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Bugs in programs are often introduced when programs evolve from a stable version to a new

version. In this paper, we propose an new approach called Darwin for automatically finding
potential root causes of such bugs. Given two programs, a reference program and a modified

program, and an input that fails on the modified program, our approach uses symbolic execution

to automatically synthesize a new input that (a) is very similar to the failing input, and (b) does
not fail. We find the potential cause(s) of failure by comparing control flow behavior of the passing

and failing inputs and identifying code fragments where the control flow diverge.

A notable feature of our approach is that it handles hard-to-explain bugs like code missing errors
by pointing to code in the reference program. We have implemented this approach and conducted

experiments using several real world applications such as the Apache web server, libPNG (a library

for manipulating PNG images), and TCPflow (a program for displaying data sent through TCP
connections). In each of these applications, Darwin was able to localize bugs with high accuracy.

Even these applications contain several thousands lines of code, Darwin could usually narrow down
the potential root causes to less than 10 lines. In addition, we find that the inputs synthesized

by Darwin provide additional value by revealing other undiscovered errors or suggesting fixes to

buggy inputs.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—Debugging aids,
Symbolic execution; D.3.4 [Programming Languages]: Processors—Debuggers

General Terms: Experimentation, Reliability

Additional Key Words and Phrases: Software Debugging, Software Evolution, Symbolic Execution

1. INTRODUCTION

The development of any large scale software system is a gradual process. Starting from an
initial design, the system evolves as new features are introduced, the system is optimized
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and defects are fixed. Often changes are made concurrently by a number of developers. It is
during such changes that subtle defects are often introduced. As a result, ensuring that the
system continues to meet its requirements in the presence of changes is a huge problem.
The effort spent in validating software as it evolves accounts for a large fraction of the
overall maintenance costs, which often ends up being much larger the cost of development.
The cost of maintaining a software and managing its evolution is said to account for more
than 90% of the total cost, prompting authors to call it the “legacy crisis”[Seacord et al.
2003].

To tackle the ever-growing problem of software evolution and maintenance, software
testing methodologies have extensively been studied. Regression testing is a well-known
concept employed in most software development projects. In its simplest form, it involves
re-testing a test-suite as a program changes from one version to another. In the past, the
problem of detecting which tests in a given test-suite do not need to be re-tested has been
thoroughly studied (e.g., see [Chen et al. 1994]). However, even among the tests which
are tested in both old and new program versions — how do we find the root cause of a
failed test input? For any large software development project, finding root causes of these
regression bugs is a significant problem.

Problem statement. The problem we address can be summarized as follows. Consider
a program P accompanied by a test-suite T , such that the observable output of P for all
the tests in T is as expected by the programmer i.e. all the tests pass. We call P the stable
or reference program. Suppose P changes to a new program P ′ and certain tests in T
now fail. Let t ∈ T be such a test. Our goal is to identify code fragments that potentially
explain why t fails in P ′ while passing in P . Of course, we would like to identify as few
code fragments as possible while still localizing the cause of failures with high accuracy.

Existing solutions. To motivate our solution, we first discuss the difficulties in using
existing approaches to solve this problem.

—Differencing methods. Program differencing methods (e.g., see [Horowitz 1990]) have
been proposed as a way for identifying semantic differences between program versions
by comparing their program dependence graphs. Since we are investigating the behavior
of a specific test-case in two program versions, we cannot directly use these methods.
Interestingly, our conversations with development teams revealed that they often perform
differencing of traces (not programs) for finding root causes of regression bugs. Given
a test t which passes in program P and fails in program P ′, one may compare the path
traced by t in P vis-a-vis the path traced by t in P ′. However, a structural comparison
of paths of two different programs P, P ′ is likely to be ineffective because it does not
explicitly consider the semantics of the changes between P and P ′.

—Change inspection. If we assume that defects are often introduced as part of changes,
one way for finding the root cause is to find the specific change that induces failure
((e.g., see [Zeller 1999]). While this approach is very appealing, it is ineffective for a
class of bugs known as unmasking regressions. These are bugs that already existed in
the reference version of the program but are exposed by the change. For example, a
pointer which is mistakenly set to null in the reference version but never dereferenced
is indicative of such a situation. The mistake may only be observed after a change
which introduces a pointer dereference. An accurate root cause analysis tool should
isolate the location where the pointer is mistakenly set to null, not the location where
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it is de-referenced. Moreover, a search for failure inducing changes will not work if P
and P ′ are wildly different implementations (say two web-server implementations both
implementing the HTTP protocol) since then the set of program changes from P to P ′

is hard to enumerate.

