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Abstract

We show here a 2Ω(
√
d·log N) size lower bound for homogeneous depth four arithmetic formu-

las. That is, we give an explicit family of polynomials of degree d on N variables (with N = d3

in our case) with 0, 1-coefficients such that for any representation of a polynomial f in this
family of the form

f =
∑
i

∏
j

Qij ,

where the Qij ’s are homogeneous polynomials (recall that a polynomial is said to be homoge-
neous if all its monomials have the same degree), it must hold that∑

i,j

(Number of monomials of Qij) ≥ 2Ω(
√
d·log N).

The abovementioned family which we refer to as the Nisan-Wigderson design-based family
of polynomials, is in the complexity class VNP. For polynomial families in VP we show the
following: Any homogeneous depth four arithmetic formula computing the Iterated Matrix
Multiplication polynomial IMMn,d — the (1, 1)-th entry of the product of d generic n × n
matrices — has size nΩ(log n), if d = Ω(log2 n). Moreover, any homogeneous depth four formula
computing the determinant polynomial Detn — the determinant of a generic n × n matrix
— has size nΩ(log n). Our work builds on the recent lower bound results [Kay12, GKKS13a,
KSS13, FLMS13, KS13c] and yields an improved quantitative bound as compared to the recent
indepedent work of [KS13b].



1 Introduction

The problem of proving super-polynomial lower bounds for arithmetic circuits occupies a central
position in algebraic complexity theory, much like the problem of proving super-polynomial lower
bounds for boolean circuits does in Boolean complexity. The model of arithmetic circuits is an
algebraic analogue of the model of Boolean circuits: an arithmetic circuit contains addition (+)
and multiplication (×) gates and it naturally computes a polynomial in the input variables over
some underlying field. We typically allow the input edges to a + gate to be labelled with arbitrary
constants from the underlying field F so that a + gate can in fact compute an arbitrary F-linear
combination of its inputs. Proving super-polynomial arithmetic circuit lower bounds for an explicit
family of polynomials, say the Permanent family, amounts to showing that VP 6= VNP [Val79]. The
complexity classes VP and VNP consist of families of polynomials and can be viewed as algebraic
analogues of the classes P and NP respectively1. The hope is that it might be possible to use
algebraic and geometric insights along with the structure of arithmetic circuits to make progress
towards settling the VP vs VNP question. Till date, research on arithmetic circuits has produced
several interesting results that have enriched our understanding of the lower bound problem and
the related problems on polynomial identity testing & reconstruction (or learning) of arithmetic
circuits. The survey [SY10] gives an account of some of the results and outstanding open questions
in this area.

Constant Depth Circuits. While the available lower bounds for general circuits are very mod-
est, progress in this direction has been made in the form of lower bounds for restricted (but still
nontrivial and interesting) subclasses of arithmetic circuits. One such restriction is in the form
of the depth of a circuit2. The study of constant depth circuits has gained momentum in the
recent years after a striking connection was shown between lower bounds for general circuits and
that for depth-4 & depth-3 formulas. First recall that a polynomial f is said to be homogeneous
if all its monomials have the same degree. An arithmetic circuit is said to be homogeneous if
it is syntactically homogeneous, i.e. at every intermediate + gate, the inputs all have the same
formal degree3. Building on the depth reduction results of [VSBR83, AJMV98], a string of works

[AV08, Koi12, Tav13] arrived at the following result: A 2ω(
√
d logN) size lower bound for depth-4

homogeneous formulas4, computing a degree-d, N -variate polynomial (in a polynomial family), im-
plies a super-polynomial lower bound for general circuits. Further, if the polynomial family belongs
to VNP then such a lower bound would imply VP 6= VNP5.

Previous work on super-polynomial lower bounds. Raz [Raz09] showed that any multilinear
formula computing the determinant Detn (or the permanent Permn) polynomial has nΩ(logn) size

1 It is known that if VNP can be computed by arithmetic circuits of polynomial size size and degree and which
have the additional property that the constants from the underlying field have polynomially bounded bitlengths then
it must follow that P = NP (cf. [SV85]).

2 Recall that the depth of a circuit is the maximum length of any path from an input node to the output node.
3 The formal degree of a node in a circuit is defined inductively in the natural manner - leaf nodes labelled with

variables (respectively with field constants) have formal degree 1 (respectively zero) and every internal + gate (resp.
× gate) is said to have formal degree equal to the maximum of (resp. the sum of) the formal degrees of its children.

4 with bottom fan-in bounded by O(
√
d)

5 A similar implication is true even for depth-3 formulas, although at the loss of the homogeneity condition - due
to [GKKS13b].
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with subsequent separations6 and refinements7 in [Raz06] and in [RY09]. The formal degree of
a homogeneous formula is bounded by the degree of the computed polynomial - a feature that
is quite effective in proving lower bounds using partial derivatives based methods. The approach
of proving lower bounds by studying the space of partial derivatives of the computed polynomial
was introduced by Nisan and Wigderson [NW97], who showed an exponential lower bound for
homogeneous depth-3 formulas8. (For depth-3 formulas over fixed finite fields, an exponential
lower bound was shown by [GK98, GR98].) Indeed, the super-polynomial lower bounds obtained
by [Raz09, Raz06, RY09], as well as some others like [ASSS12], are based upon studying partial
derivatives or associated matrices involving partial derivatives like the Jacobian or the Hessian9.
The situation for depth-4 homogeneous formulas is substantially rectified by the recent work of
[Kay12, GKKS13a], followed by the work of [KSS13] and [FLMS13]. These works have led to a

2Ω(
√
d logN) lower bound for depth-4 homogeneous formulas with bottom fan-in O(

√
d) (where d

is the degree of the N -variate ‘target’ polynomial on which the lower bound is shown). Further,
[KSS13] and [FLMS13] together imply a super-polynomial separation between algebraic branching
programs and regular formulas - two natural sub-models of arithmetic circuits10. A seemingly

tempting problem left open in these works is, if the lower bound of 2Ω(
√
d logN) in the above state-

ment could be improved to 2ω(
√
d logN), a super-polynomial lower bound for general circuits would

ensue immediately. Another recent work [KS13a] has shown an exponential lower bound for depth-
4 homogeneous formulas with constant top fan-in. At the heart of these results lies the study of
the space of shifted partial derivatives of polynomials and an associated measure called the dimen-
sion of the shifted partials - a technique introduced in [Kay12, GKKS13a]. Loosely speaking, the
dimension of the shifted partials of a polynomial g refers to the dimension of the F-linear vector
space generated by the set of polynomials obtained by multiplying (shifting) the partial derivatives
of g with monomials of suitable degrees.

Our results. In an attempt to understand the strength of the shifted partials method better, a
recurring open problem stated in [KSS13, FLMS13, KS13a, Tav13] is to show a super-polynomial
lower bound for homogeneous depth-4 formulas. Whether the shifted partial measure can be used
to prove such a result or not is not exactly clear to us. This very recent work by [KS13c] seems to
suggest that the answer is likely in the negative. However, this does not rule out the possibility of
using a different measure, perhaps closely related to the shifted partials, to achieve the same. It
turns out that indeed it is possible to use a slightly modified (or augmented) version of the shifted
partial measure to show an exponential lower bound for depth-4 homogeneous formulas. For the
ease of reference in this paper, we will call this modified measure the projected shifted partials.
Loosely speaking, the idea is to shift the derivatives of a polynomial by a carefully chosen set of
monomials and then view these after ‘projecting’ them to an appropriate set of monomials. Our
results are formally stated below.

Theorem 1. Let F be any field of characteristic zero. There is an explicit family of polynomials

6 Building upon [Raz09], a super-polynomial gap between multilinear circuits and formulas was obtained in [Raz06].
7 Also building upon [Raz09], a significantly better bound was later shown for bounded (i.e. constant) depth

multilinear circuits [RY09]: A depth-d multilinear circuit computing Detn or Permn has size 2nΩ(1/d)

.
8 Prior to this work, Nisan [Nis91] showed an exponential lower bound for noncommutative arithmetic formulas
9 A recent survey by Chen, Kayal and Wigderson [CKW11] gives more applications of partial derivatives.

10 In fact, a very recent work of [KS13c] shows a super-polynomial separation between general formulas and regular
formulas.
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of degree d in N = d3 variables with zero-one coefficients such that any homogeneous ΣΠΣΠ

formula over F computing this family must have size at least 2Ω(
√
d·logN). In other words, for any

representation of the degree d polynomial f in the family, of the form

f =
∑
i

∏
j

Qij ,

where the Qij’s are homogeneous polynomials, it must hold that∑
i,j

(Number of monomials of Qij) ≥ 2Ω(
√
d·logN).

Remark 2. The above theorem continues to hold for any N ≥ d2+ε, for any constant ε > 0. For
clarity of presentation, we work with N = d3 in what follows.

The explicit polynomial f in the theorem above is a variant of the Nisan-Wigderson design-based
polynomial introduced in [KSS13] and further studied in [KS13c, KS13b]. While this family of
polynomials is explicit (in VNP), it is not known to be efficiently computable. Thus, as it stands,
our main theorem has two limitations - it is valid only over fields of characteristic zero and the
explicit family of polynomials that we give is not known to be efficiently computable. We partially
address these limitations by proving super-polynomial lower bounds which are quantitatively worse
but hold over any field for a family of polynomials in VP.

Theorem 3. Over any field F, any depth-4 homogeneous formula computing the Iterated Matrix
Multiplication polynomial IMMn,d — the (1, 1)-th entry of the product of d generic n× n matrices
— has nΩ(logn) size, assuming d = Ω(log2 n). If d ≤ ε log2 n for a sufficiently small ε > 0 then any

depth-4 homogeneous formula computing the IMMn,d polynomial has size nΩ(
√
d).

We note that these bounds are incomparable with those proved in [FLMS13]. While [FLMS13] prove

an exponential lower bound — 2Ω(
√
d) logn for d = nΩ(1) — for depth-4 homogeneous multilinear

formulas computing IMMn,d, we prove a weaker quasipolynomial lower bound for the more general
model of depth-4 homogeneous formulas.

Theorem 4. Over any field F, any depth-4 homogeneous formula computing the determinant poly-
nomial Detn — the determinant of a generic n× n matrix — has size nΩ(logn).

The rest of the paper is devoted to proving these results.

A recent independent result by [KS13b]. Very recently, Kumar and Saraf [KS13b] indepen-
dently proved a superpolynomial (nΩ(log logn)) lower bound for homogeneous depth four circuits
using another nice augmentation of the shifted partial measure that they call bounded support
shifted partials. We do not know if this measure can be used to prove an exponential lower bound.
Indeed, they explicitly state the problem of proving exponential lower bounds for homogeneous
depth four circuits which we happen to achieve here.
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2 Overview of our proof

We now give an outline of the proof of theorem 1. Let f(x) ∈ F[x] be a polynomial of degree d on
N variables over a field F. Consider a representation of f of the form

f =
s∑
i=1

∏
j

Qij , (1)

where the Qij ’s are homogeneous polynomials. Note that any polynomial can be written in this
way - the challenge is to prove a lower bound on the total number of monomials appearing the
Qij ’s. For each i ∈ [s], the i-th term in such a representation is defined to be Ti =

∏
j Qij . First

observe that we can assume without loss of generality that the degree of each term Ti is at most
d (as we can simply discard terms of degree larger than d without changing the output). So now

assume that the total number of monomials in this representation is small, say 2o(
√
d·logN) (else we

have nothing to prove). In particular, our assumption means that every Qij has at most 2o(
√
d·logN)

monomials.

Using Random Restrictions to reduce the support size. In the first step, we consider the
identity (1) and in that set each variable to zero independently at random with probability (1− p)
(a variable is left untouched with probability p.) Then any monomial m in any of the Qij ’s which
contains t distinct variables will now survive (i.e. remain nonzero under this substitution) with
probability pt. So if we choose p = 1

dΘ(1) then via an application of the union bound we deduce

that all monomials of support at least t = Ω(
√
d) will be ‘killed’ (i.e. set to zero) under this substi-

tution11. For ease of subsequent exposition, let us introduce the following notation/terminology.

1. Support. Let m = xe11 · x
e2
2 · . . . · x

eN
N in F[x1, x2, . . . , xN ] be a monomial. The support of m,

denoted Supp(m) is the subset of variables appearing in it, i.e.

Supp(m)
def
= {i : ei ≥ 1} ⊆ [N ].

The support size of a polynomial f , denoted |Supp(f)| is the maximum support size of any
monomial appearing in f .

