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Abstract to easily define their own access mmetls (AMs) still remains an
elusive goal.

The importance of multidimensional index structures to numerous . .
emerging database applications is well established. However, before TheGengraII;ed S_earch TrgSiST) [9] e}ddresse§ the:‘ abOY,Pf
these index structures can be supported as access methods (Am#oblem. GiST is an index structure that is extensible “both” in
in a “commercial-strength” database management system (DBMS)he data types it can index and in the queries it can support. It
efficient techniques to provide transactional access to data via thds like a “template” — the application developer can implement
index structure must be developed. Concurrent accesses to data viaer own AM using GiST by simply registering a few extension
index structures introduce the problem of protecting ranges specifiednethods with the DBMS. GiST solves two problems:
in the retrieval from phantom insertions and deletions @hantom e Over the last few years, several multidimensional data
problen). This paper presents a dynamic granular locking approach  stryctures have been developed for specific application
to phantom protection in Generalized Search Trees (GiSTs), anindex  45mains. Implementing these data structures from scratch
structure supporting an extensible set of queries and data types. The every time requires a significant coding effort. GiST can be
granular locking technique offers a high degree of concurrency and dapted t K like th data struct ’ h ier task
has a low lock overhead. Our experiments show that the granular adapted to work like (Nese data structures, a much easier tas
locking technique (1) scales well under various system loads and thanimplementing the tree package from scratch.
(2) similar to the B-tree case, provides a significantly more efficient ® Since GiST is extensible, if it is supported in a DBMS, the
implementation compared to predicate locking for multidimensional ~ DBMS can allow application developers to define their own
AMs as well. Since a wide variety of multidimensional index structures ~ AM, a task that was not possible before.
can be implemented using GiST, the developed algorithms provide a Although GiST considerably reduces the effort of integrating
general solution to concurrency control in multidimensional AMs. To new AMs in DBMSs, before it can be supported in a “commer-
the best of our knowledge, this paper provides the first such solutiongjg| strength” DBMS, efficient techniques to support concurrent
based on granular locking. access to data via the GiST must be developed. Developing con
] currency control (CC) techniques for GiST have several impor-
1 Introduction tant benefits. (1) Since a wide variety of index structures can be

oo : jmplemented using GiST, developing CC techniques in the con-
Database systems are being increasingly deployed to suppoPEnp , ' - .
emerging agplications such %s computer-aided design (CAD)teXt of GiST would solve the CC problem for multidimensional
geographical information systems (GIS), multimedia content-index Sttrzuﬁlﬁre.s ml genetratl: (Z)f Eépen?ncel with B-trees_fhas
based retrieval systems, time-series databases, medical/healﬁtl10er at the impiementation o _protocols requires writing
care applications, spatio-temporal databases etc. To suppo mple>§ code and accounts fora major fraction of the eﬁ‘qrt for
these applications efficiently on top of a DBMS, database "€ AM |mplementat]c>_n [8].' De\{elopmg the protqqolsforG|ST
systems must allow application developers to (1) define their'S particularly beneficial since it would need writing the code
own data types and operations on those data types, and ( nly onceand would allow concurrent access to the database
define their own indexing mechanisms on the stored datawaanylr?d'ex structure |mplgmented in the DBMS using GIST,
which the database query optimizer can exploit to access thdhus avoiding the need to write the code for each index structure
data efficiently. The Object Relational DBMS (ORDBMS)/ SeParately. g , ! ind
Universal Server (US) technology addresses the first problem COncurrent access to data via a genera Im et))(l structure
effectively [21]. But the ability to allow application developers ntroduces two independent concurrency control problems:

¢ Preserving consistency of the data structurepresence of
der Grant No, 115-6734300. in part by the Army Researoh Laboratory under CoTiCurrent insertions, deletions and updates.
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Grant No. BOU415912. This paper addresses the problem of phantom protection in
GiSTs. In our previous research, we had studied a granular
locking (GL) solution for phantom protection in R-trees [4].
We refer to it as thésL/R-treeprotocol. Due to fundamental
differences between R-tree and GiST in the notion of a search
key, the approach developed for R-trees is not a feasible
solution for GiST. Specifically, the GL/R-tree protocol needs
several modifications for making it applicable to GiSTs and
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Figure 1: A GiST for a key set comprising of rectangles in 2 dimensional sp&kkis a new object being inserted in noté. R is
a search region. Predicats throughP6 are the BPs of the nodeg2 through/N 7 respectively.

the modified algorithms, when applied to GiSTs, impose aGiSTs. The experimental results are presented in Section 5.
significant overhead, both in terms of disk 1/0 as well as Finally, Section 6 offers the conclusions and future work.
computational cost, on the tree operations. To overcome
this problem, we develop a new granular locking approach . .
for phantom protection in GiSTs in this paper. We refer to 2 Preliminaries
it as the GL/GiST protocol. The GL/GiST protocol differs |n this section, we first review the basic GiST structure. Next
from the GL/R-tree protocol in its strategy to partition the we describe the phantom problem, its solutions for B-trees and
predicate space and hence defines a new set of lockabl@/hy they cannot be applied to multidimensional data structures.
resource granules. Based on the set of granules defined, lockinally, we state the desiderata of a granular locking solution
protocols are developed for the various operations on GiSTsto the phantom problem in multidimensional index structures
For an R-tree implemented using GiST, GL/GIiST protocol followed by the terminology used in presenting the algorithms.
provides similar performance as the GL/R-tree protocol. On
the other hand, for index structures where the search keys )
do not Sa‘[isfy the“containment hierarchy" Constraint’ the Generalized Search Trees GiST is a hE|ght balanced multi-
GL/GiST protocol performs significantly better than the GL/R- Way tree. Each tree node contains a number of node entries,
tree protocol. Examples of such index structures includeZ = (p,ptr), whereE.p is a predicate that describes the sub-
distance-based (centroid-radius based) index structures (e.gtfee pointed byE.ptr. If N is the node pointed by .ptr, E.p
M-tree, SS-tree). In summary, GL/GiST providegeneral is defined to be the bounding predicate (BP)\af denoted by
solutionto concurrency control in multidimensional AMs rather BP (V). The BP of the root node is the entire key spase
than a specific solution for a particular index structure (e.g., Figure 1 shows a GiST for a key space comprising of 2-d rect-
GL/R-tree), without any compromise in performance. angles. o _ _ o
The problem of phantom protection in GiSTs has previously Akey in GiST can be any arbitrary predicate. The application

been addressed in [10] where the authors develop a solutioHeVEIOper can implement her own AM by specifying the key
based on predicate locking (PL). As discussed in [8], aIthoughStrm?u‘.Ire via a key c!ass. The_ design of the key class involves
predicate locking offers potentially higher concurrency, typi- prowdlng a set of six extension methods which are used to
cally granular locking igreferred since the lock overhead of implement the standalsiaarch |n_se_rtanddeleteoperapons over
predicate locking is much higher compared to that of granu-the AM. A more detailed description can be found in [9].

