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Abstract

Existing cloud provisioning schemes allocate re-
sources to batch processing systems at deployment
time and only change this allocation at run-time due
to unexpected events such as server failures.

We observe that MapReduce-like jobs are time-
malleable, i.e., at runtime it is possible to dynami-
cally vary the number of resources allocated to a job
and, hence, its completion time.

In this paper, we propose a novel approach based
on time-malleability to opportunistically update job
resources in order to increase overall utilization and
revenue. To set the right incentives for both providers
and tenants, we introduce a novel pricing model
that charges tenants according to job completion
times. Using this model, we formulate an optimiza-
tion problem for revenue maximization.

Preliminary results show that compared to today’s
practices our solution can increase revenue by up to
69.7% and can accept up to 57% more jobs.

1 Introduction
MapReduce and its derivatives such as Dryad and
Spark are the de-facto standard to execute batch
jobs in a cloud environment. They support a sim-
ple programming model that limits the dependencies
among their sub-tasks, leading to a flexible mapping
between tasks and resources. This allows jobs to
scale out to run on an arbitrarily large number of
servers, without requiring any additional effort from
programmers. The constrained programming model
and fixed dependencies among tasks also simplify the
estimation of the job execution time and several esti-
mation models, which take into account job charac-
teristics, input data size, and the resources allocated,
have recently appeared in literature [5–7, 10, 11].

Several systems build upon this predictability at
deployment time to derive the number of resources
needed to meet user specified deadlines [6, 7, 11].
Small allocation adjustments can be made at runtime
in order to cope with unexpected and not-so-common
events such as server failures [5]. A major drawback
of these approaches, however, is that the provider is
bound to a fixed allocation plan. This is at odds with
the elastic nature of cloud where available resources
fluctuate over time.

In contrast, we propose an approach that deliber-
ately varies the amount of resources allocated to jobs
over time in order to control their completion time
and increase cloud utilization. The intuition is that
if spare resources are available, they should be al-
located to running jobs to reduce their completion
time. However, if new jobs are submitted, these re-
sources should be claimed back to accommodate the
new jobs. Our approach builds upon the observation
that most (if not all) MapReduce-like jobs are time-
malleable, i.e., it is possible to change their resource
allocation at runtime, without affecting the correct-
ness of the results [2, 7].

A key challenge of our approach is that under
the current, pay-as-you-go, pricing model, there is
no incentive for the provider to reduce execution
time. Even with the recently proposed deadline-
based models, e.g., [7, 8], users can only specify a
single desired completion time. To address these
shortcomings, we combine our solution with a novel
pricing model in which the later a job is completed,
the lower users pay. However, to avoid unbounded
completion time, users also specify the longest ac-
ceptable deadline of their jobs. Dually, they also in-
dicate the maximum price they are willing to pay.

We believe that this model is advantageous to both
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Figure 1: Example of dynamic resource allocation

users and the provider. It provides great incentives
users to define a long deadline in the exchange of a
reduced price. At the same time, this model also ben-
efits the provider to devise flexible planning decisions
among all jobs.

In this paper, we take a first step in this direction
by formulating the allocation problem as a mixed in-
teger program to maximize provider’s revenue (Sec-
tion 3.2). Our work relies on existing work to de-
rive the initial resource requirements for jobs at de-
ployment and we extend our formulation to con-
sider related errors at runtime (Section 3.3). Sim-
ulation results show that our approach significantly
improves both provider revenue and jobs acceptance
ratio. (Section 4).

2 Overview
We illustrate our approach by means of the example
in Figure 1. We assume a cloud data center with three
resource units (e.g., a VM or a MapReduce slot) at
any given time. Consider two jobs, A and B, with
the following requirements: (rA = 7, dA = 6) and
(rB = 9, dB = 7), where r j denotes the total resource
units for job j and d j shows the completion time
deadline of j counting from its submission time. We
assume an initial feasible allocation plan as depicted
in Figure 1(a); an allocation plan shows the number
of units allocated to a job at any given time. A plan
is feasible when the total allocation of resource units
per interval does not exceed the cloud capacity.

