3 University of Oxford

Abstract. Linearizability is a commonly accepted notion of correctness for li-
braries of concurrent algorithms. Unfortunately, it is only appropriate for se-
quentially consistent memory models, while the hardware and software platforms
that algorithms run on provide weaker consistency guarantees. In this paper, we
present the first definition of linearizability on a weak memory model, Total Store
Order (TSO), implemented by x86 processors. We establish that our definition is
a correct one in the following sense: while proving a property of a client of a con-
current library, we can soundly replace the library by its abstract implementation
related to the original one by our generalisation of linearizability. This allows ab-
stracting from the details of the library implementation while reasoning about the
client. We have developed a tool for systematically testing concurrent libraries
against our definition and applied it to several challenging algorithms.

1 Introduction

Concurrent software developers nowadays rely heavily on libraries of concurrency pat-
terns and high-performance concurrent data structures, such as java.util.concurrent for
Java and Intel’s Threading Building Blocks for C++. The algorithms implemented by
these libraries are very efficient, with the downside being that they are notoriously dif-
ficult to design and implement. More surprisingly, it is often difficult to understand
even what it means for them to be correct! Correctness of concurrent libraries is com-
monly formalised by the notion of linearizability [10], which fixes a certain correspon-
dence between the library and its abstract specification, the latter usually sequential,
with methods implemented atomically. Unfortunately, the classical definition of lin-
earizability is only appropriate for sequentially consistent (SC) memory models, in
which accesses to shared memory occur in a global-time linear order. At the same time,
most multiprocessors (x86 [14], Power [16], ARM [1]) and programming languages
(Java [11], C++ [2]) provide weaker memory models that allow more efficient imple-
mentations at the expense of exhibiting counterintuitive behaviours in some cases.

In this paper, we present the first definition of linearizability on a weak memory
model, Total Store Order (TSO), implemented by x86 processors [14] (Section 4). We
show that our definition is a correct one in the sense that it validates what we call the Ab-
straction Theorem: while proving a property of a client of a concurrent library, we can
soundly replace the library by its abstract implementation related to the original one by

our generalisation of linearizability (Theorem 4, Section 5). The abstract implementa-
tion is usually simpler than the original one, with commands executing at a coarser grain
of atomicity. The Abstraction Theorem thus formalises the intuitive requirement for a
good definition of linearizability, which is that the library should provide an illusion of
such a simpler atomic implementation. It also has a practical value as a compositional
verification technique: it allows abstracting from the details of the library implementa-
tion while reasoning about its client, despite subtle interactions between the two caused
by the weak memory model. As a corollary of the Abstraction Theorem, we establish
that the proposed notion of linearizability is compositional (Corollary 5, Section 5).

To demonstrate that our notion of linearizability is appropriate for practical concur-
rent algorithms, we have developed a tool for systematically testing such algorithms
against the definition and applied it to several examples (Section 6). We have also
proved the linearizability of one of the algorithms formally (Theorem 3, Section 4). The
algorithms considered are challenging to reason about and to specify, as they sometimes
exhibit behaviours not reproducible on a sequentially consistent memory model.

The TSO memory model. The most intuitive way to explain the TSO memory model
is operationally (Section 2), using an abstract multiprocessor machine in which every
CPU has a store buffer. The buffer holds write requests that were issued by the CPU,
but have not yet been flushed into the shared memory. A command that would like
to write to a location in memory stores the corresponding write request in the store
buffer of the CPU executing it, thus avoiding the need to block the CPU while the write
completes.The CPU may decide to flush a store buffer entry into the main memory at
any time, subject to maintaining the FIFO ordering of the buffer: the oldest write will be
flushed first. A command that would like to read from a location in memory returns the
value stored in the newest entry for this location in the store buffer of the CPU executing
it; if such an entry does not exist, it accesses the memory directly.

The behaviour of programs running on TSO can sometimes be counterintuitive. For
example, consider two memory locations x and y initially holding 0. On standard x86
processors, if two CPUs respectively write 1 to x and y and then read from y and x, as
in the following program, it is possible for both to read 0 in the same execution:

x = y = 0;

x = 1; b = y; ‖ y = 1; a = x;

{a = b = 0}

This outcome cannot happen on a sequentially consistent machine, where both reads
and writes access the memory directly. On TSO, it happens when the reads from y

and x occur before the writes to them have propagated from the store buffers of the
corresponding CPUs to the main memory. To exclude such behaviours, TSO proces-
sors provide special instructions, called memory barriers, that force the store buffer of
the corresponding CPU to be flushed completely before executing the next instruction.
Adding memory barriers after the writes to x and y in the above program would make
it produce only SC behaviours. However, barriers incur a performance penalty.

Technical challenges. The presence of store buffers leads to subtle interactions be-
tween a library and its client that make it challenging to define linearizability. Showing

linearizability requires us to provide, for every execution of the concrete library imple-
mentation, an execution of the abstract library interacting with the client in a similar
way (in a certain technical sense). Interactions between the library and the client are
usually defined in terms of histories, which, in the classical definition, are sequences
of calls to and returns from the library, along with the values passed. In the case of
TSO, however, this would not describe all interactions between the two components,
since one of them can exhibit a side effect on the other via a store buffer. For example,
a memory barrier inside a library method will flush entries written there by client as
well as library code. More subtly, write commands in a library method can insert en-
tries into the store buffer without ensuring that they get flushed by the time the method
returns. For this reason, on TSO, the method return point does not characterise the time
by which the effects of these writes will be visible to the client (see the seqlock example
in Section 4). To define the notion of linearizability on TSO that validates the Abstrac-
tion Theorem and is compositional, we thus need histories to describe the information
relevant to the client about how the library uses store buffers. The classical notion of
linearizability [10], which is not aware of store buffers, cannot specify this.

Main ideas. Our main insight lies in identifying the additional information that we
need to record in histories to get a definition of linearizability on TSO validating the
Abstraction Theorem. Namely, the contents of a store buffer can be viewed as a sand-
wich consisting of blocks of entries inserted there by an invocation of a library method
or a fragment of the client code between two such invocations. We show that the be-
haviour of the library with regards to the store buffer that can affect the client is com-
pletely described by the moments of time at which the first and the last elements of
any given library layer in the sandwich get flushed. Roughly speaking, the time when
a library layer starts to get flushed defines an assumption the library makes about the
client: since store buffers are FIFO, the library requires the previous client layer in the
buffer to be flushed completely before this. The time by which a library layer is flushed
completely represents a guarantee the library provides to the client: this action enables
the next client layer to be flushed starting from this point of time.

To specify this, we enrich histories with additional actions denoting the times when
a layer of entries inserted by every library method invocation starts to get flushed and
is flushed completely. Linearizability then requires preserving the order between some
of these actions in a history of the concrete library implementation when providing a
matching history of the abstract library implementation. As we show, this is sufficient
to establish the Abstraction Theorem.

The proposed definition of linearizability on TSO requires a novel way of specifying
libraries. In the classical definition, the specification of a library method often consists
of one atomic action. Since on TSO writes can be delayed in the store buffer, such
a specification according to our notion of linearizability is often given by two atomic
actions: one that atomically writes entries into the store buffer, and one that flushes
them into the memory, possibly after the method returns. The resulting specification
captures the effects of using the store buffer visible to the client, yet is simpler than the
implementation: it ensures that all the locations written to by a library method will be
written to the memory atomically, albeit at some later time. We provide examples of
such specifications in Section 4 and Appendix B.

2 TSO semantics

In this section, we present the operational semantics of the TSO memory model, fol-
lowing [14], along with our modifications to it needed to define linearizability.

Notation. We write A+ and A∗ for the sets of all nonempty, respectively, possibly
empty finite sequences of elements of a set A. We denote the empty sequence with
ε and the concatenation of sequences α1 and α2 with α1α2. When we deal with se-
quences of sequences, for clarity we sometimes put an element of a sequence that is
itself a sequence into brackets 〈·〉. For example, α1 〈β〉α2 denotes a sequence contain-
ing another sequence β as one of its elements. We write g[x : y] for the function that
has the same value as g everywhere, except for x, where it has the value y. We write

for an expression whose value is irrelevant and implicitly existentially quantified. We
denote the powerset of a set X with P(X), and the disjoint union of sets with].

Programming language. We consider a machine with n CPUs, indexed by CPUid =
{1, . . . , n} and a shared memory. The machine executes programs of the following
form:

L ::= {m = Cm | m ∈M} C(L) ::= let L in C1 ‖ . . . ‖ Cn

A program consists of a declaration of a library L, implementing a set of methodsM ⊆
Method, and its client, specifying a command Ct to be run by the (hardware) thread in
each CPU t. For the above program we let sig(L) = M . To simplify presentation, we
assume that the program is stored separately from the memory.

It is technically convenient for us to abstract from a particular syntax of thread
and method bodies Ct and Cm and represent them using control-flow graphs. Namely,
assume a set of primitive commands PComm (defined below). A control-flow graph
(CFG) over the set PComm is a tuple (N,T, start, end), consisting of the set of program
positions N , the control-flow relation T ⊆ N × PComm×N , and the initial and final
positions start, end ∈ N . The edges of the CFG are annotated with primitive commands
from PComm.

We represent a program C(L) by a collection of CFGs: the client command Ct
for a CPU t is represented by (Nt, Tt, startt, endt), and the body Cm of a method
m by (Nm, Tm, startm, endm). We often view this collection of CFGs for C(L) as a
single graph consisting of the node set N =

⊎n
t=1Nt]

⊎
m∈sig(L)Nm and the edge set

T =
⊎n
t=1 Tt]

⊎
m∈sig(L) Tm.

Machine configurations. The set of possible configurations Config of our machine is
defined in Figure 1. The special configuration > results from the machine executing an
illegal instruction, such as dereferencing a non-existent memory location. An ordinary
configuration (pc, θ, b, h,K) ∈ Config consists of several components. The first one
pc ∈ CPUid → Pos gives the current instruction pointer of every CPU. When a CPU
executes client code, its instruction pointer defines the program position of the client
command being executed. Otherwise, it is given by a pair whose first component is
the program position of the current library command, and the second one is the client
position to return to when the library method finishes executing (one return position is
sufficient, since, as explained below, we disallow nested method calls).

Loc = N Val = Z Heap = Loc ⇀fin Val
Pos = N] (N ×N) Reg = {r1, . . . , rm} RegBank = Reg→ Val
Buff = ((Loc× Val)+ ∪ {lock, call, ret})∗
Config = {>} ∪ ((CPUid→ Pos)× (CPUid→ RegBank)×

(CPUid→ Buff)× Heap× P(CPUid))

Fig. 1. The set of machine configurations

Each CPU in the machine has a set of registers Reg, whose values are defined by
θ ∈ CPUid → RegBank. The machine memory h ∈ Heap is represented as a finite
partial function from existing memory locations to the values they store. The component
K ∈ P(CPUid) defines the set of active CPUs that can currently execute a command
and is used to implement atomic execution of certain commands.

The component b ∈ CPUid → Buff describes the state of all store buffers in the
machine, each represented by a sequence of write requests with newest coming first.
The contents of store buffers in our configurations differ from those prescribed by the
TSO memory model [14] in two ways.

First, in TSO every entry in a store buffer is represented by a single location-value
pair, whereas we use a sequence of those. In our semantics, all the locations in such a
sequence are written to the memory atomically. This functionality is not provided by the
hardware; we use it for expressing the semantics of library specifications, which might
include atomic blocks performing several writes (see the seqlock example in Section 4).

Second, to formulate linearizability, we need to maintain some auxiliary informa-
tion about executions, recorded by call, ret and lock entries in a store buffer. The marker
lock is used to implement atomic commands performing several writes to different lo-
cations in memory. The markers call and ret get added to the buffer upon a call to or a
return from the library, respectively, and thus delimit entries added by library method
invocations and client code. They are used to generate additional actions in histories of
interactions between the client and the library needed to define linearizability on TSO.
We note that, despite store buffers in our configurations including call and ret markers,
the semantics we define below corresponds to the standard TSO one, in the sense that
erasing the markers from store buffers in all configurations of a given execution yields
a valid execution in the standard TSO semantics.

Primitive commands. The set of primitive commands is defined as follows:

PComm= Local]Read]Write]{m |m∈Method}]{lock, unlock, xlock, xunlock}.

Here Local, Read and Write are unspecified sets of commands such that:

– commands in Local access only CPU registers;
– commands in Read read a single location in memory and write its contents into the

register r1;
– commands in Write write to a single location in memory.

We also have library method calls and the commands lock and unlock that lock the
machine, allowing several commands to be executed atomically, and unlock it. We as-
sume that parameters and return values of methods are passed via CPU registers. If a

client needs to preserve register values when calling a library method, it can save them
in memory before the call and restore them when the method returns. The xlock and
xunlock commands act as lock and unlock, except they have a built-in memory barrier,
flushing the store buffer of the CPU executing the command. We call a sequence of
commands bracketed by lock and unlock, or xlock and xunlock, an atomic block.

For every command c ∈ Local] Read]Write, we assume a transformer:

– fc : RegBank → P(RegBank) for c ∈ Local defining how the command changes
the registers of the CPU executing it;

– fc : RegBank→ P(Loc) for c ∈ Read defining the location read;
– fc : RegBank → P(Loc × Val) for c ∈ Write defining the location and the value

written.

Note that we allow the execution of primitive commands to be non-deterministic. As in
this paper we are dealing with low-level programs, we do not assume a built-in allocator,
and thus do not consider commands for memory (de)allocation as primitive.

We place certain restrictions on CFGs over the above set PComm. Namely, we
assume that on any path in a CFG, (x)lock and (x)unlock commands alternate correctly.
In particular, we disallow nested (x)lock instructions. We assume that every method
called in the program is defined, and we disallow nested method calls as well as method
calls inside atomic blocks.

Let E,F denote expressions over the set of registers Reg, and JEKr the result of
evaluating the expression E in the register bank r. Then we can define sample primitive
commands

havoc ∈ Local, assume(E) ∈ Local, read(E) ∈ Read, write(E,F) ∈Write

with the following semantics:

fhavoc(r) = RegBank; fassume(E)(r) = {r}, if JEKr 6= 0;
fread(E)(r) = {JEKr}; fassume(E)(r) = ∅, if JEKr = 0;
fwrite(E,F)(r) = {(JEKr, JF Kr)}.

