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ABSTRACT
Advertising is the primary source of revenue for many mo-
bile apps. One important goal of the ad delivery process is
targeting users, based on criteria like users’ geolocation, con-
text, demographics, long-term behavior, etc. In this paper
we report an in-depth study that broadly characterizes what
targeting information mobile apps send to ad networks and
how effectively, if at all, ad networks utilize the information
for targeting users. Our study is based on a novel tool, called
MAdScope, that can (1) quickly harvest ads from a large col-
lection of apps, (2) systematically probe an ad network to
characterize its targeting mechanism, and (3) emulate user
profiles of specific preferences and interests to study behav-
ioral targeting. Our analysis of 500K ad requests from 150K
Android apps and 101 ad networks indicates that apps do
not yet exploit the full potential of targeting: even though
ad controls provide APIs to send a lot of information to ad
networks, much key targeting information is optional and is
often not provided by app developers. We also use MAd-
Scope to systematically probe top 10 in-app ad networks
to harvest over 1 million ads and find that while targeting
is used by many of the top networks, there remain many
instances where targeting information or behavioral profile
does not have a statistically significant impact on how ads
are chosen. We also contrast our findings with a recent study
of targeted in-browser ads.

Categories and Subject Descriptors
C.4 [Performance Of Systems ]: [Measurement tech-
niques]
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1. INTRODUCTION
In-app advertising is a key economic driver in mobile app

ecosystem, funding a wide variety of free apps. Gartner
predicts the mobile ad market to grow to $13.5 billion in
2015 [9]. The growth is primarily due to increasing engage-
ment of users with apps—users are reported to spend signif-
icantly more time on mobile apps than on traditional web,
and the gap is increasing [6].

Of central importance in the ad delivery process is targeting—
the process of selecting specific ads to display to a given user
of an app. In-app ad controls, which fetch ads from backend
ad networks and display them to users, target users based
on criteria such as app type, device attributes (e.g., screen
size), user’s long-term behavior, demographic, and geoloca-
tion. The presumption is that targeting benefits all parties
in the ad ecosystem: users, app developers, ad networks,
and advertisers. Note that targeting is not unique to in-
app ads; it has been successfully used for in-browser ads as
well [1, 8, 11,30].

Despite its importance, in-app ad targeting is relatively ill-
explored (compared to its in-browser counterpart). Existing
results on in-browser ads (e.g., [1,3,7,8,11,23,30]) cannot be
directly generalized to in-app ads for several reasons. First,
unlike in-browser ads that cannot easily access user infor-
mation because of the same origin policy [29], in-app ads
run with the same permission as the app itself, making it
easier for ad controls to exfiltrate user information. There-
fore some targeting information (e.g., user’s geolocation) is
likely to be used more commonly by in-app ads than by in-
browser ads, while some information (e.g., all or frequently
used apps on the device) is unique to in-app ads. Second,
ad controls often leave much targeting information optional
to be provided by apps, and hence targeting behavior of
even the same ad control may vary across apps depending
on whether apps actually provide the optional targeting in-
formation. Third, some ad networks and advertisers such
as mobile marketplaces are unique or more common in in-
app ads and their characteristics have not been investigated
before. Finally, the methodology for harvesting in-app ads
is significantly different from that for harvesting in-browser
ads.

In this paper, we present a first-of-its-kind study of tar-
geted display ads delivered to mobile apps. Our objectives
are to broadly characterize in-app display advertisement and
to understand targeting mechanisms employed by apps and
ad networks from an empirical perspective. The study seeks
to understand several key questions including the following:
What targeting information do apps choose to send to ad



networks? How effectively, if at all, do different ad networks
utilize such information to target users? Do ad networks dif-
ferentiate between different apps or different users using the
same app, and if so by how much? What impact does tar-
geting have on ad delivery process?

Answers to the above questions are important not just
for a general audience inquisitive into in-app ad ecosystem,
but also for two important constituents of the ad ecosystem:
app developers and ad networks. An app developer can use
the answers to guide his decisions on what ad networks to
choose to effectively target users. He can also reduce the
targeting information that the app needs to send to only
the ones that influence targeting decisions, thereby reducing
bandwidth and exfiltrated user data. An ad network can
use the answers to find how often app developers provide a
specific optional targeting information to other ad networks
and how much targeting opportunity it currently misses by
not supporting the targeting information.

An empirical study of in-app ad ecosystem is challenging
for various reasons: The vast number of mobile apps that
show display ads, the large number of ad networks that serve
ads to mobile apps, the diversity and dynamics of targeting
mechanisms across ad networks and users all present sig-
nificant challenges. Our first contribution in this paper is
a novel tool called MAdScope that can address these chal-
lenges. Central to MAdScope are three key mechanisms to
(1) quickly harvest ads from a large collection of apps, (2)
systematically probe an ad network to characterize its tar-
geting mechanism, and (3) emulate user profiles, i.e., inter-
act with the ad ecosystem as if interactions were by users
of specific preferences and interests, in order to understand
if an ad network does behavioral targeting. Various aspects
of these mechanisms are inspired by recent works on profile-
based ad crawling [1], differential correlation [16], and ad
classification [27], but adapted to in-app ads. All these ca-
pabilities are essential for understanding the full spectrum of
targeting behavior of in-app ad ecosystem. We believe that
MAdScope and its mechanisms will be valuable for future
studies of in-app ad ecosystem as well.

Our second contribution is to characterize targeting be-
havior of in-app ad ecosystem by using MAdScope. We
first study what targeting information apps send to ad net-
works. Our analysis of 500K unique ad requests harvested
from 150K apps and 101 ad networks shows that apps do
not yet exploit the full potential of targeting. Ad networks
are aggressive in terms of allowing apps to provide targeting
information of various categories: device, geolocation, de-
mographic, keywords, and child flag—at least 76 of the 101
ad networks we studied can collect some of these informa-
tion. However, much of the targeting information (41% on
average per ad network) is left optional to developers, who
do not often (in > 90% of the apps) provide them. For 17%
of the apps, ad networks receive no targeting information
since they leave all targeting information as optional and
apps/developers do not provide any of them.

We next investigate how effectively top 10 ad networks
utilize various targeting information to target users. We con-
sider both attribute-based targeting that targets users based
on various attributes encoded in ad requests, and behav-
ioral targeting that targets based on user’s historical activi-
ties. By analyzing over a million ad impressions, we found
many instances where ad networks effectively utilize target-
ing information and behavioral profiles to target users, al-

though the degree of utilization varies widely across net-
works. Our results show that in-app ads differ from in-
browser ads in multiple ways—in-app advertising employs
significantly less behavioral and demographic-based target-
ing but more location-based targeting, and it shows more
entertainment-related ads.

Surprisingly, our study points out many instances where
targeting information or behavioral profile does not have a
statistically significant impact on how ads are chosen (within
our observation window of one day). We are not certain why
ad networks collect targeting information if not for selecting
ads. Three plausible explanations for an ad network to col-
lect such data could be: (1) forward-compatibility—the ad
network wants keep the option open to select ads based on
the information in future, and still be compatible to current
or old versions of its ad controls used by existing apps, (2)
backward-incompatibility—the targeting information is no
longer used by the ad network but is still provided by old
versions of its ad control, and (3) information brokerage—
the ad network sells the information to other parties.

We would like to contrast our work with existing works
on in-app ads. Most of the prior work has demonstrated the
large extent to which apps are capable of collecting user’s
personal information and the potential implications to user’s
privacy [12, 17, 20, 24, 26] and device resources [4, 15, 19, 28].
These works do not investigate user targeting. A recent
work [27] investigates targeting, but in a limited scale and
scope—it shows various categories of targeted ads shown
to 100 apps by one ad network, but does not characterize
how apps use optional targeting information and how effec-
tively ad networks utilize targeting information and behav-
ioral profile. To the best of our knowledge, no prior work
investigates the key questions we investigate in the context
of in-app ads.