2. Substitution maps. Let R ⊆ [N ] be a set. The substitution map σR : F[x] 7→ F[x] is

the map which sets all the variables in R to zero, i.e. σR(f)
def
= f |xi=0 ∀i∈R. Formally,

σR : F[x] 7→ F[x] is a homomorphism such that for any monomial m ∈ F[x], σR(m) = m if
the monomial m is supported outside R and is zero otherwise.

So the above discussion can now be summarized as follows. Let t = Θ(
√
d) be a suitable integer.

By choosing a set R at random in the above manner and applying σR to the identity (1), we obtain
(with high probability) another identity

σR(f) =

s∑
i=1

∏
j

σR(Qij), where ∀i, j : σR(Qij) is homogeneous and |Supp(σR(Qij))| ≤ t. (2)

11 This reduction from homogeneous ΣΠΣΠ formulas to low support ΣΠΣΠ formulas was communicated to the
first author by Avi Wigderson. It was recently exploited by Kumar and Saraf in [KS13b] and also independently
discovered by some of the other authors of the present work.
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In this manner our problem reduces to proving lower bounds for representations of the form (2)
which we refer to as t-supported homogeneous ΣΠΣΠ circuits.

Lower bounds for low support homogeneous ΣΠΣΠ circuits. We first note that the degree
of a polynomial is an upper bound on its support size. Prior work by [Kay12, GKKS13a, KSS13,
FLMS13] had proved lower bounds for similar looking representations but in which the degree of
every Qij , rather than its support was bounded by t. We build on this work to devise a complexity
measure that we refer to as dimension of projected shifted partials. We define this measure as
follows.

1. The projection map. Let s, e ≥ 1 be integers. The linear map πe,s : F[x] 7→ F[x] maps a
polynomial f(x) ∈ F[x] to the component of degree e and support s of f(x). Formally, it is
defined as follows. We need to only specify it for monomials and it then extends by linearity
to all of F[x]. For a monomial m ∈ F[x], πe,s(m) equals m if m has degree exactly e and
support size exactly s and zero otherwise.

2. The Complexity Measure. Let k, `, r be integer parameters and f(x) ∈ F[x] be a mul-
tivariate polynomial. ∂=kf shall denote the set of all k-th order partial derivatives of f .
Let x(=`,=s) denote the set of monomials of degree exactly ` and support exactly s over the
variables in x. Let A,B ⊆ F[x] be any two sets of polynomials. A ·B stands for the set

A ·B def
= {f · g : f ∈ A and g ∈ B} .

For a linear map π : F[x] 7→ F[x], π(A) denotes the set

π(A)
def
= {π(f) : f ∈ A} .

The dimension of projected shifted partial derivatives of f (DPSP for short) is defined as

DPSPk,`,e(f)
def
= dim

(
π`+e,`+e

(
x(=`,=`) · ∂=kf

))
.

Intuitively, by shifting (i.e. multiplying) the partial derivatives by a carefully chosen set of mono-
mials and then projecting them to another appropriate set of monomials, we are able to ignore
factors (paying a relatively small cost) in which the support size is much larger than the degree so
that effectively we are reduced to the case where all the Qij ’s have small degree. Specifically, we
show that this measure is relatively small for t-supported homogeneous ΣΠΣΠ circuits (corollary
14 in section 4). We then find an explicit polynomial f whose projected shifted partials has large

dimension and thereby obtain a 2Ω( d
t
·logN) lower bound for t-supported homogeneous ΣΠΣΠ cir-

cuits computing f . We further show that the dimension of projected shifted partials of f remains

quite large even under random restrictions (with high probability) thereby obtaining a 2Ω(
√
d·logN)

lower bound overall for general homogeneous ΣΠΣΠ circuits.

Lower bounding the dimension of projected shifted partials. A crucial component of this
proof is to show that the dimension of projected shifted partials of our explicit family of polynomials
is large12. From the definition, it follows that this quantity is equal to the rank of a certain matrix

12 In prior work one needed to estimate the dimension of shifted partials of a given f and it was shown that in
many interesting cases this could be successfully accomplished simply by counting leading monomials. It seems that
counting of leading monomials perhaps will not yield good enough estimates for the modified measure used here.
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M(f) whose entries are zero or equal to the coefficient of an appropriate monomial of f . In order
to show that rank(M(f)) is large for our choice of f , we use a lemma by Noga Alon13 [Alo09]. It

goes as follows. Let B(f)
def
= M(f)T ·M(f). Clearly, the rank of B(f) is a lower bound on the rank

of M(f). By an application of Cauchy-Schwarz on the vector of nonzero eigenvalues of B(f), one
sees that

rank(B(f)) ≥ Tr(B(f))2

Tr(B(f)2)
.

We estimate Tr(B(f))2 and Tr(B(f)2) and show that the ratio is large for our choice of f (even
under random restrictions).

Organization. The rest of the paper is devoted to fleshing out this outline into a full proof. For
the sake of clarity of exposition, we first focus our attention on t-supported homogeneous ΣΠΣΠ
circuits. We first give an upper bound (in section 4) on the dimension of projected shifted partials
of any homogeneous t-supported ΣΠΣΠ circuit C. In section 5 we then give the construction of
our polynomial f and show that choosing the parameters appropriately yields a lower bound of

2Ω( d
t
·logN) on the top fanin of homogeneous t-supported ΣΠΣΠ circuits computing f - assuming

that f has large projected shifted partials dimension. In section 6 we show that our polynomial
does indeed have a large projected shifted partials dimension. Finally, in section 7 we analyze the
effect of random restrictions and show that the dimension of shifted partials of f remains large

under random restrictions thereby yielding a 2Ω(
√
d·logN) lower bound overall. We wrap up by

showing quantitatively weaker lower bounds for efficiently computable polynomials over any field
in section 8.

3 Preliminaries

Vector Spaces of Polynomials and linear maps. Let U, V ⊆ F[x] be two vector spaces of
polynomials and let π : F[x] 7→ F[x] be a linear map. Define

π(U)
def
= {π(f) : f ∈ U} ⊆ F[x].

Note that π(U) must be a subspace in F[x]. Also define

U + V
def
= F-span ({f + g : f ∈ U, g ∈ V }) .

Let us record a basic fact from linear algebra as applicable to us.

Proposition 5. Let U, V ⊆ F[x] be two vector spaces of polynomials and let π : F[x] 7→ F[x] be any
linear map. Then

π(U + V ) = π(U) + π(V ) and dim(π(U)) ≤ dim(U).

Numerical estimates.

Proposition 6 (Stirling’s Formula, cf. [Rom]). ln(n!) = n lnn− n+O(lnn)

13 We learnt of the usefulness of this lemma from the beautiful recent work by Barak, Dvir, Wigderson and
Yehudayoff [BDYW11] and a subsequent improvement by Dvir, Saraf and Wigderson [DSW13].
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Stirling’s formula can be used to obtain the following estimates (proofs of which are in appendix
section A).

Lemma 7. Let a(n), f(n), g(n) : Z>0 → Z be integer valued function such that (|f |+ |g|) = o(a).
Then,

ln
(a+ f)!

(a− g)!
= (f + g) ln a ± O

(
f2 + g2

a

)

Depth-4 arithmetic formulas. We recall some basic definitions regarding arithmetic circuits and
formulas; for a more thorough introduction, see the survey [SY10]. Let Y be a finite set of variables.
An arithmetic formula C over F is a rooted tree the leaves of which are labelled by variables in
Y and elements of the field F, and internal nodes (called gates) by + and ×. This computes a
polynomial f ∈ F[Y ] in a natural way. By the size of a formula, we mean the number of vertices in
the tree, and by the depth of a formula, we mean the longest root-to-leaf path in the tree. Our focus
here is on depth-4 formulas 14, which are formulas that can be written as sums of products of sums
of products, otherwise known as ΣΠΣΠ formulas. We will prove lower bounds for homogeneous
ΣΠΣΠ formulas which are ΣΠΣΠ formulas such that each node computes a homogeneous poly-
nomial (i.e. a polynomial whose every monomial has the same degree). Given a ΣΠΣΠ formula,
the layer 0 nodes will refer to the leaf nodes, the layer 1 nodes to the Π-gates just above the leaf
nodes, etc. The top fan-in refers to the fan-in of the root node on layer 4. We also consider variants
of ΣΠΣΠ formulas with bounds on the fan-ins of the Π gates. By ΣΠ[D]ΣΠ[t] formulas, we mean
ΣΠΣΠ formulas where the fan-ins of the layer 1 and layer 3 Π gates are at most t and D respectively.

4 Upper bounding the measure for low support ΣΠΣΠ circuits.

Consider a homogeneous ΣΠΣΠ ciruit C of the form

C =
∑
i

∏
j

Qij , where |Supp(Qij)| ≤ t for every Qij .

We will see how the measure defined in section 2 can be used to pinpoint a weakness of such a
circuit. Let us first note two simple properties of our projection map π.

Proposition 8. Let Q(x) ∈ F[x] be a homogeneous polynomial of degree d and m(x) ∈ F[x] be a
monomial of degree a. Then

πd+a,d+a (m(x) ·Q(x)) =

{
0 if |Supp(m)| < a

m(x) · σA(πd,d(Q)) = m(x) · πd,d(σA(Q)) if A
def
= Supp(m) has size a.

Our measure, namely

DPSPk,`,e(f)
def
= π`+e,`+e(x

=(`,`) · ∂=kf)

has the following properties.

14we will interchangeably use the terms ‘depth-4 circuits’, as depth-4 circuits can be converted to depth-4 formulas
with only a polynomial blow-up in size
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Proposition 9. For any pair of polynomials f, g ∈ F[x] and any 3-tuple of integers k, `, e

1. [Subadditivity.]
DPSPk,`,e(f + g) ≤ DPSPk,`,e(f) + DPSPk,`,e(g).

2. [Subprojectivity.] If g = σA(f) for some subset A, i.e. g is obtained from f by setting
some subset A of variables to zero, then

DPSPk,`,e(g) ≤ DPSPk,`,e(f).

3. [Zeroness for low-support polynomials.] If all monomials of f have support strictly less
than e then

DPSPk,`,e(f) = 0.

The proof is an easy verification. We will now upper bound how large the measure can be for any
term T of a low support homogeneous ΣΠΣΠ-circuit

C = T1 + T2 + . . .+ Ts,

and then via subadditivity derive an upperbound for the entire circuit C as well. So let us focus on
a term T in our t-supported homogeneous ΣΠΣΠ-circuit C so that T is of the form

T = Q1 ·Q2 · . . . ·Qm, |Supp(Qi)| ≤ t for each i ∈ [m],

where the Qi’s are homogeneous polynomials and T is of degree d. We will now upper bound
DPSPk,`,d−k(T ).

Preprocessing. First note that we can assume without loss of generality that every Qi (except
perhaps one) has degree at least t/2 for if not, then we can replace two such Qi’s by their product
(Qi · Qj). The product (Qi · Qj) has degree at most t and therefore also support at most t.
Continuing this process of combining factors of small degree, we end up in a situation where every
factor (except perhaps one) has degree at least t/2. In such a situation, the number of factors m
can at most be

m ≤ 1 +
d

t/2
= 1 +

2d

t
.

Proposition 10. If DPSPk,`,d−k(T ) > 0 then for any subset of k factors of T , the sum of their
degrees must be at most (kt+ k).

Proof. Assume that
DPSPk,`,d−k(T ) > 0.

Then by part (3) of Proposition 9 it follows that Supp(T ) ≥ (d− k). Now consider a subset of the

8



factors A ⊆ [m] of size k. Since

(d− k) ≤ |Supp(T )|∑
i∈[m]

deg(Qi)− k ≤ |Supp(T )|

∑
i∈[m]

deg(Qi)− k ≤
∑
i∈[m]

|Supp(Qi)|∑
i∈[m]

(deg(Qi)− |Supp(Qi)|) ≤ k

∑
i∈A

(deg(Qi)− |Supp(Qi)|) ≤ k (as each summand is positive)∑
i∈A

deg(Qi) ≤
∑
i∈A
|Supp(Qi)|+ k∑

i∈A
deg(Qi) ≤ kt+ k.

Computing the derivatives. We now compute the derivatives of our term T and examine what
the projected shifted partial derivatives of T look like. Let us introduce the relevant sets and
subspaces of polynomials which occur here. For a subset of the factors A ∈

([m]
k

)
of size k, let

dA
def
=
∑
i∈A

deg(Qi)

and let

VA
def
= F-span

(
x(=`+dA−k,≤`+kt) ·

∏
i/∈A

Qi

)
.