—Trace comparison. In the last decade, trace comparison methods have been successfully
used for localizing error causes in programs. Given a buggy program, the trace produced
by a failed input is compared with the trace produced by a passing input. Techniques
have been developed to determine (a) which passing input to use (e.g., [Guo et al. 2006]),
and (b) how to compare and report the differences between two program executions
(e.g., [Zeller 2002]). The effectiveness of these approaches depends critically on the
availability of a passing input that is very ”similar” to the failing input. However, while
regression testing reveals failing inputs, it is often hard to find a similar passing input.
In our problem setting, we have a stable program representing expected behavior, which
we use to find such passing inputs.

Our approach. In this paper, we propose an approach (called Darwin) for automatically
root causes regression failures. A pictorial description of our approach appears in Figure 1.
In the sequel, we use the term test and input interchangeably. Given a reference program
P , a buggy program P ′ and a input t which passes in P and fails in P ′, we first synthesize
a new input t′ satisfying the following properties: (i) t′ and t follow the same program path
in P , and (ii) t′ and t follow different program paths in P ′. Such an input t′ can be found
using a combination of concolic execution [Godefroid et al. 2005] and constraint solving.
We then compare the trace produced by t in P ′ with the trace produced by t′ in P ′. Since
t′ and t follow the same program path in P , we say that t and t′ are similar (with respect
to the reference program P ). However, since t and t′ follow different program paths in P ′,
their behavior differs in P ′ (the buggy new version). The key insight of our approach is
that the difference in behavior of t and t′ in the buggy program often indicates the potential
cause(s) of failure.

However, as we describe later, because of the way we generate the alternative input, trace
comparison is not strictly necessary. From the input generation phase itself, our method
will know where the traces of t and t′ will differ — and these differences can constitute the
potential root causes without going through trace comparison. The main advantage is that
we avoid any heuristics in the trace comparison. Our method is thus based completely on
construction and solving of quantifier free first order logic formulae.

An interesting aspect of Darwin is that we can diagnose errors even when P and P ′

are two completely different implementations, rather than being two versions of the same
program. We only require that for the set of inputs which are common to P and P ′, the
behavior of P, P ′ are expected to be “equivalent” i.e. P and P ′ are two implementations
of the same specification. This aspect of our method is illustrated by our experiments on
real world web-servers.

Contributions. We propose Darwin, an automated and scalable solution to a problem
of locating causes of regression bugs. We demonstrate the efficacy of our approach using
several real world applications (libPNG, TCPflow, miniweb and Apache). Further, we
find that the alternate inputs generated by our method can be used for purposes other than
localizing a given observable error. These alternate inputs can point to new undiscovered
errors, as demonstrated by our experiments.
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Fig. 1. Rough description of debugging method

Execution trace of Concrete stores Symbolic stores Path condition
〈x == 1, y == 1〉
3 scanf(”%d”,&x); {x→ 1, y → undef} {x→ xs, y → undef} true

4 scanf(”%d”,&y); {x→ 1, y → 1} {x→ xs, y → ys} true

5 if(x > 0){ {x→ 1, y → 1} {x→ xs, y → ys} (xs > 0)

6 y = y + 1; {x→ 1, y → 2} {x→ xs, y → ys + 1} (xs > 0)

7 if(y > 0){ {x→ 1, y → 2} {x→ xs, y → ys + 1} (xs > 0) ∧ (ys + 1 > 0)

8 o = 10; {x→ 1, y → 2} {x→ xs, y → ys + 1} (xs > 0) ∧ (ys + 1 > 0)

Table I. Process of computing path condition for the program in Figure 2

2. BACKGROUND

Path condition[Godefroid et al. 2005] serves as the basis of our approach. The computation
of path condition is critical to understand many aspects of our approach. When executing
program P with input t, the path condition is a formula over inputs variables of P such
that any inputs satisfying the path condition will follow the same path as the path of t in P .

The path condition is computed through symbolic execution. During symbolic execu-
tion, we interpret each statement and update the symbolic state to represent the effects of
the statement on program variables. At every conditional branch, we compute a branch
constraint, which is a formula over the program’s input variables which must be satisfied
for the branch to be evaluated in the same direction as the concrete execution. The result of
symbolic execution is a path condition, which is a conjunction of constraints correspond-
ing to all branches along the path. Any input that satisfies the path condition generated by
executing an input t is guaranteed to follow the same path as t.