lar locking. The reason is while granular locks can be set and

cleared as efficiently as object locks 200 RISC instructions), Serializability Concepts and the Phantom Problem Trans-
setting of a predicate lock requires checking for predicate sat-yctions, locking and serializability concepts are well docu-
isfiability against the predicates of all concurrently executing mented in the literature [17, 18, 8]. The phantom problem
transactions. For this reason, all existing commercial DBMSSjg defined as follows (from the ANSI/ISO SQL-92 specifica-
implement granular locking in preference to the predicate basedjons [12, 2]): Transaction T1 reads a set of data items satisfy-
approach. Our experiments on various “real” multidimensional ing some<search condition> . Transaction T2 then cre-
data sets show that (1) GL/GiST scales well under various sysxies data items that satisfy TRsearch condition> and
tem loads and (2) Similar to the B-tree case, GL provides acommits. If T1 then repeats its scan with the samsearch
significantly more efficient implementation compared to PL for -qndition> , it gets a set of data items (known as “phan-
multidimensional AMs as well. toms”) different from the first read. Phantoms must be prevented
The rest of the paper is developed as follows. Section 2to guarantee serializable execution. Object level locklogs
reviews the preliminaries. Section 3 describes the spacenot prevent phantoms since even if all objects currently in the
partitioning strategy for GiSTs and discusses the difficulty in database that satisfy the search predicate are locked, concurrent
applying the R-tree approach to GiSTs. Section 4 presents thinsertions into the search range cannot be prevented. These in-
dynamic granular locking approach to phantom protection insertions may be a result of insertion of new objects, updates to



LockMode| IS| IX | S | SIX X LOCK MODE PURPOSE
s Shared Access
IS 1/ 4/ 1/ 1/ X Exclusive Access
IX IX Intention to set shared or
M M exclusive locks at finer
s granularity
1/ 1/ 1S Intention to set shared
locks at finer granularity
SIX M
SIX A course granularity shared
lock with intention to set
X finer-granularity exclusive
locks (union of S and IX)

Table 1: Lock mode compatibility matrix for granular locks.
The purpose of the various lock modes are shown alongside.

existing objects or rolling-back deletions made by other concur-
rent transactions.

Desiderata of the Solution Since KRL cannot be used in
multidimensional index structures, new techniques need to be
devised to prevent phantoms in such data structures.
principal challenges in developing a solution based on granular
locking are:

« Defining a set of lockable resource granulésover the

The

multidimensional key space such that they (1) dynamically
adapt to key distribution (2) fully cover the entire embedded
space and (3) are fine enough to afford high concurrency.
The importance of these factors in the choice of granules has
been discussed in [8]. The lock granules (i.e. key ranges) in
KRL satisfy these 3 criteria.

Easy mapping of a given predicate onto a set of granthat
needs to be locked to scan the predicate. Subsequently, the
granular locks can be set or cleared as efficiently as object
locks using a standard lock manager (LM).

Ensuring low lock overheafbr each operation.

¢ Handling overlap among granuledfectively. This problem

Approaches to Phantom Protection There are two general
strategies to solve the phantom problem, nanaigdicate
locking and its engineering approximatiogranular locking

In predicate locking, transactions acquire locks on predicates
rather than individual objects. Although predicate locking
is a complete solution to the phantom problem, the cost of
setting and clearing predicate locks can be high since (1) the
predicates can be complex and hence checking for predicate
satisfiability can be costly and (2) even if predicate satisfiability
can be checked in constant time, the complexity of acquiring
a predicate lock is proportional in the number of concurrent
transactions which is an order of magnitude costlier compared
to acquiring object locks that can be set and released in constant
time [8]. In contrast, in granular locking, the predicate space is
divided into a set of lockable resource granules. Transactions
acquire locks on granules instead of on predicates. The locking
protocol guarantees that if two transactions request conflicting
mode locks on predicatgsandp’ such thap A p’ is satisfiable,
then the two transactions will request conflicting locks on at
least one granule in common. Granular locks can be set and
released as efficiently as object locks. For this reasons, all
existing commercial DBMSs use granular locking in preference
to predicate locking. A more detailed comparison between the
two approaches can be found in [8].

An example of the granular locking approach is thalti-
granularity locking protoco(MGL) [11]. MGL exploits addi-
tional lock modes callethtentionmode locks which represent
the intention to set locks at finer granularity (see Table 1). Ap-
plication of MGL to the key space associated with a B-tree is
referred to akey range lockinKRL) [11, 13]. KRL cannot be
applied for phantom protection in multidimensional data struc-
tures since it relies on the total order over the underlying ob-
jects based on their key values which does not exist for multidi-
mensional data. Imposing an artificial total order (say a Z-order
[16]) over multidimensional data to adapt KRL would result in
a scheme with low concurrency and high lock overhead since
protecting a multidimensional region query from phantom in-
sertions and deletions will require accessing and locking objects
which may not be in the region specified by the query (since
an object will be accessed as long as it is within tipper and
the lower bounds in the regicsccording to the superimposed

does not arise in KRL since the key ranges are always mutu-
ally disjoint. In multidimensional key space partitioning, the
set of granules defined may be, in GiST terminology, “mutu-
ally consistent”. For example, there may be spatial overlap
among R-tree granules. This complicates the locking proto-
col since a lock on a granule may not provide an “exclusive
coverage” on the entire space covered by the granule. For
correctness, the granular locking protocols must guarantee
that any two conflicting operations will request conflicting
locks on at least one granule in common. This implies that
at least one of the conflicting operations must acquire locks
on all granules thatverlapwith its predicate while the other
must acquire conflicting locks on enough granules to fully
coverits predicate [4]. This leads to two alternative strate-
gies:
¢ Overlap-for-Search and Cover-for-Insert Strategy (OSCI)
in which the searchers acquire shared mode locks on all
granules consistent with its search predicate whereas the
inserters, deleters and updators acquire IX locks on a
minimal set of granules sufficient to fully cover the object
being inserted, deleted or updated.
¢ Cover-for-Search and Overlap-for-Insert Strategy (CSOI)
in which the searchers acquire shared mode locks on a
minimal set of granules sufficient to fully cover its search
predicate whereas the inserters, deleters and updators
acquire IX locks on all granules consistent with the object
being inserted, deleted or updated.
While the former strategy favors the insert and delete
operations by requiring them to do minimal tree traversal
and disfavors the search operation by requiring them to
traverse all consistent paths, the latter strategy does exactly
the reverse. Intermediate strategies are also possible. For
GL/GIiST, we choose the OSCI strategy in preference to the
rest. The OSCI strategy effectively does not impasg
additional overhead on any operation as far as tree traversal
is concerned since searchers in GiST anyway follow all
consistent paths. The CSOI strategy may be better for index
structures where inserters follow all overlapping paths and
searchers follow only enough paths to cover its predicate.
The R+-tree is an example of such an index structure
[19]. We assume that the OSCI strategy is followed for all

total order). It would severely limit the usefulness of the mul-

1in this paper, we use the term “granules” to mean lock units — resources that

tidimensional AM, essentially reducing it to a 1-d AM with the e jocked to insure isolation and not in the sense of granulesin “granule graph”

dimension being the total order.

of MGL [8]. This is discussed in further detail in Section 4.1.



discussions in the rest of the paper.