The read and write commands have the expected meaning. The havoc command as-
signs arbitrary values to all registers. The assume(E) command acts as a filter on
states, choosing only those where E evaluates to non-zero values. Using assume(E),
a conditional branch on the value of E can be implemented with the CFG edges
(v, assume(E), v1) and (v, assume(!E), v2), where !E denotes the C-style negation.

Given the above commands, a memory barrier can be implemented as
“xlock; xunlock”. We can also implement the well-known atomic compare-and-swap
(CAS) operation. A CAS takes three arguments: a memory address addr, an expected
value v1 and a new value v2. It atomically reads the memory address and updates it
with the new value when the address contains the expected value; otherwise, it does
nothing. In our language, we define CAS(addr, v1, v2) as syntactic sugar for the
control-flow graph representation of:

xlock;

if (*addr == v1) { *addr = v2; xunlock; return 1; }

else { xunlock; return 0; }

Actions and traces. Transitions in our operational semantics are labelled using actions
of the form

ϕ ∈ Act ::= (t, read(x, u)) | (t,write(x, u)) | (t, flush(x, u)) | (t, flush(call)) |
(t, flush(ret)) | (t, lock) | (t, unlock) | (t, xlock) | (t, xunlock) |
(t, call m(r)) | (t, ret m(r))

where t ∈ CPUid, x ∈ Loc, u ∈ Val, m ∈ Method and r ∈ RegBank. Here
(t,write(x, u)) corresponds to enqueuing a pending write of u to the location x into
the store buffer of CPU t, (t, flush(x, u)) to flushing a pending write of u to the loca-
tion x from the store buffer of t into the shared memory, (t, flush(call)) or (t, flush(ret))
to discarding a call or ret marker from the head of a store buffer. The last two actions
record moments of time when entries in a store buffer written by a given library method
invocation start to get flushed and are flushed completely, which are needed in the for-
mulation of linearizability as we explained in Section 1. The rest of the actions have the
expected meaning. Since parameters and return values of library methods are passed
via CPU registers, we record their values in call and return actions.

We call a (finite or infinite) sequence of actions a trace and adopt the standard
notation: λ(i) is the i-th action in the trace λ, |λ| is the length of the trace λ (|λ| = ω if
λ is infinite), and λ|t is the projection of λ to actions by CPU t.

Program semantics. The operational semantics of a program C(L) is defined by the
transition relation −→C(L): Config×Act∗ × Config in Figure 2. We remind the reader
that T in the figure is the control-flow relation of C(L). To handle transitions inside the
library code, we lift it to program positions N] (N ×N) as follows:

T̂ = T ∪ {((v, v0), c, (v′, v0)) | (v, c, v′) ∈ T ∧ v0 ∈ N}.

The LOCAL rule handles the execution of commands that access registers only.
These and other commands can only be executed by a CPU t if it is included into the
set of active CPUs, represented by the last component of a configuration.

A write by a CPU to a location in memory does not happen immediately; instead, a
pair of the location and the value to be written is added to the tail of the corresponding
store buffer (WRITE). Recall that the newest entry comes first in the store buffer. When
the location being written does not exist, the write command faults (WRITE->).

The READ rule uses lookup(α, h, x) to find the value stored for the address x in the
store buffer α of the CPU executing the command or the memory h:

lookup(α, h, x) =

u, if α = α1 〈β1 (x, u)β2〉α2 and

α1, β1 do not contain entries for x;
h(x), if x ∈ dom(h) and α does not contain entries for x;
>, otherwise.

If there are entries for x in the store buffer, the read takes the value in the newest one;
otherwise, it looks up the value in memory. If the location being read does not exist,
lookup returns >. According to READ, the value read is stored in the register r1.

t ∈ K (ρ, c, ρ′) ∈ T̂ c ∈ Local r′ ∈ fc(r)
pc[t : ρ], θ[t : r], b, h,K

ε−→C(L) pc[t : ρ′], θ[t : r′], b, h,K
LOCAL

(ρ, c, ρ′) ∈ T̂ c ∈Write (x, u) ∈ fc(r) x ∈ dom(h)

pc[t : ρ], θ[t : r], b[t : α], h,K
(t,write(x,u))−−−−−−−−→C(L) pc[t : ρ′], θ[t : r], b[t : (x, u)α], h,K

WRITE

t ∈ K (ρ, c, ρ′) ∈ T̂ c ∈Write (x, u) ∈ fc(r) x 6∈ dom(h)

pc[t : ρ], θ[t : r], b, h,K
ε−→C(L) >

WRITE->

t ∈ K (ρ, c, ρ′) ∈ T̂ c ∈ Read x ∈ fc(r) u = lookup(α, h, x) 6= >

pc[t : ρ], θ[t : r], b[t : α], h,K
(t,read(x,u))−−−−−−−→C(L) pc[t : ρ′], θ[t : r[r1 : u]], b[t : α], h,K

READ

t ∈ K (ρ, c, ρ′) ∈ T̂ c ∈ Read x ∈ fc(r) lookup(α, h, x) = >
pc[t : ρ], θ[t : r], b[t : α], h,K

ε−→C(L) >
READ->

(ρ, lock, ρ′) ∈ T̂

pc[t : ρ], θ, b[t : α], h,CPUid
(t,lock)−−−−→C(L) pc[t : ρ′], θ, b[t : lockα], h, {t}

LOCK

(ρ, unlock, ρ′) ∈ T̂

pc[t : ρ], θ, b[t : (x1, u1) . . . (xl, ul) lockα], h, {t} (t,unlock)−−−−−→C(L)

pc[t : ρ′], θ, b[t : 〈(x1, u1) . . . (xl, ul)〉α], h,CPUid

UNLOCK

pc, θ, b[t : α 〈(x1, u1) . . . (xl, ul)〉], h,CPUid
(t,flush(xl,ul))...(t,flush(x1,u1))−−−−−−−−−−−−−−−−−−−→C(L)

pc, θ, b[t : α], h[xl : ul] . . . [x1 : u1],CPUid

FLUSH

β ∈ {call, ret}

pc, θ, b[t : αβ], h,CPUid
(t,flush(β))−−−−−−→C(L) pc, θ, b[t : α], h,CPUid

FLUSH-MARKER

(ρ, xlock, ρ′) ∈ T̂

pc[t : ρ], θ, b[t : ε], h,CPUid
(t,xlock)−−−−−→C(L) pc[t : ρ′], θ, b[t : ε], h, {t}

XLOCK

(ρ, xunlock, ρ′) ∈ T̂

pc[t : ρ], θ, b[t : (x1, u1) . . . (xl, ul)], h, {t}
(t,flush(xl,ul))...(t,flush(x1,u1))(t,xunlock)−−−−−−−−−−−−−−−−−−−−−−−−−−→C(L)

pc[t : ρ′], θ, b[t : ε], h[xl : ul] . . . [x1 : u1],CPUid

XUNLOCK

(v,m, v′) ∈ T

pc[t : v], θ[t : r], b[t : α], h,CPUid
(t,call m(r))−−−−−−−→C(L)

pc[t : (startm, v
′)], θ[t : r], b[t : callα], h,CPUid

CALL

pc[t : (endm, v
′)], θ[t : r], b[t : α], h,CPUid

(t,ret m(r))−−−−−−−→C(L)

pc[t : v′], θ[t : r], b[t : retα], h,CPUid

RET

Fig. 2. Operational TSO semantics

A CPU executing lock makes itself the only active CPU, preventing the others
from executing commands4 (LOCK). The commands executed within the correspond-
ing atomic block, i.e., until the CPU calls unlock (UNLOCK) are thus not interleaved
with commands of other CPUs. A lock command also adds a lock marker to the tail
of the store buffer, thus delimiting the write requests issued within the atomic block.
The corresponding unlock command then uses the lock marker to gather these write
requests into a single buffer entry. Since we prohibit method calls inside atomic blocks,
this entry does not contain call or ret markers.

A CPU may at any point decide to flush the entry at the head of the store buffer into
memory (FLUSH). All the writes in the entry are flushed at the same time, thus ensuring
that writes made in an atomic block take effect atomically. A CPU can also discard
the marker at the head of the store buffer (FLUSH-MARKER). Although this does not
modify the memory, we use the corresponding action, recorded in the transition relation,
to formulate linearizability (Section 4). For technical reasons, it is convenient for us to
prohibit flushes inside an atomic block delimited by lock and unlock. Thus, the FLUSH
and FLUSH-MARKER require the set of active CPUs to be CPUid.

The xlock command (XLOCK) can only be executed when the store buffer is empty
and thus forces the CPU to flush its store buffer beforehand using FLUSH and FLUSH-
MARKER. For this reason, it does not need to insert a lock marker into the buffer: by the
end of the atomic block the buffer will only contain writes issued inside it. The xunlock
command flushes all these entries into the memory (XUNLOCK).

The rules CALL and RET handle calls to and returns from methods. Upon a method
call, the return point is saved as a component in the new thread position, a call marker
is added to the tail of the store buffer, and the method starts executing from the cor-
responding starting node of its CFG. Upon a return, the return point is read from the
current program position, and a ret marker is added to the tail of the store buffer. Note
that configurations in CALL and RET rules have CPUid as the set of active CPUs, since
we prohibit method calls inside atomic blocks.

We note that the store buffers arising in executions of C(L) as defined in Figure 2
are not arbitrary elements of Buff, but satisfy certain properties: e.g., call and ret mark-
ers in them alternate correctly, and they contain at most one lock marker. We formalise
such properties in Appendix A.

Implementations of the TSO memory model usually guarantee that store buffers are
fair, in the sense that, eventually, every write request in a buffer will be flushed into the
memory. Our results can be extended to accommodate this constraint; however, we do
not handle it in this paper so as not to obfuscate presentation.

A computation of C(L) is a sequence of transitions using −→C(L). For a com-
putation τ , we let trace(τ) be the trace obtained by concatenating all the annotations
of transitions in τ . In the following, we assume that program properties of interest are
linear-time properties over sets of program traces. We denote with λ−→∗C(L) the reflexive
and transitive closure of −→C(L), where λ is obtained by concatenating the transition
annotations.

4 The semantics of TSO [14] locks only the memory bus in this case, which allows other CPUs
to execute local commands affecting only their registers. For simplicity, we chose to disallow
all commands.

Let I ⊆ Heap be the set of initial heaps that the program C(L) expects to execute
from. We define the set of its initial configurations as

Σ0(I)= {(pc0, θ0, b0, h0,CPUid) | ∀t∈CPUid. pc0(t)= startt ∧ b0(t)= ε ∧ h0 ∈ I}.

We define the semantics JC(L)KI of C(L) executing from I as the set of computations
with initial configurations from Σ0(I). We say that the program C(L) is safe for I , if it
is not the case that σ0

λ−→∗C(L)> for some λ and σ0 ∈ Σ0(I). Informally, a program is
safe when it accesses only allocated memory. Safety can be established using existing
logics for reasoning about programs running on TSO [15, 19].

3 Library-local and client-local semantics

Consider a library L and a program C(L) using this library:

L = {m = Cm | m ∈M}, C(L) = let L in C1 ‖ . . . ‖ Cn.

To formulate the definition of linearizability and the Abstraction Theorem, we need to
give a semantics to parts of C(L): the library L considered in isolation from its client
and the client C considered in isolation from the implementation of the library it uses.
In this section, we specialise the semantics of programs in Section 2 to such library-
local and client-local semantics describing all possible behaviours of the corresponding
components.

Let us lift the operation of the disjoint union of heaps to sets of heaps pointwise:

∀I1, I2 ⊆ Heap. I1 ◦ I2 = {h1] h2 | h1 ∈ I1 ∧ h2 ∈ I2}.

We assume that the set I of initial heaps of C(L) satisfies I = Ic ◦ Il for some Ic, Il ⊆
Heap such that for any hc ∈ Ic and hl ∈ Il, hc]hl is defined. Here Ic and Il are meant
to represent parts of initial heaps used by the client C and the library L, respectively;
the initial heaps of C(L) are obtained as the ◦-combination of these.

Recall that n is the number of CPUs in our machine. To give a library-local seman-
tics to L, we consider the program MGC(L) = let L in Cmgc

1 ‖ . . . ‖ Cmgc
n , where

Cmgc
t has the CFG

({vtmgc}, {(vtmgc, havoc, vtmgc), (v
t
mgc,m, v

t
mgc) | m ∈ sig(L)}, vtmgc, v

t
mgc).

The program MGC(L) is the most general client of the library L, whose hardware
threads on every CPU repeatedly invoke library methods in any order and with any
parameters possible. The latter are passed via registers, set arbitrarily by the havoc
command. The set of computations JMGC(L)KIl thus includes all library behaviours
under any possible client (this fact is formalised in Lemma 6, Section 5).

In practice, a library often tolerates only calls from clients adhering to a certain
policy. For example, a spinlock implementation might expect client calls to acquire

and release methods to alternate. We can take this into account by restricting the
most general client appropriately. While libraries in our examples do rely on the client
satisfying such constraints, to simplify presentation we do not formalise them here.

To define the client-local semantics of the client C, we consider the program

CM (·) = let {m = Cstub
m | m ∈M} in C1 ‖ . . . ‖ Cn

where the body Cstub
m of every method m has the CFG ({vmstart}, {(vmstart, havoc, vmend)},

vmstart, v
m
end). That is, every method in CM (·) is implemented by a stub that returns im-

mediately after having been called, scrambling all the registers. Since return values of
library methods are stored in registers, the set of computations JCM (·)KIc generates all
executions of the client assuming any behaviour of the library it uses.

Note that both library-local and client-local semantics allow store buffer entries
of the corresponding component to be flushed non-deterministically while the other
component is running, since this is possible in the semantics of the whole program.
Similarly, we add call and ret markers to the store buffer when calling a method stub in
the client-local and library-local semantics.

We say that a client C, respectively, a library L is safe for Ic, respectively, Il, if so
is CM (·), respectively, MGC(L) (see Section 2). As we have noted before, the safety
of a library or a client can be established using logics for TSO [15, 19]. Note that in the
client-local or the library-local semantics, the program runs on the state owned by the
corresponding component and faults when accessing memory locations not belonging
to it. Thus, the safety of the client and the library ensures that they cannot corrupt each
other’s state. We rely crucially on this in establishing the Abstraction Theorem for the
notion of linearizability we propose. It can also be shown that, when the client C and
the library L are safe, so is the complete program C(L) (Lemma 6, Section 5).