Then

Proposition 11.

x(=`,=`) ·
(
∂=kT

)
⊆

∑
A∈([m]

k )

VA.

Combining the above with proposition 5 we have

Corollary 12.

π`+d−k,`+d−k

(
x(=`,=`) ·

(
∂=kT

))
⊆

∑
A∈([m]

k )

π`+d−k,`+d−k (VA) .

In particular,

DPSPk,`,d−k(T ) = dim
(
π`+d−k,`+d−k

(
x(=`,=`) ·

(
∂=kT

)))
≤

∑
A∈([m]

k )

dim (π`+d−k,`+d−k (VA))
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Now fix an A ∈
([m]
k

)
and consider the vector space VA defined above. The generators of VA consist

of polynomials of the form

g(x) = m(x) ·

(∏
i/∈A

Qi

)
,

where m(x) ∈ F[x] is a monomial of degree ` + dA − k and
(∏

i/∈AQi
)

is of degree (d − dA). By
proposition 8 we have that if m(x) is not multilinear then

π`+d−k,`+d−k(g) = 0.

So assume that m(x) is a multilinear monomial,

m(x) = xS , S ∈
(

[N ]

`+ dA − k

)
.

By proposition 8

π`+d−k,`+d−k(g) = xS · πd−dA,d−dA

(
σS(
∏
i/∈A

Qi)

)
.

Thus

π`+d−k,`+d−k (VA) ⊆ F-span

({
xS · πd−dA,d−dA

(
σS(
∏
i/∈A

Qi)

)
: S ∈

(
[N ]

`+ dA − k

)})

In particular,

dim (π`+d−k,`+d−k (VA)) ≤
(

N

`+ dA − k

)
≤

(
N

`+ kt

) (
for `+ kt <

N

2
, using Proposition 10

)
.

Combining this with the above observations we have

Lemma 13. Let T be a term of the form

T = Q1 ·Q2 · . . . ·Qm, |Supp(Qi)| ≤ t for each i ∈ [m],

where the Qi’s are homogeneous polynomials and T is of degree d. For any k and any ` < N
2 − kt

we have

DPSPk,`,d−k(T ) ≤
(

2d/t+ 1

k

)
·
(

N

`+ k · t

)
.

Combining the above upper bound for a term with the subadditivity of our measure we immediately
get:

Corollary 14. Let C be a t-supported degree d homogeneous ΣΠΣΠ circuit with top fanin s, i.e C
is a degree d homogeneous circuit of the form

C =

s∑
i=1

Qi1 ·Qi2 · . . . ·Qimi , |Supp(Qij)| ≤ t.

10



Then for every k and every ` < N
2 − kt we have

DPSPk,`,d−k(C) ≤ s ·
(

2d/t+ 1

k

)
·
(

N

`+ k · t

)
.

Consequently, for any N -variate homogeneous polynomial f of degree d, any homogeneous t-
supported ΣΠΣΠ-circuit C computing f must have top fanin at least

s ≥
DPSPk,`,d−k(f)(2d/t+1

k

)
·
(

N
`+k·t

) .
In the next section we construct an explicit polynomial f for which DPSPk,`,d−k(f) is large and
then use the above to deduce a lower bound on the top fanin of any t-supported ΣΠΣΠ-circuit
computing f .

5 The lower bound for low support homogeneous ΣΠΣΠ circuits.

We will now construct an explicit homogeneous, multilinear polynomial f of degree d on N = d3

variables for which our measure, namely DPSPk,`,d−k(f) is large. We will then see that this implies
that any t-supported ΣΠΣΠ-circuit computing f must have large top fanin.

5.1 The Construction of an Explicit Polynomial

Our explicit polynomial is parametrized by an integer parameter r that we call NWr and it is a
variant of the Nisan-Wigderson design polynomial from [KSS13]. Let d be a prime power and Fd
be the finite field of size d. Let Fd2 ⊇ Fd be the quadratic extension field of Fd. We refer to the
elements of the finite field Fd2 simply as {1, 2, · · · , d2} where the first d among these belong to the
subfield Fd. Fix an integer r. Our explicit polynomial is:

NWr(x1,1, x1,2, . . . , xd,d2)
def
=

∑
h(z)∈Fd2 [z],deg(h)≤r

∏
i∈[d]

xi,h(i).

From the definition above, it is clear that for all r, NWr is an explicit homogeneous, multilinear
polynomial of degree d on N = d3 variables. our main technical lemma stated below is a lower
bound on the dimension of projected shifted partials of the design polynomial NWr.

Lemma 15. [Main Technical Lemma.] Let NWr be the Nisan-Wigderson design-based poly-
nomial defined above. Over any field F of characteristic zero, for r = d

3 and k = o(d) and

` = N
2 ·
(
1− k ln d

d

)
we have

DPSPk,`,d−k(NWr) ≥
1

dO(1)
·min

((
N

`+ d− k

)
,

(
d

k

)2

· dk · k! ·
(
N

`

))
.

We first see how to apply this lemma to deduce a lower bound on the top fanin of any t-supported
homogeneous ΣΠΣΠ circuit computing NWd/3 while postponing the proof of this lemma to section
6. So consider a t-supported ΣΠΣΠ circuit C of top fanin s computing NWd/3. We fix our choice
of parameters as follows:

k = δ · d
t

(for a small enough constant δ > 0) , ` =
N

2
·
(

1− k ln d

d

)
(3)

11



By corollary 14 we get

s ≥
DPSPk,`,d−k(NWd/3)(2d/t+1

k

)
·
(

N
`+k·t

)
≥ 1

dO(1) ·
(2d/t+1

k

) ·min

((
d
k

)2 · dk · k! ·
(
N
`

)(
N
`+kt

) ,

(
N

`+d−k
)(

N
`+kt

) ) (using lemma 15) .

=
1

2O(d/t)
·min

((
d

k

)2

· dk · k! · (`+ kt)!

`!
· (N − `− kt)!

(N − `)!
,

(`+ kt)!

(`+ d− k)!
· (N − `− kt)!

(N − `− d+ k)!

)

=
1

2O(d/t)
·min

((
d

k

)2

· dk · k! · e(−kt)·ln N−`
`

+o(1), e(d−k−kt)·ln N−`
`

+o(1)

)
(Using lemma 7)

=
1

2O(d/t)
·min

((
d

k

)2

· dk · k! · e(−kt)·ln 1+(k/d) ln d
1−(k/d) ln d , e

(d−k−kt)·ln 1+(k/d) ln d
1−(k/d) ln d

)
≥ 2Ω( d

t
·logN) (

for a small enough constant δ and t = Ω(log2 d)
)

This gives the claimed lower bound on the top fanin s of any t-supported homogeneous ΣΠΣΠ-
circuit computing NWd/3.

6 Proof of the main technical lemma

In this section we prove lemma 15, i.e. we show that the dimension of projected shifted partial
derivatives of the Nisan-Wigderson design based polynomial is within a poly(N) factor of the max-

imum possible. Let e
def
= (d− k) throughout the rest of this section.

Preliminaries. Note that in the construction in section 5 of NWr, there is a 1-1 correspondence
between the variable indices in [N ] and points in Fd × Fd2 , which we will often identify simply
with [d]× [d2]. Being homogeneous and multilinear of degree d, the monomials of NWr are in 1-1

correspondence with sets in
([N ]
d

)
≡
([d]×[d2]

d

)
. Indeed, from the construction it is clear that the

coefficient of any monomial in NWr is either 0 or 1 and that there is a 1-1 correspondence between
monomials in the support of NWr and univariate polynomials of degree at most r in Fd2 [z]. Now
since two distinct polynomials of degree r over a field have at most r common roots we get:

Proposition 16. [A basic property of our construction.] For any two distinct sets D1, D2 ∈([d]×[d2]
d

)
in the support of NWr, we have

|D1 ∩D2| ≤ r

<
e

2
(for r = d/3 and k = o(d).)

Our goal for the remainder of this section is to lower bound DPSPk,`,d−k(NWr) which is defined as
the F-linear dimension of the following set of polynomials.

DPSPk,`,d−k(NWr) = dim
(
π`+d−k,`+d−k

(
x(=`,=`) · ∂=kNWr

))
.
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Reformulating our goal in terms of the rank of an explicit matrix. Let f be any homo-
geneous multilinear polynomial of degree d on N variables. By multilinearity, the only derivatives
of f that survive are those with respect to multilinear monomials. Thus we have

∂=kf =

{
∂Cf : C ∈

(
[N ]

k

)}
.

Note that every k-th order derivative of f is homogeneous and multilinear of degree (d − k).
Combining this with proposition 8 we get that

π`+d−k,`+d−k(x
(=`,=`) · ∂=kf) =

{
xA · σA

(
∂Cf

)
: A ∈

(
[N ]

`

)
, C ∈

(
[N ]

k

)}
.

Thus we have

Proposition 17. For any homogeneous multilinear polynomial f of degree d on N variables and
for all integers k and `:

DPSPk,`,d−k(f) = dim

({
xA · σA

(
∂Cf

)
: A ∈

(
[N ]

`

)
, C ∈

(
[N ]

k

)})
.

Now the F-linear dimension of any set of polynomials is the same as the rank of the matrix corre-
sponding to our set of polynomials in the natural way. Specifically,

Proposition 18. Let f be a homogeneous multilinear polynomial of degree d on N variables. Let
k, ` be integers. Define a matrix M(f) as follows. The rows of M(f) are labelled by pairs of subsets

(A,C) ∈
([N ]
`

)
×
([N ]
k

)
and columns are indexed by subsets S ∈

( [N ]
`+e

)
. Each row (A,C) corresponds

to the polynomial

fA,C
def
= xA · σA

(
∂Cf

)
in the following way. The S-th entry of the row (A,C) is the coefficient of xS in the polynomial
fA,C . Then,

DPSPk,`,d−k(f) = rank(M(f)).

So our problem is equivalent to lower bounding the rank of the matrix M(f) for our constructed
polynomial f . Now note that the entries of M(f) are coefficients of appropriate monomials of f
and it will be helpful to us in what follows to keep track of this information. We will do it by
assigning a label to each cell of M(f) as follows. We will think of every location in the matrix

M(f) being labelled with either a set D ∈
([N ]
d

)
or the label InvalidSet depending on whether

that entry contains the coefficient of the monomial xD of f or it would have been zero regardless
of the actual coefficients of f . Specifically, let us introduce the following notation. For sets A,B
define:

1.

A B =

{
A \B ifB ⊆ A
InvalidSet otherwise

2.

A ]B =

{
A ∪B ifB ∩A = ∅
InvalidSet otherwise

13



Then the label of the ((A,C), S)-th cell of M(f) is defined to be the set (S A)]C. Equivalently,
if the label of a cell of the (A,C)-th row of M is a set D then the column must be the one corre-
sponding to S = (DC)]A (if C is not a subset of D or if (DC) and A are not disjoint then D
cannot occur in the row indexed by (A,C)). For the rest of this section, we will refer to M(NWr)
simply as the matrix M . Our goal then is to show that the rank of this matrix M is reasonably
close (within a poly(d)-factor) of the trivial upper bound, viz. the minimum of the number of rows
and the number of columns of M . It turns out that our matrix M is a relatively sparse matrix
and we will exploit this fact by using a relevant lemma from real matrix analysis to obtain a lower
bound on its rank.

The Surrogate Rank. Consider the matrix B
def
= MT ·M . Then B is a real symmetric, positive

semidefinite matrix. From the definition of B it is easy to show that:

Proposition 19. Over any field F we have

rank(B) ≤ rank(M).

Over the field R of real numbers we have

rank(B) = rank(M).

So it suffices to lower bound the rank of B. By an application of Cauchy-Schwarz on the vector of
nonzero eigenvalues of B, one obtains:

Lemma 20. [Alo09] Over the field of real numbers R we have:

rank(B) ≥ Tr(B)2

Tr(B2)
.

Let us call the quantity Tr(B)2

Tr(B2)
as the surrogate rank of M , denoted SurRank(M). It then suffices

to show that this quantity is within a poly(d) factor of U = min(
(
d3

`+e

)
,
(
d3

`

)
·
(
d3

k

)
). In the rest of

this section, we will first derive an exact expression for SurRank(B) and then show that it is close
to U .

6.1 Deriving an exact expression for SurRank(B).

We will now calculate an exact expression for SurRank(B), or equivalently an exact expression for
Tr(B) and Tr(B2).

Calculating Tr(B). Calculating Tr(B) is fairly straightforward. From the definition of the matrix
B we have:

Proposition 21. For any 0,±1 matrix M (i.e. a matrix all of whose entries are either 0, or +1
or −1) we have

Tr(B) = Tr(MT ·M) = number of nonzero entries in M.