Terminology In developing the algorithms, we assume, as
in [11], that a transaction may request the following types
of operations on GiST: Search, Insert, Delete, ReadSingle
UpdateSingle and UpdateScan.

a standard LM which supports all the MGL locks modes (as
shown in Table 1) as well as conditional and unconditional
lock options [14]. Furthermore, locks can be held for different
durations, namely, instant, short and commit durations [14].
While describing the lock requirements of various operations for

phantom protection, we assume the presence of some protocol
for preserving the physical consistency of the tree structure in
presence of concurrent operations. The lock protocol presented

in this paper guarantees phantom protection independent of th

specific algorithm used to preserve tree consistency. In our

implementation, we have combined the GL/GiST protocol with
the latching protocol proposed in [10]. We do not describe the

In presenting the solution to
the phantom problem, we describe the lock requirements of
each of these and present the algorithms used to acquire the
necessary locks. The lock protocols assumes the presence of,

deletions. To prevent phantoms, inserters in GL/R-tree follows
the following protocol (referred to as IP/R-tree):
Let g be the granule corresponding to the leaf node in which

the insertion takes place (referred to as tdmget granule) and
O be the object being inserted. IP/R-tree handles the following
2 cases separately:
e Case 1 - Insertion does not caugéo grow: In this case, the
inserter acquires (1) a commit duration IX lock gand (2)

a commit duration X lock o).

Case 2 - Insertion causesto grow (to sayg’): In this case,

it acquires (1) a commit duration 1X lock an(2) a commit
duration X lock onO and (3) short duration IX locks oall
granules into which itgrew i.e. all granules overlapping with
(¢’ <4g). (3) ensures that there exists no old searchers which
could lose their lock coverage due to the growtly ofNote

that acquiring the extra locks of (3) may cause the inserter to
perform additional disk accesses.
A detailed discussion of the lock requirements for other tree
perations and the protocols followed to acquire the locks can
e found in [4].

6

3.2  Space partitioning strategy for GiSTs

combined algorithms in this paper due to space limitations buttpg first task in developing a granular locking solution to the

can be found in the longer version of this paper [5].

3 Why the R-tree protocol cannot be applied

to GiSTs?
The most obvious solution to the phantom problem in GiSTs

phantom problem is to develop a strategy to partition the key
space. Note that the BPs in GiST, unlike the BRs in R-tree,
cannotbe used to define the granules since the BPs, unlike
the BRs, arenot arranged in dcontainment hierarchy”i.e.
given a nodef’, for any nodeN under (i.e. reachable from)

T, BP(N) — BP(T) is notnecessarily true. So, for a search

is to treat GiSTs as extensible R-trees and apply the GL/R-tregyith predicateP, there might exist a leaf (or external) granule

protocol we developed in [4] to GiSTs. In this section, we argue
that GL/R-tree protocol is not a feasible solution for GiSTs.
We first briefly review the approach developed for phantom
protection in R-trees [4]. We do this for two main reasons: (1)
it builds the context for the solution developed for GiSTs and
(2) it enables us to illustrate why GL/R-tree cannot be applied

that is consistent with the search predic&teindera non-leaf
node N whose BP is not consistent with. For example, in
Figure 1, the search predicaes not consistent wittB P (N 2)

(i.e. P1) butis consistent witi'G(N5) (i.e. P4) whereN'5 lies
underN2 in the tree. This means that to follow the OSCI policy
(i.e. get locks on all consistent granules), the searcher cannot

to GiSTs. Subsequently, we define the resource granules ifi5rne” jts search below? as it would normally do. This is

GIiST. We conclude the section by discussing why GL/R-tree is
inapplicable to GiSTs.

3.1 The R-tree granular locking protocol

In GL/R-tree, we define the following two types of lockable
granules:

(1) A leaf granuleassociated with each leaf level indesde

L ofthe R-tree. We denote it B§G(L) i.e. the tree granule
associated with the leaf node The bounding rectangle
(BR)associated witth defines the lock coverage 81 ().

(2) An external granuleassociated with eadmon-leaf node
N of the R-tree. We denote it byct(N) i.e. the external
granule associated with the non-leaf nodle The lock
coverage okxt(N) is defined to be the space covered by
the BR of N which is not covered by the BRs of any of its
children.

The search operation acquires locks on all leaf granules and
external granules overlapping with the search predicate (referred
to as SP/R-tree).

To prevent insertion of objects into search ranges of uncom-
mitted searchers, we follow the OSCI policy. Although the plain
OSCI policy guarantees phantom protection when the opera-
tions do not change the granules, phantoms may arise when the
granule boundaries dynamically change due to insertions and

impractical since the searcher would have to access egttas
(and possibly extra disk accesses) for the purpose tiinge
locks.

It is clear from the above discussion that we must define
granules such that their lock coverage satisfy the “containment
hierarchy” constraint even if the BPs do not. For that purpose,
we define ggranule predicatessociated with every index node
of a GiST.

Definition 1(Granule Predicate)} Let N be an index node
and P be the parent of N. Thgranule predicateof N, denoted
by GP(N), is defined as:

GP(N) BP(N)if N isthe root
BP(N) A GP(P) otherwise

1)
2)
Note that GPs, unlike BPs, are guaranteed to satisfy the

“containment hierarchy” property.
Using GPs, we define the following two types of granules:

(1) A leaf granuleT'G(L) associated with each leabdel
whose coverage is defined by GP(L). For example, in Figure
1, there are 4 leaf granules: TG(N4), TG(N5), TG(N6) and
TG(N7) with lock coverage s lock coverageF A P3,
P1A P4, P2A P5andP2 A P6 respectively

(2) An external granule ext(N) associated with
each non-leaf node N whose coverage defined as
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(GP(N) A= (ViZ,GP(Q;))). whereQ, Qs, ...Q,, are the  granule is independent of the BRs of its parent nodes.

children of N. For example, in Figure 1, there are 3 external  To prevent phantoms, if the insertion changes any granule, it

granules: ext(N1), ext(N2) and ext(N3) will have lock cov- must acquire the following locks:

eragesS A =(P1V P2), PLA=((P1AP3)V (P1A P4)) Let 4 C-node (Highest Changed Node) denote the the highest

andP2 A =((P2 A P5) V (P2 A PG6)) respectively. node in the insertion path path from root to leaf in which