4 Linearizability on TSO

When defining linearizability, we are not interested in internal steps recorded in library
computations, but only in the interactions of the library with its client. We record such
interactions using histories, which are traces including only actions from the following
subset of Act:

HAct ::= (t, call m(r)) | (t, ret m(r)) | (t, flush(call)) | (t, flush(ret))

where t ∈ CPUid, m ∈ Method, r ∈ RegBank. Recall that here r records the values of
registers of the CPU that calls a library method or returns from it, which serve as param-
eters or return values. We define the history history(τ) corresponding to a computation
τ of the program C(L) by projecting trace(τ) to actions from HAct.

In contrast to histories used in the classical definition of linearizability [10],
ours include two new types of actions needed for defining linearizability on TSO:
(t, flush(call)) and (t, flush(ret)), denoting times when the CPU t flushes a call or a
ret marker from its store buffer. We first formulate our definition, and then explain the
motivation behind it.

Definition 1. The linearizability relation is a binary relation v on histories de-
fined as follows: H v H ′ if ∀t ∈ CPUid. H|t = H ′|t and there is a bijection
π : {1, . . . , |H|} → {1, . . . , |H ′|} such that ∀i.H(i) = H ′(π(i)) and

(i < j ∧ (H(i) = (, ret) ∨H(i) = (, flush(ret)))
∧ (H ′(j) = (, call) ∨H ′(j) = (, flush(call))))⇒ π(i) < π(j).

That is, a historyH ′ linearizes a historyH when it is a permutation of the latter preserv-
ing the order of certain types of actions. We lift the notion of linearizability to libraries
using the library-local semantics of Section 3.

Definition 2. For libraries L1 and L2 safe for Il and such that sig(L1) = sig(L2), we
say that L2 linearizes L1, written L1 v L2, if

∀H1 ∈ history(JMGC(L1)KIl).∃H2 ∈ history(JMGC(L2)KIl). H1 v H2.

Thus, L2 linearizes L1 if every behaviour of the latter under the most general client may
be reproduced in a linearized form by the former.

Discussion. A good definition of linearizability has to allow replacing a library im-
plementation with its specification while keeping client behaviours reproducible (as
formalised by the Abstraction Theorem in Section 5). However, linearizability itself
is defined between libraries considered in isolation from their clients. In Definition 2,
this is achieved by considering executions of libraries under their most general clients
(Section 3), which can only refer to store buffer entries inserted by write commands
in library code. When a library is used by a client, the store buffer mixes entries in-
serted by the two components. As we noted in Section 1, in this case the library can
affect the client via the store buffer, e.g., by executing a memory barrier or leaving an
unflushed entry blocking newer client entries from being flushed. The (, flush(call))
and (, flush(ret)) actions in histories record the necessary information about library
behaviour of this kind, as we now explain.

Recall the analogy from Section 1, where we viewed the contents of a store buffer
as a sandwich consisting of blocks of entries inserted there by an invocation of a library
method or a fragment of client computation between two such invocations. The call
and ret markers delimit the layers in this sandwich. For example, at some point in an
execution of C(L), the store buffer of some CPU might have the following contents:

ret (x5, u5) call (x4, u4) ret (x3, u3) (x2, u2) call (x1, u1), (1)

where the leftmost end contains the newest entry. From the call and ret markers, we can
immediately conclude that the write to x1 was inserted by the client before calling a
library method, the writes to x2 and x3 were by the library method invocation, the write
to x4 was again by the client, and the write to x5 was by the next method invocation on
this CPU.

The most general client exercises the library methods under all possible input pa-
rameters, but does not perform writes by itself. For this reason, a store buffer in the
most general client of a library never has entries between a call marker and an older
ret marker (we formalise this in Appendix A). For example, a computation of the most
general client of the library with the same library method invocations as in the one
producing (1) might have the store buffer

ret (x5, u5) call ret (x3, u3) (x2, u2) call, (2)

which contains only library entries from (1). Thus, when considering a library in isola-
tion from its client in defining linearizability, the call and ret markers let us determine

the places in the store buffer where client entries might be located in a corresponding
execution of a complete program.

Consider an execution of the most general client of a library in which the CPU
flushes a library entry (e.g., (x3, u3) in (2)). Since store buffers are FIFO, in the cor-
responding execution of a particular client with the same library behaviour, this will
assume that the client entries in the store buffer older than it have been flushed (e.g.,
(x1, u1) in (1)). Conversely, flushing a library entry (e.g., (x3, u3) in (1)) preceding a
client one (e.g., (x4, u4) in (1)) will guarantee that the client entry can now be flushed.
For the Abstraction Theorem to hold, in Definition 2 we need to make sure that the
executions of the most general clients producing histories H1 and H2 make the same
assumptions and give the same guarantees concerning times when client entries are
flushed. This is the reason for including flushes of call and ret markers into histories.
The position of a (t, flush(call)) action in a history produced by the most general client
defines a moment of time by which, in a complete program, all older client writes in
the store buffer of t must be flushed for the library to be able to flush the entries from
the layer following the call marker. The position of a (t, flush(ret)) action defines a mo-
ment starting from which the client entries from the layer following the ret marker may
be flushed. In our definition of linearizability, we require that the two histories consid-
ered have the same history actions describing how store buffers are modified during the
execution. Hence, in two executions corresponding to the histories, libraries make the
same assumptions and give the same guarantees concerning the use of store buffers.

Like the classical definition of linearizability, ours requires preserving the order be-
tween non-overlapping library method invocations; two invocations do not overlap in a
history if the return of one precedes the call of the other. This is needed for the Abstrac-
tion Theorem to hold, since the client code executed in between two non-overlapping
method invocations can notice their order. To handle TSO correctly, our definition also
takes into account intervals during which all the writes of a library method invocation
were being flushed: it requires preserving the order between two such non-overlapping
intervals or non-overlapping interval of this kind and a library method invocation.
This is expressed by preserving the order of (, flush(ret)) preceding (, flush(call)),
(, flush(ret)) preceding (, call), and (, ret) preceding (, flush(call)). The require-
ment is again needed to validate the Abstraction Theorem.

We note that our definition of linearizability is flexible in the following sense: it
puts restrictions on times when call and ret markers are flushed, but not on how many
ordinary entries a given method invocation inserts into the store buffer. For example,
this allows us to relate a library implementation writing to some part of the memory
accessed only by a given CPU to its specification that does not write to any local state.

Example. Even though we formalise our results for programs represented by their
CFGs, for readability in our examples we use a C-like language. Its programs can be
translated to CFGs in the standard way. We assume that global variables are allocated
at fixed addresses in memory, and local variables are stored in CPU registers.

Figure 3 presents a simplified version of a seqlock [3]—an efficient implementa-
tion of a readers-writer protocol based on version counters used in the Linux kernel.
Two memory addresses x1 and x2 make up a conceptual register that a single hardware
thread can write to, and any number of other threads can attempt to read from. A version

word x1 = 0, x2 = 0;

word c = 0;

write(in word d1, in word d2) {

c++;

x1 = d1; x2 = d2;

c++;

}

read(out word d1, out word d2) {

word c0;

do {

do { c0 = c; } while (c0 % 2);

d1 = x1; d2 = x2;

} while (c != c0);

}

Fig. 3. Seqlock implementation Lseqlock

word x1 = 0, x2 = 0;

write(in word d1, in word d2) { lock; x1 = d1; x2 = d2; unlock; }

read(out word d1, out word d2) { lock; d1 = x1; d2 = x2; unlock; }

Fig. 4. Seqlock specification L]seqlock. Here nondet() represents a non-deterministic choice.

number is stored at c. The writing thread maintains the invariant that the version num-
ber is odd during writing by incrementing it before the start of and after the finish of
writing. A reader checks that the version number is even before attempting to read (oth-
erwise it could see an inconsistent result by reading while x1 and x2 are being written).
After reading, the reader checks that the version has not changed, thereby ensuring that
no write has overlapped the read. Note that neither the write nor the read operation
includes a memory barrier, which means that writes to x1, x2 and c may not be visible
to readers immediately.

We give a specification to seqlock using the abstract implementation in Figure 4.
Instead of using a version counter, this implementation just locks the machine while
reading from or writing to x1 and x2. According to the semantics of Section 2, the writes
to x1 and x2 performed by write are stored in a single entry of the corresponding
store buffer and are written to the shared memory atomically. This specifies that the
implementation of a seqlock indeed ensures the illusion of atomicity. However, we also
need our specification to capture the effect of the library executing on a weak memory
model—the fact that the writes to x1 and x2, although executed atomically, may still be
delayed due to the presence of store buffers. This is because the delay can be noticed
by certain clients and can result in a non-SC behaviour. For example, using a seqlock,
we can reproduce the example from Section 1 yielding non-SC behaviour as shown in
Figure 4. To capture this, the specification of write ensures atomicity by a pair of lock
and unlock commands, which do not flush the writes to the memory immediately.

Thus, we have two atomic actions associated with the abstract write method: one
that writes to the store buffer and the other that flushes the writes to the memory, pos-
sibly after the method returns. This is different from the classical definition of lineariz-
ability on a sequentially consistent memory model [10], which requires methods in the
specification to be implemented by one atomic action.

x1 = x2 = y = 0;

write(1, 1); y = 1;

b = y; read(&a1, &a2);

{a1 = b2 = b = 0}

Fig. 5. A client of Lseqlock producing a non-SC behaviour

As the following theorem shows, the abstract implementation L]seqlock in Figure 4
indeed linearizes the concrete one Lseqlock in Figure 3.

Theorem 3. Lseqlock v L]seqlock.

The proof is given in Appendix A; here we discuss it informally. The proof is similar to
proofs of classical linearizability using linearization points [10], although here methods
of the abstract implementation contain more than one atomic action. We consider the
most general clients of the concrete and the abstract implementations of the library
running alongside each other. For every execution of the client of the concrete library,
we construct the corresponding execution of the client of the abstract one by firing
transitions of the latter at certain times during the execution of the former.

For example, the abstract readmethod is executed when the corresponding concrete
one reads x2 for the last time. The code of the abstract write method is executed when
the concrete one writes to x2. Finally, a store buffer entry containing writes to x1 and
x2 by the abstract write method is flushed together with the second write to c by
the corresponding concrete method invocation. To prove that this flush in the abstract
implementation does not contradict the FIFO ordering of store buffers, we maintain
an invariant relating the contents of the store buffers in the concrete and the abstract
seqlock implementations.

Programs producing only SC behaviours. By this time, the reader may wonder
whether it is always necessary to expose the behaviour of a library with respect to store
buffers in its specification. After all, many programs running on TSO only produce
SC behaviours, and there are ways of effectively checking this [13, 5, 6]. Therefore, a
valid question is whether we can use the usual definition of linearizability for libraries
producing only SC behaviours when they are used by clients also behaving SC. Unfor-
tunately, in general the answer is no. This is because, even if the most general client
of a library MGC(L) and its client Csig(L)(·) only produce SC behaviours when con-
sidered in isolation, this may not be the case for the complete program C(L) due to
interactions of the two components via the store buffer. For example, the most general
client of a single seqlock produces only SC behaviours, as it satisfies the triangular race
freedom criterion of [13]. However, Figure 4 shows that if we use a seqlock together
with a client that also happens to be SC by itself, we can get non-SC behaviours. This is
not surprising: a seqlock is meant to ensure the atomicity of writes to and reads from a
pair of locations, but it is not meant to make these reads and writes strongly consistent.
Thus, the classical definition of linearizability is not sufficient to specify libraries even
when constraining separate components of a program to behave SC.

5 Abstraction Theorem

We now justify that the notion of linearizability proposed in Section 4 is a correct one
by establishing the Abstraction Theorem that allows abstracting an implementation of
a library with its specification while reasoning about its client.

For a computation τ of C(L) obtained from the semantics of Section 2, we denote
with client(τ) the projection of its trace λ = trace(τ) to actions relevant to the client,
i.e., executed by the client code or corresponding to flushes of client entries in store
buffers. Formally, we include an action ϕ such that λ = λ′ϕλ′′ into the projection if:

– ϕ is included into history(τ); or
– ϕ is not a flush action and is outside an invocation of a library method, i.e., it is

not the case that λ|t = λ1 (t, call)λ2ϕλ3, where λ2 does not contain a (t, ret)
action; or

– ϕ corresponds to a flush of a client entry in a store buffer, i.e., it is not the case that
λ|t = λ1 (t, flush(call))λ2ϕλ3, where λ2 does not contain a (t, flush(ret)) action.

We lift client to sets of computations pointwise.
The Abstraction Theorem states that the behaviour of a client of a concurrent library

will stay reproducible on TSO if we replace the library by its abstract implementation
related to the original one by our definition of linearizability.

Theorem 4 (Abstraction). Consider C(L1) and C(L2) such that C is safe for Ic, L1

and L2 are safe for Il and L1 v L2. Then C(L1) and C(L2) are safe for I = Ic ◦ Il
and client(JC(L1)KI) ⊆ client(JC(L2)KI).

We provide a proof outline below and give the complete proof in Appendix A. The
requirement that the client C be safe in the theorem is required to replace one library
implementation with another: it ensures that C cannot access the internals of the library
implementation.

From Theorem 4 it follows that, while reasoning about a client C(L1) of a library
L1, we can soundly replace L1 with a simpler library L2 linearizing L1: if a linear-
time property over client actions holds over C(L2), it will also hold over C(L1). Note
that the abstract implementation is usually simpler than the original one (in most cases
implemented using atomic blocks, like the one in Figure 4), which eases the proof of the
resulting program. Thus, the proposed notion of linearizability and Theorem 4 enable
compositional reasoning about programs running on TSO: they allow decomposing the
verification of a whole program into the verification of its constituent components. We
give an example of using this technique in Section 6.

The following corollary of Theorem 4, proved in Appendix A, states that, like the
classical notion of linearizability [10], ours is compositional: if several non-interacting
libraries are linearizable, then so is their composition. Formally, consider libraries
L1, . . . , Lk with disjoint sets of declared methods and sets of initial heaps I1, . . . , Ik
such that

∀{i1, . . . , il} ⊆ {1, . . . , k}.∀h1 ∈ Ii1 , . . . , hl ∈ Iil . h1] . . .] hl is defined.

We let the compositionL ofL1, . . . , Lk be the library implementing all of their methods
and having the set of initial heaps I1 ◦ . . . ◦ Ik.