Now we can calculate the number of nonzero entries in M by going over all sets D ∈
([N ]
d

)
∩

Supp(NWr), calculating the number of cells of M labelled with D and adding these up. This
yields:

14



Proposition 22.

Tr(B) = d2r+2 ·
(
d

k

)
·
(
N − e
`

)
.

Calculating Tr(B2). From the definition of B = MT ·M and expanding out the relevant summa-
tions we get:

Proposition 23.

Tr(B2) =
∑

(A1,C1),(A2,C2)∈
(
([N ]

` )×([N ]
k )

)2

∑
S1,S2∈( [N ]

`+e)
2

M(A1,C1),S1
·M(A1,C1),S2

·M(A2,C2),S1
·M(A2,C2),S2

.

We will use the following notation in doing this calculation. For a pair of row indices

((A1, C1), (A2, C2)) ∈
(([N ]

`

)
×
([N ]
k

))2
and a pair of column indices S1, S2 ∈

(( [N ]
`+e

))2
, the box

b defined by them, denoted b = 2− box((A1, C1), (A2, C2), S1, S2) is the four-tuple of cells

(((A1, C1), S1), ((A1, C1), S2), ((A2, C2), S1), ((A2, C2), S2)).

Since all the entries of our matrix M are either 0 or 1 we have:

Proposition 24.

Tr(B2) = Number of boxes b with all four entries nonzero.

For a box b = 2−box((A1, C1), (A2, C2), S1, S2), its tuple of labels, denoted labels(b) is the tuple of
labels of the cells ((A1, C1), S1), ((A1, C1), S2), ((A2, C2), S1), ((A2, C2), S2)) in that order. In other
words,

labels(b) = ((S1 A1) ] C1, (S2 A1) ] C1, (S1 A2) ] C2, (S2 A2) ] C2).

We then have

Proposition 25. Tr(B2) equals the number of boxes

b = 2− box((A1, C1), (A2, C2), S1, S2)

such that all the four labels in labels(b) are valid sets in the support of our design polynomial NWr.

So our problem boils down to counting the number of boxes in which all the four labels are valid
sets in the support of our polynomial NWr. Our key observation is that the sets labelling such
boxes must satisfy certain constraints on pairwise intersection sizes and this will help rule out boxes
with more than two distinct labels.

Proposition 26. Suppose that all the labels of a box

b = 2− box((A1, C1), (A2, C2), S1, S2)

are valid sets:

labels(b) = (D11, D12, D21, D22) ∈
(

[N ]

d

)4

.

Then we must have that either
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1. |D11 ∩D12| ≥ e
2 and |D21 ∩D22| ≥ e

2 or,

2. |D11 ∩D21| ≥ e
2 and |D12 ∩D22| ≥ e

2 .

Proof. First observe that

D11 ∩D12 ⊇ (A2 \A1) and D21 ∩D22 ⊇ (A1 \A2). (4)

Next observe that

D11 ∩D21 ⊇ S1 \ (A1 ∪A2) and D12 ∩D22 ⊇ S2 \ (A1 ∪A2). (5)

Now let |A1 ∩A2| = v.

Case 1. v ≤ (`− e
2). Then the containment (4) implies that

|D11 ∩D12| ≥ (`− v) ≥ e

2
and |D21 ∩D22| ≥ (`− v) ≥ e

2
.

Case 2. v ≥ (`− e
2). Then the containment (5) implies that

|D11 ∩D21| ≥ (`+ e)− (`+ `− v) ≥ e

2
and |D12 ∩D22| ≥ (`+ e)− (`+ `− v) ≥ e

2
.

Indeed, the above observation is why we choose our polynomial f to be a design polynomial with
r < e

2 since the design polynomial property ensures that any two distinct sets D1 and D2 in the
support of NWr have intersection size at most r < e

2 . This means that any box b that contributes
to Tr(B2) must have the property that its label set labels(b) contains at most two distinct sets in
the support of NWr.

Corollary 27. For any two distinct sets D1, D2 ∈
([N ]
d

)
define

µ0(D1)
def
= {box b : labels(b) = (D1, D1, D1, D1)}

µ1(D1, D2)
def
= {box b : labels(b) = (D1, D2, D1, D2)}

µ2(D1, D2)
def
= {box b : labels(b) = (D1, D1, D2, D2)}

Let the support of NWr, denoted Supp(NWr) ⊂
([N ]
d

)
, be the set of all sets D ∈

([N ]
d

)
such that the

coefficient of the monomial xD in NWr is nonzero. Then

Tr(B2) =
∑

D1∈Supp(NWr)

|µ0(D1)| +
∑

D1 6=D2∈Supp(NWr)

|µ1(D1, D2)|+
∑

D1 6=D2∈Supp(NWr)

|µ2(D1, D2)| .

By the way, proposition 26 rules out the existence of any box b having labels(b) = (D1, D2, D2, D1)
with D1, D2 ∈ Supp(NWr) and that is why there is no term in Tr(B2) corresponding to such boxes.
In what follows we will compute Tr(B2) by deriving expressions for |µ0(D1)| , |µ1(D1, D2)| and
|µ2(D1, D2)| and then summing these up over D1, D2 ∈ Supp(NWr). We first observe:

Proposition 28. For any set D1 ∈
([N ]
d

)
and any row (A,C) of M , there can be at most one cell

in that row labelled with the set D1.

This means that any box b = 2 − box((A1, C1), (A2, C2), S1, S2) contributing to either µ0(D1) or
µ2(D1, D2), the columns S1 and S2 must be the same.
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6.2 Calculating µ0(D1).

Every box b ∈ µ0(D1) is of the form b = 2−box((A1, C1), (A2, C2), S1, S1). Let u = |C1∩C2|. Due
to the type of the box we know that (D1  C1) ]A1 = (D1  C2) ]A2. This implies the following
two things:

1. C1 \ (C1 ∩ C2) ⊆ A1 and C2 \ (C1 ∩ C2) ⊆ A2.

2. A1 \ (C1 \ (C1 ∩ C2)) = A2 \ (C2 \ (C1 ∩ C2)).

Due to the fact that |C1 \ (C1 ∩C2)| = |C2 \ (C1 ∩C2)| = k − u and by 1 above, k − u elements in
A1 and A2 are fixed. Due to 2 above, A1 and A2 must agree on the rest of the elements which can
be chosen from ([N ] \D1) ∪ (C1 ∩ C2). Analyzing this situation gives

Proposition 29.

|µ0(D1)| =
∑

0≤u≤k

(
N − d+ u

`− k + u

)
·
(

d

u, k − u, k − u, d− 2k + u

)

6.3 Calculating µ1(D1, D2).

Let D1, D2 ∈
([N ]
d

)
be two distinct subsets in the support of NWr. We consider a box b =

2− box((A1, C1), (A2, C2), S1, S2) in µ1(D1, D2) which is equivalent to saying that

(D1  C1) ]A1 = (D1  C2) ]A2 = S1

and
(D2  C1) ]A1 = (D2  C2) ]A2 = S2.

Note that here (C1 ∪ C2) ⊆ D1 ∩D2. Analyzing this situation as in Section 6.2 gives

Proposition 30. If |D1 ∩D2| = w then

|µ1(D1, D2)| =
∑

0≤u≤k

(
N − 2d+ w + u

`− k + u

)
·
(

w

u, k − u, k − u,w − 2k + u

)

6.4 Calculating µ2(D1, D2).

Let D1, D2 ∈
([N ]
d

)
be two distinct subsets in the support of NWr. We consider a box b =

2 − box((A1, C1), (A2, C2), S1, S2) in µ1(D1, D2). As we observed before this can happen only if
S1 = S2 = S (say). By definition we have

(D1  C1) ]A1 = (D2  C2) ]A2 = S

Here, let C ′1 = C1∩ (D1∩D2), let C ′2 = C2∩ (D1∩D2), and let C = C ′1∩C ′2. Also let u1 = |C ′1 \C|,
u2 = |C ′2 \ C|, and u = |C|. Analyzing this situation as in Section 6.2 gives

Proposition 31. If |D1 ∩D2| = w then

|µ2(D1, D2)| =
∑

0≤u,u1,u2≤k

(
N − 2d+ w + 2k − u− u1 − u2

`− d+ k + w − u− u1 − u2

)

·
(

d− w
k − u− u1

)
·
(

d− w
k − u− u2

)
·
(

w

u1, u2, u, w − u− u1 − u2

)
.
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6.5 An exact expression for SurRank(B).

We are now ready to give an expression for Tr(B2) and thereby for SurRank(B) as well. Let Rd(w, r)
denote the number of univariate polynomials in Fd2 [z] of degree at most r having exactly w distinct
roots in the subfield Fd. Then using the expression for |µ0(D1)| , |µ1(D1, D2)| and |µ2(D1, D2)|
calculated above we get

Tr(B2) = T0 + T1 + T2,

where

T0 = d2r+2 ·
∑

0≤u≤k

(
N − d+ u

`− k + u

)
·
(

d

u, k − u, k − u, d− 2k + u

)

T1 = d2r+2 ·
∑

k≤w≤r

∑
0≤u≤k

Rd(w, r) ·
(
N − 2d+ w + u

`− k + u

)
·
(

w

u, k − u, k − u,w − 2k + u

)

T2 = d2r+2 ·
∑

0≤w≤r

∑
0≤u,u1,u2≤k

Rd(w, r) ·
(
N − 2d+ w + 2k − u− u1 − u2

`− d+ k + w − u− u1 − u2

)

·
(

d− w
k − u− u1

)
·
(

d− w
k − u− u2

)
·
(

w

u1, u2, u, w − u− u1 − u2

)
.

6.6 Estimating the above expression.

First note that any polynomial h(z) ∈ Fd2 [z] of degree at most r that has w roots in Fd[z] must be
of the form

h(z) = (z − α1) · (z − α2) · . . . · (z − αw) · ĥ(z),

where each αi is in Fd and ĥ(z) ∈ Fd2 [z] is of degree at most (r − w). Thus we have

Rd(w, r) ≤ d2r−2w+2 ·
(
d

w

)
≤ d2r+2

dw · w!

Estimating T0. We have(
d

u, k − u, k − u, d− 2k + u

)
=

(d) · (d− 1) · . . . (d− 2k + u+ 1)

u! · (k − u)! · (k − u)!

≤ (d) · (d− 1) · . . . (d− 2k + u+ 1)

≤ d2k−u

and since (`− k) ≤ (N − d) we have that for all 0 ≤ u ≤ k:(
N − d+ u

`− k + u

)
≤
(
N − d+ k

`

)
.

So for d ≥ 2

T0 ≤ 2 · d2r+2+2k ·
(
N − d+ k

`

)
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We will now upper bound each of the sums T1 and T2.

Estimating T1. Let

S(u,w)
def
=

1

dw · w!
·
(
N − 2d+ w + u

`− k + u

)
·
(

w

u, k − u, k − u,w − 2k + u

)
.

It turns out that S(u,w) is maximized at w = u = k (see section B.1 in appendix) and consequently
we have:

Claim 32. For any d > 4 and k < d
4 and ` < N

2 :

T1 ≤ (rk) · d
4r+4

dk · k!
·
(
N − 2d+ 2k

`

)
.

Estimating T2. Let

S1(w, u, u1, u2) =
1

dw · w!
·
(
N − 2d+ w + 2k − u− u1 − u2

`− d+ k + w − u− u1 − u2

)
·
(

d− w
k − u− u1

)
·

·
(

d− w
k − u− u2

)
·
(

w

u1, u2, u, w − u− u1 − u2

)
.

It turns out that S1(w, u, u1, u2) is maximized at w = u = u1 = u2 = 0 (see section B.2 in
appendix). Consequently we have:

Claim 33. For ` > N
d + 2d and k < d

3 we have

T2 ≤ (rk3) · d4r+4 ·
(
N − 2d+ 2k

`− d+ k

)
·
(
d

k

)2

.