Apart from the fact that the granules obey “containment insertion takes place) whose BP (hence GP) changes due to the
hierarchy”, the above definition has another motivation. In insertion. In Figure 2)V2 is the f C-node for the insertion of
GiST, for any index nodeV, BP(N) holds for each objectin ~ R2. Let’ be the new GP off C-node after the insertion (e.g.,
the subtree rooted &f. For example, in Figure 171 holds for z < 3 is the new GP ofV2). Sinceany granule that grows
objects01, 02,03, O4andO5 while bothP1 and P3 holds for due to the insertion is fully covered by, short duration IX
objectsO1, 02 andO3. This implies that if an insertion does locks onall granules consistent with’ would ensure that no
not change the BP of any node, it is guaranteed to be coveregearcher loses its lock. In Figure 2, since all the 4 leaf granules
by the BP of eacnode in the path from the root to the leaf in are consistent with the predicate < 3, t;,, would need to
which the object is being inserted. For example, in Figure 1, theacquire short duration IX locks a2, 3 andG4 in addition to
objectO11 (being inserted in nod&/'5) is covered by both’1 the commit duration lock ot1 and X lock onR2. This would
andP4. So the leaf granul&G/( N 5) should have lock coverage — preventt;, (by the conflicting lock or4) till ¢, commits, thus
of P1 A P4 since that is what the inserter needs for covering thepreventing the phantom.

object. This is exactly the definition of GP. The above solution involves additional disk accesses to
Having defined the new set of granules, we next try to apply acquire those extra locks. In our experiments, we found that the
GL/R-tree on GiST. number of disk accesses involved is significant and increases
exponentiallywith the level of theH C-node. as shown in
3.3 Problems in Applying GL/R-tree to GiSTs Figure 3. In general, thé/ C'-node can be at any level of the

Let us consider the GiST shown in Figure 2. There are 4 GIST: all levels are equally Iikely. For the above experiment,
leaf granulesG1, G2, -3 and (¢4 corresponding to nodes performed on a 5-level GiST with fanout of about 100 and
N4 N5 N6 and,N7 V\,li'[h GPsP1 A P3. P1 A P4. P2 A P5 containing 400,000 2-d point objects, an insertion that causes

and P2 A P6 respectively. For simplicity, the partitioning of a BP-change (about 6% O,f, all insgrtions caused BP change)
the space has been so chosen that all the external granules a]r,rg:\y need upto 1000 additional disiccesses to get all the
empty. ocks (when the HC-node is at height 3 i.e. 3 levels above the
Lett, be a transaction searching regiin. Let#;,, be a new leaf). This indicates that GL/R-tree can impose significant I/O
transaction that arrives to insét® into N4. After the insertion, C(.)St for |r:dex struptures where BPS do not obey. containment
tins UpdatesP1 froma < 2toz < 3. This causes, to lose hlerarqhy (e.g., distance-based index structures like M-Freg).
it lock coverage. GL/R-tree prevents this by requiring, to Besides high cost, GL/R-tree has some other limitations
acquire locks on all granules which the target graniilehas for GiSTs: (l') It requires checking consistency with external
grown into. This is not sufficient for GiSTs since, unlike in R- dranules during search, an extra task not performed by the
trees, the target granuleristthe only granule that can grow due régular GiST algorithm. This check can be computationally
expensive in GiSTs. (2) It cannot allow an insertion or deletion

to an insertion. For example, in Figure 2, bath andG2 grow - oo
due to the insertion. Assuming that only the target granule cani0 take place at an arbitrary level of the tree, a situation that can
arise in GiSTs.

grow can lead to phantoms. Under that assumptign,would
request a short duration IX lock on orfli3 since that is the only
granule into whici71 has grown, get the lock and commit. Now 4 Phantom Protection in GiSTs
if 125 arrives to inseri?3 into V2, it would get the IX lock on

(G2 and proceed with insertion. Now #f repeats its scan, it
would find R3 has arrived from nowhere. Growing of multiple
leaf granules can happen in GiSTs because the lock coverag
of the leaf granules, due to the definition of GP, depend of the
BPs of the parents. So if an inserter modifies a node, the lock o

coverage of any granule under that node can possibly change#-1 ~ Resource granules in GiSTs

This is not possible in GL/R-tree since the lock coverage of aln GL/GIiST, we define two types of granules:

In this section, we present a dynamic granular locking approach
to phantom protection in GiST. In the following subsections,
we define the set of lockable resource granules for GiSTs and
present lock protocols for various operations on GiSTs.



(1) Leaf granules: This is the same as the previous GP- ["Algorithm Search(R, g, t)
based definition of leaf granules. A leaf grandlé/(L)  [Tnput:  GIST rooted at R, predicate q, transaction t
is associated with each leabde L whose lock coverage is | output: All tuples that satisfy g
defined by GP(L). o Si: If R is root, request an S mode unconditiopal
(2) Non-leaf granules: This is a new set of granules. A commit duration lock on R.
non-leaf granuleI'GG(N) is associated with eadhon-leaf S2: If R is non-leaf, checleach entryEZ on R to
nodeN whose lock coverage, like leaf granules, is defined determine whether Consistent(E,q). For each entry
by GP(N). In Figure 1, there are 3 non-leaf granules that is consistent, request an S mode unconditional
associated with the 3 non-leaf nOdNS, N2 and N3 with commit duration lock on the nod¥ referenced by
GPsS (entire key space)y’1 and P2 respectively. E.ptr and Search is invoked on the subtree rooted
For both types of granules, the page ids of the index nodes at .
are the resource ids used to lock the granules. S3: If R is a leaf, check each ent#y on R to determine
Thus, GL/GIST defines a different set of lock granules whether Consistent(E,q). If E is Consistent, it i§ a
compared to those in the GL/R-tree protocol developed in [4]. qualifying entry that can be returned to the calling
External granules are no longer used as lockable granules. Non- process.
leaf granules are used instead. There are several reasons for

this choice: (1) it allows us to develop protocols that imposes Table 2: Concurrent Search Algorithm
absolutely no overhead (in terms of extra naEesses) on
any tree operation (2) it causes almost no loss in concurrency
since all commit duration locks held on non-leaf granules are
sharedmode locks (3) it has no extra computational cost since
checking for consistency with non-leaf granules, unlike that with
external granules, does not involve any extra checking othe
than what is performed anyway during the regular GiST search
algorithm and (4) it allows the protocols to work even when .
insertions/deletions take place at arbitrary levels of the tree. acgrwres an ? I?(;k ORG(T). that. P P th d