Next, we use an example to illustrate the process of computing a path condition. The
example program is shown in figure 2. We use input 〈x == 1, y == 1〉 as an example to
show how path condition is computed. We use xs and ys to denote the symbolic inputs of
ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 3, September 2001.
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1 int x, y;// x and y are both input variables
2 int o; // o is the output variable
3 scanf("%d",&x);
4 scanf("%d",&y);
5 if (x > 0){
6 y = y +1;
7 if (y > 0){
8 o = 10;
9 }else{
10 o = 20;
11 }
12 }else{
13 o = 30;
14 }

Fig. 2. An example program which is used to illustrate path condition computation

this program. The computation process is shown in Table I. After executing each line, we
show the concrete stores and the symbolic stores of the variables. In the last column, we
show the path condition gathered up to the corresponding line. If a conditional branch is
executed, the generated branch constraint is accumulated into the path condition as shown
in the last column. For example, after line 6 is executed, the accumulated path condition
is (xs > 0). Since line 7 is a conditional branch, the branch constraint (ys + 1 > 0) is
generated and added into the path condition. So after executing line 7, the path condition
becomes (xs > 0)∧ (ys+1 > 0). The final path condition is simply the conjunction of all
the branch constraints. In this example, two branch constraints (xs > 0) and (ys + 1 > 0)
are generated from line 5 and line 7 respectively. Taking the conjunction of the two branch
constraints, the final path condition is simply pc = (xs > 0) ∧ (ys + 1 > 0). The
path condition computed in this way only contains input variables. The path condition
can guarantee that any input satisfying the path condition will follow the same path as
〈x == 1, y == 1〉. Although path condition is a conjunction of branch constraints, the
assignments executed in the trace are also taken into consideration in the path condition.
As we can see in the example, the assignment at line 6 is considered when computing path
condition. The assignment at line 6 first affects the symbolic store of y. When y is used in
the condition at line 7, the symbolic store of y is used to compose the branch constraints.
If there is an error in line 6, the error can affect the branch constraint generated at line 7
and therefore affect the path condition.

3. OVERALL APPROACH

In this section, we first present an overview of our approach using an illustrative example.
Consider a program fragment P (Figure 3) with an integer input variable inp. Assume
this is the stable reference version. Note that g, h are functions invoked from P . The code
for g, h is not essential to understanding the example. Suppose the program P is changed
to the program P ′ shown in Figure 3, thereby introducing a bug. Due to this bug, certain
inputs which passed in P may fail in P ′. One such input is inp == 2 whose behavior is
changed from P to P ′. Let us assume this input is found during regression testing and we
now want to localize the cause for failure. Our approach works as follows.

—We symbolically execute the program P for test input inp == 2, and derive a path
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int inp, outp;
scanf("%d", &inp);

int inp, outp;
scanf("%d", &inp);

if (inp !=1){
outp = g(inp);
} else{
outp = h(inp);

scanf( %d , &inp);
if (inp !=1 && inp !=2){
outp = g(inp);
} else{
t h(i )outp  h(inp);

}
printf("%d", outp);

Program P

outp = h(inp);
}
printf("%d", outp);

Program P’g

1 1,2 0 1 2Explain inp == 21 0,‐1, ‐2,…, 
2,3,4,…

1,2 0,‐1, ‐2,…, 
3,4,…

Explain inp == 2 

using  inp == 3

Fig. 3. Two example programs P, P ′ and their input space partitioning. The behavior of the input 2 changes
during the change P → P ′. We choose an input 3 to explain the behavior of the failing input 2 since 2, 3 are in
the same partition in P , but different partitions in P ′.

condition f , a formula representing set of inputs which exercise the same path as inp
== 2 in program P . In our example, path condition f is inp 6= 1.

—We symbolically execute the program P ′ for input inp == 2, and calculate the path
condition f ′, a formula representing set of inputs which exercise the same path as inp
== 2 in program P ′. In our example, path condition f ′ is (inp 6= 1 ∧ inp == 2).

—We solve the formula f ∧ ¬f ′. By construction, any satisfying instance of the formula
is an input which follows the same path as the failing input inp == 2 in the reference
program P , but follows a different path than failing input in the new program P ′. In our
example f ∧ ¬f ′ is

(inp 6= 1 ∧ ¬(inp 6= 1 ∧ inp == 2)) ≡ (inp 6= 1 ∧ inp 6= 2)

A solution to this formula is any value of inp other than 1,2. Say inp == 3.