In the rest of the paper, we first discuss backgrounds and
challenges of measuring in-app ads in Section 2. We then
describe MAdScope’s mechanisms and our results charac-
terizing apps (Section 3) and ad networks (Section 4) from
targeting point of view. We also contrast our findings with
a recent study on in-browser ads in Section 5). Finally we
discuss related works in Section 6) and conclude in Section 7.

2. BACKGROUND AND GOALS

2.1 In-app Ads
To display ads from a third-party mobile ad network such

as AdMob1 and MobClix2 in an app, the app developer first
registers with the ad network. The ad network provides the
developer with an ad control (i.e. a library with some visual
elements embedded within) that he includes in his app and
assigns some screen “real estate”. When a user runs the app,
the ad control fetches ads from the ad network and displays
it to the user. As mentioned in Section 1, unlike in-browser
ads, in-app ads run with the same permission as the app
itself.

The ad ecosystem consists of multiple entities including
advertisers, ad agencies and brokers, ad networks, apps, and
app users. Figure 1 shows a generic workflow of a mobile
app requesting an ad and actions resulting from a click on
the ad. First, ad control in the app requests for an ad from

1
http://www.google.com/ads/admob

2
https://developer.mobclix.com

http://www.google.com/ads/admob
https://developer.mobclix.com
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Figure 1: In-app ad serving workflow.

ad network. Second, the ad server serves an ad with as-
sociated contents, which the ad control displays in the app.
The ad server may collect the ad offline from various brokers
and ad agencies, or in real time from ad auction networks.
Third, a click on the ad initiates connections to an ad ana-
lytics server, which tracks ad conversions, and to advertiser’s
server, which serves the landing page of the ad. Depending
on the ad control, the click may generate only one connection
to the analytics server, which can redirect the connection to
the landing page.

I Targeting. An ad request, which is typically an HTTP
GET or POST method, may include various targeting at-
tributes such as app name, device properties, user’s location,
demographic, etc. An ad network can use these information
to select targeted ads for the user. While some targeting in-
formation is automatically collected and sent by the ad con-
trol, some others are optionally provided by apps/developers
(through ad control APIs). Targeting can also be based on
a user’s long-term behavior such as the types of apps he
uses and the types of ads he clicks on. The ad server can
obtain such statistics from analytics servers and maintain it
for each user as his profile.

2.2 Goals
Our goal is to broadly characterize behavior of two im-

portant parties in mobile in-app ad ecosystem: apps and
ad networks, and to understand their targeting mechanisms
from empirical perspective. There are two key aspects of
such understanding.

I Client-side behavior. What various targeting informa-
tion do mobile apps send to ad networks? The goal is differ-
ent from that in prior work [12, 26] that demonstrated, by
analyzing ad controls, the large extent to which ad controls
are capable of collecting user’s personal information. Actu-
ally sending some of the information to ad networks, how-
ever, is often left optional to apps— depending on how app
developers customize their use of ad controls within apps,
some of the personal information the ad controls are ca-
pable of collecting may or may not actually be sent to ad
networks. For example, AdMob, the most popular ad con-
trol in our datasets, allows apps to optionally send user’s
current location and demographic information such as his
age and gender. How often apps actually send such infor-
mation require analyzing ad requests made by apps—mere
examination of individual ad controls is not sufficient.

Answer to the above question will illustrate the actual
usage of these optional targeting information—whether de-
velopers really care about targeting users, whether they take
additional efforts to provide these optional targeting infor-
mation despite runtime overhead and privacy implications [12,
26], and if they do, what type of targeting information apps
actually send to ad networks.

I Ad network behavior. Even if specific targeting infor-
mation, such as a user’s geolocation, is sent to ad networks,
do the networks actually use the information for targeting
users? If they do, how much do they rely on specific target-
ing information in selecting ads for a user? Answers to these
questions can be useful for developers in choosing the right
ad network and understanding whether it is worth providing
optional targeting information. For example, as our results
in Section 4 show, not all ad networks that collect geoloca-
tion actually use it to target users. Based on the results, a
developer who wishes to show location-based ads in his app
can choose an ad network that actually utilizes geolocation
to target users. On the other hand, if the developer decides
to use an ad network that can accept user’s geolocation as
an optional attribute but does not utilize the information
for targeting users, he can choose not to provide the infor-
mation to reduce exfiltrated user data, access permissions,
and development and runtime overhead.

To the best of our knowledge, no previous works try to an-
swer the above questions for mobile in-app ads. Answering
the questions is challenging due to the following reasons.

2.3 Challenges
I Scalability. To understand what targeting information
apps send to ad networks, we need to analyze a large enough
sample of ad requests from real apps. One obvious way
to collect such data is to capture app traffic in large net-
work providers [28], but this requires access to such network
providers. Another option is to recruit real users and to cap-
ture their ad traffic [27], but this is hard to scale to a large
number of apps. Another option, which we explore in this
paper, is to use an automation tool to automatically execute
apps and to capture their ad traffic [18,22]. Correctness and
scalability of this approach, however, hinge upon answering
several non-obvious questions: Does poor coverage of exist-
ing automation tools introduce any bias to collected sample
of ads requests? How long do we need to run an app to
capture all its ad requests?

I Black-box ad networks. Without knowing internal tar-
geting algorithm of an ad network, we need to characterize
its targeting mechanism only from its externally observable
behaviors. Passively monitoring ad requests and fetched ads
from existing apps may not be sufficient for this purpose. For
example, to determine if an ad network targets users based
on their locations, we need to compare ads from requests
(1) with and without location information, (2) without any
other optional targeting information (to isolate the impact
of location), and (3) with the same mandatory information
(e.g., IMEI number). The available sample of ad requests
may not contain requests satisfying all these criteria. For
instance, if all available ad requests to an ad network con-
tain location information, we cannot know how the network
would behave with a request without location information.
Moreover, there are many variabilities such as available ad
inventory and time of day that can affect targeting behav-
ior of ad networks. One must use sound statistical tools to



derive meaningful conclusions in the presence of such vari-
ability.

I Profile-based targeting. Behavioral targeting of dis-
play ads on the Web utilizes user’s long term behavioral pro-
files [1] such as the sites he visits and the ads he clicks on. To
study such targeting for in-app ads, we need to mimic multi-
ple user profiles and study how ad networks target different
profiles. For scalability, the profiles need to be built auto-
matically. This can be tricky due to a click-contamination
problem discussed in Section 4. For instance, to automat-
ically build a profile of a “sports-loving” user, we need to
automatically click on all and only sports-related ads. To
automatically determine if an ad is about sports, we often
need to analyze its landing page, which may be determined
only after clicking the ad. If the ad is not about sports, this
click can contaminate the “sports-loving” profile.

In this paper we address these challenges with a novel tool
called MAdScope and use it later in the paper to understand
targeted ads within mobile apps. At a high level, MAdScope
has two functionalities (Figure 2): (1) passively harvesting
ads from existing apps; we use this to understand what tar-
geting information is sent to ad networks, and (2) actively
probing ad networks; we use this to characterize targeting
behavior of ad networks. We describe them in more detail
in next two sections.

3. CHARACTERIZING CLIENT BEHAVIOR
WITH PASSIVE AD HARVESTING

3.1 Passive Ad Harvesting in MAdScope
MAdScope harvests ad requests and impressions by run-

ning unmodified apps on a mobile device. To harvest ads
(ad requests and corresponding responses) from an app, it
launches the app on a mobile device, navigates to its pages,
and captures ads shown in those pages with a network sniffer
that runs on the same device or at a proxy sitting between
the device and the Internet. The sniffer or the proxy cap-
tures all network traffic to and from the device, from which
ad requests/responses are identified by looking for specific
ad signatures (See MadFraud [5] for a principled approach
of identifying ad requests from apps).