Corollary 5 (Compositionality). Consider libraries L1, . . . , Lk and L]1, . . . , L
]
k such

that Lj and L]j are safe for Ij , j = 1..k. Let L and L] be the compositions of the
respective sets of libraries. If Lj v L]j for j = 1..k, then L v L].

Proof outline for Theorem 4. The proof of Theorem 4 relies on the following lemmas,
proved in Appendix A. The first lemma shows that a computation of C(L) generates
two computations in the client-local and library-local semantics with the same history.

Lemma 6 (Decomposition). If Csig(L)(·) and MGC(L) are safe for Ic and Il, respec-
tively, then C(L) is safe for Ic ◦ Il and

∀τ ∈ JC(L)K(Ic ◦ Il).∃η ∈ JCsig(L)(·)KIc.∃ξ ∈ JMGC(L)KIl.
history(η) = history(ξ) ∧ client(τ) = client(η).

The following lemma presents the core of the transformation used to convert a compu-
tation of C(L1) into one of C(L2) in Theorem 4: it shows that a computation of a most
general client can be transformed into another of its computations with a given history
linearized by the history of the original one.

Lemma 7 (Rearrangement). Consider a libraryL safe for Il and historiesH,H ′ such
that H v H ′. Then

∀τ ′ ∈ JMGC(L)KIl. history(τ ′) = H ′ ⇒ ∃τ ∈ JMGC(L)KIl. history(τ) = H.

Finally, the following lemma states that any pair of client-local and library-local com-
putations agreeing on the history can be combined into a valid computation of C(L).

Lemma 8 (Composition). If Csig(L)(·) and MGC(L) are safe for Ic and Il, respec-
tively, then

∀η ∈ JCsig(L)(·)KIc.∀ξ ∈ JMGC(L)KIl. history(η) = history(ξ)⇒
∃τ ∈ JC(L)K(Ic ◦ Il). client(τ) = client(η).

Most of the proof of the Decomposition Lemma (Lemma 6) deals with maintain-
ing a splitting of the state of C(L) into the parts owned by the client and the library,
including store buffer entries. The resulting partial states then define the computations
of Csig(L)(·) and MGC(L). Conversely, the Composition Lemma (Lemma 8) composes
the states of Csig(L)(·) and MGC(L) into states of C(L) to construct an execution of
the latter. The proof of the Rearrangement Lemma (Lemma 7) transforms τ ′ into τ by
repeatedly permuting transitions in the computation according to a certain strategy to
make its history equal to H .

Proof of Theorem 4. Lemma 6 implies that C(L) is safe. We now need to transform
a computation τ1 ∈ JC(L1)KI of C(L1) into a computation τ2 ∈ JC(L2)KI with the
same client trace projection: client(τ1) = client(τ2). To this end, we use the semantics
of Section 3, which defines the interpretation of L1, L2, Csig(L1)(·) and their composi-
tions. Namely, to transform τ1 into τ2, we first apply Lemma 6 to generate two compu-
tations from τ1—a library-local computation ξ1 ∈ JMGC(L1)KIl and a client-local one

η ∈ JCsig(L1)(·)KIc—such that client(τ1) = client(η) and history(τ1) = history(η) =
history(ξ1). Note that the computation η of C thus constructed excludes the internal
library actions. Since L1 v L2, for some computation ξ2 ∈ JMGC(L2)KIl, we have
history(ξ1) v history(ξ2). By Lemma 7, ξ2 can be transformed into a computation
ξ′2 ∈ JMGC(L2)KIl such that history(ξ′2) = history(ξ1) = history(η). We then use
Lemma 8 to compose the library-local computation ξ′2 with the client-local one η into a
computation τ2 ∈ JC(L2)KI such that client(τ2) = client(η) = client(τ1). �

6 Checking linearizability on TSO

We have implemented a tool called LINTSO for systematically testing concurrent li-
braries for our notion of linearizability. Our intention in implementing the tool is
twofold. First, the tool allows developers of concurrent libraries to find violations of
linearizability quickly. The second (and more important) goal is to use the tool to per-
form a sanity check of our definition of linearizability by making sure that real-world
algorithms that are commonly accepted as correct are linearizable with respect to it.

LINTSO is similar in spirit to the LINE-UP tool for checking linearizability on
a sequentially consistent memory model [4]. It takes as input a concrete and an ab-
stract implementation of a library (such as the ones in Figures 3 and 4) along with a
(bounded) test harness that calls into the library. LINTSO then composes the input with
an operational model of TSO such that sequentially consistent behaviors of the result-
ing program emulate TSO behaviors of the input. This allows LINTSO to use existing
model checkers, such as CHESS [12], to systematically enumerate the behaviors of the
harness and the library on TSO.

In a first phase, LINTSO exhaustively generates all histories of the input harness
calling into the abstract version of the library. In a subsequent phase, LINTSO system-
atically enumerates the TSO behaviors of the harness and the concrete version of the
library. For every such behavior, LINTSO uses the linearizability condition to check if
the behavior is consistent with respect to some history observed in the first phase. Any
violation is reported as an error.

If the enumeration in the second phase completes, then LINTSO guarantees that the
abstract implementation linearizes the concrete one for the given harness. If the number
of possible computations in this phase is too large, a subset of them can be considered
by bounding the number of context switches [12]. Obviously, this does not provide a
complete guarantee of linearizability, as only (possibly a subset of computations of) one
of the infinitely many harnesses is considered.

In our experiments we considered the following concurrent algorithms that were
identified as challenges in [13]:

– seqlock, the readers-writer lock we discussed in Section 4;
– simple spinlock, which does not provide fairness guarantees;
– ticketed spinlock, ensuring fairness using a variant of the Bakery algorithm;
– initialisation using double-checked locking.

We provide their code and specifications in Appendix B. The seqlock and the spinlock
implementations are used in various versions of the Linux kernel [3]. The above al-
gorithms are optimised for the TSO memory model and, when used in certain ways,

can exhibit behaviours that cannot be reproduced on a sequentially consistent memory
model. In fact, the correctness of the spinlock implementations was a subject of debate
among Linux developers [13].

In more detail, the simple and ticketed spinlocks do not execute a memory barrier
after writing a value into the lock data structure saying that the lock is free. According
to the semantics of TSO, this does not violate mutual exclusion: delaying the write in
the store buffer can only lead to CPUs that want to acquire the lock waiting longer. As
in the case of a seqlock (Figure 4), the specification of a spinlock captures the fact that
the lock release can be delayed.

The initialisation using double-checked locking first checks if an object is initialised
by reading a corresponding flag without acquiring the lock for the object. Since the read
is not preceded by a memory barrier, on TSO this can cause it to return ‘uninitialised’
even after the object has been in fact initialised. This does not violate the correctness of
the algorithm, since the flag is then re-checked with the lock held.

For simple harnesses of the above examples, consisting of up to 3 threads, each
performing up to 3 operations, LINTSO performed the check in a matter of minutes.
The specification histories were generated exhaustively, and the implementation histo-
ries for computations up to a maximum of two preemptions (the CHESS default). In
all cases, the tool did not detect any errors. As a further sanity check, we introduced
simple errors in the examples, e.g., by replacing xunlock with an unlock in the concrete
version. LINTSO was able to find all of them.

We used Theorem 4 to modularise checking the linearizability of the intialisation
using double-checked locking. Namely, Theorem 4 allowed us to consider the specifi-
cation of the spinlock used in this example, instead of a particular implementation. This
cut down the number of interleavings to be analysed and made the analysis more effi-
cient. Additionally, it allowed us to prove the linearizability of the algorithm regardless
of the particular spinlock implementation used (e.g., the simple or ticketed spinlock).
This is just one example of using the Abstraction Theorem to verify concurrent pro-
grams compositionally.

7 Related work and conclusion

All the definitions of linearizability proposed for various settings so far [10, 7, 9, 8]
have assumed a sequentially consistent memory model. This paper is the first to de-
fine a notion of linearizability on a weak memory model and show that it validates the
Abstraction Theorem (Theorem 4). Our result is based on a novel insight about what
information should be kept in histories to specify interactions between the library and
the client due to the weak memory model. Even though in this paper we considered
only one weak memory model—TSO, implemented by x86 processors [14]—our in-
sights form a starting point for investigating weaker memory models, such as those of
Power [16] and ARM [1] processors, and the C++ language [2].

Our work lays the foundation for future correctness proofs for implementations of
concurrent algorithms in operating system kernels [3] and language run-times [2]. In
particular, we hope that it should be possible to develop a logic for establishing the
proposed notion of linearizability formally, based on existing logics for proving safety

properties on TSO [19, 15] and linearizability on sequentially consistent memory mod-
els [17, 18]. This should make proofs such as that of Theorem 3 easier to carry out.

We also intend to investigate definitions of linearizability on weak memory models
in cases when the library and the client interact in more complicated ways. For example,
in this paper we did not consider the transfer of data structure ownership between the
library and the client, assuming that they communicate only by passing values of a
primitive type. We believe that our approach to handling weak memory can be married
with a previous generalisation of linearizability for ownership transfer on a sequentially
consistent memory model [8].

Acknowledgements. We thank Scott Owens, Ian Wehrman and the anonymous review-
ers for comments that helped to improve the paper. Yang was supported by EPSRC.

References

1. J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and F. Zappa Nardelli.
The semantics of Power and ARM multiprocessor machine code. In DAMP, 2009.

2. M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ concurrency. In
POPL, 2011.

3. D. Bovet and M. Cesati. Understanding the Linux Kernel, 3rd ed. O’Reilly, 2005.
4. S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-up: A complete and automatic

linearizability checker. In PLDI, 2010.
5. S. Burckhardt and M. Musuvathi. Effective program verification for relaxed memory models.

In CAV, 2008.
6. E. Cohen and B. Schirmer. From total store order to sequential consistency: A practical

reduction theorem. In ITP, 2010.
7. I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects. In

ESOP, 2009.
8. A. Gotsman and H. Yang. Linearizability with ownership transfer. Draft. Available from

www.software.imdea.org/~gotsman, 2011.
9. A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction. In ICALP, 2011.

10. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
TOPLAS, 12, 1990.

11. J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In POPL, 2005.
12. M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu. Finding and

reproducing heisenbugs in concurrent programs. In OSDI, 2008.
13. S. Owens. Reasoning about the implementation of concurrency abstractions on x86-TSO. In

ECOOP, 2010.
14. S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO. In TPHOLs,

2009.
15. T. Ridge. A rely-guarantee proof system for x86-TSO. In VSTTE, 2010.
16. S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Understanding POWER

multiprocessors. In PLDI, 2011.
17. V. Vafeiadis. Modular fine-grained concurrency verification. PhD Thesis. Technical Report

UCAM-CL-TR-726, University of Cambridge, 2008.
18. V. Vafeiadis. Automatically proving linearizability. In CAV, 2010.
19. I. Wehrman and J. Berdine. A proposal for weak-memory local reasoning. In LOLA, 2011.

A Proofs

A.1 Auxiliary definitions

Before proving the lemmas, we introduce some auxiliary notation.
We first define an operation analogous to client, but selecting actions relevant to the

library. For a computation τ of C(L) generated from the semantics of Section 2, we
denote with lib(τ) the projection of its trace λ = trace(τ) to actions executed by the
library code or corresponding to flushes of library entries in store buffers. Formally, we
include an action ϕ such that λ = λ′ϕλ′′ into the projection if:

– ϕ is included into history(τ); or
– ϕ not a flush action and is inside an invocation of a library method, i.e., λ|t =
λ1 (t, call)λ2ϕλ3, where λ2 does not contain a (t, ret) action; or

– ϕ corresponds to a flush of a library entry in a store buffer, i.e., λ|t =
λ1 (t, flush(call))λ2ϕλ3, where λ2 does not contain a (t, flush(ret)) action.

For a finite computation τ1 and a computation τ2, their concatenation τ1τ2 is defined
when the final configuration in τ1 is the same as the initial one in τ2. The concatenation
glues the computations at this configuration.

We sometimes apply history, lib and client directly to traces, instead of computa-
tions.

In the following, we classify every transition in a computation of C(L) distinct
from FLUSH or FLUSH-MARKER as either a client or a library transition, depending on
which part of the code of C(L) executes the command.

We now define a partial operation ◦ : Config × Config ⇀ Config that combines
configurations in the local semantics of Csig(L)(·) and MGC(L) to yield a configuration
of C(L). We first define ◦ on the components of a configuration.

Let ◦ : Pos×Pos ⇀ Pos combine CPU positions in the client-local and library-local
semantics to obtain a position in the complete program: v ◦ vtmgc = v for v ∈

⊎n
t=1Nt;

(vmk , v)◦ (v′, vtmgc) = (v′, v) for k ∈ {start, end}, v ∈
⊎n
t=1Nt and v′ ∈ Nm; all other

combinations are undefined. We lift ◦ to program counters pointwise.
For r1, r2 ∈ RegBank and ρ ∈ Pos we let

r1 ◦ρ r2 =

{
r1, if ρ ∈ N ;

r2, if ρ ∈ N ×N.

For θ1, θ2 ∈ CPUid→ RegBank and pc ∈ CPUid→ Pos we then let

∀t ∈ CPUid. (θ1 ◦pc θ2)(t) = θ1(t) ◦pc(t) θ2(t).

The following simple proposition describes the structure of store buffers obtained
in the operational semantics of C(L), Csig(L) and MGC(L). In the following, we often
use it implicitly when we perform operations on store buffers.

Proposition 9. Consider σ0 ∈ Σ0(I) and let us define the following regular languages:

γ ∈ ((Loc× Val)+)∗

ν ∈ (Loc× Val)∗

δ ::= γ | ν lock γ

– If σ0
λ−→∗C(L) σ, then every store buffer in σ belongs to the following regular lan-

guage:
(δ ∪ δ call γ) (ret γ call γ)∗ (ε ∪ ret γ)

– If σ0
λ−→∗Csig(L)(·) σ, then every store buffer in σ belongs to the following regular

language:
(δ ∪ call γ) (ret call γ)∗ (ε ∪ ret)

– If σ0
λ−→∗MGC(L) σ, then every store buffer in σ belongs to the following regular

language:
δ | (ε ∪ δ call) (ret γ call)∗ (ε ∪ ret γ)

Consider a store buffer α containing at least one call or ret marker. In this case,
we can classify every non-marker entry β in the buffer α as a client or a library entry,
depending on its position relative to the markers in the buffer. Namely, β is a library
entry if α = α′ retα′′βα′′′, where α′′ does not contain call, or α = α′βα′′ callα′′′,
where α′′ does not contain ret; otherwise, it is a client entry.