—During this process of finding a satisfying instance for the formula, we find that ¬f ′
is equivalent to ¬(inp 6= 1 ∧ inp == 2) i.e. inp == 1 ∨ inp 6= 2. These are
the possible deviations from f ′. The first deviation when conjoined with f produces
inp 6= 1 ∧ inp == 1 which is unsatisfiable. The second deviation when conjoined
with f produces inp 6= 1 ∧ inp 6= 2. This constraint can be thought of as the reason
why two similar inputs (inp == 2 and inp == 3) behave differently in the buggy
program. Hence we highlight the source code location corresponding to this constraint
as the potential reason for the input inp == 2 failing in program P ′.

In general, in trying to derive the potential cause by solving f ∧ ¬f ′, we note that f ′ is
a conjunction of primitive constraints say f ′ ≡ ψ1 ∧ ψ2 ∧ . . . ∧ ψm. We then enumerate
all possible deviations of f ′ namely ¬ψ1, ψ1 ∧ ¬ψ2, . . . , ψ1 ∧ ψ2 ∧ . . . ∧ ψm−1 ∧ ¬ψm.
We then conjoin each of these deviations with f , producing m formulae (where m is the
number of primitive constraints in f ′). For each of the m formulae that are satisfiable, we
consider the corresponding branch as a potential root cause. In other words, if f∧ψ1∧ψ2∧
. . . ψi−1∧¬ψi is satisfiable, we consider the program branch contributing to the constraint
ψi as a potential root cause.
ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 3, September 2001.
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The example in Figure 3 clarifies the intuition behind our method. For the inputs com-
mon to P and P ′ (in this example the two programs have exactly the same input space), we
consider the partitioning of program inputs based on paths —- two inputs are in the same
partition if and only if they follow the same path. Then, as P changes to P ′ certain inputs
migrate from one partition to another. Figure 3 illustrates this partitioning and partition
migration. The behavior of the failing input inp == 2 is explained by inp == 3. The
two inputs are in the same partition in the old program P , but in different input partitions
in P ′.

Sometimes, given two program versions P, P ′ and a failing input t, we may not find any
alternate input by solving f ∧ ¬f ′. Consider the example programs in Figure 4 and their
associated input space partitioning. In this case, we have a “code-missing error”, the code

if (inp > 9) {outp = g1(inp);}

is left out by mistake. Suppose we have the task of explaining the behavior of inp ==
100.

The path condition f of inp == 100 in P is (inp ≥ 1 ∧ inp > 9), that is, inp > 9.
The path condition f ′ of inp == 100 in P ′ is inp ≥ 1. So, in this case

f ∧ ¬f ′ ≡ (inp > 9 ∧ ¬(inp ≥ 1 ∧ inp > 9)) ≡ (inp > 9 ∧ ¬(inp ≥ 1))

which is unsatisfiable! The reason is simple. All inputs sharing the same partition as that
of inp == 100 in the old program, also share the same partition with inp == 100 in
the new program.

The solution to the above dilemma lies in focusing our debugging effort on the reference
program. If we find that f ∧¬f ′ is unsatisfiable, we can solve f ′∧¬f . This yields an input
t′ which takes a different path than that of the failing input t in the reference program.

In our example Figure 4, we have

f ′ ∧ ¬f ≡ (inp ≥ 1 ∧ ¬(inp ≥ 1 ∧ inp > 9))

that is, 1 ≤ inp ≤ 9. The solutions to this formula are the values 1, 2, . . . , 9 for the variable
inp.

Once again, while solving f ′ ∧ ¬f we enumerate the deviations from f first. Since
f ≡ (inp ≥ 1 ∧ inp > 9) the deviations from f are

—¬inp ≥ 1 i.e. inp < 1

—inp ≥ 1 ∧ ¬inp > 9 i.e. 1 ≤ inp < 9

The first deviation when conjoined with f ′ produces inp ≥ 1 ∧ inp < 1 which is unsat-
isfiable. The second deviation when conjoined with f ′ is satisfiable. So, we consider the
corresponding branch, namely inp > 9 as a potential root cause. Indeed this branch is the
check which was missing in the buggy program P ′, and points us the code-missing error
in this example.