A recent work [27] used a similar methodology to harvest
ads shown in 100 apps, but relied on humans to run the apps.
Using human is not scalable. Since our goal involves ads
from a large number of apps, MAdScope avoids the above
scalability bottleneck by using a Monkey: a UI automation
tool that can automatically launch an app in a real device
and navigate through its pages by interacting with it, e.g.,
by clicking buttons, filling out text fields, swiping panels,
etc. Previous work used Monkeys for various applications
including app testing [22], ad frauds detection [5, 18], secu-
rity bug detection [2], etc.

As mentioned before, one of our goals is to study what tar-
geting information are sent to ad networks via ad requests.
For our results to be sound, they need to be based on all or
an unbiased sample of ad requests issued by a large sample
of apps. All unique ad requests of an app can be collected
by an ideal Monkey capable of visiting all runtime states
(e.g., pages) of the app and thus triggering all ad requests
the app can make. In practice, however, Monkeys have poor
coverage. For instance, a Monkey may fail to visit some
pages that can only be accessed by providing a correct user-

App

Ad
Networks

Ad 
Requests

Ads

Monkey

Replay
tool

Proxy

Profile
Manager

Active Harvesting

Passive Harvesting

Figure 2: MAdScope architecture. Top half involves
passive ad harvesting (Section 3), while the bottom
half involves active ad harvesting (Section 4).

name/password combination not known to the Monkey and
hence miss the ad requests issued in those pages. (See [2]
for a list of other reasons why a Monkey can have poor cov-
erage.) If the missed ad requests are significantly different
from the harvested ones, in terms of what targeting informa-
tion is being sent out, the harvested sample can be a biased
one. The amount of time a Monkey is given to explore an
app can also affect the quality of harvested ad request sam-
ple: a longer exploration time may yield more ad requests,
but at the cost of fewer explored apps within a given time.
Therefore, before we analyze the ad requests collected by
a Monkey, we need to first understand whether the ad re-
quest samples we collect are biased due to (a) poor coverage
of the Monkey and (b) limited exploration time. We now
investigate them empirically.

3.1.1 Understanding Ad Harvesting
To understand how apps make ad requests, we run top

3,000 ad-supported free Android apps in the Google Play
market with a combination of human and an existing Mon-
key tool called PUMA [14]. We configured PUMA to launch
each app on a Nexus 5 smartphone and to navigate through
various app pages for at most 20 minutes per app. For
around 700 apps, PUMA had low coverage—it explored fewer
then 10 unique pages per app as the apps required login
passwords and/or had custom controls that PUMA failed to
interact with. We manually ran those apps (e.g., by supply-
ing user name and password) to make sure that at least 10 or
all unique pages are explored for each app. All network traf-
fic to/from the device was captured with a proxy, where we
identified ad requests by using techniques described in [5].
We harvested ad requests from a total of 31,203 unique app
pages.

I Observation 1. Most apps make the first ad request
during launch time.

Figure 3 shows the CDF of apps and the number of in-
teractions PUMA made before an app issued its first ad
request. As shown, for 81% of the apps, PUMA had to sim-
ply launch the app and make no interactions at all. These
apps make ad requests during launch time so that the ads
can be displayed on the first app page as soon as possible.
Moreover, only 5 interactions were sufficient to harvest ad
requests from > 95% of the apps, suggesting that even a ba-
sic Monkey that can interact with an app in a limited way
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Figure 3: CDF of app count and number of Monkey
interactions required to observe the first ad. No
interaction is needed for 81% of the apps.

is able to capture first ad requests from a large fraction of
apps.

I Observation 2. For most apps, the first ad request is
similar to all its ad requests.

Let us first explain how we define two ad requests to be
similar. A typical ad request is an HTTP GET or POST
method call, consisting of a request page address (a host
name and a path) and a query string with multiple attribute-
value pairs separated by the ’&’ symbol. Attributes in a
query string are either variable or invariant, depending on
whether their values change or remain constant in two back-
to-back ad requests from the same app page, over all apps.3

For example, a timestamp attribute and a sequence number
attribute are variable, while an IMEI number and a pub-
lisher ID are invariant. We consider two ad requests to be
similar if they have the same request page address and the
same values of invariant attributes. Intuitively, two simi-
lar ad requests convey the same or very similar targeting
information.

Our results show that for 94.7% of the apps, the first ad
request an app makes is similar to its subsequent requests.4

Note that many of these apps required login and password
and we had to manually run them to explore them well. We
did not observe any instance where ad requests differ before
and after user login. For 4.2% apps, subsequent ad requests
differ from their first requests by only one attribute (e.g.,
FirstPage=true in first request and false in subsequent
ones) and hence can be constructed from their first requests.
Only ≈ 1% apps issue multiple different ad requests in dif-
ferent pages. Manual inspection reveals that these apps use
keyword-based targeting and send different targeting key-
words in different pages based on their contents.

3.1.2 Passive Harvesting in MAdScope
Insights from the above results guide us to the following

scalable ad harvesting strategy in MAdScope: it launches
an app and explores it with PUMA only until the app issues
the first ad request or PUMA fails to explore further. We
claim that the strategy yields:

3Note that attribute-value pairs encrypted with random
salts look random. The above definition would treat such
attributes as non-invariant, even if their unencrypted values
are the same.
4Ad impressions returned by these similar requests, however,
can be different.

Ad domain Frequency
doubleclick.net 36%
mobclix.com 22%
appsgeyser.com 12%
adsmogo.com 12%
wapx.cn 3.8%
nend.net 1.1%
mopub.com 0.9%
mobfox.com 0.8%
applovin.com 0.7%
airpush.com 0.7%

Table 1: Top ten ad domains in the datasets.

• Unbiased sample of ads: Poor coverage or limited
exploration time of PUMA does not introduce any sig-
nificant bias on the harvested sample of ad requests.
As Observation 1 shows, even if it explores zero or very
small number of app pages, it still can harvest ad re-
quests from most apps. Moreover, as Observation 2
shows, collecting only one ad request per app is suf-
ficient, since that represents all ad requests made by
99% of the apps (i.e., not many unique ad requests are
missed from unexplored pages).

• Scalable harvesting: As Observation 1 shows, MAd-
Scope needs to make a small number of interactions to
harvest its ad, enabling it to quickly harvest ads from
a large number of apps. In our experiments, we could
harvest ads from around 4000 apps per device per day.

3.2 Empirical Results

3.2.1 Datasets and Basic Statistics
We use the following two datasets:

Dataset 1. This dataset contains 211,231 unique ad re-
quests collected by MAdScope from 22,324 most popular
free apps in Google Play market.

Dataset 2. The dataset is shared by the authors of the
MadFraud system [5]. It consists of ad requests from 130,339
Android apps, selected randomly from a pool of 669,591 apps
authors crawled from 19 markets including Google Play. Un-
like Dataset 1, this dataset contains only ad requests that
apps made during launch time: each app is launched, kept
running for 60 seconds without any user interaction, and
ads are captured. It consists of 353,181 unique ad requests.
Note that, due to our Observation 1 and Observation 2, this
dataset represents an almost unbiased sample of ad requests.

Overall, both the datasets contain ∼500K unique ad re-
quests from ∼150K apps. They contain 143 unique ad re-
quest pages from 101 unique top level ad network domains.
Table 1 shows ten most frequent top level domains appearing
in the ad requests.

3.2.2 How much information is sent to ad networks?
To approximate the magnitude of information sent by

apps to ad networks, we count the number of attribute-value
pairs in each ad request. Figure 4(a) shows the cumulative
distributions of the number of attribute-value pairs in all
ad requests. As shown, ad requests contain a large num-
ber of attribute-value pairs: 26.3 pairs on average per re-

doubleclick.net
mobclix.com
appsgeyser.com
adsmogo.com
wapx.cn
nend.net
mopub.com
mobfox.com
applovin.com
airpush.com
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Figure 4: CDF of the number of attribute-value pairs appearing (a) in all ad requests and (b) in all ad request
pages. > 80% of ad requests and > 80% of ad request pages contain > 10 attribute-value pairs.

quest. More than 80% of all ad requests contain more than
10 attribute-value pairs.