Consider two store buffers α1 and α2 from configurations in the client-local and
library-local semantics, respectively. Then the former one does not have any entries in
between a ret marker and an older call marker, and the latter—in between a call marker
and an older ret marker. We define the combination of α1 ◦ρ α2, parameterised by
the current program position ρ. Assume that the projections of α1 and α2 to call and
ret markers are equal; otherwise, their combination is undefined. If α1 and α2 do not
contain any call or ret markers, then

α1 ◦ρ α2 =

α1, if ρ ∈ N and α2 = ε;

α2, if ρ ∈ N ×N and α1 = ε;

undefined, otherwise.

If α1 and α2 contain at least one call or ret marker, then there exists a unique sequence
such that its projection to client entries (and call and ret markers) is α1 and to library
entries (and the markers) is α2. We let α1 ◦ρ α2 be equal to this sequence. We lift ◦ to
vectors of store buffers as follows:

∀t ∈ CPUid. (b1 ◦pc b2)(t) = b1(t) ◦pc(t) b2(t).

We define ◦ on sets of active CPUs as follows: CPUid ◦ CPUid = CPUid, {t} ◦
CPUid = CPUid ◦ {t} = {t}; all other cases are undefined.

Finally, we lift ◦ to configurations as follows:

(pc1, θ1, b1, h1,K1) ◦ (pc2, θ2, b2, h2,K2) =

(pc1 ◦ pc2, θ1 ◦(pc1◦pc2)
θ2, b1 ◦(pc1◦pc2)

b2, h1] h2,K1 ◦K2).

A.2 Proof of Lemma 6

Let M = sig(L). Consider τ ∈ JC(L)K(Ic ◦ Il). We show that, if τ does not con-
tain a > configuration, then there exist η ∈ JCM (·)KIc and ξ ∈ JMGC(L)KIl such

that client(η) = client(τ) and lib(ξ) = lib(τ); then history(η) = history(ξ). We also
show that, if τ contains a > configuration, then either CM (·) or MGC(L) is unsafe,
contradicting the assumption of the theorem. The latter implies the safety of C(L).

Let σ0 = (pc0, θ0, b0, h0,CPUid) ∈ Σ0(Ic ◦ Il) be the initial configuration of τ .
Then for some h01 ∈ Ic and h02 ∈ Il we have h0 = h01] h02. Let

σ0
1 = (pc0, θ0, b0, h

0
1,CPUid) ∧ σ0

2 = (pc′0, θ0, b0, h
0
2,CPUid),

where pc′0(t) = vtmgc for all t ∈ CPUid. The computations η and ξ we construct start
from configurations σ0

1 and σ0
2 . Our construction first considers every finite prefix τ1 of

τ and builds client-local and library-local computations for τ1. Then we construct the
desired computations η and ξ as the limits of these sequences (our construction is such
that this limit exists). The following claim lies at the core of our construction:

Consider a finite prefix of τ :

σ0 λ1−→∗C(L) σ,

where σ 6= >, and configurations σ1, σ2 ∈ Config−{>} such that σ1◦σ2 = σ,

σ0
1

client(λ1)−−−−−−→∗CM (·) σ1 ∧ σ0
2

lib(λ1)−−−−→∗MGC(L) σ2,

and no CPU is at the program position from {(vmend,) | m ∈ M} in σ1. If for
some σ′ ∈ Config − {>}

σ
λ−→C(L) σ

′,

then for some σ′1, σ
′
2 ∈ Config − {>} we have σ′ = σ′1 ◦ σ′2 and

σ0
1

client(λ1λ)−−−−−−→∗CM (·) σ
′
1 ∧ σ0

2

lib(λ1λ)−−−−−→∗MGC(L) σ
′
2,

where no CPU is at the program position from {(vmend,) | m ∈ M} in σ′1.
Also, if

σ
λ−→C(L) >,

then
σ0
1

client(λ1λ)−−−−−−→∗CM (·) > ∨ σ0
2

lib(λ1λ)−−−−−→∗MGC(L) >.
To prove the claim, we assume λ1, λ, σ, σ1, σ2, σ′ satisfying the above assumptions.

We consider several cases, depending on the rule of the operational semantics used to
derive σ′.

– A client transition using LOCAL, where λ = ε. In this case, for some t, v, c, v′,
pc, pc1, pc2, r, r′, r′′, θ, θ1, θ2, b, b1, b2, h, h1, h2, K, K1 and K2, we have
(v, c, v′) ∈ T , t ∈ K, c ∈ Local, r′ ∈ fc(r), b(t), b1(t), b2(t), pc(t), pc1(t),
pc2(t), θ(t), θ1(t), θ2(t) are undefined and

σ = (pc[t : v], θ[t : r], b, h,K) ∧
σ′ = (pc[t : v′], θ[t : r′], b, h,K) ∧
σ1 = (pc1[t : v], θ1[t : r], b1, h1,K1) ∧
σ2 = (pc2[t : v

t
mgc], θ2[t : r

′′], b2, h2,K2) ∧
pc1 ◦ pc2 = pc ∧ θ1 ◦pc θ2 = θ ∧ b1 ◦pc b2 = b ∧ h1] h2 = h ∧
K = K1 ◦K2.

Let
σ′1 = (pc1[t : v

′], θ[t : r′], b1, h1,K1)

and σ′2 = σ2. Then σ′ = σ′1 ◦ σ′2 and σ1
λ−→CM (·) σ

′
1.

– A client transition using WRITE, where λ = (t,write(x, u)). In this case, for some
v, c, v′, pc, pc1, pc2, r, r′, θ, θ1, θ2, α, α1, α2, b, b1, b2, h, h1, h2, K, K1 and K2,
we have (v, c, v′) ∈ T , t ∈ K, c ∈ Write, x ∈ dom(h), (x, u) ∈ fc(r), b(t), b1(t),
b2(t), pc(t), pc1(t), pc2(t), θ(t), θ1(t), θ2(t) are undefined and

σ = (pc[t : v], θ[t : r], b[t : α], h,K) ∧
σ′ = (pc[t : v′], θ[t : r], b[t : (x, u)α], h,K) ∧
σ1 = (pc1[t : v], θ1[t : r], b1[t : α1], h1,K1) ∧
σ2 = (pc2[t : v

t
mgc], θ2[t : r

′], b2[t : α2], h2,K2) ∧
pc1 ◦ pc2 = pc ∧ θ1 ◦pc θ2 = θ ∧ b1 ◦pc b2 = b ∧ h1] h2 = h ∧
α1 ◦v α2 = α ∧ K1 ◦K2 = K.

Since CM (·) is safe, we have x ∈ dom(h1). Let

σ′1 = (pc1[t : v
′], θ[t : r], b1[t : (x, u)α1], h1,K1)

and σ′2 = σ2. Then σ′ = σ′1 ◦ σ′2 and σ1
λ−→CM (·) σ

′
1.

– A client transition using LOCK, where λ = (t, lock). Then for some v, v′, pc, pc1,
pc2, θ, θ1, θ2, α, α1, α2, b, b1, b2, h, h1 and h2, we have (v, lock, v′) ∈ T b(t),
b1(t), b2(t), pc(t), pc1(t), pc2(t) are undefined and

σ = (pc[t : v], θ, b[t : α], h,CPUid) ∧
σ′ = (pc[t : v′], θ, b[t : lockα], h, {t}) ∧
σ1 = (pc1[t : v], θ1, b1[t : α1], h1,CPUid) ∧
σ2 = (pc2[t : v

t
mgc], θ2, b2[t : α2], h2,CPUid) ∧

pc1 ◦ pc2 = pc ∧ θ1 ◦pc[t:v] θ2 = θ ∧ b1 ◦pc b2 = b ∧ h1] h2 = h ∧
α1 ◦v α2 = α.

Let
σ′1 = (pc1[t : v

′], θ1, b1[t : lockα1], h1, {t})

and σ′2 = σ2. Then σ′ = σ′1 ◦ σ′2 and σ1
λ−→CM (·) σ

′
1.

– A client transition using UNLOCK, where λ = (t, unlock). Then for some v, v′,
pc, pc1, pc2, θ, θ1, θ2, α, α1, α2, b, b1, b2, h, h1, h2, K1 and K2, we have
(v, unlock, v′) ∈ T , b(t), b1(t), b2(t), pc(t), pc1(t), pc2(t) are undefined and

σ = (pc[t : v], θ, b[t : (x1, u1) . . . (xl, ul) lockα], h, {t}) ∧
σ′ = (pc[t : v′], θ, b[t : 〈(x1, u1) . . . (xl, ul)〉α], h,CPUid) ∧
σ1 = (pc1[t : v], θ1, b1[t : (x1, u1) . . . (xl, ul) lockα1], h1,K1) ∧
σ2 = (pc2[t : v

t
mgc], θ2, b2[t : α2], h2,K2) ∧

pc1 ◦ pc2 = pc ∧ θ1 ◦pc[t:v] θ2 = θ ∧ b1 ◦pc b2 = b ∧ h1] h2 = h ∧
α1 ◦v α2 = α ∧ K1 ◦K2 = {t}.

The last equality implies that K1 = {t} and K2 = CPUid, or K1 = CPUid and
K2 = {t}. Only the former holds. This is because, in our operational semantics, if

a CPU has a lock marker in its store buffer, then it is the only active CPU. In the
case here, the lock marker is in the store buffer of t in the client-local computation,
so K1 = {t}. Let

σ′1 = (pc1[t : v
′], θ1, b1[t : 〈(x1, u1) . . . (xl, ul)〉α1], h1,CPUid)

and σ′2 = σ2. Then σ′ = σ′1 ◦ σ′2 and σ1
λ−→CM (·) σ

′
1.

– A client transition using READ, where λ = (t, read(x, u)). In this case, for some
v, c, v′, pc, pc1, pc2, r, r′, θ, θ1, θ2, α, α1, α2, b, b1, b2, h, h1, h2, K, K1 and K2,
we have (v, c, v′) ∈ T , t ∈ K, c ∈ Read, x ∈ fc(r), u = lookup(α, h, x) 6= >,
b(t), b1(t), b2(t), pc(t), pc1(t), pc2(t), θ(t), θ1(t), θ2(t) are undefined and

σ = (pc[t : v], θ[t : r], b[t : α], h,K) ∧
σ′ = (pc[t : v′], θ[t : r[r1 : u]], b[t : α], h,K) ∧
σ1 = (pc1[t : v], θ1[t : r], b1[t : α1], h1,K1) ∧
σ2 = (pc2[t : v

t
mgc], θ2[t : r

′], b2[t : α2], h2,K2) ∧
pc1 ◦ pc2 = pc ∧ θ1 ◦pc θ2 = θ ∧ b1 ◦pc b2 = b ∧ h1] h2 = h ∧
α1 ◦v α2 = α ∧ K1 ◦K2 = K.

Since CM (·) is safe, lookup(α1, h1, x) 6= >. We now show that

lookup(α1, h1, x) = lookup(α, h, x) = u.

If α does not contain entries for x, then neither does α1, so

lookup(α, h, x) = h(x) = h1(x) = lookup(α1, h1, x).

Assume now that α contains entries for x, but the newest such entry is not in α1.
Then this entry was written by the library code. Note that in any reachable con-
figuration in our semantics, a store buffer contains only write requests for cells
in the domain of the current heap. Thus, the address x belongs to the library part
of the heap throughout the computation. But then h1(x) is undefined and α can-
not contain an entry for x, so lookup(α1, h1, x) = >. The resulting contradiction
shows that the newest entry for x in α is also the newest such entry in α1 and, thus,
u = lookup(α1, h1, x). Let

σ′1 = (pc1[t : v
′], θ1[t : r[r1 : u]], b1[t : α1], h1,K1)

and σ′2 = σ2. Then σ′ = σ′1 ◦ σ′2 and σ1
λ−→CM (·) σ

′
1.

– A library transition using LOCAL, WRITE, LOCK, UNLOCK, READ. These cases
are handled similarly to previous ones.

– A transition using FLUSH, where λ = (t, flush(xl, ul)) . . . (t, flush(x1, u1)) flushes
a client entry, i.e., either the corresponding store buffer contains a call or ret marker
and the entry is a client one, or the buffer does not contain the markers, but the
program position for the corresponding CPU is inside the client code. Then for
some pc, pc1, pc2, ρ, ρ1, ρ2, θ, θ1, θ2, α, α1, α2, b, b1, b2, h, h1, h2, K, K1 and

K2, we have t ∈ K, b(t), b1(t), b2(t), pc(t), pc1(t), pc2(t) are undefined and

σ = (pc[t : ρ], θ, b[t : α 〈(x1, u1) . . . (xl, ul)〉], h,K) ∧
σ′ = (pc[t : ρ], θ, b[t : α], h[xl : ul] . . . [x1 : u1],K) ∧
σ1 = (pc1[t : ρ1], θ1, b1[t : α1 〈(x1, u1) . . . (xl, ul)〉], h1,K1) ∧
σ2 = (pc2[t : ρ2], θ2, b2[t : α2], h2,K2) ∧
pc1 ◦ pc2 = pc ∧ ρ1 ◦ ρ2 = ρ ∧ θ1 ◦pc[t:ρ] θ2 = θ ∧ b1 ◦pc b2 = b ∧
h1] h2 = h ∧ α1 ◦ρ α2 = α ∧ K1 ◦K2 = K.

Let
σ′1 = (pc1[t : ρ1], θ1, b1[t : α1], h1[xl : ul] . . . [x1 : u1],K1)

and σ′2 = σ2. There exist previous WRITE transitions in the client-local compu-
tation that put the write requests for x1, . . . , xl into the store buffer. Since CM (·)
is safe and the domain of the heap does not change during a computation, we get
x1, . . . , xl ∈ dom(h1). Then σ′ = σ′1 ◦ σ′2 and σ1

λ−→CM (·) σ
′
1.

– A transition using FLUSH, where λ = (t, flush(xl, ul)) . . . (t, flush(x1, u1)) flushes
a library entry. This case is handled similarly to the previous one.