The reader may think the above situation as odd. When a test fails in a buggy program,
we may point to a fragment of the reference program as a potential root cause! But, indeed
this is a key feature of our approach. Code fragments in the reference program often help
the programmer comprehend the change from the reference program to the buggy program,
thereby helping him/her comprehend the source of the failure.
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int inp, outp;
scanf("%d", &inp);

int inp, outp;
scanf("%d", &inp);

if (inp >=1){
outp = g(inp);
if (inp>9){

outp=g1(inp);

scanf( %d , &inp);
if (inp >= 1){

outp = g(inp);
/* if (inp>9){

t 1(i )outp g1(inp);
}

} else{
outp = h(inp);

outp=g1(inp);
}  */

} else{
outp = h(inp);

}
printf("%d", outp);

Program P

p p
}
printf("%d", outp);

Program P’

1,2,..,9
10,11,…

1,2,…,9,
10,11,…Explain inp == 100

using ??
0,‐1,‐2,.. 0,‐1,‐2,…

Fig. 4. Two example programs P, P ′ and their input space partitioning. The behavior of the input 100 changes
during the change P → P ′. How to find an input to explain its behavior?

In summary, the outline of our method is as follows. Given a reference program version
P , a new, buggy program P ′, a test input t which passes in P and fails in P ′, our method
proceeds as follows.

(1) Compute f , the path condition of t in P .

(2) Compute f ′, the path condition of t in P ′.

(3) Check whether f ∧ ¬f ′ is satisfiable. If yes, it yields a test input t′ as well as a
constraint ψ′i in f ′. The constraint ψ′i is the reason why f ′ is not satisfied, and is
considered as a potential root cause. As we explained, the constraint ψ′i is obtained by
enumerating the deviations of f ′ and conjoining them with f . Details of the procedure
for obtaining ψ′i is describe in Section 4.
Since we perform approximations while computing the path conditions we also check
that the solution t′ indeed follows the same path as that of t in P and a different path
from that of t in P ′. This is done by concrete execution of input t′.

(4) If f ∧ ¬f ′ is unsatisfiable, find a solution to f ′ ∧ ¬f . This again produces an input t′

and a constraint ψi. The code to ψi is considered as a potential root cause.
We also check t′ against f ′ ∧ ¬f (i.e., it follows the same path as that of test t in
program P ′ and follows a different path in program P ). This is done by concrete
execution of test input t′.

(5) In the event (f ∧¬f ′)∨(f ′∧¬f) is unsatisfiable, we fail to find a potential root cause.

4. DETAILED METHODOLOGY

In this section, we elaborate on different aspects of our approach i.e. input generation,
formulation simplification, input validation and finally bug reporting.
ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 3, September 2001.
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4.1 Generating Alternate Inputs

In this phase, we execute the failing input t in both the program versions. We first con-
cretely execute t for each program binary, record a trace, and then perform symbolic ex-
ecution on the recorded trace. Our symbolic execution engine models each byte of the
program’s input as a symbolic variable. For each program variable, the engine also stores
a symbolic formula over the input variables that represents the set of values that can be as-
signed to this variable in the concrete execution. This mapping between program variables
and expressions represents the symbolic state.

We compute the path condition using the method explained in section 2. Two path
condition formulae f and f ′ are computed for input t in P and P ′ respectively.

A key component of the symbolic execution engine is the constraint solver. The preci-
sion of symbolic execution depends to a large extent on the ability of the constraint solver
to symbolically reason about computations in the program. For example, for a program
branch if (x * y > 0), we need to add the constraint x*y > 0 to the path con-
dition. This may be problematic if our constraint solver is a linear programming solver
and does not reason about operations such as multiplication. An approach commonly
used by most symbolic execution engines [Godefroid et al. 2005] to overcome limita-
tions of the constraint solver is to under-approximate the path condition. Usually such
an under-approximation is achieved by instantiating some of the variables in the actual
path condition. For example, to keep the path condition as a linear formula, we may under-
approximate the condition x * y > 0 by instantiating either x or y with its value from
concrete program execution.

A key property of under-approximation is that any input which satisfies the under-
approximation is still guaranteed to follow the same path. However, this property does
not hold in Darwin. Recall that we need to solve the formula f ∧ ¬f ′ for getting an alter-
nate program input, where f , f ′ are the path conditions of the input t being examined in the
reference and buggy program respectively. Let fcomputed, f ′computed be the computed path
conditions in the reference and buggy program respectively. In general, the computed f
and f ′ will be an under-approximation of the actual path conditions. Thus fcomputed ⇒ f
and f ′computed ⇒ f ′. However, due to the negation, fcomputed ∧ ¬f ′computed is not guar-
anteed to be an under approximation of f ∧ ¬f ′. Consequently, a solution to fcomputed ∧
¬f ′computed may not satisfy the required properties namely: t and t′ follow the same pro-
gram path in the reference program, and follow different paths in the buggy program.
Hence, after solving fcomputed ∧ ¬f ′computed if we find a solution t′, we validate t′. Such
a validation can be performed by simply concretely executing the test inputs t, t′ in the old
and new program versions and checking if our criteria are satisfied. Similarly, if we need
to solve the formula f ′ ∧ ¬f , we validate the test input obtained by solving f ′ ∧ ¬f .