We also aggregate the counts per ad request page ad-
dress: for each address, we take union of all attribute-value
pairs that appear in any ad request to that address and
count them. Figure 4(b) shows the CDF of the number
of attribute-value pairs of all 143 ad request pages in our
datasets. Overall, ad networks are aggressive in collecting
various attributes. The average number of attribute-value
pairs per ad request page address is 20.4, with > 80% of the
ad request pages supporting > 10 attribute-value pairs.

The results above demonstrate that ad networks are ag-
gressive in collecting a large number of attributes via ad re-
quests. Note that many of the attributes are automatically
collected by ad controls (and hence are transparent to devel-
opers), while others are left optional to developers who need
to explicitly provide their values. Moreover, not all these
attributes are relevant to targeting users. We characterize
these aspects next.

3.2.3 Mandatory and Optional Attributes
We define an attribute to be mandatory for a request page

address if it appears in all ad requests to that page address
from all apps; otherwise, the attribute is optional. The in-
tuition is that if an attribute is optional, then it is highly
likely for some developers to not use it and hence ad requests
from their apps to not include the attribute. For example,
the ad control requesting ads from googleads.g.doubleclick.
com/mads/gma allows developers to explicitly provide value
of the optional attribute cust_age; however, only a subset
of the developers actually provide the attribute value. One
limitation of this classification is that a mandatory attribute
will deem optional if it does not appear in all versions of the
ad control. For instance, if a mandatory attribute is intro-
duced in a later version of the ad control, all ad requests from
the latest version of the ad control will have the attribute,
while none from an earlier version will have it.

We observed that, surprisingly, a large fraction (55%) of
attributes are optional. On average, each ad request page
address has 9.1 mandatory attributes and 11.3 optional at-
tributes.

The result highlights the significance of our data-driven
analysis of ad clients. By manually examining the usage of
an ad client (as in previous works [12, 26]), one could iden-

Category Example values

Location Latitude and Longitude, City, Zipcode
Keywords Keywords
Device IMEI number, MAC address, Android

ID, IP address, CPU speed, RAM size,
Screen size, Device model, Carrier name

Demographic Age, Gender, Language
Child flag True/False

Table 2: Targeting attribute categories and values.

tify extent to which ad clients are capable of collecting user’s
personal information. But since a large fraction of such in-
formation is optional, this gives only the upper bound, not
the actual magnitude, of information leak. In contrast, ex-
amining ad requests from real apps gives the true magnitude
of the information being sent to ad networks.

3.2.4 Identifying Targeting Attributes
To analyze targeting behavior, we must first identify var-

ious targeting information that are sent from apps to ad
networks in ad requests. In other words, we need to identify
which attributes in an ad request contain targeting informa-
tion. Since there are many ad providers for Android (101
in our datasets), it would be prohibitive to manually reverse
engineer each ad provider’s ad serving protocol to determine
which attributes in an ad request correspond to what tar-
geting information. Instead, we develop a semi-automated
method for such identification purely based on ad requests
appearing in our datasets.

Our method consists of two steps. First, we keep only
the attributes that satisfy either of the two criteria (and
discard the others): (1) the attribute contains a relatively
small number (we used a threshold of five) of distinct values
in the entire datasets, or (2) its values are English words.
Intuitively, since the ad requests in our datasets are har-
vested from a small set of similarly configured identical de-
vices from the same location, a targeting attribute should
contain one or a very small number of values across all re-
quests. For example, if the apps are all run from the same
location, a location attribute should always have the same
value. Attributes containing English words include target-
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Figure 5: (a) shows distribution of identified mandatory and optional targeting attributes in all ad networks.
A significant number of targeting attributes are optional (b) and (c) show frequencies of various categories of
targeting attributes in all ad networks and in all ad requests, respectively.

ing keywords. The process discards attributes with arbitrary
values such as timestamps or hashed values.

Second, for each of the remaining attributes, we manually
inspect its name and values in our datasets and identify if
the name and values are semantically meaningful (for exam-
ple, cust_gender=male has a semantically meaningful inter-
pretation but q3=5 does not). We select all attributes with
meaningful interpretation. Note that the first step discards
attributes that are unlikely to have meaningful interpreta-
tion, and thus reduces laborious manual effort. Finally the
selected attributes for each request page are categorizes into
five different categories: Location, Keywords, Device, De-
mograhic, and Child Flag. Example values of attributes of
these categories are shown in Table 2.

I Targeting Dictionary. The targeting attributes, their
categories, and whether they are mandatory or optional are
encoded in MAdScope as a Targeting Dictionary. This is a
static dictionary that maps each ad request page address to a
set of targeting attributes that may appear in corresponding
query strings and whose semantics are known. For instance,
for the ad request page address googleads.g.doubleclick.com/
mads/gma, the dictionary contains the information that the
attribute cust_age is optional and its value is age of the user
in plain text. MAdScope uses this dictionary for systemat-
ically probing various ad networks to learn their targeting
behavior (Section 4).

Our datasets contain 143 unique request page addresses
and 2921 unique attributes for these requests. By using
the above methodology, we could recognize 626 targeting at-
tributes (21% of the unique attributes). Note that the above
methodology may miss some targeting information sent by
an app, e.g., when they are sent as hashed or encrypted val-
ues or codes (e.g., “v=1“ instead of “gender=male”). There-
fore our results on extent of targeting is actually a lower
bound.

3.2.5 Targeting Attribute Counts
Figure 5(a) shows the distribution of identified targeting

attributes in all ad request page addresses. (Page addresses
are sorted based on increasing order of the number of iden-
tified targeting attributes.) 112 of total 143 ad request page
addresses contain at least one targeting attributes. On av-
erage, each address contains 4.4 targeting attributes.

Figure 5(a) also distinguishes between mandatory and op-
tional targeting attributes. On average, 41% of targeting at-
tributes are optional—there are 1.8 optional and 2.6 manda-
tory targeting attributes per ad request page address. The
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Figure 6: Frequencies of ad requests that do not use
a category of targeting attributes even though the
ad network support that category.

high fraction of optional targeting attributes, again, high-
lights the importance of data-driven analysis of ad clients.

We also categorize targeting attributes into various cate-
gories shown in Table 2. Figure 5(b) and (c) show distri-
butions of various categories of targeting attributes in all
ad request page addresses and in all ad requests, respec-
tively. As shown, two most common categories of attributes
are device-related attributes such as IMEI number or de-
vice Android ID and location attributes such as latitude and
longitude. Keyword-based (also known as contextual) and
demographics-based targeting is less common. Few ad net-
works collect a child flag, to serve child-appropriate ads.

3.2.6 Omission of Optional Attributes
Figure 6 shows how often apps/developers actually pro-

vide the optional targeting attributes of various categories.
As shown, a large fraction of the ad requests do not include
attributes of a targeting category even though their ad net-
works support that category. For instance, 65% of the ad
requests do not provide location attributes even though their
ad networks allow location attributes. The fractions of ad
requests not utilizing the opportunity of providing targeting
attributes are higher (> 90%) for other categories, except
for the Device category that is often automatically collected
by ad controls. A developer may omit providing an optional
attribute for many reasons: to reduce exflitrated user infor-
mation, to avoid asking for additional permission (e.g., for
location attribute), to avoid additional programming efforts

 googleads.g.doubleclick.com/mads/gma
 googleads.g.doubleclick.com/mads/gma


to include the attribute, to avoid runtime overhead of send-
ing additional attributes over the network, or even due to
his lack of awareness of the targeting attribute.

A few ad networks leave all targeting information op-
tional. For 17% of ad requests in our datasets, correspond-
ing ad networks do not receive any targeting information
since they leave all targeting information as optional and
apps/developers do not provide any of them.