It is important to note that although non-leaf granules in thoeprgt\;\eflrémet#esraclnsostutgewhffé Pl’i;t’hemrgcrf ananoi:S
are introduced as lockable units, the GiST/GL protocol isT SinF::e a searcher acquires asha(;ed lock'GH{T) iﬁ?'zis
completely different from and should not be confused with _ " tent with with th qBP P need t
MGL. First, in MGL, the granules are hierarchically arranged SONSIStent with with the Brs ol ati, ¢ = [1,m], we e.eh ho
to form a “granule graph” over which it follows the DAG prove that !fGP(T) A @ is satisfiable(y is con5|stentW|tht e
protocol. In a granule graph, eanbde represents or “covers” a BP of F;, Vi = [1,m]. In other words, we need to prove that
“logical” predicate. Since they are “logical”, operations cannot m
dynamically change the predicate covered by any node in the GP(T)AQ is satisfiable= /\ Consistent(BP(P;), Q) (3)
graph. On the other hand, in GL/GiST, eathde in a GiST =0
represents a “physical” predicate: the GP of the node. Since
GP is “physical” (i.e. defined based on the structure of the Using the definition of+P(T'),
tree), operations (like insertions, deletions and updates) can .
dynamically change their lock coverages which complicates . - . -
tr?/e protocol. Second, in MGL, a lock on a coarse (higher GP(T) A Qs satisfiable= (/\ BP(PZ')) A Qis satisfiable
level) granule grants a certain lock coverage on the finer (lower =t (4)
level) granules under it. In GiST/GL, that is not the case:
the higher level (non-leaf) granules are introduced in order to
coverthe entire embedded space and a lockdoes nofgrant m m
coverage on any granule under it. In summary, DAG locking (/\ BP(PZ»)) AQ is satisfiable= /\(BP(PZ»)AQ)is satisfiable
and GL/GIiST arefundamentally differenprotocols and serve i=1 i=1
different purposes. We believe that the idea of defining lock (5)
granules associated with non-leaf nodes is novel and, to the bestincep A q is satisfiable=> Consistent(p, ¢), SOVi, i = [1, m]
of our knowledge, has been discussed before only in the context ) o )
of bulk insertions in B-trees as an open problem in [8]. (BP(Fi) A Q) is satisfiable= Consistent(BP(P;), Q) (6)

to do the “Consistency(E,q)” check during tree navigation. But
the granules in GiST are defined in terms of the GPs. To show
IIhat SP/GIST is correct, we need to show that it guarantees that
a searcher acquires locks on all the necessary granules i.e. for
any index nodd’, if G P(T) A Q is satisfiablethenthe searcher

SinceA is idempotent,

4.2 Search Sinced = BAC = D)= (ANC = CAD),

In this section, we describe the lock protocol followed by the m m
search operation in GiST. According to the OSCI policy, a /\ (BP(P;) A Q) is satisfiable= /\ Consistent(BP(F;), Q)

searcher with search predicafeacquires commit duration S ;= i=0
mode locks on all granules consistent wigh The concurrent _ o (7)
search algorithm is described is Table 2. Equations (4) and (7) together implies (3). L]

We refer to the above lock protocol as SP/GIST (Search .
Protocol for GiST). SP/GIST is a straightforward protocol and 43 Insertion
does not require any modification to the basic tree-navigationT he locking protocol for an insert operation must guarantee:
algorithm of GiST. This gives rise to a possible discrepancy. e Full Coverage of the object being inserted till the time of
Like the regular GiST search algorithm, SP/GIST uses the BPs transaction commit/rollback We say an objecO being



1. t1 arrives to scan R3; acquires S lock on R1.

Algorithm Insert(R, E, I, 1)

2. t2 arrives to insert R4; acquires IX locks on R2 and ext(R)
and X lock on R4

3. R2 grows to R2'
4.12 commits; releases all locks

5. t3 arrives to insert R5; acquires 1X lock on R2" and X lock on R5

6. t1 repeats its scan; R4 has appeared from nowhere

Figure 4: Loss of lock coverage can cause phantoms.

inserted (deleted) is fully covered by a set of grangle#f

O = U,eg 9. Aninsertion (as well as a deletion or an
update) operation must acquire commit duration IX locks
on G such thaG fully coversO. Full coverage guarantees
that an insertion is permittezhly if O does not conflict with
the predicate of any uncommitted searclassumingthat
each searcher hold commit duration locks on all consistent
granules.

Prevent Phantoms due to Loss of Lock Covera§énce
insertions (as well deletions and updates) can dynamically
modify one or more granules which in turn can affect

Input: GIST rooted at R, entry E=(p, ptr) (where
is a predicate such that p holds for all tupl
reachable from ptr), level |, transaction t.
New GiST resulting from insert of E at level |
root is global variable (const) pointing to th
root node of the GISTL is a lock initialized to
NULL.

If R is not at level |, check all entrie&; =
(ps, ptr;) in R and evaluate Penalty{,E) for
eachi. Let m beargmin; (Penalty(E;, E)).
If (L == NULL) A (Union(E.p, En.pm) #
Er.pm)), request a unconditional X mode log
L on R (for short duration). Insert is invoke
on the subtree rooted at the node referenced
Ep pltrm.

Otherwise (level of insertion reached), requ
a commit duration unconditional IX lock oR
and a commit duration unconditional X lock g
E.ptr. If there is room for E on R, install E 0
R. Otherwise invoke Split(root, R, E, t).
AdjustKeys(root, R, t).

Output:
Variables:

11:

o x

by

st

13:

the lock coverage of transactions holding locks on other

14: If L#£ NULL, release..

granules, full coverage isotsufficient to prevent phantoms.
For example, the insertion of an objegtinto a leaf node
L of a GIST may cause the granul&’(L) to grow into

Table 3: Concurrent Insert Algorithm

the search range of an old uncommitted searcher, resulting

in the searcher losing its lock. This loss of lock coverage
may cause future insertions, in spite of satisfying the full
coverage condition, giving rise to phantoms as illustrated
in Figure 4. The insertion lock protocol must prevent such
phantoms from arising.

Now we show that IP/GIST satisfy the above requirements
of correctness. First, we prove full coverage. In Case 1,
fully covers O, so commit duration 1X lock ory ensures full
coverage. In Case 2, at the start of the operati@nes not fully

To ensure full coverage and prevention of phantoms due toc0Ver O but TG(LU-node) does. So full coverage is provided

loss of lock coverage, the following protocol, referred to as
IP/GIST (Insert Protocol for GiST), is used.
Let O be the object being inserted apthe the target granule.
We consider the following two cases:
e Case 1 - Insertion does not caugéo grow: In this case, the
inserter acquires (1) a commit duration IX lock gand (2)
a commit duration X lock o).
e Case 2 - Insertion causesto grow. Let LU -node (Lowest

by the sequence of 2 locks: (1) the short duration IX lock on
TG(LU-node) from the beginning of the operation till the end of
the operatior? (2) the commit duration IX lock o from the
end of the operation till the end of the transaction (sipdeas
already grown to accommodats).