Combining the above bounds, for the choice of parameters

r =
d

3
, and k = o(d) and ` =

N

2
·
(

1− k ln d

d

)
, (6)

we have:

Tr(B2) ≤ 2 · d2r+2+2k ·
(
N − e
`

)
+ (rk) · d

4r+4

dk · k!
·
(
N − 2e

`

)
+ (rk3) · d4r+4 ·

(
N − 2e

`− e

)
·
(
d

k

)2

Now observe that for the above choice of parameters r, k and ` we have

2 · d2r+2+2k ·
(
N − e
`

)
≤ (rk) · d

4r+4

dk · k!
·
(
N − 2e

`

)
so that overall

Tr(B2) ≤ (2k3d) · (d4r+4) ·max

(
1

dk · k!
·
(
N − 2e

`

)
,

(
N − 2e

`− e

)
·
(
d

k

)2
)
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This means that

SurRank(B) =
Tr(B)2

Tr(B2)

≥ 1

2k3d
·min

((
d
k

)2 · dk · k! ·
(
N−e
`

)2(
N−2e
`

) ,

(
N−e
`

)2(
N−2e
`−e

))

=
1

dO(1)
·min

((
d

k

)2

· dk · k! ·
(
N

`

)
,

(
N

`+ e

))
(using (6)) .

This proves our main technical lemma, namely lemma 15.

7 The lower bound for general homogeneous ΣΠΣΠ circuits.

As hinted in the introduction, the problem of lower bounding the size of general homogeneous
ΣΠΣΠ circuits reduces to proving lower bounds for low support homogeneous ΣΠΣΠ circuits. We
now give the details of this reduction.

Definition 1. For a real number p ∈ (0, 1], define the distribution Dp on subsets of [N ] obtained by
choosing every element in [N ] independently at random with probability (1− p). Thus, Dp : 2[N ] 7→
(0, 1] and for any R ⊆ [N ] we have

Dp(R) = (1− p)|R| · pN−|R|.

Let NWr be the Nisan-Wigderson design polynomial as constructed in section 5. Let us consider a
homogeneous ΣΠΣΠ-circuit C computing it, i.e. consider any representation of NWr of the form

NWr =
∑
i

∏
j

Qij , (7)

where the Qij ’s are also homogeneous polynomials. Suppose that the total number of monomials
in the polynomials Qij ’s is bounded by s. Then the following holds true:

Lemma 34. For any homomorphism σR : F[x] 7→ F[x] we have

σR(NWr) =
∑
i

∏
j

σR(Qij).

For a set R chosen randomly according to Dp, we have:

Pr
R∼Dp

[∃i, j : σR(Qij) contains a monomial of support more than t] ≤ s · pt.

Proof. The distribution Dp “kills” a variable x with probability (1 − p), i.e. σR(x) = 0 with
probability (1− p). Now a monomial m of support size more than t contains at least t+ 1 distinct
variables. Each of these variables “survives” with probability p so that overall the monomial m
survives with probability at most pt+1, i.e.

Pr
R∼Dp

[σR(m) 6= 0] ≤ pt+1 < pt.

By the union bound, the probability that some σR(Qij) contains a monomial of support t is at
most s · pt.
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Choosing the parameters t, p and s: Set t =
√
d, p = d−ε (for an sufficiently small ε > 0 to be

fixed later), and suppose s < 2
ε
2

√
d log d. Then,

Pr
R∼Dp

[∃i, j : σR(Qij) contains a monomial of support more than t] < 2−
ε
2

√
d log d � 1.

This means, there are “plenty of” subsets R such that the circuit C restricted to the variables in
R (i.e. σR(C)) is a t-supported homogeneous depth-4 circuit. If we can now show that there exists

such an R that also keeps DPSPk,`,e(σR(NWr)) sufficiently close to min
((

N
k

)
·
(
N
`

)
,
(
N
`+e

))
then we

are done as before (by our discussion in Section 5.1). The following lemma together with Lemma
34 show this.

Lemma 35.

Pr
R∼Dp

[
DPSPk,`,e(σR(NWr)) <

pk

dΘ(1)
·min

((
N

k

)
·
(
N

`

)
,

(
N

`+ e

))]
<

1

dΘ(1)
.

Proof. To prove this lemma, we need to examine how the setting of variables in R ∼ Dp to zero
effects the dimension of projected shifted partials of NWr. Clearly

σR(NWr) =
∑

D∈Supp(NWr)

eD · xD,

where eD is an indicator variable such that eD = 1 if σR(xD) 6= 0, and eD = 0 otherwise. By
definition,

DPSPk,`,e(σR(NWr)) = dim
(
π`+e,`+e(x

(=`,=`) · ∂=kσR(NWr))
)

Like before (by proposition 18), the above measure corresponds to the rank of a matrix MR :=
M(σR(NWr)), which in turn equals the rank of BR = MT

R ·MR over the field of reals. rank(BR) is

lower bounded by Tr(BR)2

Tr(B2
R)

so that it suffices to show that this ratio, namely Tr(BR)2

Tr(B2
R)

is sufficiently

large with high probability when R ∼ Dp. Hereafter, we will refer to σR(NWr) as g at some places,
and the number of monomials in σR(NWr) as µ(g). Let ER∼Dp [Y ] denote the expected value of a
random variable Y when R is chosen according to the distribution Dp. We will at times simply
write E [Y ] or Pr[·] forgoing the subscript R ∼ Dp. Note that

µ(g) =
∑

D∈Supp(NWr)

eD

⇒ ER∼Dp [µ(g)] = pd · d2r+2 = γ (say)

Claim 36. PrR∼Dp

[
Tr(BR) ≤ 1

2 · p
d · Tr(B)

]
≤ 5

pd , if 0 < ε < 2
3 and d > max

(
2

1
1−ε , 1−ε

2/3−ε

)
.

Proof. As in proposition 21, Tr(BR) = Tr(MT
R ·MR) = number of nonzero entries in MR. Arguing

along the same line as in proposition 22,

Tr(BR) = µ(g) ·
(
d

k

)
·
(
N − e
`

)
⇒ E [Tr(BR)] = γ ·

(
d

k

)
·
(
N − e
`

)
= pd · Tr(B)
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Hence,

Pr

[
Tr(BR) ≤ 1

2
· pd · Tr(B)

]
= Pr

[
µ(g) ≤ 1

2
· γ
]
.

It turns out that the variance of µ(g), denoted by Var(µ(g)), can be upper bounded as follows (see
section C in the appendix).

Var(µ(g)) ≤ γ · (1− pd) + γ2 · 2

pd
(if d > 2

1
1−ε )

⇒ Pr

[
µ(g) ≤ 1

2
· γ
]
≤ 5

pd
(by Chebyshev’s inequality, if d >

1− ε
2/3− ε

)

Claim 37. Pr
[
Tr(B2

R) ≥ (2k3d2) · γ2 ·max
(

1
(pd)k·k!

·
(
N−2e
`

)
,
(
N−2e
`−e

)
·
(
d
k

)2)] ≤ 1
d .

Proof. We argue along the same line as in section 6.1. By propositions 24 and 25, Tr(B2
R) equals the

number of boxes in MR such that all the four labels are valid sets in the support of σR(NWr). Ob-
serve that proposition 26 is applicable in this setting as well because Supp(σR(NWr)) ⊆ Supp(NWr).
Which means, following the same definitions of µ0(D1), µ1(D1, D2) and µ2(D1, D2) (as in corollary
27), we arrive at the following equations:

Tr(B2
R) = T ′0 + T ′1 + T ′2, where

T ′0 =
∑

D1∈Supp(NWr)

eD1 · |µ0(D1)|

T ′1 =
∑

D1 6=D2∈Supp(NWr)

eD1 · eD2 · |µ1(D1, D2)|

T ′2 =
∑

D1 6=D2∈Supp(NWr)

eD1 · eD2 · |µ2(D1, D2)| ,

where eD’s are the indicator variables as defined above. Now, using the facts that E [eD] = pd and
E [eD1 · eD2 ] = pd−w if |D1 ∩ D2| = w, and mimicking the calculations of sections 6.5 and 6.6, we
get the following upper bound.

E
[
Tr(B2

R)
]

= E [T ′0] + E [T ′1] + E [T ′2]

≤ (2k3d) · γ2 ·max

(
1

(pd)k · k!
·
(
N − 2e

`

)
,

(
N − 2e

`− e

)
·
(
d

k

)2
)

By Markov’s inequality, Pr
[
Tr(B2

R) ≥ d · E
[
Tr(B2

R)
]]
≤ 1

d . This proves Claim 37.
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Using Claims 36 and 37, with probability at least 1− 6
pd ,

Tr(BR) >
1

2
· pd · Tr(B) and

Tr(B2
R) < (2k3d2) · γ2 ·max

(
1

(pd)k · k!
·
(
N − 2e

`

)
,

(
N − 2e

`− e

)
·
(
d

k

)2
)
,

⇒ rank(BR) ≥ Tr(BR)2

Tr(B2
R)

>
pk

dΘ(1)
·min

((
N

k

)
·
(
N

`

)
,

(
N

`+ e

))
(by mimicking the previous calculations)

The proves Lemma 35 as rank(BR) = DPSPk,`,e(σR(NWr)).

By Lemma 34 and 35, and applying union bound, there exists a subset R such that σR(C) is a
t-supported homogeneous depth-4 circuit and

DPSPk,`,e(σR(NWr)) ≥
pk

dΘ(1)
·min

((
N

k

)
·
(
N

`

)
,

(
N

`+ e

))
.

If we choose a sufficiently small constant ε then pk = d−εk is sufficiently large and the top fanin of

σR(C) (also the top fanin of C) is 2Ω(
√
d·logN). Recall that we arrived at this conclusion assuming

that the total sparsity of C, which was denoted by s, is less than 2ε/2·
√
d·log d. Therefore, overall we

get a lower bound of 2Ω(
√
d·logN) on the size of the homogeneous depth-4 circuit C computing NWr.

8 Lower bounds for polynomial families in VP

The Iterated Matrix Multiplication polynomial. Fix any n, d ∈ N such that n, d ≥ 2.

Define sets of variables X1, . . . , Xd as follows. If p ∈ {1, d}, Xp =
{
x

(p)
j

∣∣∣ j ∈ [n]
}

is a set of

n variables; otherwise Xp =
{
x

(p)
j,k

∣∣∣ j, k ∈ [n]
}

is a set of n2 variables. Let X =
⋃
p∈[d]Xp and

N := |X| = (d − 2)n2 + 2n. We think of X1 and Xd as row and column vectors of variables
respectively and of Xp (p ∈ [d] \ {1, d}) as n × n matrices of variables. Now, we define the
IMMn,d(X) polynomial as the (unique entry of) the product of the matrices X1 · · ·Xd. Formally,

IMMn,d(X) =
∑

j1,...,jd−1

x
(1)
j1
x

(2)
j1,j2
· · ·x(d−1)

jd−2,jd−1
x

(d)
jd−1

An alternate, combinatorial and quite useful way of looking the above polynomial is through the
lens of Algebraic Branching Programs (ABPs) (see, e.g., [SY10]). Consider a homogeneous ABP

A defined over vertex sets V0, . . . , Vd where V0 = {v(0)}, Vd = {v(d)}, and Vp = {v(p)
i | i ∈ [n]}

for p ∈ [d − 1]. The ABP contains all possible edges between Vp and Vp+1 for p ∈ {0, . . . , d − 1}.
Each edge e is labelled with a distinct variable from X: the edge e = (v(0), v

(1)
j ) is labelled with

x
(1)
j ; e = (v

(p)
i , v

(p+1)
j ) is labelled with x

(p+1)
i,j ; finally, e = (v

(d−1)
i , v(d)) is labelled with x

(d)
j . The

ABP computes a polynomial by summing over all paths ρ from v(0) to v(d) the monomial which is
obtained by multiplying the variables labelling the edges along the path. It is easily verified that

23



the polynomial computed this way is IMMn,d. Throughout, we omit mention of the set of variables
X if the values of n and d are fixed. Recall that a monomial over the variables in X is said to be
multilinear if it is not divisible by x2 for any x ∈ X. Given a monomial xi, we define the matrix
support of xi — denoted MSupp(xi) — to be the set of all p ∈ [d] such that m is divisible by some
x ∈ Xp. We call a monomial xi set-multilinear if it is multilinear and furthermore, it is divisible
by exactly one variable in Xp for each p ∈ MSupp(xi).

Throughout this section, we fix some n, d ∈ N and work with X =
⋃
p∈[d]Xp, the set of variables

over which IMMn,d is defined.

Remark 38. In what follows we choose to work with a measure that is a slight variant of the
dimension of the projected shifted partial measure (defined in section 2). This is only for ease of
exposition. We call this variant the dimensions of the shifted projected partials.