3.2.7 Static Targeting Attributes
Some targeting attributes such as location are usually

specified dynamically, e.g., based on user’s current geoloca-
tion. Interestingly, we observed that some developers spec-
ify some of the attributes statically. For example, the app
Virtual Table Tennis 3D requests ads from ad.where.com,
with city=ADELAIDE irrespective of the user’s current loca-
tion. Similarly, we observed a few apps requesting ads from
doubleclick.net by setting Age=10 and Gender=female. We
suspect that most users of these apps are kids and girls,
and without an easy way to determine the true age/gender
of the users, app developers statically target the dominant
user group.

To quantify such static targeting attributes, we counted all
ad requests that specify location or demographics different
from the Monkey’s profile. We found that at least 3.3% of
all ad requests contain one or more such statically defined
attribute values.

4. CHARACTERIZING AD NETWORKS WITH
ACTIVE AD HARVESTING

The goal of active probing in MAdScope is to issue ad
requests to a target ad network, with carefully chosen com-
binations of targeting attributes and values, in order to fa-
cilitate understanding of targeting mechanism of the ad net-
work. For instance, to understand how much an ad network
targets users based on their locations or whether its ad serv-
ing rate changes when targeting is enabled, we would like to
compare responses from many ad requests without location
and with various locations. MAdScope’s active probing can
issue such customized ad requests. Similarly, to understand
if an ad network does behavioral targeting, we would need
to build long term behavioral profiles and compare ads re-
ceived by various profiles. MAdScope can build such profiles
and issue ad requests from them.

One way to issue customized ad requests is to build a
custom app with the desired ad control and to customize it
with various optional attributes (such as location). However,
this allows only to customize the parameters that ad controls
allow developers to set; other parameters that ad controls
collect automatically (such as Android ID or IMEI number,
or location for some ad controls) cannot be customized.

To address this, MAdScope relies on modifying and re-
playing passively harvested ad requests. This is supported
by the following two observations.

I Observation 3. A passively harvested ad request can be
replayed later to harvest more ads.

I Observation 4. Targeting attributes in ad requests can
be modified before replaying.

To validate Observation 3, we selected a sample of 50 ran-
dom apps. For each app, we performed the following three
tasks until we got 100 ads from each: (1) launched the app
on a mobile device and kept it running while it made peri-

odic ad requests; (2) issued the first ad request of the app
(passively harvested as described before) each time the app
requested an ad in task 1, from a replay tool running on a
desktop PC; (3) replayed the ad request 100 times after a
week. We also wrote parsers for the ads returned by these
requests, to determine if responses from the ad requests were
valid.

We observed that all replay requests (including the ones
replayed a week later) returned valid ads and on average, the
overlap between ads received by apps and real-time replay
was > 82%. This implies that ad networks treat requests
from the app and from the replay tool in a similar way.
This also suggests that passively harvested ad requests can
be quickly replayed from multiple desktops to harvest a large
number of ads.

Observation 4 is motivated by the fact that most targeting
attributes appear in plain text in ad requests. Ad providers
do not typically encrypt ad requests because of the extra
overhead that is required on the ad server to support a large
number of SSL connections [26]. To validate Observation
4, we took ad requests from the previous experiment. For
each ad request, we created a modified request by changing
the value of one random targeting attribute, or dropping it if
the attribute is optional. For example, if the original request
contains gender=male, the modified request contained gen-

der=female. We then replayed both versions of the requests
50 times each and observed that ad networks responded to
the modified requests with valid ads (i.e., they could be suc-
cessfully parsed), validating Observation 4.

4.1 Active Probing in MAdScope
Figure 2 shows the overall architecture of MAdScope and

its active probing components. The key component is a re-
play tool that uses insights from the above results to actively
probe an ad network: It starts with ad requests passively
harvested from real apps, selectively modifies various tar-
geting attributes in the HTTP GET/POST requests, replays
the modified HTTP requests with the same request header
as the original ad request, and analyzes the responses (i.e.,
ads). What attributes in ad requests are modified depends
on what targeting behavior to emulate.

Other than these basic components, MAdScope has sev-
eral additional components that are crucial for understand-
ing ad targeting. They involve how ad networks are probed,
how targeted ads are identified, and how ads are classified.
We describe them next, starting with the probing mecha-
nism to understand targeting.

4.1.1 Probing for Attribute-based Targeting
From MAdScope’s perspective, there are two broad cat-

egories of targeting. Attribute-based targeting is stateless
where ad networks select ads solely based on various attribute-
values within ad requests. Examples include targeting based
on keywords (contextual ads), location, demographic infor-
mation encoded in ad requests. Behavioral targeting, on the
other hand, is stateful where ad networks select ads based
on historical behavior of the user, e.g., what types of ads
he clicked on and what types of apps he used in the recent
past. We start with attribute-based targeting.

To construct ad requests with targeting enabled for cate-
gory C to an ad network N , MAdScope samples an ad re-
quest to N from its passively harvested pool of ad requests.
It then consults its targeting dictionary to identify target-
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ing attributes of category C in the request and discards any
other optional targeting attributes from it (to isolate the im-
pact of C from other targeting categories). Finally it enu-
merates a few values of C, possibly sampled from passively
harvested ad requests, and for each value, it produces one
modified ad request by setting the attribute of category C
to that value (other attributes keep the same value across all
requests). The ad requests are then replayed by MAdScope.
To avoid any potential impact of behavioural targeting based
on device ID, different ad requests are issued with different
device IDs.

For instance, to construct ad requests to adfonic.net with
location-based targeting enabled, MAdScope samples an ad
request with hostname adfonic.net from its passively har-
vested pool of ad requests. Using the targeting dictionary
described in Section 3.2.4, it identifies location attributes
u.latitude, u.longitude, and u.postalCode and discards
other optional targeting attributes such as u.gender, u.ageLow,
and u.ageHigh from the request. It then produces multi-
ple requests by setting values of location attributes to lati-
tude/longitude and postal codes of top US cities.

In a very small number of cases, however, we found that
targeting values (e.g., location in ad requests to googleads.
g.doubleclick.net) appear encrypted or hashed. For them,
MAdScope uses encrypted/hashed targeting values from its
passively harvested request pool. For example, to harvest
encrypted location values for googleads.g.doubleclick.net, MAd-
Scope uses the mock location feature of popular mobile OS
such as Android, iOS, and Windows Phone that allows MAd-
Scope to set the location of the device to a target location
before harvesting ad requests. MAdScope then identifies en-
crypted location attributes in those harvested ads and uses
them in ad requests to be replayed.

Note that the above procedure tries to identify the effect
of one category of targeting attribute at a time, in isolation
from other optional attributes. In practice, it is possible for
an ad network to take targeting decisions based on multiple,
rather than a single, categories of attributes. For example,
an ad network may target women in a specific city, but such
targeting would not be revealed by probing with only gen-
der or with only location attributes. Identifying impact of
combinations of attributes is challenging due to an exponen-
tial number of combinations. Recent work has shown how
to explore such combinations in a scalable way [16]; incor-
porating such techniques to MAdScope is part of our future
work.

4.1.2 Probing for Behavioral Targeting
Unlike attribute-based targeting, behavioral targeting is

done based on a user’s profile, representing his historical be-
havior such as types of apps he uses or ads he clicks on.
MAdScope can automatically build profiles of specific inter-
ests and preferences and can issue ad requests with those
profiles.

There are several ways to create user profiles. One can
mimic actions of a particular user (e.g., [3]). Characteris-
tics of profiles built in this fashion can be arbitrary close
to the profiles observed in reality. However, the approach
is not scalable. MAdScope instead generates user location-
and interest-based profiles by mimicking actions that reflect
the target location and interest. (A similar approach was
used in [1] to create profiles for in-browser ads.) The strat-

egy enables MAdScope to generate profiles for virtually any
location and interest.

Given a target location L and interest I, we would like
MAdScope to mimic various user actions that are related to
L and I and that an ad network may observe, e.g., through
targeting attribute values in ad requests or by correlating
app and web usage data. More specifically, given L and I,
we would like MAdScope to emulate the following tasks for
an extended period of time.