Next we show prevention of phantoms due to loss of lock

coverage. In Case 1, there can be noloss of lock coverage of any
searcher. In Case 2, the short duration IX lock on TG(LU-node)

Unchanged Node) denote the lowest node in the insertiorguarantees that no searcher can lose itlock coverage. Let us first

path whose GP does not change due to the insertion. Fo
example, in Figure 2V1 is the LU-node for the insertion
operation of R2. The insertion acquires (1) a commit
duration 1X lock ong (2) a commit duration X lock o)
and (3) ashortduration 1X lock on TG(LU-node).? For
example, in Figure 2¢;,, would need to acquire a short
duration IX lock onT'G(N'1) in addition to the IX lock on
TG(N4) and X lock onR2.
The concurrent insert algorithm is described in Table 3.
IP/GIST is a simple and efficient protocol since it, unlike the
IP/R-tree, does not imposy I/O or computational overhead
on the insertion operation. As a result, IP/GIST is more

gonsider a searcher already executing when the inserter;
arrives to inserD. Let @ be the search predicate 4f Leth

be a granule that grows tg due to the insertion af). ¢, can
lose its lockiff & A @ is not satisfiable but’ A @ is satisfiable.
From the definition of LU-nodey’ = TG(LU-node).(h' A Q)

is satisfiableand (A" = TG(LU-node)) imply (TG(LU-node)
AQ) is satisfiable which in turn implie€onsistent(TG(LU-
node), Q) This means that; can lose it's lock coveragdf

it has an S lock on TG(LU-node) (since searcher acquires S
locks on all consistent granules). Thus, the IX lock requirement
on TG(LU-node) prevents any searcher from losing its lock
coverage. The IX lock on TG(LU-node), being a short duration

efficient that IP/R-tree even on R-trees. Second, unlike IP/R-0ck, would prevent any loss of lock by even those searchers
tree, IP/GIST works even if the target granule is a non-leaf that arrive during the operation. Any searcher that arrives after

granule i.e. when insertion takes place at a higher level of the€ completion of the insertion operation cannot lose its lock
tree. coverage due to the insertion.

2The short duration IX lock can be released immediately if the AdjustKeys
operation is performed right away i.e. in a top-down fashion rather than bottom-  3Note that this the best we can do since, at this point of time, TG(LU-node)
up asis donein GiSTs. This would avoid holding the lock across I/O operations.is thesmallesigranule in the insertion path thiatly coversO.




| Operation | Lock Requirements | Other Actions

Insertion(no granule changle Commit dur. IX ong; Commit dur. X onO None

/no node split)

Insertion (granule change) || Short dur. IX on TG(LU-node); IX om; X on O None

Insert (node split) If T is leaf : Instant dur. SIX oil’G(T)) before split; IXon| Inherit S locks to
either’G(T) or TG(TT), whichever containg after split TG(TT) if itself holding
If Tis non-leaf : Instant dur. SIX o' G(T); Slock onTG(T)

Search S on all consistent leaf and non-leaf granules None

Delete (Logical) IXong; XonO Mark O deleted; Remove

O from page

Delete (Deferred) If node is not empty: Short dur. IX on TG(HC-node); IX gn | Eliminate node if empty
XonO.
If becomes empty: If T is leaf, Short dur. SIX on TG(T); If [T
is non-leaf , Short dur. IX on TG(T)

ReadSingle Sono None

UpdateSingle If no indexed attribute changed: IX gn X on O None
Otherwise: Delet®); Insert modified)

UpdateScan S on all consistent granules; For every individual obje®one
updated, same requirement as UpdateSingle

Table 4: Lock requirements for various operations in the dynamic granular locking approadh.the target granule for
insertion/deletion) is the object being inserted/deleted/updated.

4.4  Node Split split operation later by checking the “outstanding split” flags.

. . . : The lock requirements remain the same as in the “synchronous”
We now consider the special case where the insertion by a q y

transactiont into an already full node causes the target granulecase'
g to split into granulesy; and g». Insertions causing node 4 g
splits follow the IP/GiST except that it needs to acquire some
additional locks when it causes the splits.

If the insertion byt causeg to split, since the IX lock held by
t ong is lost after the split; needs to acquire IX locks gn and
g2 to protect the inserted object. Sincacquires an X lock op
before the insertion, no other transaction, besideself, can be
holding an S lock ory. If ¢ itself holds an S lock op, it needs
to inherit its S lock ory to ¢, andg-. This is becausg; and

Deletion

Similar to insertion, to delete an obje@ the deleter requires

an IX lock on the region that cover®. However, unlike

insertion, (in which the granule where the object is inserted

grows and covers the inserted object), the grapdtem which

O is deleted may shrink due to the deletion and may not cover

O. To protect the delete region, the deleter would need a

commit durationlX lock on TG(LU-node) (here it is the LU-

L . node of the deletion of operation) since TG(LU-node) is the

g2 are the only addlt!onal granules that may become consistent . 5jjest granule to fully cove® at the completion of the

with the search predicate ofiue to the split. deletion operation. This would result in low concurrency since
Since before the split the inserter acquires an IX lockyon 3 jarge number of searchers may be unnecessarily prevented till

other inserters and deleters may also be holding IX locks onthe deleter commits. For this reason, we do not consider this

g- Wheny splits, all transactions holding IX locks gnmust  gpproach any further. Instead, deletes are performed logically.

acquire IXlocks ory; andy, after the split. This is sufficientas  \we present the lock needs of the logical and physical deletions
all the insert and/or delete ranges (logical deletion) is guaranteeg, the following subsections.

to be protected by the IX locks @i andg- since all objects ip
will be eithering; or g5. It may not possible fotto changelock ~ 4.5.1  Logical Deletion
requests of other transactions using a standard lock managefe |ogical deleter needs to acquire a commit duration IX lock
The problem can be avoided if the inserter acquires a instang, only the leaf granulg that contains the object and an X
duration SIX lock ong in case it causeg to split. After the lock on O itself. The IX lock ong is sufficient to coverO
split, the inserter acquires a commit duration IX lock on either gince even if the GP of changes due to other insertions and
g1 0r g2, whichever containg . deletions (physical) sincg would still coverO. Subsequently,
The splitting of the granule may propagate upwards causingt removes the object from the page and marks it as deleted. If
the non-leaf nodes to split. As in the case of leaf node split, thethe transaction aborts, the changes are undone, the delete mark
transaction causing a non-leaf nadleto split acquires a instant  js removed and the locks are released. On the other hand, if it
duration SIX lock on7'G(N) to prevent any other transaction commits, the physical deletion ¢f from the GiST is executed
losing its lock. Ift itself was holding an S lock offiG/(N), it as a separate operation.
needs to inheritits S lock on the two granules formed after split.  |f the transaction requests deletion of an obj@cthat does
The node split operation can be allowed to be carried outnot exist, other transactions wishing to insert the same object
“asynchronously”. This requires maintaining the information should be prevented as long as the deleter is active. For this
of an “outstanding split” in the node - the transaction can purpose, the deleter acquires S locks on all consistent granules
subsequently commit while a separate transaction executes thi@st like a search operation with as the search predicate.