Let us now suppose that a new job C is submitted
at time t = 2 with the requirements (rC = 5, dC = 3).
Under today’s rigid allocation scheme, job C could
not be accommodated, since by the time B completes
at t = 6 and resources become free, C’s deadline has
already expired. However, by exploiting job time-

malleability, it is possible to dynamically change the
allocation plan, exploiting the loose deadline of B to
accommodate C and potentially increase its revenue.
Figure 1(b) shows such a reconfiguration that leads
to feasible allocation plans for jobs B and C.

Besides meeting the deadlines of current jobs, the
provider also aims at maximizing its revenue. There-
fore, while reallocating resources, it must ensure that
the total revenue does not decrease as a consequence
of accepting a new job and delaying an already run-
ning one. The next section presents our solution to
this problem.

3 Allocation for time-malleable jobs

In this section, we formulate the problem of cloud
revenue maximization. We first present a basic for-
mulation, followed by an adjustment that takes into
account errors in the estimations of jobs resource re-
quirements. Overall a new job is accepted if and only
if the solution to the maximization problem provides
a feasible allocation plan with an estimated revenue
higher than the revenue coming from the current al-
location without the new job. A user with a new job j
communicates to the provider the longest acceptable
deadline d j and the number of resource units required
r j. The user and the provider also agree upon a pric-
ing function described below.

3.1 Pricing function on completion time

A pricing function P(t) describes the relationship
between the job completion time t and the corre-
sponding price to be paid to the provider. To build
such a function, the user indicates the longest accept-
able deadline (hereafter referred to as the deadline)
of her job d. The user and the provider also agree
upon a maximum affordable price pmax paid if the
job finishes at an earliest possible completion time
s. A pricing function that captures the fact that a job
should cost less for longer completion times is:

P(t) =





pmax if t < s
f (t) if s≤ t ≤ d
0 if t > d.

Figure 2 provides an example P(t). In the range
where (s≤ t ≤ d), the price f (t) of a job completion
time t should be monotonically decreasing to t and its
values never exceed pmax. Figure 2 shows a convex
function; but different shapes can be considered as
well. Note that if (t > d) then the job fails to meet its
deadline and no payment is issued.
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Figure 2: Example of a pricing function Pj of job j.

3.2 Cloud revenue maximization
Consider N − 1 jobs running under certain alloca-
tion plans and a new job arriving. Our goal is to
find a feasible allocation for the new job that max-
imizes the total revenue for all N jobs over time.
To find a set of feasible allocation plans we formu-
late the mixed integer programming (MIP) problem
with the objective (1) subject to constraints (2)- (6).
We solve the maximization problem for a duration of
T = argmax j d j intervals to include the longest dead-
line among all N jobs. We use t to index intervals
for the next T intervals starting from the current one
pointed by t = 1, i.e., t ∈ {1, . . . ,T}. We ensure that
the solution includes feasible plans via the constraints
explained below. We also use Figure 3 to illustrate
key points of the constraints.

maximize
x,y,p ∑

N
j=1 p j (1)

subject to ∑
d j

i=1 y ji = 1 ∀ j, (2)

∑
d j

i=1 x ji = r′j ∀ j, (3)

∑
N
j=1 x jt ≤ K ∀t, (4)

0≤ x jt ≤ K×∑
T
i=t y ji ∀ j, t, (5)

p j ≤ Pj

(
t̃ j +∑

d j

i=1 i× y ji

)
∀ j, (6)

y ji ∈ BN×T , x ji ∈ NN×T , p j ∈ R+, (7)
j ∈ {1, . . . ,N}, t ∈ {1, . . . ,T}. (8)

Deadline feasibility constraint. All jobs should fin-
ish before their deadlines shown by (2) where the bi-
nary variable y ji ∈BN×T is assigned to 1 if job j com-
pletes at time i, otherwise is set to 0, also shown in
Figure 3. For every job j there should be only one
y ji = 1 at a time before its deadline d j.
Resource feasibility constraints. All jobs should be
given resource units according to their requirements
shown by (3) and exemplified in Figure 3. The de-
cision variable x ji ∈ NN×T denotes the allocation of

job 2 finishes
at time k
y2k = 1

job 1

job 2

21 k

job N

Xd2

i=1
x2i = r

0
2

XN
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(xN2, yN2)

(x12, y12)

... ...