1. Set the user’s mobile device’s location to L before mak-
ing any ad request.

2. Use various apps related to interest I only. Apps re-
lated to interest I are chosen by matching I with Google
Play app category [27].

3. Browse various web sites related to interest I. Web
sites related to interest I are chosen by matching I to
website categorization service such as Alexa5 [1]. An
ad network may correlate web and app usage to deliver
ads to app based on the type of web page visited [21].

4. Click on ads of category I. Category of an ad is deter-
mined by a classifier we describe later.

By emulating the above tasks, MAdScope lets ad networks
observe (a subset of) the activities and build a user’s profile
related to L and I. Step (1) is needed to make sure that an
ad network can infer L as a significant location of the user
and show location-based ad for L even when he is not at L.
Steps (2), (3), and (4) are needed because they reflect user’s
interest, which an ad network can use to target ad. Among
them (4) is particularly important since a click is a strong
signal for a user’s need or interest.

Interestingly, MAdScope can perform actions (1), (2), and
(3) easily with its replay tool, without using any real device.
Since we only care about the interactions between apps and
ad networks, instead of actually launching and using the tar-
get apps, MAdScope can simply replay ad requests made by
those apps. To enforce location L and interest I, MAdScope
replays ad requests harvested from apps of category I with
location attributes set to L. Finally, it repeatedly visits top
Alexa web sites of category I.

However, it is challenging to faithfully emulate clicks only
on ads relevant to the profile category due to the following
click contamination problem.

I Click Contamination. While building a user’s profile of
interest category I, MAdScope receives a sequence of ads,
of which it must click on all and only ads of category I.
Clicking on ads not related to I may contaminate the profile
(i.e., confuse the ad networks about user’s true interest).

Category of an ad may be determined based on its textual
content. However, many ads display images and videos and
contain no or very little texts and hence cannot be classified
with sufficient confidence. A more foolproof strategy is to
classify based on content or Alexa category of the landing
page of the ad (the page that a click on the ad leads to).
Unfortunately, landing pages are not often mentioned in the
ad itself; rather the ad contains a redirection URL, a click
on which is redirected through an analytics server, typically
used for accounting purpose, to a final landing page. Thus,
to determine landing page of an ad, we need to click on it

5http://www.alexa.com
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DeviceParams

Figure 7: Anatomy of a click URL of a MobClix ad. XXX denotes encrypted and numeric values.

even if we later find that its category does not match the
profile category. This can contaminate the profile.

To address this, we use the following mechanism.

I Profile isolation via a dummy profile. MAdScope
uses a dummy profile whose only purpose is to click on ads
in order to determine their landing page. A redirecting click
url consists of three components shown in Figure 7: a Redi-
rection Server that receives the click and eventually redirects
it to advertiser’s landing page, Ad Id that maps the ad to
landing page and that the redirection server uses to decide
which landing page to redirect to, and Device Params that
contains various device-specific information that redirection
server uses to identify the source of the click. The same
ad shown in two different devices have the same redirection
server and ad id, but different device attributes.

We utilize the above structure of click urls to click an ad
without contaminating the profile. Given an ad request r,
we issue it twice, once with the original profile and again
with the dummy profile, to receive ads a and a′ respectively.
By parsing the ads, we identify their click urls u and u′. We
then generate a click url u′′ by concatenating the Redirection
Server and the Ad Id from u but Device Params from u′ and
click (i.e., issue an HTTP GET request to) it. The effect is
a click on the ad a, but pretending the source of the click
to be the dummy profile, which gives us the landing page
without any click from the original profile.

4.1.3 Ad Classifier
MAdScope provides a classifier that given an ad can deter-

mine its Alexa category6. This classifier is useful for various
analysis and for building behavioral profile.

Category of an ad can be determined based on its landing
page or its content. To determine category based on the ad’s
landing page, we rely on multiple sources, since we did not
find an authoritative source that would assign a category
to all of the landing pages in our data set. We used site
categorization services from Alexa and WebPulse7 from Blue
Coat. However, as we show later, a significant number of
the advertisers do not appear in Alexa (or WebPulse), and
hence we train a machine learning classifier that predicts
the category of a web page based on its content. The same
classifier can be used for content-based classification if an ad
contains enough textual contents.

I Classification features. For each top-level Alexa cate-
gory, we consider top 1000 web sites. For each site, we take
English words appearing in its title and keyword metadata
in its HTML document header and discard frequent words
such as ‘the’ and ‘and’. We then normalize each word by
stemming it8. Finally, for each category, we construct a
“bag of words” with all stemmed words and their 2-grams

6
http://www.alexa.com/topsites/category

7
http://sitereview.bluecoat.com/sitereview.jsp

8Stemming is the process for reducing inflected (or some-
times derived) words to their base or root form; e.g., “pho-
tos” to “photo”.

in all 1000 web sites of that category. The bag is used as
features for the category.

I Classification algorithm. Given the feature sets for
all categories, we train a multi-class logistic regression clas-
sifier [25], which is commonly used for text classification.
We use a min-max normalizer for normalizing features, 20
random sweeps with L1 and L2 weights of 0, 0, 1, and 1
(for a linear combination of L1 and L2 regularization), and
optimization tolerances of 10−4 and 10−7.

I Classification accuracy. To evaluate the performance
of the classifier, we apply cross validation to the ground
truth. We split the ground truth into 3 folds, train a clas-
sifier on 2 of those folds and then evaluate its performance
on the remaining fold. Overall, the classifier has an average
accuracy of 0.76 across all categories. The Log-loss reduc-
tion or the Reduction in Information Gain (RIG) is 78%,
which can be interpreted as the advantage of the classifier—
the probability of a correct prediction is 78% better than
random guessing.

4.1.4 Identifying Targeted Ads
To identify whether an ad is targeted, we use the intuition

that a targeted ad is shown more frequently to some specific
value of a targeting attribute than others. For each ad, we
count how many times it is been shown to different values of
a targeting attribute. This gives us empirical distribution of
the ad over all targeting values. If the ad is not targeted to
specific values, it is fair to assume that the observed distri-
bution should be close to uniform. To compare the observed
distribution with uniform distribution, we use Pearson’s χ2

test with the null hypothesis being “observed distribution is
uniform”. The test involves computing p-value, whose value
is small (less than 0.05) if the null hypothesis is rejected and
close to 1 if the hypothesis is accepted. We say that an ad
is targeted if the p-value of its observed distribution is less
than 0.05.

The statistical analysis is meaningful only for ads that are
shown at least a few times; we use a threshold of 10.

4.2 Limitations
Before we present our results, we would like to point out

a few limitations of our methodology to set the expectation
right. Targeting behaviour of an ad network may depend
on many variabilities such as its available ad inventory, de-
mands of ads, its targeting algorithm which may evolve over
time, time of the day, etc. Although our attribute-based
targeting results are based on a week long probe, the win-
dow may not be sufficiently large to capture all variabilities.
Our results are based on a small number of targeting values
(e.g., locations of five big US cities); it is possible that an
ad network employs custom targeting strategies for specific
values which we might miss. For example, if an ad network
used a different location-based targeting algorithms for USA
and China, we would miss its behavior for China since we
used USA locations only.

http://www.alexa.com/topsites/category
http://sitereview.bluecoat.com/sitereview.jsp
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Figure 8: Distribution of ads over top ten Alexa
categories

It is also possible that we failed to identify behavioral
targeting of some ad network. This can happen for a few
reasons. First, we use a window of one day to build profiles,
after which we test for behavioral targeting. It is possible
that our profile-building window of one day is too small to
capture behavioral targeting of the network (although it is
unlikely based on results from [1]). Second, the ad network
may rely on other actions than what MAdScope emulates
(Section 4.1.2) to build behavioral profiles. Third, MAd-
Scope’s ad classifier is not perfect, and hence it can click
on unrelated ads to contaminate profiles. The ad network
under study may be sensitive to such contaminated profiles.