45.2 Deferred (Physical) Deletion [ Parameters | Meaning |

The deferred delete operation removes the logically deleted MPL multiprogramming level

object from the GiST and adjusts the BPs of the ancestors. To [ Transaction | the number of operations per transac-
physically delete an object from a granylea short duration IX Size tion

lock ong is acquired to prevent other searchers having S locks ["Write Proba-| the fraction of operations in a trans-
ong from losing their lock coverage. The IX lock is sufficient as bility action that are writes (i.e. inserts)
inserters and other deleters holding lockgiamould not lose the Query Size the average selectivity of a searth
necessary lock coverage even afteshrinks due to the physical operation

deletion. Deletion of an entry from the node may also result in External mean time between transactions

the node becoming empty in which case it is eliminated fromthe | Think Time

GIiST. Since a node is eliminated only when it becomes empty, Restart Delay | mean time after which an abortdd
no transaction can lose its IX lock due to eliminatiomaddis ¢ transaction is restarted

does not cover any object. So the IX lock @is sufficient even

if the deletion causes the elimination of the node. Table 5: Workload Parameters

In either case, since the changeyahay propagate upwards
causing BPs of the ancestor nodes to change, the non-leaf
granules associated with the ancestors may shrink. Since only
searchers hold locks on non-leaf granules (inserters requesiperation checks its predicate against the objects of the in-
only instant-duration locks), only searchers can lose their locksert/delete/update operations of all currently executing transac-
coverage due to this shrinkage. Note that only the searchergions. If there is any conflict, it blocks on that transaction by
whose predicates are consistent with tH€'-node (i.e. the requesting an S lock on that transaction ID, assuming that ev-
highest index node in the deletion path whose BP changes duery transaction acquires an X lock on its own ID when it starts
to the deletion) can lose lock coverage, possibly giving rise toup. Otherwise it proceeds with the search. Similarly, each in-
phantoms. The loss of lock coverage of the searchers can beert/delete/update operation checks its object against the predi-
prevented by acquiring a short duration IX lock on TG(HC- cates of the search operations of all currently executing transac-
node). Note that for insertion, it was the TG(LU-node) on which tions and in case of a conflict, blocks on the conflicting transac-
the short duration IX lock had to be acquired. The difference tion.
comes from the fact that insertion causes granules to grow while
deletion causes them to shrink.

4.6  Other Operations Construction of GiIST We conducted our experiments on two

The locks needs for the other operations are: different GiSTs constructed over the following two datasets:

o The ReadSingleoperation just acquires an S lock on the ¢ The2-d dataset: is the 2-d point data set of the Sequoia
object. 2000.benchmark [20]. It contains locations(easting and

« The UpdateSingleoperation, if none of the attributes in- northing values) of 62,556 California places extracted from
dexed by GiST are changed, just needs an IX lock on the the US Geological Survey’s Geographic Names Information
granule containing the object and an X lock on the object. ~ System (GNIS)). The points are geographically distributed
Otherwise, it first executes a deletion operation of the object ~ Over a 1046km by 1317km area.
to be updated followed by the insertion of the updated object ® The 3-d dataset: is derived from the FOURIER dataset
obeying the respective lock protocols. [6].. The FOURIER .dataset.d'ata set comprises of.l.2

e The UpdateScaroperation acquires S locks on all consis- million vectors of fourier coefficients produced by fourier
tent granules just like a Search operation. For every indi-  transformation of polygons. We constructed the 3-d dataset
vidual objectO updated, it requires the same locks as an Py taking the first 3 fourier coefficients of each vector.

UpdateSingle operation an. We set aside some points (by random choice) from the
The lock requirements for the various operations is shown in theabove data files for insertion into the GiST during the run of
Table 4. transactions. The searches to be executed during the run are

generated by randomly choosing the query anchor from the data
5 Experimental Evaluation file and generating a bounding box by choosing a proper side

) length needed to obtain desired search selectivity. The set-aside
We performed several experiments to (1) evaluate the perforyginis and the queries are stored in two separate files which are
mance of the GL/GiST protocol under various degrees of sys-,gaq by the workload generator.

tem loads and (2) compare it with other protocols in terms of
concurrency and lock overhead. In this section, we discuss our.
implementation of the protocols followed by the performance

We created the GiSTs by bulkloading the remaining points.
e two GiSTs are described below:

results. e 2-d GiST:constructed on 56,655 2-d points with 2K page

size (fanout 102, 821 nodes). Since the size of the data set is
5.1 Implementation small, we use a comparatively small page size to make the
Implementation of the Protocols We implemented the com- GiST of significant size.

plete GL/GIST protocol as described in this paper. To evalu- ® 3-d GiST:constructed on 480,471 3-d points with 8K page
ate the performance of the GL/GiST protocol, we also imple-  Size (fanout 292, 2360 nodes)

mented the pure predicate locking (referred to asRbeePL In both cases, we configured the GiST to behave as an R-tree by
protocol) to serve as the baseline case. In PurePL, each seardpecifying the extension methods appropriately.
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Workload Generator and the Lock Manager The workload  about 75% of the pages fit in memory.

generator (WG) generates a workload based on the input param- For the lock manager (LM) implementation, we reused most
eters shown in Table 5. The WG assigns some search operatiorsf the LM code of MiniRel system obtained from the University

(from the bounding box query file) and some insertion opera-of Maryland. The LM code closely follows the description in

tions (from the set-aside point file) ®ach transaction. Each [8].

transaction executes as a separate thread. We use the Pthread li-All experiments were performed on a Sun Ultra Enterprise
brary (Solaris 2.6 implementation) for creating and managing3000 Server running Solaris 2.6 with two 167MHz CPU,
the threads [15]. One thread only executes one transaction512MB of physical memory and several GB of secondary
it is created at the beginning of the transaction and is termi-storage.

nated when the latter commits. The WG maintains the MPL

at the specified value by using an array of flags (MPL num- 52  Experimental Results

ber of them): when a thread finishes, it sets a flag. The main . :
WG thread constantly polls on this array and when it detectsEvs#::‘t{gne?lgltggtf%g'S;fgrrcrﬁgzile :?/?hzogdﬁ;g%drexﬁﬁgco|
the setting of a flag, it starts a new thread and assigns the next" P P

transaction to it. The thread waits for some time (external thinkunder various system loads. - Performance is measu'red using
It_hroughput i.e. the ratio of the total number of transactions that

completed during the period when the transactions ran at full

ation after another on the GiST following the lock protocols. If MPL (ignoring the starting phase and the dying phase when the
any lock request returns an error (due to a deadlock or a time'l\/IPLs gre Iovvger) tothe to?aFI)duration of the %/ull%ll\/FI)PL hase [1]
out), the transaction aborts. If it aborts, it is re-executed within P :

the same thread after a certain restart delay (each transactioﬁ'?uretsvsriShOW,\‘j’lgll_e tfhrrotl;]gth dugoI GLiGllrﬁ:i— zlalnth u:ﬁrPL pLotot-
remembers its constituent operations till it commits forpossible.Cosa arious s forthe ataset. ally, the throughput
re-execution). Our implementation of the WG consists of 3 main increases with the MPL as the system resources were underuti-