Choosing Alternate Inputs. Note that since f, f ′ are path conditions, they are conjunc-
tions of primitive constraints, that is, f ′ = (ψ1 ∧ ψ2 ∧ . . . ∧ ψm) where ψi are prim-
itive constraints. Thus instead of solving f ∧ ¬f ′ we solve the following m formulae
{ϕi | 0 ≤ i < m} where

ϕi
def
= f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1

Each ϕi is a conjunction. A solution to any ϕi is a solution for f ∧ ¬f ′. We solve each
ϕi separately, and obtain any one solution of ϕi (if one exists). Thus we obtain at most m
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solutions to the formula f ∧ ¬f ′. Each of these are inputs which now undergo validation
i.e. we check via concrete execution whether they follow same path as that of t in P , and
different path from that of t in P ′. The reader may note our choice of ϕi, the formulae
dispatched to the solver. Each ϕi denotes a deviation from the path condition f ′ in exactly
the ith branch condition of f ′. Thus, any alternate input we get by solving ϕi can be
expected to produce a trace which differs from the trace of the buggy input in exactly the
ith branch position. Moreover, by solving the different ϕi we consider all possible ways
of deviating from the path denoted by path condition f ′. Thus, our alternate inputs are
witnesses to deviations from the path denoted by path condition f ′ — one alternate input
for each possible deviation point in the path. Finally, note that if f ∧ ¬f ′ is unsatisfiable
we solve f ′ ∧ ¬f similarly. Thus, if f is a conjunction of k primitive constraints θi, say
f = (θ1∧θ2∧ . . .∧θk) we solve the k formulae f ′∧θ1∧ . . . θi∧¬θi+1 where 0 ≤ i < k.

4.2 Formula Simplification

A crucial component of our debugging method is the generation of alternate test inputs.
This is achieved via checking satisfiability using Satisfiability Modulo Theory (SMT)
solvers. Thus, the scalability of our method depends on the scalability of formula solv-
ing. We propose several techniques to improve the efficiency of formula solving specific
to our problem domain.

Checking for unsatisfiable sub-formula. First, we identify some unsatisfiable formulae
using very low cost. Recall that we are trying to solve formulae of the form f ∧ ¬f ′
where f and f ′ are the path conditions collected from two program versions for a given

test input t. Assuming f ′
def
= (ψ1∧ψ2 . . .∧ψm) we solve the m formulae ϕi

def
= f ∧ψ1∧

. . . ψi ∧¬ψi+1. The key problem we face now is that the SMT solver may take substantial
time to solve each of the ϕi formula. We note that common programming practices may
make ψ1 ∧ . . . ψi ∧ ¬ψi+1 unsatisfiable. For example, consider a check c being repeated
many times in a program code. Clearly if ψj (for some j ≤ i) and ψi+1 are both c, an
SMT solver will very quickly conclude that ψ1 ∧ . . . ψi ∧ ¬ψi+1 is unsatisfiable. In such
situation, we do not need to solve the larger formula f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1. Overall,
instead of directly dispatching ϕi to the SMT solver (to check the satisfiability of ϕi) -
we first dispatch ψ1 ∧ . . . ψi ∧ ¬ψi+1 to the SMT solver and try to see whether the SMT
solver declares it to be unsatisfiable within a short time bound. Our experience indicates
that this is often the case, and in such a situation we do not need to solve the bigger formula
ϕi ≡ f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1.

Slicing out unrelated symbolic variables. Secondly, using dynamic slicing, we can find
the subset of symbolic input bytes that can affect the only branch (contributing to ψi+1)
that we want to execute differently in both program versions. For unrelated symbolic input
bytes, we use their value from the concrete execution, which guarantees that we are making
minimal changes to the input (for structured program inputs, the processing of two different
portions of the input is usually independent). Using concrete values for certain portions of
our input greatly simplifies the formulae we need to solve and reduces the burden on the
SMT solver.

We now describe the steps we employ to reduce the amount of time taken in checking
satisfiability of ϕi.