... ... (x2T , y2T )

time
job T = d2

Figure 3: Example illustration of the constraints and
the decision variables x and y.

resource units per job j at interval i. The number of
resource units before the deadline, i.e., ∑

d j
i=1 x ji, must

be equal to r′j; where r′j ≤ r j denotes the remaining
resource units needed to allocate for job j given that
j might be an existing running job and has already
used some of its resource units. The sum of allo-
cations across jobs per interval must not exceed the
total cloud capacity denoted by K and shown by (4).
Furthermore, the resource allocation x ji itself cannot
exceed the total capacity of the cloud and is shown
by (5).

Finally, constraint (6) denotes the payment of a job
given its completion time and where t̃ j denotes the
previous running time of job j. This payment is
bounded by function Pj(t).

The problem to find the optimal solution for a MIP
formulation has shown to be NP-complete. There-
fore, we use the CPLEX state-of-the-art optimiza-
tion solver [13] to find approximated solutions within
short times.

3.3 Discrepancies in resource estimation
Our model uses an estimate of the number of re-
source units required by a job. Recent work on of-
fline profiling and analytic performance models de-
rive the resource units required for MapReduce jobs
e.g., [5, 7, 10, 11]. Further, some workloads exhibit
a large fraction of recurring jobs. For example, in
Bing’s production clusters recurring jobs account for
40.32% of the total [1]. This allows to improve the
prediction by taking into account prior executions.

Nevertheless, despite the accuracy of these initial
estimations, it is still possible that discrepancies arise
during job execution, e.g., due to stragglers [3, 12].
Therefore, we extend our basic formulation to ac-
commodate for estimation errors.

We insert a random parameter e j, referred to as the
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job size estimation error, into constraint (3) to intro-
duce the job execution variability in planning, i.e.,
r j
e j

. For example, when e j ∈ (0,1) then the size of the
job is underestimated (resp. overestimated if e j > 1).
Hence, constraint (3) can be transformed into a prob-
ability constraint: Prob j

(
∑

d j
i=1 x ji =

r′j
e j

)
≥ 1−α, ∀ j.

This rewritten constraint ensures that, with a (1−a)
probability guarantee, the accumulated number of re-
source units allocated to a job before its deadline
equals its remaining job size considering any estima-
tion errors. Using a probability constraint makes the
program stochastic and cannot be solved by standard
solvers like CPLEX. To calculate the solution to it,
we transform it into a deterministic equivalent by as-
suming that e j is subject to a normal distribution, i.e.,
e j ∼ N(µ j,σ

2
j ). Due to space limitations we omit the

details of the transformation. At the end, the trans-
formed formulation can be solved with CPLEX.

4 Preliminary Results
To quantify the benefits achieved by the formula-
tion approach outlined in Section 3 (hereafter, re-
ferred to as GEARBOX), we use a discrete event sim-
ulator and CPLEX to solve the maximization prob-
lems. While preliminary, our results indicate that
by allowing users to specify long deadlines and by
exploiting time-malleability our approach increases
both provider revenue and acceptance ratio.

4.1 Setup
Given the unavailability of a reference workload that
would fit our pricing model, we adopt a synthetic
workload. While admittedly simplistic, we believe
that this workload is a good approximation of what a
real workload might be.