– A transition using FLUSH-MARKER, where λ = (t, flush(β)) and β ∈ {call, ret}.
Then for some pc, pc1, pc2, ρ, ρ1, ρ2, θ, θ1, θ2, α, α1, α2, b, b1, b2, h, h1, h2, K,
K1 and K2, we have t ∈ K, b(t), b1(t), b2(t), pc(t), pc1(t), pc2(t) are undefined
and

σ = (pc[t : ρ], θ, b[t : αβ], h,K) ∧
σ′ = (pc[t : ρ], θ, b[t : α], h,K) ∧
σ1 = (pc1[t : ρ1], θ1, b1[t : α1β], h1,K1) ∧
σ2 = (pc2[t : ρ2], θ2, b2[t : α2β], h2,K2) ∧
pc1 ◦ pc2 = pc ∧ θ1 ◦pc[t:ρ] θ2 = θ ∧ b1 ◦pc b2 = b ∧ h1] h2 = h ∧
α1β ◦ρ α2β = αβ ∧ ρ1 ◦ ρ2 = ρ ∧ K1 ◦K2 = K.

Let
σ′1 = (pc1[t : ρ1], θ1, b1[t : α1], h1,K1) ∧
σ′2 = (pc2[t : ρ2], θ2, b2[t : α2], h2,K2).

Assume that α does not contain call or ret markers. Our semantics is such that,
in this case α1 6= ε only if ρ1 ∈ N and α2 6= ε only if ρ2 ∈ N × N . Hence,
α1◦ρα2 = α, so that σ′ = σ′1◦σ′2. Besides, σ1

λ−→CM (·) σ
′
1 and σ2

λ−→MGC(L) σ
′
2.

– A client transition using XLOCK, where λ = (t, xlock). Then for some v, v′, pc,
pc1, pc2, θ, θ1, θ2, b, b1, b2, h, h1 and h2, we have (v, xlock, v′) ∈ T , b(t), b1(t),
b2(t), pc(t), pc1(t), pc2(t) are undefined and

σ = (pc[t : v], θ, b[t : ε], h,CPUid) ∧
σ′ = (pc[t : v′], θ, b[t : ε], h, {t}) ∧
σ1 = (pc1[t : v], θ1, b1[t : ε], h1,CPUid) ∧
σ2 = (pc2[t : v

t
mgc], θ2, b2[t : ε], h2,CPUid) ∧

pc1 ◦ pc2 = pc ∧ θ1 ◦pc[t:v] θ2 = θ ∧ b1 ◦pc b2 = b ∧ h1] h2 = h.

Let
σ′1 = (pc1[t : v

′], θ1, b1[t : ε], h1, {t})

and σ′2 = σ2. Then σ′ = σ′1 ◦ σ′2 and σ1
λ−→CM (·) σ

′
1.

– A client transition using XUNLOCK. This case is handled analogously to the cases
of UNLOCK and FLUSH.

– A library transition using XLOCK or XUNLOCK. These cases are handled analo-
gously to the previous ones.

– A transition using CALL, where λ = (t, call m(r)). Then for some v, v′, pc, pc1,
pc2, r′, θ, θ1, θ2, α, α1, α2, b, b1, b2, h, h1 and h2, we have (v,m, v′) ∈ T , b(t),
b1(t), b2(t), pc(t), pc1(t), pc2(t), θ(t), θ1(t), θ2(t) are undefined and

σ = (pc[t : v], θ[t : r], b[t : α], h,CPUid) ∧
σ′ = (pc[t : (startm, v

′)], θ[t : r], b[t : callα], h,CPUid) ∧
σ1 = (pc1[t : v], θ1[t : r], b1[t : α1], h1,CPUid) ∧
σ2 = (pc2[t : v

t
mgc], θ2[t : r

′], b2[t : α2], h2,CPUid) ∧
pc1 ◦ pc2 = pc ∧ θ1 ◦pc θ2 = θ ∧ b1 ◦pc b2 = b ∧ h1] h2 = h ∧
α1 ◦v α2 = α.

Let

σ′1 = (pc1[t : (v
m
start, v

′)], θ1[t : r], b1[t : callα1], h1,CPUid) ∧
σ′2 = (pc2[t : v

t
mgc], θ2[t : r], b2[t : α2], h2,CPUid) ∧

σ′′2 = (pc2[t : (startm, v
t
mgc)], θ2[t : r], b2[t : callα2], h2,CPUid).

Then σ′ = σ′1 ◦ σ′′2 , σ1
λ−→CM (·) σ

′
1 and σ2

ε−→MGC(L) σ
′
2

λ−→MGC(L) σ
′′
2 , where

the first transition of MGC(L) results from executing havoc in the most general
client.

– A client transition using RET. This case is similar to the previous one.
– A transition using WRITE-> or READ->. These two rules are applicable when the

cell being written to or read from is not in the domain of the heap in σ. In this case,
the cell is also not in the domain of the client-local heap in σ1 or the library-local
heap in σ2. Thus, it is easy to show that either σ1

ε−→CM (·) > or σ2
ε−→MGC(L) >,

depending on whether the faulting transition in τ is executed by the client or the
library.

ut

A.3 Proof of Lemma 7

Below we sometimes write vπ instead of v to make the bijection π used to establish
the relation between histories explicit. Also, we say that the machine is locked in a
configuration σ, if σ = (, , , , {t}) for some t.

In the following, we use the fact that, according to our semantics, the machine can-
not be locked in a configuration from which it executes a transition producing a history
action. This is because we prohibit method calls within atomic blocks and flushes within
lock..unlock blocks, and because xlock..xunlock blocks start executing with an empty
store buffer.

Consider a computation τ ′ ∈ JMGC(L)KIl. Assume histories H and H ′ such that
history(τ ′) = H ′ and H v H ′. We need to prove that there exists a computation
τ ∈ JMGC(L)KIl such that history(τ) = H . To this end, we define a (possibly infinite)

sequence of steps that transforms τ ′ into τ . The computation τ is constructed using
a sequence of computations ξk ∈ JMGC(L)KIl, defined for every finite prefix Hk of
H of length k. Every computation ξk is such that for some prefix ηk of ξk we have
history(ηk) = Hk and H vπ history(ξk), where π is an identity on actions from Hk,
i.e., the first k actions of H . Additionally, for all i, j such that i < j, ηi is a prefix of
ηj . Hence, the sequence of computations ηk has a limit τ such that for every k, ηk is a
prefix of τ and history(τ) = H . Then, as we show, τ ∈ JMGC(L)KIl.

To construct the sequence, we let ξ0 = τ and let the prefix η0 contain all transitions
preceding the first history action in ξ0. The computation ξk+1 is constructed from the
computation ξk by applying the following lemma for τ1 = ηk, τ1τ2 = ξk, H ′1 = Hk

and H ′1ψH
′
2 = H .

Lemma 10. Assume that MGC(L) is safe for Il. Consider a history H ′1ψH
′
2 and a

computation τ1τ2 ∈ JMGC(L)KIl such that

– the machine is not locked in the final configuration of τ1; and
– the following two properties hold:

history(τ1) = H ′1, (3)
H ′1ψH

′
2 vπ history(τ1τ2), (4)

where π is an identity on actions from H ′1.

Then there exist computations τ ′2 and τ ′′2 such that

– τ1τ
′
2τ
′′
2 ∈ JMGC(L)KIl;

– the machine is not locked in the final configuration of τ1τ ′2; and
– the following two properties hold:

history(τ1τ
′
2) = H ′1ψ, (5)

H ′1ψH
′
2 vπ′ history(τ1τ

′
2τ
′′
2) (6)

where π′ is an identity on actions from H ′1ψ.

To prove Lemma 10, we convert τ1τ2 into τ1τ ′2τ
′′
2 by applying a finite number of

transformations that preserve its properties of interest, described by the lemmas below.

Lemma 11. Assume

σ0
λ0−→∗MGC(L) σ1

λ1−→∗MGC(L) σ2
λ2−→MGC(L) σ3,

where

– σ0 ∈ Σ0(Il);
– σ3 6= >;
– the machine is not locked in σ1;
– the transition λ2 is obtained using LOCAL, CALL or FLUSH-MARKER (the case

of flushing call) for a CPU t;
– if the transition λ2 is obtained using LOCAL or CALL, then CPU t executes only

FLUSH transitions in the part λ1 of the computation; and

– if the transition λ2 is obtained using FLUSH-MARKER flushing call, then CPU t
does not execute CALL, RET, FLUSH or FLUSH-MARKER transitions in the part
λ1 of the computation.

Then there is a configuration σ′2 such that the machine is not locked in σ′2 and

σ0
λ0−→∗MGC(L) σ1

λ2−→MGC(L) σ
′
2
λ1−→∗MGC(L) σ3.

Lemma 12. Assume

σ0
λ0−→∗MGC(L) σ1

λ1−→MGC(L) σ2
λ2−→∗MGC(L) σ3,

where

– σ0 ∈ Σ0(Il);
– σ3 6= >;
– the machine is not locked in σ3;
– the transition λ1 is obtained using LOCAL, RET or FLUSH-MARKER (the case of

flushing ret) for a CPU t;
– if the transition λ1 is obtained using LOCAL or RET, then CPU t executes only

FLUSH transitions in the part λ2 of the computation; and
– if the first transition λ1 is obtained using FLUSH-MARKER flushing ret, then CPU
t does not execute CALL, RET, FLUSH or FLUSH-MARKER transitions in the part
λ2 of the computation.

Then there is a configuration σ′2 such that the machine is not locked in σ′2 and

σ0
λ0−→∗MGC(L) σ1

λ2−→∗MGC(L) σ
′
2
λ1−→MGC(L) σ3.

Proof sketch for Lemmas 11 and 12. The proofs are mostly straightforward, with
special care needed only when moving λ2 or λ1 over transitions affecting store buffers.
The treatment of such cases relies on the fact that store buffers are FIFO. Thus, we can
move a CALL transition earlier than a FLUSH transition by the same CPU in Lemma 11,
and a RET transition later than FLUSH by the same CPU in Lemma 12. It also allows
us to move a FLUSH-MARKER transition earlier or later than a WRITE transition by
the same CPU in the two lemmas. In Lemma 11, we can also move a FLUSH-MARKER
transition earlier than an XLOCK..XUNLOCK block of transitions by the same CPU.
However, in Lemma 12, we cannot move a transition using FLUSH-MARKER flushing
ret later than XLOCK or XUNLOCK transitions by the same CPU, because the latter
include a memory barrier. We now show that in the case when λ1 is obtained using
FLUSH-MARKER flushing ret, a transition using XLOCK by CPU t cannot be present
in the part λ2 of the computation in Lemma 12 (since λ2 is a history action, the machine
is unlocked in σ2 and thus a transition by t using XUNLOCK cannot be present in the
part λ2 either).

Assume the contrary. The XLOCK transition is executed by the library code, hence,
in the computation there is a CALL transition preceding it such that there is no RET

transition between the CALL and the XLOCK transition. Since the part λ2 of the com-
putation does not contain CALL transitions by t, the CALL transition has to be in the
part λ0. Since the part λ2 does not contain FLUSH or FLUSH-MARKER transitions, and
the store buffer of t before the XLOCK transition has to be empty, the store buffer of t in
σ1 contains only a ret marker. Since there are no RET transitions between the CALL and
the XLOCK transitions, in the configuration after the CALL transition, the store buffer
of t already contains the ret marker, i.e., is of the form callα1 retα2. But this means
that the buffer of t in σ1 cannot contain only ret: if the ret marker has not been flushed
at the end of λ0, then neither has been the call marker. The contradiction shows that λ2
cannot contain XLOCK transitions. ut

Proof of Lemma 10. Let τ ′3 be the part of the computation τ2 preceding the transition
producing ψ, and τ ′4 be the part following it. Let CPU t be the one that executes the tran-
sition producing ψ. We first note that CPU t does not execute any transitions producing
history actions in τ ′3. This is because such actions would precede ψ in history(τ1τ2), but
by (3) and (4) would have to follow it in H ′1ψH

′
2, contradicting the fact that lineariz-

ability preserves the order of actions by the same CPU. We now have several cases,
depending on the type of ψ.

– ψ = (t, call). By the definition of MGC(L), CPU t does not execute any tran-
sitions in τ ′3 except FLUSH transitions and havoc transitions in the most general
client. By Lemma 11, we can move the havoc transitions and the transition pro-
ducing ψ to the beginning of τ ′3, processing them left to right. Let τ ′2 consist of
the moved havoc transitions and the transition producing ψ, and τ ′′2 consist of the
transitions following them. Then, the machine is unlocked in the final configuration
of τ ′2. Besides, any (, ret) or (, flush(ret)) action preceding ψ in H ′1ψH

′
2 has to

be in H ′1. Since π is an identity on actions from H ′1, this return action is in τ1 and,
hence, precedes ψ in the resulting computation. Thus, moving ψ to the left does not
violate ordering constraints required by linearizability, and the computation satis-
fies (5) and (6).

– ψ = (t, flush(call)). The client in MGC(L) does not perform write commands,
so, as we have observed before, store buffers in its computations do not contain
entries between a call marker and an older ret marker. It follows that τ ′3 does not
contain any CALL, RET, FLUSH or FLUSH-MARKER transitions by t. Hence, by
Lemma 11, we can move the transition producing ψ to the beginning of τ ′3. Let τ ′2
be the transition of the resulting computation producing ψ, and τ ′′2 consist of the
transitions following it. Then the machine is unlocked in the final configuration of
τ ′2 and the computation satisfies (5) and (6).