4.3 Empirical Results

4.3.1 Ads and Advertisers
We start with some results about ads and advertisers,

which are based on ad impressions received by replaying
100,000 randomly selected ad requests from our datasets.

I Ad serving rate. Ad serving rate indicates the fraction
of ad requests returning valid ads. We say an ad network
fails to return an ad when in response to an ad request,
it returns an unsuccessful HTTP response (e.g., error 503:
Service Unavailable) or an empty ad (likely due to lack of
enough ads to serve).

We observed various degrees of ad serving rates for differ-
ent ad networks. While most of the ad networks we tried had
good (> 95%) ad serving rate, we experienced poor serving
rates for two ad networks: adsmogo.com and mobclix.com.
Ad serving rates for these two networks were 43% and 81%
respectively. Such a poor ad serving rate is bad for app de-
velopers since they waste opportunities to show ads to users.

I Advertiser rank analysis. We observed a total of 4037
unique advertisers. We determined their ranks by using
Alexa’s top 1 million web sites. About 55% of the adver-
tisers appear in Alexa’s top 1 million web sites, with an
average ranking of 217K. Remaining 45% of the advertis-
ers do not appear in Alexa’s top 1 million web sites and
hence we could not determine their global web rank. Ads
from these unranked constitute 75% of the total ads in our
corpus. This shows that most of the mobile ads come from
obscure advertisers who are not among the top 1 million web
sites listed by Alexa.

I Ad categories. We categorized 1734 of 4037 advertis-
ers using Alexa, 836 using WebPulse, and the rest with our

classifier. Figure 8 shows ad distribution for the top 20 root
level Alexa categories. The top advertiser category is Game,
where the landing page is a Google Play page for download-
ing Android games. Some other major categories are Arts,
Recreation, Computer, Business, and Shopping.

4.3.2 Attribute-based Targeting Analysis
To characterize attribute-based targeting of ad networks,

we use MAdScope to actively probe top ten ad networks in
our dataset. To capture temporal variability, each ad net-
work was probed once every two hours, over a period of a
week starting from October 10, 2014. To probe an ad net-
work N , MAdScope first uses the targeting dictionary to
identify categories of targeting information collected by N .
The top ad network, doubleclick.net, allows targeting based
on six different categories of attributes: location, keywords,
device, demographics, child flag, and app name. Other net-
works allow a subset of these categories. We identified a
total of 26 {ad network, targeting category} combinations.
For each network N and category C, MAdScope then cre-
ates up to 5 ad requests, with different values of targeting
attributes of category C plus one request without any op-
tional attribute of category C. (Note that MAdScope iso-
lates C by omitting targeting attributes of other categories
in ad requests.) Each ad request is then issued 100 times and
the responses are captured. The overall process generated
slightly over a million ad impressions over a week.

I Utilization of targeting attributes. Our key results
on attribute-based targeting are shown in Table 3 that shows
how effectively ad networks utilize various targeting infor-
mation for targeting users. We compare ads received with
different targeting values. For each {ad network, target-
ing category} combination, we calculate the fraction of ads
whose distribution across targeting values does not follow
a uniform distribution with any statistical significance (i.e.,
p-value of the χ2 test is less than 0.05). The closer the value
to 1, the more targeted the ad. A value of 1 means 100% of
the ads are distributed in a non-uniform way (i.e., they are
targeted) across all targeting values. The same metric was
used in [1] and [27] to quantify targeted ads.

We observed many instances where targeting information
has statistically significant impact on how an ad network
selects ads (shown by cells with values close to 1 in Table 3).
For example, we found doubleclick.net to select ads based on
targeting keywords every time such keywords are available,
while it targets users based on their locations 80% of the
cases when location information is available.

We also observed many instances where ad networks col-
lect many different types of targeting information, but do
not use the information to target users. This is shown as
cells in Table 3 with a zero values. For example, even though
appsgeyser.com allows apps to send location information, the
information does not have a statistically significant impact
on how the network selects ads.

• Location. We expected location-based ads to be com-
mon and location information to be utilized by all top ad
networks. Surprisingly, three of the seven ad networks that
collect location information do not utilize it for targeting
user. The fourth network, applovin.com, utilizes location in-
formation only marginally.

• Keywords. We found three networks to accept targeting
keywords and two of them to actually use them.

adsmogo.com
mobclix.com
doubleclick.net
doubleclick.net
appsgeyser.com
applovin.com


Ad network Location Keywords Device Demographics App Child flag

doubleclick.net 0.80 1.00 0 0.17 1.00 0
mobclix.com × 0 0.10 × × ×
appsgeyser.com 0 × × × 1.00 ×
adsmogo.com 0 × × × 0 ×
wapx.cn 0.08 × 0 × 0 ×
nend.net 1.00 × 0 × 0.23 ×
mopub.com × 1.00 0 × × ×
mobfox.com × × 0 × 0 ×
applovin.com 0.25 × 0.3 × 1.00 ×
airpush.com 0 × × × 0.75 ×

Table 3: Ratio of ads shown by different (ad network, targeting category) combinations whose distribution
across profiles does not follow uniform distribution with statistical significance. A cell marked with × indicates
that the ad network does not collect targeting information of that category.
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Figure 9: Arrival rate of unique ads. Without tar-
geting, average rate for all top ten ad networks is
26%, with targeting it is 11%.

• Device. Most (7 out of 10) ad networks collect device-
specific information, but most ignore it for targeting pur-
pose.

• Demographics and Child flag. Only one top ad net-
work collects these information, but use them only marginally.

• App name/ID. Eight of the top ten ad networks collect
app names and only half of them use the information to
select ads.

Note that we identified targeting information from ad re-
quests made by real apps and some of the targeting informa-
tion is optional, which implies that app developers explicitly
provide these optional targeting information without getting
any perceived targeting benefit. As mentioned in Section 1,
ad networks most likely collect such targeting information
for forward-compatibility and for information brokerage.

Also note that the results in Table 3 should not be inter-
preted as a way to decide whether one ad network is neces-
sarily “better” than another. An ad network may not collect
or effectively use targeting information, but yet it can be
lucrative to developers in terms of payouts and to advertis-
ers in terms of conversion rates (and vice versa). Evaluating
ad networks in terms of these metrics is part of our future
work.

I Impact of targeting on average distinct ad arrival
rate. Figure 9 shows the fraction of distinct ads of all ads
harvested from each of the top ten ad providers. Two ads

are considered distinct if they have the same text or image
content and have the same click url. For each ad network,
we report the fraction of distinct ads for two scenarios: when
targeting is enabled and when targeting is disabled (i.e.,
when ad requests do not contain any targeting attributes).

Figure 9 shows several key points. First, all ad networks
serve a large fraction of duplicate ads. On average, only 26%
of the ads were distinct, suggesting that ad networks could
benefit from caching ads on the client, as suggested by prior
works [15, 19, 27]. The fraction of distinct ads vary widely
across ad networks, ranging from 1% to 80%.

Second, targeting reduces the fraction of distinct ads. We
observed this for all ad networks. When averaged over all
ten top ad networks, the average fractions of distinct ads
reduces from 26% to 11% when targeting is enabled. This
is most likely because the pool of distinct ads applicable
to specific targeting scenario is substantially smaller than
those applicable to any or no targeting. This suggests that
developers are likely to see more distinct ads when they do
not overly target their ad requests. This might be one reason
of why many developers do not provide optional targeting
attributes even if ad networks allow them (Figure 6).