(1) We impose a short time bound (say 10 seconds), and within this time bound we let
the solver check whether ψ1 ∧ . . . ψi ∧ ¬ψi+1 is satisfiable. If the solver says that
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ψ1 ∧ . . . ψi ∧¬ψi+1 is unsatisfiable, clearly ϕi is not satisfiable. If the solver does not
terminate within the time bound or says that ψ1 ∧ . . . ψi ∧ ¬ψi+1 is satisfiable — we
continue with the following steps.

(2) We perform slicing on the (assembly level) execution trace π′ corresponding to path
condition f ′ to find out the set of input bytes that ψi+1 is dependent on. This is done
as follows. Note that ψi+1 is a primitive constraint corresponding to some branch
instance b in the execution trace. Due to traceability links between sub-formula in the
path condition and branches contributing to these formulae we can find the branch b
contributing to ψi+1. Let l be the control location corresponding to b and V ars be
the variables appearing in the constraint ψi+1. We perform dynamic slicing [Korel
and Laski 1988; Agrawal and Horgan 1990; Wang and Roychoudhury 2004] w.r.t the
slicing criterion (l, V ars) on the assembly level execution trace π′ corresponding to
path condition f ′. During the traversal of the execution trace, the dynamic slicing
algorithm maintains (i) a set of instruction instances (the slice), (ii) a set of variables
δ whose values need to be explained. At the end of the slicing, we inspect the set of
input fields (or bytes) which appear in δ. These are the input bytes on which ψi+1

depends in the trace for f ′. Let this set of input bytes be Ini+1.
(3) We assign all input bytes not appearing in Ini+1 to the actual values used in the con-

crete execution of the test input t being debugged. We also use forward constant
propagation along the execution trace π′ to propagate these concrete values to other
program variables (which do not correspond to program input). This greatly simpli-
fies f as well as ψ1 ∧ . . . ψi ∧ ¬ψi+1 since many of the variables in the formulae get
instantiated to concrete values. Let the simplified formulae be called fsimplified and
(ψ1 ∧ . . . ψi ∧ ¬ψi+1)simplified.

(4) We check the satisfiability of (ψ1∧ . . . ψi∧¬ψi+1)simplified. If it is unsatisfiable, we
can stop. Otherwise, we go to the next (and final) step.

(5) Finally we solve the simplified formula fsimplified ∧ (ψ1 ∧ . . . ψi ∧¬ψi+1)simplified

using a SMT solver.

After concretizing the input bytes other than those in Ini+1 and propagating constants,
the formulae to be solved are greatly simplified owing to instantiation. This greatly reduces
the solution time.

4.3 Backward Traceability and Input Validation

Recall that to solve f ∧ ¬f ′, we solve m formulae

ϕi = f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1 0 ≤ i < m

where

f ′ ≡ ψ1 ∧ ψ2 ∧ . . . ∧ ψm

Since f ′ is a path condition, it is a conjunction of primitive constraints. In other words,
each ψi appearing in f ′ is a primitive constraint contributed by a branch in the program
P ′.

Suppose the branch corresponding to ψi+1 is bi+1 and the execution path of input t in
program P is π(P, t). If we can get a solution t′ of ϕi, π(P, t′) and π(P, t) are expected
to be the same. The execution paths π(P ′, t′) and π(P ′, t) are expected to be the same
before bi+1 and differ at bi+1. Instead of comparing the execution traces π(P ′, t′) and
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π(P ′, t) to get bi+1, we can straightaway report bi+1 as a potential root cause provided we
can guarantee that

—t′ and t follow different paths in P ′, differing at branch bi+1

—t′ and t follow same path in P .

This can be validated by concrete execution of tests t, t′ in programs P, P ′.
Note that the above validation is necessary, because the computed path conditions are

approximations of the exact path conditions. If the input t′ is successfully validated, we
can directly report bi+1 as a potential root cause.

4.4 Putting it All Together

Given an input t and two program versions P and P ′, we compute the path conditions f, f ′

of input t in program P, P ′ respectively. First we try to solve f ∧ ¬f ′. Instead of directly
solving the formula (which may have many solutions), we choose the solutions as follows.
Let f ′ = ψ1 ∧ψ2 ∧ . . .∧ψm where ψi are primitive constraints. We solve the m formulae
{ϕi | 0 ≤ i < m}

ϕi
def
= f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1

For all 0 ≤ i < m if ϕi is satisfiable, we use backwards traceability links to find the branch
bi+1 contributing to the primitive constraint ψi+1. We report bi+1 as a potential root cause
if the solution for ϕi is successfully validated. For checking the satisfiability of each ϕi,
we use the five optimization steps given earlier in subsection 4.2.