– ψ = (t, ret) or ψ = (t, flush(ret)). Then τ ′3 cannot contain an action ϕ =
(, call) or ϕ = (, flush(call)), because in this case ϕ would precede ψ in
history(τ1τ2). However, ϕ is in H ′2 and, thus, ψ precedes ϕ in H ′1ψH

′
2, so this

would contradict (4). Hence, there are no such actions in τ ′3. Moreover, by the
definition of MGC(L), for any transition producing an action ϕ = (t′, ret) in
τ ′3 there are no transitions by CPU t′ in τ ′3 following the transition ϕ other than
FLUSH, FLUSH-MARKER flushing ret or havoc transitions. Since store buffers
in computations of MGC(L) do not contain entries between a call marker and an
older ret marker, for any transition producing ϕ = (t′, flush(ret)) in τ ′3 there are

no transitions by CPU t′ in τ ′3 following ϕ using FLUSH or FLUSH-MARKER.
By Lemma 12, we can move all above-mentioned transitions producing actions
(t′, ret) or (t′, flush(ret)) and havoc transitions in τ ′3 to the position immediately
preceding the transition producing ψ, processing them right to left. After this, we
can them move them to the position immediately following ψ. Let τ1τ ′2 be the prefix
of the resulting computation up to and including ψ, and τ ′′2 consist of the transitions
following it. Then the machine is unlocked in the final configuration of τ ′2. Be-
sides, since τ ′3 does not contain actions of the form (, call) or (, flush(call)), any
(, ret) or (, flush(ret)) action preceding another (, call) or (, flush(call)) ac-
tion in the original computation will also precede it in the transformed one. Hence,
the resulting computation satisfies (5) and (6).

ut

A.4 Proof of Lemma 8

Let M = sig(L). Assume η′ ∈ JCM (·)KIc and ξ′ ∈ JMGC(L)KIl such that
history(η′) = history(ξ′). Let η be the shortest prefix of η′ such that client(η) =
client(η′). Similarly, define ξ to be the shortest prefix of ξ′ such that history(ξ) =
history(ξ′). Then, every non-empty suffix of η or ξ contains transitions other than
havoc transitions in method stubs or the threads of the most general client. Further-
more, no non-empty suffix of ξ continues with the lock held by some CPU and never
released. Formally, this means that every non-empty suffix of ξ contains some config-
uration whose last component is CPUid, so that all CPUs can be scheduled. Finally,
if ξ is infinite, so is history(ξ), and if ξ is finite, its last transition is in HAct and
appears as the last element in history(ξ). We now construct the desired computation
τ ∈ JC(L)K(Ic ◦ Il) from these preprocessed computations η and ξ. The properties of
η and ξ noted above are used during the construction.

Let σ1
0 and σ2

0 be the initial configurations of the computations η and ξ; then σ1
0 ◦σ2

0

is defined by the assumption about initial heaps of clients and libraries in Section 3. We
first build a series of finite computations

τ0, τ1, τ2, . . .

such that for i < j, τi is a prefix of τj . Thus, the series has the limit, which is the desired
computation τ .

The first element in the series is the empty computation consisting of the initial
configuration σ1

0 ◦σ2
0 only. For the (i+1)-st element with i > 0, we assume that the i-th

element τi has been constructed and satisfies the following property:

For some finite prefixes ηi of η and ξi of ξ of the form

σ1
0

client(λi)−−−−−→∗CM (·) σ
1
i ∧ σ2

0

lib(λi)−−−−→∗MGC(L) σ
2
i ,

we have

history(ηi) = history(ξi) ∧ client(τi) = client(ηi) ∧ lib(τi) = lib(ξi).

Furthermore, σ1
i ◦ σ2

i is defined and τi is:

σ1
0 ◦ σ2

0
λi−→∗C(L) σ

1
i ◦ σ2

i .

We now define the (i+1)-th element τi+1 that maintains this property. As we explained
above, the computation τi+1 is an extension of τi by one or more steps.

Let the following be the next transitions in the computations η and ξ (we consider
the case when one of the computations has no next transition later):

σ1
i

ε−→∗CM (·) σ1
λ′

−→CM (·) σ
′
1 ∧ σ2

i
ε−→∗MGC(L) σ2

λ′′

−→MGC(L) σ
′
2, (7)

where σ1, σ2, σ′1, σ
′
2 ∈ Config − {>}, the computation transforming σ1

i into σ1 is the
maximal prefix of the first computation consisting only of havoc transitions in method
stubs, and the computation transforming σ2

i into σ2 is the maximal prefix of the second
computation consisting only of havoc transitions in the client code of MGC(L). The
non-havoc transitions exist in both cases, because of the preprocessing step described
above. It is easy to show that σ1

i ◦ σ2
i = σ1 ◦ σ2, so that

σ1
0 ◦ σ2

0
λi−→∗C(L) σ1 ◦ σ2.

To construct τi+1, we make a case-split on the rules of the operational semantics used
to obtain the non-havoc transitions λ′ and λ′′. We use one of these two transitions
to extend τi to τi+1. The construction described below defines τi+1 with a degree of
non-determinism: the computation of C(L) can sometimes be extended either using the
transition from CM (·) or the one from MGC(L). All possible results produce a valid
computation of C(L), and, as we show below, client(τ) = client(η).

Below we use symbols K1 and K2 to denote the last components of σ1 and σ2,
respectively.

– CALL in η and CALL in ξ such that λ′ = λ′′ = (t, call m(r)). Then for some v,
v′, pc1, pc2, θ1, θ2, b1, b2, α1, α2, h1 and h2, we have (v,m, v′) ∈ T , b1(t), b2(t),
pc1(t), pc2(t), θ1(t), θ2(t) are undefined and

σ1 = (pc1[t : v], θ1[t : r], b1[t : α1], h1,CPUid) ∧
σ2 = (pc2[t : v

t
mgc], θ2[t : r], b2[t : α2], h2,CPUid) ∧

σ′1 = (pc1[t : (v
m
start, v

′)], θ1[t : r], b1[t : callα1], h1,CPUid) ∧
σ′2 = (pc2[t : (startm, v

t
mgc)], θ2[t : r], b2[t : callα2], h2,CPUid) ∧

σ1 ◦ σ2 = ((pc1 ◦ pc2)[t : v], (θ1 ◦(pc1◦pc2)
θ2)[t : r],

(b1 ◦(pc1◦pc2)
b2)[t : α1 ◦v α2], h1] h2,CPUid).

Hence,

σ′1 ◦ σ′2 = ((pc1 ◦ pc2)[t : (startm, v
′)], (θ1 ◦(pc1◦pc2)

θ2)[t : r],

(b1 ◦(pc1◦pc2)
b2)[t : call (α1 ◦v α2)], h1] h2,CPUid).

Then, σ1 ◦ σ2
λ′

−→C(L) σ
′
1 ◦ σ′2. Thus, in this case the desired τi+1 is obtained by

extending τi with this transition.

– RET in η and RET in ξ such that λ′ = λ′′. This case is handled similarly to the
previous one.

– The transition in ξ is generated by LOCAL, LOCK, UNLOCK, WRITE or READ,
and we have K2 ⊆ K1. Note that by the definition of ◦ on K, at least one of
K1 and K2 is CPUid. Our condition thus ensures that K1 = CPUid. We consider
only the case of the LOCAL rule; the others are analogous. In this case for some
k ∈ {start, end}, v, v′, v1, θ1, θ2, r, r′, r′′, pc1, pc2, b1, b2, h1 and h2, we have
(v, c, v′) ∈ T , c ∈ Local, r′ ∈ fc(r), pc1(t), pc2(t), θ1(t), θ2(t) are undefined and

σ1 = (pc1[t : (v
m
k , v1)], θ1[t : r

′′], b1, h1,CPUid) ∧
σ2 = (pc2[t : (v, v

t
mgc)], θ2[t : r], b2, h2,K2) ∧

σ′2 = (pc2[t : (v
′, vtmgc)], θ2[t : r

′], b2, h2,K2) ∧
σ1 ◦ σ2 = ((pc1 ◦ pc2)[t : (v, v1)], (θ1 ◦(pc1◦pc2)

θ2)[t : r],
b1 ◦(pc1◦pc2)[t:(v,v1)]

b2, h1] h2,K2).

Hence,

σ1 ◦ σ′2 = ((pc1 ◦ pc2)[t : (v
′, v1)], (θ1 ◦(pc1◦pc2)

θ2)[t : r
′],

b1 ◦(pc1◦pc2)[t:(v
′,v1)] b2, h1] h2,K2).

Then, σ1 ◦ σ2
λ′′

−→C(L) σ1 ◦ σ′2. The desired τi+1 is obtained by extending τi with
this transition.

– The transition in η is generated by LOCAL, LOCK, UNLOCK, WRITE or READ, and
we have K1 ⊆ K2. This case is similar to the previous one.

– The transition in ξ is generated by FLUSH, and we have K2 ⊆ K1. In this case, by
the definition of ◦, K1 should be CPUid. Let λ′′ = (t, flush(β)) for β 6∈ {call, ret}.
Let α1 and α2 〈β〉 be the store buffers of t in σ1 and σ2, respectively. We show
that the FLUSH rule is enabled in σ1 ◦ σ2. Assume this is not the case. Then the
store buffer of t in σ1 ◦ σ2 is α1 ◦ρ (α2 〈β〉) = α′ 〈β〉α′′, where α′′ 6= ε and ρ
is the program position of the CPU executing the FLUSH transition in σ2. But this
contradicts the definition of ◦: for α1 ◦ρ (α2 〈β〉) to be defined, the library buffer
would have to contain a ret marker to separate the library entry β and client entries
in α′′. Then, we can obtain ξi+1 and τi+1 by extending ξi and τi with the FLUSH
transition by the CPU t.

– The transition in η is generated by FLUSH, and we have K1 ⊆ K2. This case is
similar to the previous one.

– The transitions in η and ξ are generated by FLUSH-MARKER flushing the same
marker. Note that in this case, K1 = K2 = CPUid by our operational semantics.
Let α1β and α2β be store buffers of t in σ1 and σ2, respectively, where β is the
marker to be flushed. Then β is the oldest entry in α1β ◦ α2β. Hence, we can
extend τi, ηi and ξi by the FLUSH-MARKER transition.

– The transition in ξ is generated by XLOCK, and we have K2 ⊆ K1. By the def-
inition of ◦, K1 = CPUid in this case. Let t be the CPU executing the XLOCK
transition. Then the store buffer of t in σ2 is empty. Let α1 be the store buffer of t
in σ1, then its store buffer in σ1 ◦ σ2 is also α1. The program position of t in σ2 is
inside the library code; thus, by the definition of ◦ on store buffers, α1 = ε. Hence,

the store buffer of t is empty in σ1 ◦ σ2, and so XLOCK is enabled there. We can
then obtain ξi+1 and τi+1 by extending ξi and τi with the XLOCK transition.

– The transition in η is generated by XLOCK, and we have K1 ⊆ K2. The construc-
tion in this case is analogous to the previous one.

– The transition in ξ is generated by XUNLOCK, and we have K2 ⊆ K1. Let t be the
CPU executing the XUNLOCK transition. Then the store buffer of t in σ2 is of the
form (x1, u1) . . . (xl, ul) lock. The program position of t in σ2 is inside the library
code; thus, by the definition of ◦ on store buffers, the store buffer of t in σ1 has to
be empty. Hence, the buffer of t in σ1 ◦ σ2 is the same as its buffer in σ2, and we
can obtain ξi+1 and τi+1 by extending ξi and τi with the XLOCK transition.

– The transition in η is generated by XUNLOCK, and we have K1 ⊆ K2. This case
is similar to the previous one.

One of the above cases is always applicable. When both K1 and K2 are CPUid, the
uncovered cases are those when both transitions in η and ξ are obtained using CALL,
RET or FLUSH-MARKER and the actions produced are different. However, this case is
impossible, since history(η) = history(ξ) and history(ηi) = history(ξi). When one of
K1 andK2 is not CPUid, our construction covers all the cases: the transition of the local
computation whose current configuration has the machine locked is always enabled in
the corresponding configuration of the global computation.

Consider now the case when only one transition in (7) exists. Due to our preprocess-
ing step, ξ is either empty or ends with a history action. Besides, the above construction
consumes the latter together with the corresponding transition in η. Hence, the only
transition in (7) has to be one from η, and the last configuration in ξ does not have the
machine locked. This implies that the transition in η is enabled in the global configura-
tion, and we can obtain ηi+1 and τi+1 by extending ηi and τi with this transition.

Thus, we have shown how to construct τi for all possible cases, sometimes non-
deterministically. If ξ and η are both finite, our construction consumes both computa-
tions completely. Additionally, the construction consumes HAct transitions from η and
ξ together. Thus, if ξ and η both have infinite histories, then our construction consumes
also both computations. As we argued above, if one trace is shorter than the other one,
then ξ has to be the shorter one. Thus, the only remaining case is when η is infinite and
ξ is finite and either is empty or ends with a history action. Since history transitions in η
and ξ are consumed together, ξ is consumed completely. As we argued above, after this,
all transitions in η are reproducible in the global configuration, so η is consumed com-
pletely as well. Thus, in the limit we will exhaust all transitions from η and ξ, and the
limits of ηi and ξi will be η and ξ. From this fact, it follows that client(τ) = client(η),
as desired. ut

A.5 Proof of Corollary 5

To simplify presentation, in our development we have assumed that any method called
in a program by the client belongs to the library. The proof of Theorem 4 can be simply
generalised to omit this requirement. Namely, we assume a setting where the client is
allowed to have its private methods (as before, nested method calls are disallowed). We
still insert call and ret markers into the store buffer when calling such methods; how-
ever, now we annotate them with the method called. The set of actions stays the same.

Annotating call and ret markers allows us to define generalisations clientM , libM and
historyM of operations on computations defined earlier: the new operations interpret the
given set of methods M as constituting a library. Theorem 4 still holds in this setting:
the effect of non-library calls and returns on the store buffer is analogous to the one of
write commands. We now prove Corollary 5 using this generalisation.

The idea of the proof is simple: to show L v L] we linearize libraries L1, . . . , Lk
one by one using Theorem 4. Let I = I1 ◦ . . . ◦ Ik. The program MGC(L) =
MGC(L1, . . . , Lk) can be viewed as consisting of the library L1 and its client including
the implementations of methods in L2, . . . , Lk. Since L1 v L]1, by Theorem 4, we can
linearize L1, obtaining

clientsig(L1)(JMGC(L1, L2, L3, . . . , Lk)KI) ⊆

clientsig(L1)(JMGC(L]1, L2, L3, . . . , Lk)KI). (8)

The resulting program MGC(L]1, L2, L3, . . . , Lk) can be viewed as consisting of the
library implementing the methods from L]1 and L2 and the client including the methods
from L3, . . . , Lk. Additionally in the program MGC(L]1, L2) we can view L2 as the
library and L]1 as the client. Since L2 v L]2, by Theorem 4, we get

clientsig(L2)(JMGC(L]1, L2)K(I1 ◦ I2)) ⊆ clientsig(L2)(JMGC(L]1, L
]
2)K(I1 ◦ I2)),

which implies

historysig(L1,L2)(JMGC(L]1, L2)K(I1 ◦ I2)) ⊆

historysig(L1,L2)(JMGC(L]1, L
]
2)K(I1 ◦ I2)).