The measure. Let f be a polynomial in F[x1, . . . , xN ] of degree d. Let S1 and S2 be certain
fixed subsets of monomials in the N variables. For a polynomial g =

∑
i cix

i, where ci ∈ F, define
πS1(g) :=

∑
xi∈S1

cix
i i.e. πS1(g) is the projection of g onto the monomials in S1. Consider the

following vector space, we call the space of the shifted projected partials of f :

Vk,`(f) := spanF{xi · πS1

(
∂kf

∂xj1 . . . ∂xjk

)
: |i| ≤ ` and

∏
q∈[k]

xjq ∈ S2}. (8)

The measure is the dimension of this space, denoted by µk,`(f) := dim(Vk,`(f)). The choices of S1

and S2 used for IMMn,d will be made precise in sections 8.1 and 8.3. The parameters k and ` will
also be fixed in the analysis later. Since S1 and S2 are fixed, it is easy to verify that the measure
obeys the subadditivity property.

Lemma 39 (Subadditivity Lemma). For any f, g ∈ F[X], we have µk,`(f + g) ≤ µk,`(f) + µk,`(g).

8.1 The derivatives of IMMn,d

We define the derivative operators as in [FLMS13]. Let X1, X2, . . . , Xd be the matrices that define
IMMn,d. Let k be a parameter which will be fixed later and r = b d

k+1c − 1. We choose evenly
spaced k indices p1, p2, . . . , pk, i.e. p1, p2, . . . , pk are chosen so that for all 1 ≤ q ≤ k + 1, pq −
(pq−1 +1)) ≥ r, where p0 = 0 and pk+1 = d+1. Now we choose one variable each from the matrices

Xp1 , Xp2 , . . . , Xpk , say x
(p1)
i1,j1

, x
(p2)
i2,j2

, . . . , x
(pk)
ik,jk

, respectively and take derivatives with respect to them

- this defines the set S2 in Equation (8). More precisely, for any I = (i1, j1, . . . , ik, jk) ∈ [n]2k,

let mI denote the monomial x
(p1)
i1,j1

x
(p2)
i2,j2

. . . x
(pk)
ik,jk

and for a polynomial F ∈ F[X], let ∂IF denote(
∂kF

∂x
(p1)
i1,j1

...∂x
(pk)

ik,jk

)
. Then S2 is the set {mI | I ∈ [n]2k}.
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8.2 Restriction applied to IMMn,d(X)

We will define a restriction as in Section 6 of [FLMS13]. Fix p′1, . . . , p
′
k+1 ∈ [d] such that for each

q ∈ [k+ 1], we have min{p′q− (pq−1 + 1), pq− (p′q + 1)} ≥ b r−1
2 c, where p0, . . . , pk+1, r are as defined

in section 8.1. Let P ′ = {pq | q ∈ [k]} ∪
{
p′q
∣∣ q ∈ [k + 1]

}
. For j1, jd ∈ [n] and tuple of bijections

B = (φp ∈ Sn : p ∈ [d] \ (P ′ ∪ {1, d})), we define the restriction τ = τj1,jd,B as follows: For x ∈ X

τ(x) =


0 if x = x

(1)
j for j 6= j1,

0 if x = x
(d)
j for j 6= jd,

0 if x = x
(p)
i,j for p ∈ [d] \ (P ′ ∪ {1, d}) and φp(i) 6= j,

x otherwise.

We denote by R the set of all such restrictions. Given a restriction σ ∈ R and a polynomial
f ∈ F[X], we denote by f |σ the polynomial f(σ(x) : x ∈ X). Let τ0 = τ1,1,B0 where B0 is a tuple
of identity permutations and let F = IMMn,d|τ0 .

8.3 Measure µk,` applied to a restriction of IMMn,d(X)

Just as in [FLMS13], we work with the special restriction F = IMMn,d|τ0 for the ease of presen-
tation. The lower bound on the measure given by Lemma 40 (below) holds for every restriction
τ applied to IMMn,d i.e. for every IMMn,d|τ . In [FLMS13] it was proved that the dimension of
the shifted partials space of F is large. It turns out that the measure µk,`(F ) is exactly equal to
the the dimension of the shifted partials space of F , if the set S1 in Equation (8) is defined as follows.

The projection πS1 : The map πS1 becomes well defined once we specify the set S1. Let
p1, p2, . . . , pk be as defined in Section 8.1. The set S1 is defined as the set of all set-multilinear
monomials which are supported on variables in X\

(
∪qXpq

)
. We can now prove this lemma formally.

Lemma 40. Let k, ` ∈ N be arbitrary parameters such that 20k < d < ` and k ≥ 2. Then,

µk,`(F ) ≥M ·
(
N + `

`

)
−M2 ·

(
N + `− d/40

`− d/40

)
,
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where M =
⌊
n1.5k

⌋
.

The proof of this lemma follows that of [FLMS13, Lemma 11] closely. For completeness, the entire
proof is presented in section D of the appendix.

8.4 Lower bounds for certain ΣΠΣΠ formulas

In this section, we prove a lower bound for certain variants of ΣΠΣΠ formulas that we define below.
Fix n and d and let X be the set of input variables to IMMn,d. Let Z denote the set

⋃
p∈P ′ Xp —

where P ′ is as defined in section 8.2 — and Y = X \ Z. Let J denote the ideal generated by all
the non-set-multilinear monomials over X.

Given X ′ ⊆ X and f ∈ F[X], we denote by degX′(f) the degree of f seen as a polynomial over the
variables in X ′ with coefficients from F[X \X ′].

Definition 2 (ΣΠ[D]ΣΠ
[t]
Y formulas). An ΣΠΣΠ formula C is said to be an ΣΠ[D]ΣΠ

[t]
Y formula

if the fan-ins of its layer 3 multiplication gates are bounded by D, and the layer 1 Π gates in C
compute monomials xi s.t. degY (xi) ≤ t.

The main result of this section is the following:

Lemma 41. For large enough n, d ∈ N, any D ∈ N and t, k ∈ N such that t ≥ 4 and kt ≤ d/1000,

the following holds. Let C be a ΣΠ[D]ΣΠ
[dt/2e]
Y formula such that C = IMMn,d|σ (mod J ) for some

σ ∈ R. Then, the top fan-in of C is at least 1
4·2d

(
n1.25k
eD

)k
.

The proof of the above combines Lemma 40 along with an upper bound on the dimension of the
shifted projected partial derivative space of C. To be precise, we prove the following:

Lemma 42. For any n, d,D, k, ` ≥ 2, we have the following. Let C be a ΣΠ[D]ΣΠ
[t]
Y formula over

the variables in X of top fan-in s and let f be any polynomial from J . Then, we have

µk,`(C + f) ≤ s · 2d ·
(
D

k

)
·
(
N + `+ (t+ 1)k

`+ (t+ 1)k

)
Assuming the above lemma, let us finish the proof of Lemma 41. We will need the following
technical facts (see [FLMS13, Section 3] for the proof of Fact 2).

Fact 1. For any integers N, `, r such that r < `, we have(
N + `

`

)r
≤

(
N+`
`

)(
N+`−r
`−r

) ≤ (N + `− r
`− r

)r
.

Fact 2. For any integers n, d ≥ 2, N = (d − 2)n2 + 2dn and t ≥ 1, there exists an integer ` > d

such that n1/16 ≤
(
N+`
`

)t ≤ n1/4.

Proof of Lemma 41. [FLMS13, Claim 14] observe that all the polynomials IMMn,d|σ are equivalent
in the sense that they can be transformed to one another by permuting the variables in each Xp

(p ∈ [d]) suitably, which also preserves the ideal J . Thus, it suffices to prove the lemma for
F = IMMn,d|τ0 only.
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By Fact 2, we can fix ` ∈ N such that n1/16 ≤
(
N+`
`

)t ≤ n1/4. For this choice of `, we first lower
bound µk,`(F ) using Lemma 40, which tells us that

µk,`(F ) ≥M ·
(
N + `

`

)
−M2

(
N + `− d/40

`− d/40

)
(9)

where M = bn1.5kc.
Note that for our setting of parameters, we have

M
(
N+`
`

)
M2
(N+`−d/40

`−d/40

) ≥ 1

n1.5k
·
(
N + `

`

)d/40

(by Fact 1)

≥ (n1/16t)d/40

n1.5k
≥ nΩ(k) ≥ 2

for large enough n. Thus, using the above and (9), we obtain that

µk,`(F ) ≥ M

2
·
(
N + `

`

)
(10)

Now, since C = F (mod J ), we have F = C + f for some polynomial f ∈ J . Then, Lemma 42
and Inequality (10) above together imply that

s ≥ M

2 · 2d ·
(
D
k

) · (
N+`
`

)(N+`+(dt/2e+1)k
`+(dt/2e+1)k

) ≥ 1

2 · 2d
n1.5k/2

( eDk )k
·
(
N+`
`

)(
N+`+tk
`+tk

)
≥ 1

4 · 2d
n1.5k

( eDk )k
· 1(

N+`
`

)tk (by Fact 1)

≥ 1

4 · 2d

(
n1.5k

eD ·
(
N+`
`

)t
)k
≥ 1

4 · 2d

(
n1.5k

eD · n1/4

)k
(by choice of `)

≥ 1

4 · 2d

(
n1.25k

eD

)k
,

which implies the lemma.

All that remains is to prove Lemma 42, which is done in section E of the appendix.

8.5 Lower bounds for ΣΠΣΠ homogeneous formulas

In this section, we prove Theorems 3 and 4. The idea of the proof is to show that if IMMn,d or Detn
has a small ΣΠΣΠ homogeneous formula, then there is a restriction σ ∈ R such that IMMn,d|σ has

a small ΣΠ[D]ΣΠ
[t]
Y formula (mod J ) (for suitably chosen t and k). We then appeal to Lemma 41

to get the result. We first prove a restriction lemma for IMMn,d.

Lemma 43. For all large enough n, d ∈ N, any D, t, k ≥ 1, we have the following. If IMMn,d has a

ΣΠ[D]ΣΠ formula of size s < nt/10, then there is a restriction σ ∈ R and a ΣΠ[D]ΣΠ
[dt/2e]
Y formula

C ′ of size at most s such that C ′ = IMMn,d|σ (mod J ). Moreover, if C is also homogeneous, then
we can find a homogeneous C ′ satisfying the above.
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Proof. We show that a random σ ∈ R will meet our requirements with good probability. Formally,
choose j1, jd ∈ [d] and B = (φp ∈ Sn : p ∈ [d] \ (P ′ ∪ {1, d})) each independently and uniformly
at random and set σ = τj1,jd,B as defined in section 8.2. Note that for p ∈ [d] \ P ′, each variable
x ∈ Xp is set to 0 with probability 1 − 1/n; moreover, the restrictions in Xp, Xp′ for p 6= p′ are
independent.

Let C1 be the formula obtained by setting all variables x ∈ X to σ(x) and removing Π-gates at
layer 1 which have an input set to 0; clearly, C1 is a ΣΠ[D]ΣΠ formula that computes IMMn,d|σ.
We call a σ ∈ R good if every gate g at layer 1 in C computing a set-multilinear monomial such
that degY (g) > dt/2e has as input some variable that is set to 0 by σ and hence removed from C1.
We claim that σ is good with probability at least 1/2.

To see this, consider any gate g at layer 1 in C computing a set-multilinear monomial xi such that
degY (g) = |MSupp(xi) ∩ ([d] \ P ′)| > dt/2e. We can factor xi as (

∏
p∈MSupp(xi)∩([d]\P ′) xp) · xj for

some monomial xj. Then, g survives in C1 iff no variable xp (p ∈ MSupp(xi) ∩ ([d] \ P ′)) is set
to 0 by σ. Since the probability that each such xp is not set to 0 is at most 1/n and this event is
independent for distinct p, the probability that g survives in C1 is at most 1

nt/2 . Taking a union
bound over all such g — of which there are at most s many — we see that the probability that any
such g survives in C1 is at most s · 1

nt/2 ≤ 1/2 for large n since s < nt/10.

Now, fix any good σ and C1 = C|σ which computes IMMn,d|σ. Let C ′ denote the formula obtained
from C1 by removing all gates g at layer 1 such that degY (g) > dt/2e. By our choice of σ, all such
gates compute non-set-multilinear monomials in J . Thus, C ′ = IMMn,d|σ (mod J ) as claimed in
the lemma statement. Moreover, it is clear that C ′ has size at most the size of C which is s.
Finally, note that C ′ was obtained from C by removing some of the monomials computed at layer
1 in C. If C is homogeneous, then we can assume w.l.o.g. that all the monomials feeding into a
Σ-gate at layer 2 have the same degree. It thus follows that if C was a homogeneous formula, then
so is C ′.

We now prove the lower bound for IMMn,d.