4.3.3 Behavioral Targeting Analysis
We use the following two-step methodology to detect if

top ten ad networks use behavioral targeting. In the training
step, we let MAdScope create five profiles with (1) different
device ids, (2) different locations L: New York, Los Angeles,
Houston, Atlanta, and Seattle (five big cities in USA), and
(3) different interests I: Game, Arts, Recreation, Computer,
and Business (top five ad categories shown in Figure 8).
We then use MAdScope to issue 5000 ad requests for each
profile, over a period of one day. Then in the testing step,
we use MAdScope to issue 1000 ad requests for each profile,
with the ad requests containing only device information but
no location or specific interest information (i.e., we select ad
requests from a set of 100 apps from all categories, remove
their optional targeting attributes, and replay them for each
profile). Intuitively, if the ad network has learnt about the
users’ interests and locations from the training step and if
it does behavioral targeting, it should show different ads to
different profiles even though the attributes in ad requests
do not indicate any specific location or interest. We use the
same χ2 test to decide if the ads received by different profiles
are distributed uniformly across profiles.



We found that doubleclick.net, used by 36% ad requests in
our datasets, differentiates between profiles in a statistically
significant way while serving ads. We did not observe any
statistically significant impact of profiles for other networks,
but that could well be due to the limitations mentioned in
Section 4.2. For doubleclick.net, the impact of profiles is
significant—we found that 80% of the ads were targeted to-
wards specific profiles (e.g., distributed non-uniformly).

Note that in building profiles, MAdScope used four differ-
ent types of activities mentioned in Section 4.1.2 (e.g., using
a specific location L, using apps of a specific category I, etc.)
We now investigate which of these tasks affect the profiles
actually used by ad networks. To do that, we repeat the pre-
vious experiment four times, with MAdScope configured to
build profiles based on only one task in each experiment. For
example, in the first experiment, MAdScope builds profiles
with location L only, but uses apps, ads, and web pages of
many different categories. In the second experiment, it uses
apps on category I only, but uses many different locations
and categories of ads and web pages, and so on.

We observed that for doubleclick.net, only two types of
actions impact targeting: types of used apps and types of
clicked ads. Historical locations and web browser usage in-
formation do not seem to play any role on targeting.

5. COMPARISON OF WEB AND APP
We here contrast our findings for in-app ads with that

from a recent study on in-browser ads [1].

I Advertiser category. Top categories of advertiser seem
to be different for in-app ads than for in-browser ads. In [1],
authors report that top three advertiser categories for in-
browser ads are Financial Services, Shopping, and Comput-
ers. In contrast, our study shows that top thee categories
for in-app ads are Games (mostly games in app stores), Arts
(e.g., wallpapers), Recreation (e.g., ring tones). This proba-
bly aligns with general usage of browser and apps: financial
services and shopping are mostly browser-based activities,
while apps are used mostly for entertainment purposes.

I Behavioral targeting. As authors in [1] reports, be-
havioral targeting is common in in-browser ads. We used
a conceptually similar methodology, but observed such tar-
geting for only one of the top ten in-app ad networks.

I Demographics. Demographic information is a common
targeting attribute in in-browser ads [1]. In contrast, it is
not commonly used in in-app ads. Only one of top ten ad
networks supports targeting based on demographic informa-
tion; but this it an optional attribute and many app devel-
opers omit the attribute. Even if app developers provide
demographic information of the user, the top ad network
use it only marginally to target users.

I Location. Authors in [1] did not report location as a ma-
jor targeting attribute in in-browser ads. In contrast, most
(seven out of top ten) in-app ad networks collect location
information, and many use the information to target users.

6. RELATED WORK
I In-app ads. A few studies characterize various aspects
of in-app ad traffic. In [28], authors analyzed a data set cor-
responding to one day of traffic for a major European mobile
carrier with more than 3 million subscribers and characterize

mobile ad traffic along a number of dimensions, such as over-
all traffic, frequency, as well as possible implications in terms
of benefits of well-known techniques, such as pre-fetching
and caching, to limit the energy and network signalling over-
head caused by current systems. CAMEO [15] analyzed
AdMob ads collected from 100+ PlanetLab nodes and 20
phones and showed feasibility of caching and prefetching of
ads. Mohan et al. [19] also show a similar result. (A recent
study [4], however, showed that the power savings due to
ad prefetching is small.) Unlike our work, these works do
not characterize targeted ads. The only work we are aware
of that aims to characterize user targeting in in-app ads is
a study by Ullah et al. [27], which shows various categories
of targeted ads shown to 100 apps by one ad network. Our
study is more comprehensive and it differs from this pre-
vious study in its (1) scale (we analyze ad requests from
150K apps and 101 ad networks, while Ullah et al. analyze
requests from 100 apps and mostly from one ad network,
AdMob), (2) analysis of targeting attributes in ad requests,
and (3) active probing (we probe top ten ad networks to
understand what targeting attribute they actually use for
targeting).

Most prior work on in-app ads focus primarily on secu-
rity and privacy. Grace et al. [12] use their automated tool
called AdRisk to analyze 100 ad libraries and investigate
potential privacy and security risks of these libraries in-
volving their resource permissions, dynamic code loading,
permission probing and JavaScript linkages. Concurrent to
this work, Stevens et al. [26] also investigate various privacy
vulnerabilities in the most popular Android advertising li-
braries. They point out whether permissions required by
various ad libraries are required, optional, or undocumented
and investigate privacy concerns such as how UDIDs are
handled and what user data is sent in ad requests. Several
other works acknowledged the dangers of the lack privilege
separation between Android application and and ad code
and propose methods of separating them [20,24]. Leontiadis
et al. [17] analyze an impressive number of 250K Android
apps and show that current privacy protection mechanisms
are not effective as developers and advert companies are
not deterred and propose a market-aware privacy protec-
tion framework that aims to achieve an equilibrium between
the developer’s revenue and the user’s privacy. The primary
focus of all these papers is privacy and security issues of in-
app ads, while ours is on characterization of user targeting
in in-app ad landscape.

I In-browser ads. Previous work on online advertising has
focused primarily on in-browser advertising and most work
has considered the problems associated with privacy [7, 11].
The study by Guha et al. [13] describes challenges in measur-
ing online advertising systems. Roesner et al. [23] present a
taxonomy of different trackers i.e., in-site, cross site, cookie
sharing, and social media trackers, demonstrate how preva-
lent tracking is, and propose an extension that helps to pro-
tect user privacy. Castelluccia et al. [3] demonstrate that it
is possible to reverse engineer a user’s profiles and interests
by analyzing ads targeted to her. Another thread of previ-
ous work investigated ad fraud, which hurts the advertisers
who are paying for the ads [10]. XRay [16] is a differen-
tial correlation technique to identify how various tracking
information are being used by targeted ads. MAdScope’s
overall goal is similar, but for in-app ads. More relevant
to our study is a recent study of online in-browser display

doubleclick.net
doubleclick.net
doubleclick.net


advertising by Barford et al. [1], where authors provided a
general understanding of the characteristics and dynamics
of online display advertising and insights on the targeting
mechanisms that are used by ad serving entities. Our goal
is similar, but for in-app advertising. As mentioned before,
in-app advertising works differently from in-browser adver-
tising and our results indicate that they significantly differ
in important characteristics.

I Dynamic analysis of apps. MAdScope uses a Monkey
to passively harvest ads. Similar Monkeys have been used
recently for other applications such as app testing [22], ad
frauds detection [5, 18], but none of these work studies user
targeting by in-app ads.

7. CONCLUSION
We reported an in-depth study that seeks to broadly un-

derstand what targeting information mobile apps send to ad
networks and how effectively, if at all, ad networks utilize the
information for targeting purpose. Using a novel tool, called
MAdScope, we analyzed 500K ad requests from 150K An-
droid apps and showed that targeting is limited in in-app
ads: even though ad controls provide APIs to send a lot
of information to ad networks, much key targeting informa-
tion is optional and is often not provided by apps. We also
used MAdScope to systematically probe top 10 in-app ad
networks to harvest over 1 million ads and found that while
targeting is used by many of the top networks, there remain
many instances where targeting information or behavioral
profile does not have a statistically significant impact on
how ads are chosen. We also contrasted our findings with a
recent study of targeted in-browser ads.

In-app ad ecosystem is evolving and this study represents
an important snapshot. It will be interesting to see how in-
app targeting evolves in a few years. MAdScope can be a
valuable tool for such future studies.
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