We assume a cloud with a total capacity of K =
1,000 resource units. We denote r j to be the initial
number of units required by job j; d j

min =
r j
K is the

shortest completion time possible when all cloud re-
sources are assigned to j. We consider two different
scenarios. In the former (Figure 4), we assign the
initial resource requirements r j of job j to be a ran-
domly chosen integer between 2,500 and 7,500 re-
source units. This ensures that all jobs take at least
more than two units of time to complete (i.e., d j

min > 2
for all jobs). In the latter scenario (Figure 5), we set
r j = 50 · (1+b), where b is randomly selected using
a half-normal distribution with a mean of 0 and stan-
dard deviation of 50 modeled after the analysis from
Google cluster traces [9]. The parameters s j and d j

of the pricing function in Figure 2 are randomly cho-
sen and s j ∈ [d j

min,5 · d
j
min] and d j ∈ [s j,3 · s j]. Note

that this setup implies that some jobs may have no
flexibility at all, i.e., s j = d j.

For simplicity we consider a linear pricing func-
tion Pj. We also experimented with different function
shapes and different ranges for s j and d j, observing
similar trends to the results reported below.

We simulate job requests arriving over time for a
total duration of 10,000 seconds. We assume Poisson
job arrivals with a mean arrival rate λ varying be-
tween 0.12 and 0.26 jobs/s (resp. 0.30 and 0.65 jobs/s
for the Google-inspired workload). These values
yield a data center utilization between 60% and 100%
when we allocate resources.
Baselines. We compare our approach against three
baselines, representative of common techniques used
in today’s systems. EARLY: a fixed set of resources
is reserved for a job to meet its most demanding dead-
line s j. This closely resembles the existing approach
in deadline-based systems where a single deadline is
considered. LATE: a fixed set of resources is re-
served for a job to meet its deadline d j; EDF: this
baseline implements an earliest deadline first (EDF)
approach where we allow runtime modifications in
jobs allocation plans; we consider the deadline d j.
CPLEX execution time. We run our experiments on
a server with 16 Intel Xeon E5-2690 cores and 32 GB
of RAM. We set the upper bound of the CPLEX exe-
cution time per job to 100 s and the error rate to 1%.
Across all runs1, the median CPLEX execution time
is 2 s and the 95th percentile is 6 s. Since our algo-
rithm needs to be run only when a job is submitted,
the overhead introduced is negligible.

4.2 Basic formulation results
We begin our analysis by considering the case with
no estimation errors. Figure 4(a) shows the percent-
age of jobs accepted by each method. We observe
that the dynamic allocation plans (GEARBOX and
EDF) accept significantly more jobs than the static
ones (EARLY and LATE). The reason is that, by being
unable to reallocate resources as new jobs come in, or
existing jobs terminate, the performance of static al-
location plans is drastically reduced. This highlights
the problem with today’s setup and motivates our ef-
fort to explore alternative solutions.

The second metric used in our evaluation is the

1We average the results across 5 runs and the standard devia-
tion for all experiments in this section is within 3%.
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Figure 4: Simulation results with the job sizes generated using a uniform distribution
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Figure 5: Simulation results with the job sizes generated using a half-normal distribution [9]

total revenue, shown in Figure 4(b), normalized
against EARLY. GEARBOX achieves much higher
revenue than EARLY (between 53.7% and 69.7%)
and LATE (between 170% and 205%). This is be-
cause of GEARBOX’s ability to dynamically reas-
sign resources and, hence, accept more jobs. Inter-
estingly, GEARBOX also outperforms EDF (between
5.6% and 17.5% higher revenue), although their frac-
tion of accepted jobs is close. The reason is that
GEARBOX admits a new job only if this increases the
total revenue. This means that in some cases, even if
there would be enough idle resources to accept a job,
GEARBOX can still decide to reject it, if this is not
cost-effective. In contrast, if resources are available,
EDF always accepts a new job, although this might be
detrimental in the long term. This shows the impor-
tance of considering the total revenue as a first-class
citizen in the admission control. Similar trends are
also observed when using the Google-inspired work-
load as shown in Figure 5.

We also experimented with a flat pricing function,
obtaining a factor of 1.8x improvement in the rev-
enue of GEARBOX over EARLY (resp. 1.1x over
EDF). This shows that even when there is no ad-
ditional premium for the provider to complete jobs
early, it can still increase its revenue by exploiting
their malleability. This is because GEARBOX fully

utilizes resources as soon as they become available
and, hence, it is more prepared to accommodate fu-
ture bursts of jobs. Furthermore, and in contrast to
EARLY, it also has the ability to reclaim resources
back from running jobs as appropriate for new ones.