Hence, (L]1, L2) v (L]1, L
]
2), where (L]1, L2) and (L]1, L

]
2) are the compositions of li-

braries L]1 and L2, respectively, L]1 and L]2. Applying Theorem 4 with this linearization
to the program MGC(L]1, L2, L3, . . . , Lk), we obtain

clientsig(L1,L2)(JMGC(L]1, L2, L3, . . . , Lk)KI) ⊆

clientsig(L1,L2)(JMGC(L]1, L
]
2, L3, . . . , Lk)KI). (9)

From (8), we get

clientsig(L1,L2)(JMGC(L1, L2, L3, . . . , Lk)KI) ⊆

clientsig(L1,L2)(JMGC(L]1, L2, L3, . . . , Lk)KI).

From this and (9), we get

clientsig(L1,L2)(JMGC(L1, L2, L3, . . . , Lk)KI) ⊆

clientsig(L1,L2)(JMGC(L]1, L
]
2, L3, . . . , Lk)KI).

word x1 = 0, x2 = 0;

word c = 0;

write(in word d1, in word d2) {

v0: c++;

v1: x1 = d1;

v2: x2 = d2;

v3: c++;

v4:

}

read(out word d1, out word d2) {

word c0;

v5 : c0 = c;

v6 : if (nondet()) goto v9;

v7 : assume(c0 % 2);

v8 : goto v5:

v9 : assume(!(c0 % 2));

v10: d1 = x1;

v11: d2 = x2;

v12: if (nondet()) goto v15;

v13: assume(c != c0);

v14: goto v5:

v15: assume(c == c0);

v16:

}

Fig. 6. Seqlock implementation Lseqlock with code labels

Repeatedly applying Theorem 4 as above to linearize L3, . . . , Lk, we get

clientsig(L1,L2,L3,...,Lk)(JMGC(L1, L2, L3, . . . , Lk)KI) ⊆

clientsig(L1,L2,L3,...,Lk)(JMGC(L]1, L
]
2, L

]
3, . . . , L

]
k)KI),

which implies L v L].

A.6 Proof of Theorem 3

To ease the exposition, Figures 6 and 7 show the concrete and abstract implementations
of a seqlock from Figures 3 and 4 including code labels and with loops and conditionals
translated into non-deterministic branching and assume commands. The result is close
to the CFG representation of programs we defined in Section 2.

We consider the most general clients MGC(Lseqlock) of the concrete and
MGC(L]seqlock) of the abstract libraries, where only one CPU is a writer and all the
others are readers. We assume that in both programs, CPU 0 runs the code of the writer.
Thus, each most general client is described by two kinds of control flow graphs, one
for the writer and another one for readers. Let vtrc and vtra, t ∈ CPUid − {0}, be the
start nodes of the CFGs for readers in MGC(Lseqlock) and MGC(L]seqlock). Also, let vwc

and vwa be the start nodes of the CFGs for writers in these most general clients. Let
I = {[x1 : 0, x2 : 0, c : 0]}. Consider τ ∈ JMGC(Lseqlock)KI , starting from a configu-
ration σ0 = (pc0, θ0, b0, h0,CPUid), such that

(∀t ∈ CPUid− {0}. pc0(t) = vtrc) ∧ pc0(0) = vwc ∧
(∀t ∈ CPUid. b0(t) = ε) ∧ h0 = [x1 : 0, x2 : 0, c : 0].

word x1 = 0, x2 = 0;

word c;

write(in word d1, in word d2) {

w0: lock; x1 = d1; x2 = d2; unlock;

w1:

}

read(out word d1, out word d2) {

w2: lock; d1 = x1; d2 = x2; unlock;

w3:

}

Fig. 7. Seqlock specification L]seqlock with code labels

We construct a corresponding execution τ ′ ∈ JMGC(L]seqlock)KI starting from σ′0 =
(pc′0, θ0, b0, h0,CPUid), where

(∀t ∈ CPUid− {0}. pc′0(t) = vtra) ∧ pc′0(0) = vwa.

This is done by induction on the length of τ : for every transition in τ , we construct
zero or more transitions of MGC(L]seqlock). During this construction, we maintain an
invariant ∼ ⊆ Config1 × (CPUid → B) × Config2 relating the states of the two li-
braries. Here Config1 and Config2 are sets of configurations arising in computations
of MGC(Lseqlock) and MGC(L]seqlock). The extra parameter p ∈ CPUid → B is a
prophecy variable, stating a fact about the future computation of MGC(Lseqlock): if in
MGC(Lseqlock) CPU t is executing the read method, then p(t) is true when the method
is performing the last iteration of the outer loop of read.

We define the relation ∼ as follows:

(pc1, θ1, b1, h1,K1) ∼p (pc2, θ2, b2, h2,K2)⇔
pc1 ∼p pc2 ∧ θ1 ∼p,pc1,pc2,h1

θ2 ∧ b1 ∼θ1(0),pc1(0),h1
b2 ∧ h1 ∼ h2 ∧K1 ∼ K2,

where the relations on parts of configurations are defined below.
We let pc1 ∼p pc2 ⇔ ∀t ∈ CPUid. pc1(t) ∼t,p(t) pc2(t), where for all t ∈

CPUid− {0} we have vtrc ∼t,p(t) vtra, vwc ∼t,p(t) vwa and

(v, vwc) ∼0,p(t) (w0, vwa,), if v ∈ {v0, . . . , v3};
(v4, vwc) ∼0,p(t) (w1, vwa);
(v, vtrc) ∼t,p(t) (w2, vtra), if v ∈ {v5, . . . , v11, v13, v14};
(v, vtrc) ∼t,p(t) (w3, vtra), if v ∈ {v15, v16};
(v12, vtrc) ∼t,p(t) (w2, vtra), if ¬p(t);
(v12, vtrc) ∼t,p(t) (w3, vtra), if p(t).

To define ∼ on store buffers, we first define the following function

g : RegBank×Pos×Heap×((Loc×Val)+∪{call, ret})∗ ⇀ ((Loc×Val)+∪{call, ret})∗

g(r, ρ, h1, ε) = ε,
h1(c) is even, ρ ∈ {(v4, vwc), (v0, vwc), vwc}

g(r, ρ, h1, ε) = ε,
h1(c) is odd, ρ ∈ {(v1, vwc), (v2, vwc), (v3, vwc)},

(ρ ∈ {(v2, vwc), (v3, vwc)} ⇒ h1(x1) = r(d1)), ρ = (v3, vwc)⇒ h2(x2) = r(d2)
g(r, ρ, h1, callα) = call g(r, ρ, h1, α),
g(r, ρ, h1, retα) = ret g(r, ρ, h1, α),

g(r, ρ, h1, (c, c)α) = g(r, ρ, h1, α),
c is odd, h1(c) = c− 1, ρ = (v1, vwc)

g(r, ρ, h1, (x1, r(d1))(c, c)α) = g(r, ρ, h1, α),
c is odd, h1(c) = c− 1, ρ = (v2, vwc)

g(r, ρ, h1, (x2, r(d2))(x1, r(d1))(c, c)α) = g(r, ρ, h1, α),
c is odd, h1(c) = c− 1, ρ = (v3, vwc)

g(r, ρ, h1, (c, c+ 1)(x2, x2)(x1, x1)(c, c)α) = 〈(x2, x2)(x1, x1)〉 g(r, ρ, h1, α), c is odd
g(r, ρ, h1, (c, c

′)(x2, x2)(x1, x1)) = 〈(x2, x2)(x1, x1)〉,
c′ is even, h1(c) = c′ − 1

g(r, ρ, h1, (c, c
′)(x2, x2)) = 〈(x2, x2)(x1, h1(x1))〉,

c′ is even, h1(c) = c′ − 1
g(r, ρ, h1, (x2, r(d2))(x1, r(d1))) = ε,

h1(c) is odd, ρ = (v3, vwc)
g(r, ρ, h1, (c, c

′)) = 〈(x2, h1(x2))(x1, h1(x1))〉,
c′ is even, h1(c) = c′ − 1

g(r, ρ, h1, (x2, r(d2))) = ε,
h1(c) is odd, h1(x1) = r(d1), ρ = (v3, vwc)

g(r, ρ, h1, (x1, r(d1))) = ε,
h1(c) is odd, ρ = (v2, vwc)

Fig. 8. An auxiliary function on store buffers

converting the store buffers of the writer CPU in MGC(Lseqlock) to the corresponding
one in MGC(L]seqlock); see Figure 8. We then let

b1 ∼r,ρ,h1
b2 ⇔ b2(0) = g(r, ρ, h1, b1(0)) ∧ (∀t ∈ CPUid− {0}. b1(t) = b2(t) = ε) ∧

(∃α, c′. b1(0) = (c, c′)α ∧ (c′ is even)⇒ ρ = (v4, vwc)) ∧
(∃α. b1(0) = callα⇒ ρ = (v0, vwc)) ∧

(∃α. b1(0) = retα⇒ ρ = vwc) ∧
(∃α, β, c. b1(0) = β (c, c)α ∧ (α does not contain entries for c)⇒ h1(c) = c− 1).

We let

θ1 ∼p,pc1,pc2,h1
θ2 ⇔ θ1(0) = θ2(0) ∧

∀t ∈ CPUid− {0}. (pc2(t) = w3⇒ ∃c. θ1(t) = θ2(t)[c0 : c]) ∧
(∃v. pc1(t) ∈ (v, vtrc) ∧ v ∈ {v6, . . . , v10} ∧ p(t)⇒

θ1(t)(c0) = h1(c) ∧ (c is even)) ∧
(pc1(t) = (v11, vtrc) ∧ p(t)⇒

θ1(t)(d1) = h1(x1) ∧ θ1(t)(c0) = h1(c) ∧ (c is even)).

We define h1 ∼ h2 as follows:

[x1 : x1, x2 : x2, c : c] ∼ [x1 : x1, x2 : x2, c :], if c is even;
[x1 : x1, x2 : x2, c : c] ∼ [x1 : , x2 : , c :], if c is odd.

Finally, we let K1 ∼ K2 ⇔ K1 = K2 = CPUid.
The following lemma describes the induction step in constructing τ ′.

Lemma 13. Consider a transition λ1 inside τ :

σ0
λ0−→∗MGC(Lseqlock)

σ1
λ1−→MGC(Lseqlock) σ2 . . .

Assume the computation

σ′0
λ′
0−→∗

MGC(L]
seqlock)

σ′1

such that σ0 ∼λt.false σ′0, σ1 ∼p1 σ′1, history(λ0) = history(λ′0) and p1(t) is true
if CPU t is at a program position (v, vtrc) for v ∈ {v6, . . . , v12} in σ1, and t either
reaches (v16, vtrc) in the rest of the computation τ without going via (v13, vtrc) before
that, or the computation ends without t going via (v13, vtrc).

Then there exists σ′2 ∈ Config − {>} and a computation

σ′1
λ′
1−→∗

MGC(L]
seqlock)

σ′2

such that σ2 ∼p2 σ′2, history(λ0λ1) = history(λ′0λ
′
1) and p2(t) is true if CPU t is at the

program position (v, vtrc) for v ∈ {v6, . . . , v12} in σ2 and t reaches (v16, vtrc) in the
rest of the computation τ without going via (v13, vtrc) before that, or the computation
ends without t going via (v13, vtrc).

From the lemma we immediately get that there exists τ ′ ∈ JMGC(L]seqlock)KI such that
history(τ) = history(τ ′), which implies Lseqlock v L]seqlock.

Proof sketch for Lemma 13. For each transition of the seqlock implementation, we
show how the abstract implementation can make zero or more steps such that the ∼
relation between the end configurations is preserved. We now list the transitions of
the concrete implementation for which the abstract implementation makes one or more
steps.

– A concrete havoc transition is matched by an abstract havoc transition assigning
the same values to registers.

– A concrete CALL, RET or FLUSH-MARKER transition is matched by the same
abstract transition.

– The command at v3 is matched by the sequence of commands at w0.
– The command by CPU t at v11 is matched by the sequence of commands at w2

when p(t) is true.
– A FLUSH of an even value to c from a concrete store buffer is matched by flushing

the oldest entry in the corresponding abstract store buffer.

It is easy to check that the ∼ relation ensures that all the above transitions (plus the
transitions of the concrete system that do not cause the abstract implementation to make
a step) are executable and preserve the ∼ relation. ut

B Additional examples

In the following examples we assume that integers are unbounded (or, equivalently,
consider only executions where an overflow does not occur).

1. Spinlock.

word x = 1;

acquire() {

while (1) {

xlock;

x--;

if (x >= 0) {

xunlock;

return;

}

xunlock;

while (x <= 0) ;

}

}

release() { x = 1; }

Note that release writes 1 to x without executing a memory barrier. On TSO this
can result in an additional delay before the write releasing the lock becomes visible to
another CPU trying to acquire it. The abstract implementation is as follows:

word x = 1;

acquire() {

xlock;

assume(x == 1);

x = 0;

xunlock;

}

release() { x = 1; }

Here the write to x in the release can be delayed in the store buffer as well. It is easy
to see that the resulting specification still ensures mutual exclusion.

2. Ticketed spinlock.

word x = 1, y = 1;

acquire() {

word ticket;

xlock;

ticket = y++;

xunlock;

while (x != ticket) ;

}

release () { x++; }

Unlike the previous spinlock implementation, this one ensures fairness using a variant
of the Bakery algorithm. We give it the same specification as the previous implementa-
tion.

3. Initialisation using double-checked locking. The function ensureinit initialises
an object. We assume that several copies of the function can be run concurrently, while
the initialisation is meant to be performed only once.

word x = UNINITIALISED;

ensureinit() {

if (x == INITIALISED) return;

acquire();

if (x == UNINITIALISED) {

// Initialise the object...

x = INITIALISED;

}

release();

}

The implementation assumes a lock with the specification given in Example 1 above.
The first read of x in ensureinit can read UNINITIALISED when there is a pending
write of INITIALISED to x by another CPU. For this reason, the implementation can
exhibit non-SC behaviours [13]. Its abstract implementation is as follows:

word x = UNINITIALISED;

ensureinit() {

word flag = nondet();

if (flag) xlock; else lock;

if (x == UNINITIALISED) {

// Initialise the object...

x = INITIALISED;

}

if (flag) xunlock; else unlock;

}

The abstract implementation non-deterministically flushes the store buffer, which can
happen in the concrete implementation as a side effect of acquire.