Proof of Theorem 3. We first fix the parameters that we will be using. Choose t, k such that
t = min{b

√
dc, blog n/5000c} and d/4000 ≤ kt ≤ d/2000. Let C be a homogeneous formula of size

s computing IMMn,d. Note that since C is homogeneous, it is in particular a ΣΠ[d]ΣΠ formula. If
s ≥ nt/10, then we have the claimed lower bound and thus we are done.

Otherwise, we can use Lemma 43 and obtain a restriction σ ∈ R and a homogeneous ΣΠ[d]ΣΠ
[dt/2e]
Y

formula C ′ of size at most s such that C ′ = IMMn,d|σ (mod J ). Note that, in particular, the top
fan-in s of C ′ is at most s.

Since C ′ is ΣΠ[d]ΣΠ
[dt/2e]
Y , each input polynomial f to a Π-gate g at layer 3 in C ′ satisfies degY (f) ≤

dt/2e. We now apply the following transformation to C ′: if any Π-gate g at layer 3 in C ′ has two

inputs f1, f2 such that degY (f1),degY (f2) < t/4, then we replace them by a brute force ΣΠ
[dt/2e]
Y

formula computing their homogeneous product f1f2. This process clearly ensures that the formula

remains ΣΠ[d]ΣΠ
[dt/2e]
Y and moreover, does not increase the top fan-in of C ′. We repeatedly apply

this transformation to C ′ until we have an equivalent homogeneous formula C ′′ of top fan-in at
most s that moreover has the property that any Π-gate at layer 3 has at most one input f such
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that degY (f) < t/4. In particular, this last property along with the homogeneity of C ′′ ensures

that any layer 3 Π-gate in C ′′ has fan-in at most 4d/t+ 1 ≤ 5d/t. Hence, C ′′ is a ΣΠ[b5d/tc]ΣΠ
[dt/2e]
Y

formula of top fan-in at most s such that C ′′ = IMMn,d|σ (mod J ).

Lemma 41 tells us that by our choice of k and t and for large enough n, we have

s ≥ s ≥ 1

4 · 2d
·
(
nkt

5ed

)k
≥ 1

4 · 2d
·
( n

60000

)k
≥ nd/4500t

4 · 2d
≥ max

{
nΩ(
√
d)

4 · 2d
, 2Ω(d)

}
.

Note that the above lower bound is nΩ(
√
d) when d < ε log2 n for a small enough ε > 0; for

d = Ω(log2 n), the above is nΩ(logn). Thus, we have the theorem.

We now turn to the lower bound for Detn. We first need a lemma due to Toda [Tod92]. Given
parameters n1, d1 ≥ 2, we let X(n1, d1) denote the set of variables over which the polynomial
IMMn1,d1 is defined.

Lemma 44. For any n1, d1 ∈ N+ and any n ≥ n1d1, there is an n × n matrix M whose entries
are either 0, 1, or variables from X(n1, d1) such that Detn(M) = IMMn1,d1.

Proof of Theorem 4. For large enough n, we can fix n1 and d1 = Θ(log2 n1) such that n/2 ≤ n1d1 ≤
n. Set t = blog n1/25000c and k ≥ 10 such that d1/4000 ≤ kt ≤ d1/2000.

Assume that C is a homogeneous ΣΠΣΠ formula of size s for the polynomial Detn(yi,j : i, j ∈ [n]).

In particular, note that C is a ΣΠ[n]ΣΠ formula. If s ≥ nt/10
1 = nΩ(logn), then we have the claimed

lower bound and we are done. Otherwise, we can use Lemma 44 to transform C into an ΣΠ[n]ΣΠ
formula C1 of size at most s for IMMn1,d1 by substituting each yi,j by Mi,j throughout C. Now,

we can apply Lemma 43 to C1 and obtain a restriction σ ∈ R and a ΣΠ[n]ΣΠ
[dt/2e]
Y formula C ′ of

size at most s such that C ′ = IMMn1,d1 |σ (mod J ). Note in particular that the top fan-in s of C ′

is at most s.

Lemma 41 tells us that for large enough n we have

s ≥ 1

4 · 2d1
·
(
n1.25

1

en

)k
≥ 1

4 · 2d1
·
(

n1.25
1

2en1d1

)k
≥ nk/5

4 · 2d1
≥ n

d1/20000t
1

4 · 2d1
= 2Ω(d1) = n

Ω(logn1)
1 = nΩ(logn),

and since s ≤ s, we have the theorem.

9 Conclusion

As mentioned in the introduction, proving good enough lower bounds (specifically 2ω(
√
d·logN))

for homogeneous depth four formulas yields superpolynomial lower bounds for general arithmetic

circuits. Our lower bound of 2Ω(
√
d·logN) comes temptingly close to this threshold. So a very natural

question would be to improve the exponent. A more modest aim might be to further understand
the power and limitations of our techniques/complexity measure. With this intent we formulate a
concrete conjecture that might serve as the goal of such an undertaking.

Conjecture 45. There exist a (family of) homogeneous polynomial(s) f of degree d in N = dO(1)

variables which can be computed by poly(d)-sized homogeneous circuits of depth six but for which
any homogeneous circuit of depth four must have superpolynomial (in d) size.
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A Proof of preliminaries

Lemma 46. Let a(n), f(n), g(n) : Z>0 → Z be integer valued function such that (f + g) = o(a).
Then,

ln
(a+ f)!

(a− g)!
= (f + g) ln a ± O

(
(f + g)2

a

)
Proof.

(a+ f)!

(a− g)!
= (a+ f)(a+ f − 1) . . . (a− g + 1)

=⇒ af+g
(

1− g

a

)f+g
≤ (a+ f)!

(a− g)!
≤ af+g

(
1 +

f

a

)f+g

=⇒ (f + g) ln
(

1− g

a

)
≤ ln

(a+ f)!

(a− g)!
− (f + g) ln a ≤ (f + g) ln

(
1 +

f

a

)
Using the fact that x

1+x ≤ ln(1 + x) ≤ x for x > −1, it is easy to see that both the LHS and RHS

are bounded by O
(
f2+g2

a

)
.
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B Proof details for section 6.6

B.1 Estimating T1

The following calculations show that S(u,w) is maximized at w = u = k.

S(u,w + 1)

S(u,w)
=

1

d
· (N − 2d+ u+ w + 1)

(N − `− 2d+ k + w + 1) · (w − 2k + u+ 1)

≤ 1

d
· (N)

(N − `− 2d)
(since w − 2k + u ≥ 0, u+ w + 1 ≤ k + w + 1 ≤ 2d)

≤ 1

4
· (N)

(N2 − 2d)

(
for ` ≤ N

2
, d ≥ 4

)
< 1

(
since N = d3 � d

)
Thus for a fixed u, S(u,w) is maximized at w = 2k − u. Now for any u ≤ (k − 1) we have

S(u+ 1, 2k − u− 1)

S(u, 2k − u)
= d · N − `− 2d+ 3k − u

`− k + u+ 1
· (k − u)2

(u+ 1)

> d · N − `− 2d

`
· 1

k

> 4 · N − `− 2d

`
(for k ≤ 4d)

>
8

N
· (N

2
− 2d)

(
for ` <

N

2

)
> 1

(
since N = d3 >

16d

3

)
Thus S(u,w) is maximized at w = u = k.

B.2 Estimating T2

The following calculations show that S1(w, u, u1, u2) is maximized at w = u = u1 = u2 = 0.

S1(w + 1, u, u1, u2)

S1(w, u, u1, u2)
=

1

d
· (N − 2d+ 2k − u− u1 − u2 + w + 1)

`− d+ k − u− u1 − u2 + w + 1
· d− k + u+ u1 − w

d− w
·

·d− k + u+ u2 − w
d− w

· 1

w − u− u1 − u2 + 1

≤ 1

d
· N − 2d+ 2k + w + 1

`− d+ k − 2k + w + 1
· 1

w − u− u1 − u2 + 1
(since u+ u1, u+ u2 ≤ k)

≤ 1

d
· N − 2d+ 2k + d

`− d− k + 0
(since 0 ≤ u+ u1 + u2 < (w + 1) < d)

≤ 1

d
· N

`− 2d

(
for k <

d

2

)
< 1

(
for ` >

N

d
+ 2d

)
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So for a fixed u, u1, u2, S(w, u, u1, u2) is maximized at w = u + u1 + u2. Let S2(u, u1, u2) =
S1(u+ u1 + u2, u, u1, u2). Then for any u ≤ (k − 1) we have

S2(u+ 1, u1, u2)

S2(u, u1, u2)
=

1

d
· k − u1 − u
d− u1 − u2 − u

· k − u2 − u
d− u1 − u2 − u

· 1

u+ 1

≤ 1

d
· k

d− 2k
· k

d− 2k
(since u+ u1, u+ u2 ≤ k)

<
1

d

(
for k <

d

3

)
< 1

Thus for fixed u1 and u2, S2(u, u1, u2) is maximized at u = 0. Proceeding in a manner similar to
above we see that S2(u, u1, u2) is maximized at

u = u1 = u2 = 0.

C Variance of µ(g)

Recall that

µ(g) =
∑

D∈Supp(NWr)

eD

⇒ E [µ(g)] = pd · d2r+2 =: γ

Now, let us bound the variance of µ(g). In the summations below, D,D1, D2 run over all elements
in Supp(NWr).

Var(µ(g)) = E [µ(g)2]− E [µ(g)]2

= E

(∑
D

eD

)2
− E [∑

D

eD

]2

= E

∑
D

e2
D +

∑
D1,D2
D1 6=D2

eD1 · eD2

−
[∑
D

E [eD]

]2

(by linearity of expectation)

= E

∑
D

eD +
∑

D1,D2
D1 6=D2

eD1 · eD2

−
∑

D

E [eD]2 +
∑

D1,D2
D1 6=D2

E [eD1 ] · E [eD2 ]

 (as e2
D = eD)

= E

[∑
D

eD

]
−
∑
D

E [eD]2 + E

 ∑
D1,D2
D1 6=D2

eD1 · eD2

− ∑
D1,D2
D1 6=D2

E [eD1 ] · E [eD2 ]
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Var(µ(g)) = pd · d2r+2 − p2d · d2r+2 +
r∑

w=0

E
 ∑

D1,D2
D1 6=D2,|D1∩D2|=w

eD1 · eD2

− ∑
D1,D2

D1 6=D2,|D1∩D2|=w

E [eD1 ] · E [eD2 ]



= γ · (1− pd) +

r∑
w=0

 ∑
D1,D2

D1 6=D2,|D1∩D2|=w

(E [eD1 · eD2 ]− E [eD1 ] · E [eD2 ])


(by linearity of expectation)

= γ · (1− pd) +
r∑

w=0

 ∑
D1,D2

D1 6=D2,|D1∩D2|=w

(
pd · pd−w − pd · pd

)
(as E [eD2 |eD2 = 1] = pd−w if |D1 ∩D2| = w)

= γ · (1− pd) +
r∑

w=1

∑
D1

∑
D2

D1 6=D2,|D1∩D2|=w

(
p2d−w − p2d

)
= γ · (1− pd) +

r∑
w=1

∑
D1

Rd(w, r) · p2d
(
p−w − 1

) (recall Rd(w, r) from section 6.5)

≤ γ · (1− pd) + p2d ·
r∑

w=1

[
d2r+2 ·Rd(w, r) · p−w

]
≤ γ · (1− pd) + γ2 ·

r∑
w=1

1

(pd)w
( since Rd(w, r) ≤

d2r+2

dw · w!
)

≤ γ · (1− pd) + γ2 · 2

pd
(as pd = d1−ε > 2 if d > 2

1
1−ε )

D Proof of Lemma 40

By the definition of µk,`, we have µk,`(F ) = dim(Vk,`(f)) where

Vk,`(F ) := spanF{xi · πS1

(
∂kF

∂x
(p1)
i1,j1

. . . ∂x
(pk)
ik,jk

)
| |i| ≤ ` and

∏
q∈[k]

x
(pq)
iq ,jq
∈ S2}

= spanF{xi · πS1 (∂IF ) | |i| ≤ ` and I ∈ [n]2k}

First observe that any ∂IF is a monomial given by ρ1ρ2 . . . ρk+1, where
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ρ1 =

x(1)
1 ·

∏
1<p<p′1

x
(p)
1,1


︸ ︷︷ ︸

gI1

·x(p′1)
1,i1
·

 ∏
p′1<p<p1

x
(p)
i1,i1


︸ ︷︷ ︸

hI1

ρq =

 ∏
pq−1<p<p′q

x
(p)
jq−1,jq−1


︸ ︷︷ ︸

gIq

·x(p′q)

jq−1,iq
·

 ∏
p′q<p<pq

x
(p)
iq ,iq


︸ ︷︷ ︸

hIq

(for 1 < q < k + 1)

ρk+1 =

 ∏
pk<p<p

′
k+1

x
(p)
jk,jk


︸ ︷︷ ︸

gIk+1

·x(p′k+1)

jk,1
·

 ∏
p′k+1<p<d

x
(p)
1,1

 · x(d)
1


︸ ︷︷ ︸

hIk+1

Due to the above structure of ∂IF we have the following claim.