Interestingly, at low load (λ = 0.12), the median
job completion time increase (relative to s j) is less
than 1% (95th percentile is 46%). At high load (λ =
0.26), instead, the median is 26% (95th percentile is
177%). This indicates that GEARBOX exploits time-
malleability only for a few jobs, while for the vast
majority of them, it strives to minimize the comple-
tion times. This is a consequence of the incentives
set by our pricing model. The provider has a strong
incentive to finish the job as soon as possible. At the
same time the provider can delay a few jobs if this
increases the overall revenue.

4.3 Estimation errors
We now consider the impact of estimation errors on
our base solution, GEARBOX, and show how the ex-
tension detailed in Section 3.3 can mitigate these. We
refer to our extended solution as GEARBOX-p, where
p is the probability in the transformed constraint.

We assume that the estimation error e j for a job
j follows the normal distribution N(1, 0.1). This is
consistent with the results presented in [6,7]. We also
experiment with other values of standard deviation

5



σ ∈ [0.05,0.15], obtaining similar results.
Figure 4(c) and 5(c) show the revenue for different

job inter-arrival rates λ in the two workloads con-
sidered. GEARBOX-97.5 and GEARBOX-90 achieve
higher revenue than both EDF and GEARBOX. In
this scenario, EDF outperforms GEARBOX because
as it recomputes the deadlines at runtime, it natu-
rally shifts resources to jobs that are close to dead-
lines, thus implicitly accounting for estimation er-
rors. However, the GEARBOX-p solutions achieve
the best performance because they account for esti-
mation errors in their allocation plans.

This is also reflected in the fraction of accepted jobs
that miss the deadline. While EDF and GEARBOX
exhibit a miss ratio of 6.05% and 13.75% respec-
tively, GEARBOX-90 achieves a miss ratio of 0.7%
(respectively 0.07% for GEARBOX-97.5).

5 Discussion
We are implementing our approach in the Apache
Hadoop framework. Our prototype currently sup-
ports dynamic reallocation in the map phase. Since
map tasks are short, independent and run in multi-
ple waves, we can vary the number of resources be-
tween each wave. Reduce tasks are more complex
as they are typically long-running and they run in a
single wave. To support dynamic reallocation in the
reduce phase, we are currently integrating our proto-
type with the Sailfish project [2, 14], which supports
suspend and resume of reduce tasks.

The current version of the model makes some sim-
plifying assumptions. In particular, we assume per-
fect scalability and ignore data dependencies. For a
real deployment, our model needs be extended to in-
clude constraints such as job barriers, which can re-
duce parallelism, and data locality, which can have an
impact on the total running time. Addressing these
limitations as well as including network constraints
(possibly leveraging our prior work [4, 7]) is part of
our current research agenda.

We also intend to explore more advanced pricing
functions. In the results presented in the previous
section, we assume static pricing, i.e., the shape and
values of the function depend only on the job type
and size. We are currently investigating the bene-
fits of using dynamic pricing functions similar to the
Amazon spot instances model [15], in which prices
changes based on the current utilization. We believe
that combining dynamic pricing with job malleability
would allow to further increase utilization and rev-
enue while providing more flexibility to tenants.

6 Conclusions
Current batch processing systems support fixed al-
location plans, in which the resources allocated to a
job are never changed (unless in cases of unexpected
events such as failures or stragglers). Rather, we ar-
gue that the time-malleability property of batch jobs
should be exploited to opportunistically vary the al-
location plans at runtime. Our approach allows users
to specify the longest acceptable deadline for their
jobs along with the maximum price they are willing
to pay. Providers then use this information to dynam-
ically allocate resources to jobs in order to improve
utilization and revenue. Preliminary results show that
our approach can significantly increase revenue and
acceptance rate, by only marginally affecting job ex-
ecution time.
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