C++ classes (TransactionManager, Transaction and Operationt'.Zed atlow MPLs. For GL/GIST, the throughputaches a peak

; o . {~ 14 tps) at an MPL of 50 while for PurePL, the peak €
The TransactionManager class also maintains the global statis> ™. :
tics of the run (e.g., throughput, conflict-ratio, number of locks tps) is reached at an MPL of 60. f#tnd that point, the through-

acquired, number of aborts etc.) which are used to measure thgﬁ;\?vtsa&sede(:r:‘g?riggcisoahtig%\?\fgmrig(r:gst?{)ﬁug% d ';Igtl;rseest 6

performance of the various protocols. Althoughthe other 4 Sim'Like the 2-oFI)dataset the GL/GIiST ae:hieves significantly hi her.

ulation parameters are varied, we fix the external think time to ' 9 yhig
throughput compared to PurePL.

3 seconds and the restart delay to 3 seconds for all our experi- We al ied th tem load by tweaking the oth
ments. Also, for the two GiSTs, the buffer sizes are set such tha% © also vanedhe system load by tweaking the other parame-
ers like write probability, transaction size and size of search [1].



GL/GiST (#locks) —— GL/GiST(#locks) —— GL/GIST ——
500 - PL/GIiST(#locks) -+-- 7] 700 | PL/GiST(#pred. checks) -+—=] 0.75 Predicate Locking -+ 1
Predicate Locking(#pred. checks) = Predicate Locking(#pred. checks) -=
- 0.7 -

0T a7 065
300 -
200 -

100

Lock Overhead (#locks/pred. checks)
Lock Overhead (#locks/pred. checks)
»

S
3
Throughput (tps)

o
o
a

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
A 80 100 "o 10 20 30 40 50 60
Multiprogramming Level Multiprogramming Level

0 26 A 0 8‘0 100 0 20
Multiprogramming Level
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eration (transaction size=10, write proba- eration (transaction size=10, write proba- for 5-d data (write probability=0.1, trans-

bility=0.2, query selectivity=0.1%) bility=0.2, query selectivity=0.1%) action size=10, query selectivity=0.1%)

These experiments were conducted on the 2-d dataset. Figure @n the other hand, GL/GIiST offers lower concurrency due to

shows the performance of the two protocols under various mixesfalse conflicts” i.e. a situation where although the predicates do

of read(search) and write(insert) operations. GL/GIiST signifi- not conflict with each other, they end up requesting conflicting
cantly outperforms PurePL under all workloads. Figure 8 showslocks on the same granule (e.g., in R-trees, a search predicate
the throughputs at various transaction sizes. Again, GL/GiSTand an object being inserted do not overlap with each other but
mostly outperforms PurePL. At an MPL of 50, for transactions they overlap with the BR of the same leaf node). More the
with 20 or more operations, since a large portion of the GiST isnumber of false conflicts, higher the loss of concurrency. Figure
locked by some transaction or the other, GL/GIST starts thrash-10 shows that false conflicts do not cause a significant loss of
ing due to high lock contention leading to decrease in through-concurrency in GL/GiST compared to PL. This is an outcome
put. Figure 9 shows the performance for various query sizesof the “fineness” of the chosen granules.

Once again, GL/GiST performs better than PL for all workloads.  Figure 11 and 12 shows the lock overheads imposed by the
GL/GIiST, PL/GIiST and PurePL protocols for the search and
insert operations respectively. The lock overhead is measured

Comparison to other techniques In this section, we compare by the average number of locks acquired or the average number

GL/GIST protocol with the predicate locking protocol presented of predicate checks performed, as the case may be, measured on

in [10]. We refer to the above protocol as the PL/GiST protocol. the same scale. Although the two costs (i.e. acquiring a lock

In PL/GiST, a searcher attaches its search predi@ateall the  and performing a predicate check) are within the same order

index nodes whose BPs are consistent wjith Subsequently,  of magnitude (between 50-200 RISC instructions) for 2d data,

the searcher acquires S locks on all objects consistent withhe costs would differ for higher dimensional data (predicate

Q. An inserter checks the object to be inserted against all thechecking becomes costlier while the cost of acquiring a lock

predicates attached to the node in which the insertion takesemains the same). While the lock overhead of predicate locking

place. If it conflicts with any of them, the inserter also attachesincreases linearly with MPL, that of GL is independent of MPL.
its predicate to the node (to prevent starvation) and waits forThe figures show that for both search and insert operations,
the conflicting transactions to commit. If the insertion causes GL/GiST imposes considerably lower lock overhead compared

a BP of a nodeV to grow, the predicate attachments of the to PL protocols.

parent of V' is checked with new BP oV and are replicated To study the performance of GL at higher dimensionalities,

at NV if necessary. The process is carried out top-down overwe also conducted experiments on 5-d data. The 5-d dataset

the entire path where node BP adjustments takeepl Similar  is derived from the FOURIER dataset and is constructed by
predicate checking and replication is done between siblingtaking the first 5 fourier coefficients of each vector. We built
nodes during split propagation. The details of the protocolthe GiST on 480,471 points of the 5-d dataset with 8K page
can be found in [10]. A complete performance study would sjze(fanout 136, 5186 nodes). The buffer size was set to about
require a full fledged implementation of the PL/GIiST protocol 109 of the size of the GiST. Figure 13 shows the performance

(including implementation of the Predicate Manager, augmentthe two approaches at various MPLs for 5-d data. Like 2-d and

GIiST with data structures to be able to attach/detach predicateg-d datasets, granu|ar |0cking outperforms predicate |ocking for

to tree nodes etc.). Due to the complexity of the this task,5-d data as well.

we only compare the two protocols in terms of the degrees of |, summary, there is a tradeoff between GL and PL —

concurrency offered and their lock overheads. Again PurePLyhjle GL enjoys lower lock overhead, it has lower concurrency

is used to serve as the baseline case. All the experiments Wergompared to PL. Our experiments confirm that similar to granule

conducted on the 2-d dataset. based protocols for 1-d datasets, the GL protocol performs
Figure 10 compares the concurrency offered by the GL/GiSTsignificantly better than PL for multidimensional datasets as

and the PL protocols. Concurrency is measured using confliciyell.

ratio i.e. the average number of times some transaction blocked

on a lock request per committed transaction [1]. Lower the :

conflict ratio, higher the concurrency. Both PL/GIST and 6 Conclusions and Future Work

PurePL protocols offer the maximum permissible concurrency Numerous emerging applications (e.g., GIS, multimedia, CAD)

since transactions are blocked only when they truly conflict. need support of multidimensional AMs in DBMSs. The
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