Claim 47. ∀I ∈ [n]2k, ∂IF ∈ S1.

Claim 47 implies that for all I ∈ [n]2k, πS1 (∂IF ) = ∂IF . Therefore, we get

Vk,`(F ) = spanF{xi · ∂IF : |i| ≤ ` and I ∈ [n]2k}

The analysis of the dimension of Vk,`(F ) is now very similar to the analysis of the dimension of the
shifted partial derivative space of F as done in [FLMS13].
Let M = {xi · ∂IF : |i| ≤ ` and I ∈ [n]2k}. Since M is a set of monomials, the dimension of the
span of M is exactly |M|.
Another way of looking at M is M =

⋃
I∈[n]2kMI , where MI := {xi | |i| ≤ `+ d− k and

∂IF divides xi}. Therefore, we have the following claim.

Claim 48. For F and MI (I ∈ [n]2k) as defined above, we have dim(Vk,`(F )) = |M|, where
M =

⋃
I∈[n]2kMI .

In what follows, we do not distinguish between multilinear monomials over the variable set X and
subsets of X.

Claim 49. For any I, I ′ ∈ [n]2k, we have

|∂I′F \ ∂IF | ≥ ∆(I, I ′) ·
⌊
r − 1

2

⌋
where ∆(I, I ′) denotes the Hamming distance between I and I ′.

Proof. Consider any I, I ′ ∈ [n]2k. Say I = (i1, j1, . . . , ik, jk) and I ′ = (i′1, j
′
1, . . . , i

′
k, j
′
k). Then, using

the notation from the definition of ∂IF , we have

∂I′F \ ∂IF ⊇
⋃̇
q∈[k]

(gI
′
q+1 \ gIq+1)∪̇

⋃̇
q∈[k]

(hI
′
q \ hIq)

⊇
⋃̇

q∈[k]:jq 6=j′q

(gI
′
q+1 \ gIq+1)∪̇

⋃̇
q∈[k]:iq 6=i′q

(hI
′
q \ hIq).
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where A∪̇B denotes the union of disjoint sets A and B.
Now, when jq 6= j′q, then the monomials gIq+1 and gI

′
q+1 are disjoint and hence |gI′q+1\gIq+1| = |gI

′
q+1| ≥⌊

r−1
2

⌋
. Similarly, when iq 6= i′q, we have |hI′q \ hIq | ≥

⌊
r−1

2

⌋
.

|∂I′F \ ∂IF | ≥
∑

q∈[k]:jq 6=j′q

|gI′q+1 \ gIq+1|+
∑

q∈[k]:iq 6=i′q

|hI′q \ hIq |

≥ ∆(I, I ′) ·
⌊
r − 1

2

⌋
,

which completes the proof of the claim.

Claim 50. For any I ∈ [n]2k, we have |MI | =
(
N+`
`

)
.

Proof. A monomial xi ∈ MI iff there is a monomial xj such that j ≤ ` and xi = xj · ∂IF . Thus,
|MI | is equal to the number of monomials of degree at most `, which is

(
N+`
`

)
.

Claim 51. For any I, I ′ ∈ [n]2k, we have

|MI ∩MI′ | =
(
N + `− |(∂I′F \ ∂IF )|
`− |(∂I′F \ ∂IF )|

)
.

Proof. Fix any I, I ′ as above. Any monomial xi ∈ MI ∩MI′ may be factored as xi = xj · ∂IF ·
(∂I′F \ ∂IF ). where j ≤ `+ d− k − (d− k)− |(∂I′F \ ∂IF )| = `− |(∂I′F \ ∂IF )|.
Thus, |MI ∩MI′ | is equal to the number of monomials of degree at most `− |(∂I′F \ ∂IF )|, from
which the claim follows.

Claim 52. For any k ∈ N and large enough n ∈ N, there exists an S ⊆ [n]2k such that

• |S| =
⌊
n1.5k

⌋
,

• For all distinct I, I ′ ∈ S, we have ∆(I, I ′) ≥ k/4.

Proof. We construct the set S by first greedily choosing vectors which have pairwise Hamming
distance at least k/4 and then prove that the set thus formed has size

⌊
n1.5k

⌋
. A standard volume

argument [Gur10] gives that the set picked greedily as above has size at least n2k

Voln(2k,k/4) , where

Voln(2k, k/4) stands for the volume of the Hamming ball of radius k for strings of length 2k over an

alphabet of size n. It is easy to see that Voln(2k, k/4) =
∑k/4

i=0

(
2k
i

)
(n−1)i, which is upper bounded

by 2
(

2k
k/4

)
(n− 1)k/4. This in turn is at most nk/3 for large enough n. Therefore, |S| is at least n2k

nk/3 ,

i.e. |S| ≥ n5k/3. By choosing a subcollection of the vectors thus chosen, we can ensure that |S| is
exactly

⌊
n1.5k

⌋
.

Recall that a very similar claim (Claim 10) proved in [FLMS13] gave S =
⌊(

n
4

)k⌋
. This size of S

was sufficient for the proof of Lemma 11 in [FLMS13]. We will now see that a slightly larger sized
S will be useful for us to prove Lemma 40.
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Proof of Lemma 40. Fix S as guaranteed by Claim 52. By Claim 48, it suffices to lower bound
|M|. For this, we use inclusion-exclusion. Since M =

⋃
IMI , we have

|M| ≥ |
⋃
I∈S
MI |

≥
∑
I∈S
|MI | −

∑
I 6=I′∈S

|MI ∩MI′ |. (11)

By Claim 50, we know that |MI | =
(
N+`
`

)
. By Claims 51 and 49 and our choice of S, we see that

for any distinct I, I ′ ∈ S, we have

|MI ∩MI′ | ≤
(
N + `− k/4 · b(r − 1)/2c
`− k/4 · b(r − 1)/2c

)
≤
(
N + `− d/40

`− d/40

)
where the last inequality follows since b(r − 1)/2c ≥ d/10k for k ≤ d/20 (recall that r denotes⌊

d
k+1

⌋
− 1).

Plugging the above into (11), we obtain

|M| ≥ |S| ·
(
N + `

`

)
− |S|2 ·

(
N + `− d/40

`− d/40

)
.

Since |S| =
⌊
n1.5k

⌋
, the lemma follows.

E Proof of Lemma 42

Fix C and f as in the statement of the lemma. By Lemma 39, we know that µk,`(C + f) ≤
µk,`(C) + µk,`(f). The latter term is handled first.

Claim 53. For every g ∈ J and every I ∈ [n]2k, we have πS1(∂Ig) = 0. In particular, µk,`(g) = 0.

Proof. By linearity, it suffices to prove the above for every monomial xi ∈ J . Since xi is non-set
multilinear, there exists some p ∈ [d] and x, y ∈ Xp (possibly equal) such that xy|xi. There are two
cases to consider:

• p 6∈ {p1, . . . , pk}: In this case, it is easy to see that xy|∂Ixi as well and hence πS1(∂Ix
i) = 0.

• p ∈ {p1, . . . , pk}: Either x and y are distinct or x = y. In the former case, we note that
since we derive w.r.t. at most one of x or y, it must be the case that either x|∂Ixi or y|∂Ixi.
In the latter case, since we derive at most once w.r.t. x, we have x|∂Ixi. In either case,
πS1(∂Ix

i) = 0.

Thus, we only need to bound µk,`(C). Assume that C =
∑s

i=1Ci, where each Ci is a Π[D]ΣΠ
[t]
Y

formula. By Lemma 39, it suffices to show that for each i ∈ [s], we have

µk,`(Ci) ≤ 2d ·
(
D

k

)
·
(
N + `+ (t+ 1)k

`+ (t+ 1)k

)
(12)
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Let i ∈ [s] be fixed for the rest of the proof. We may assume that the top fan-in of Ci is exactly D
and hence Ci =

∏
p∈[D]Qp where degY (Qp) ≤ t for each p ∈ [d]. Consider any I ∈ [n]2k. By the

product rule for differentiation, we can see that ∂ICi can be written as

∂I(Ci) =
∑

A⊆[D]:|A|=D−k

∏
p∈A

Qp

 ·Q′I,A
where for each A, Q′I,A satisfies degY (Q′I,A) ≤ tk. Let QA denote

∏
p∈AQp. Hence we have{

∂I(Ci)
∣∣∣ I ∈ [n]2k

}
⊆ spanF

{
QA · xj

∣∣∣A ⊆ [D], |A| = D − k, degY (xj) ≤ tk
}

Thus, we have by linearity,{
πS1(∂I(Ci))

∣∣∣ I ∈ [n]2k
}
⊆ spanF

{
πS1(QA · xj)

∣∣∣ |A| = D − k,degY (xj) ≤ tk
}

Now, by the definition of πS1 , πS1(QA · xj) = 0 if either xj is non-set-multilinear or it is divisible
by a variable in

⋃
q∈[k]Xpq . Thus, in the expression above, we may range only over xj that are set-

multilinear and not divisible by any x ∈
⋃
q∈[k]Xpq . In particular, this implies that degZ(xj) ≤ k

(recall that Z =
⋃
p∈P ′ Xp) and hence |j| = degY (xj) + degZ(xj) ≤ tk+ k = (t+ 1)k. Thus, we get{

πS1(∂I(Ci))
∣∣∣ I ∈ [n]2k

}
⊆ spanF

{
πS1(QA · xj)

∣∣∣ |A| = D − k,xj ∈Msm
X , |j| ≤ (t+ 1)k

}
(13)

where we use Msm
X to denote the set of all set-multilinear monomials over X.

To analyze the above, decompose QA further as

QA = QnsmA +
∑
B⊆[d]

QBA

where QnsmA is the sum of all the non-set-multilinear monomials in QA (with the same coefficients)
and QBA (for each B ⊆ [d]) is a linear-combination of set-multilinear monomials xi1 appearing in
QA such that MSupp(xi1) = B.
Since non-set-multilinear monomials lie in the kernel of πS1 we have for any xj ∈Msm

X ,

πS1(QA · xj) = πS1(QnsmA · xj) +
∑
B⊆[d]

πS1(QBA · xj) = 0 +
∑
B⊆[d]

πS1(QBA · xj) (14)

What follows is a crucial observation: for any B ⊆ [d] and any xj ∈Msm
X ,

πS1(QBA · xj) =


0, if B ∩ {p1, . . . , pk} 6= ∅,
0, if MSupp(xj) ∩ {p1, . . . , pk} 6= ∅,
0, if MSupp(xj) ∩B 6= ∅,
QBA · xj, otherwise.

In particular, along with (14), this implies that for any xj ∈Msm
X , the polynomial πS1(QA ·xj) lies

in spanF
{
QBA · xj

∣∣B ⊆ [d]
}

. Plugging this into (13){
πS1(∂I(Ci))

∣∣∣ I ∈ [n]2k
}
⊆ spanF

{
QBA · xj

∣∣∣ |A| = D − k, |j| ≤ (t+ 1)k,B ⊆ [d]
}
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We are now ready to bound µk,`(Ci). By linearity once more, we have

Vk,`(Ci) =
{

xi · πS1(∂I(Ci))
∣∣∣ I ∈ [n]2k, |i| ≤ `

}
⊆ spanF

{
QBA · xi+j

∣∣∣ |A| = D − k, |j| ≤ (t+ 1)k,B ⊆ [d], |i| ≤ `
}

= spanF

{
QBA · xi

∣∣∣ |A| = D − k, |i| ≤ `+ (t+ 1)k,B ⊆ [d]
}

Therefore, by the definition of µk,`, we get

µk,`(Ci) = dim(Vk,`(Ci))

≤
∣∣∣{QBA · xi

∣∣∣ |A| = D − k, |i| ≤ `+ (t+ 1)k,B ⊆ [d]
}∣∣∣

≤ (# of choices for B) · (# of choices for A) · (# of monomials of degee ≤ `+ (t+ 1)k)

= 2d ·
(
D

k

)
·
(
N + `+ (t+ 1)k

`+ (t+ 1)k

)
This finishes the proof of Lemma 42.
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