On the other hand, if f ∧ ¬f ′ is unsatisfiable we replicate the above steps for solving
f ′ ∧ ¬f . Again, we do not solve f ′ ∧ ¬f directly but instead solve k formulae (f ′ ∧ θ1 ∧
. . . ∧ θi ∧ ¬θi+1), where f = (θ1 ∧ . . . ∧ θk) and θi are primitive constraints. Again, we
get a set of at most k validated alternate inputs.

Finally, if we still obtain a large number of alternate inputs (and hence a large number
of potential root causes), we prioritize them as follows. We choose the alternate inputs
which are successful, that is, produce same outputs in both the program versions. Since
such successful inputs exhibit bug-free behavior (in terms of program output), by com-
paring their traces with the buggy input’s trace we hope to localize the error cause. The
branch instruction contributed by each successful alternate input is thus prioritized over
other branches.

Working with different implementations. An interesting characteristic of our approach
is that we do not require the two programs P and P ′ to be similar (i.e. versions of the
same application). The programs could be two completely different implementations. We
only require that the programs operate on the same input space and implement the same
specification for all common inputs. As long as these conditions are satisfied, the path con-
ditions we compute will be formulae over the same input variables and hence all solutions
to fcomputed ∧ ¬f ′computed are valid inputs for both programs. Also note that although
we use two programs to generate new inputs, we always compare inputs on the same pro-
gram version. Thus, our approach for finding code fragments where two inputs diverge
is completely oblivious to the amount of change between programs. This is unlike other
approaches [Zeller 1999] that require two reasonably similar program versions such that
a correspondence between parts of the programs can be established. We refer the reader
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to our case study using Apache and miniweb web servers (Section 7) for a more detailed
description of this aspect of our approach.

5. COMMON PROGRAMMING ERRORS

We now explain the suitability of our debugging methodology for different common kind
of programming errors — branch errors, assignment errors and code-missing errors.

Branch errors. We believe that our methodology is naturally suited for localizing errors
in branch conditions. This is because our method finds the difference between two path
conditions, which consists of branch conditions. So, if the error is in the condition of a
branch b, typically b will be evaluated differently (from the erroneous trace) in the trace
without the observable error. The examples given in Section 3 illustrate this point. Since
our approach for synthesizing and comparing tests is based on control flow, our approach
is ideally suited to bugs that cause a change in the control flow. Branch condition errors
cause a change in control flow and hence are easily root-caused using our approach.

Errors that do no affect control flow. Since our approach relies on comparing control
flow, errors that do not causes any change in the control flow cannot be directly root-caused
using our approach. We now describe a strategy that can translate such bugs into those that
influence control flow. Inspired by ideas in statistical debugging [Liblit et al. 2005; Liblit
2005], we instrument the program with a pre-defined family of predicates. These predicates
are instrumented as branch conditions at various points in the program. The predicates we
instrument are as follows.

—Checks for null and the sign of return values at each function return site.

—Checks for equality of two program variables of the same type. Before each statement
that modifies a program variable x, we add predicates of the form x == y for all vari-
ables y which are (i) of the same type as x and (ii) are live at the statement.

These predicates provide our Darwin with additional opportunities to find new tests that
reveal the difference between the actual and the expected control flow of the failing test.
On the flip side, the instrumentation can increase the cost of tracing and the complexity of
constraint solving. In our experiments, we measured the overheads from instrumentation
and found it to be less than 20% for our subject programs (see Section 7.7).

Code-missing errors. Code missing errors correspond to portions of code being left out
during the change of a program. Such code will be missing in the buggy program, but is
present in the reference program. Whether the missing code chunk contains assignments
(which, if they were present would have affected control flow via instrumented branches)
or branches (which directly affect control flow), the reference program P can be expected
to have more paths than the buggy program P ′. Given a failing test input t, and f , f ′ being
the path condition of t in P , P ′, we can thus expect f ′ ∧ ¬f to yield a solution. This will
be a input t′ following the path of t in P ′, but following a different path than t in P (the
code missing in P ′ is present in P , leading to more branches and more paths). Thus, the
traces of t′ and t in P will be compared to yield potential root causes. No extension is
needed in our methodology to handle code missing errors.
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6. IMPLEMENTATION

We now describe our implementation setup. The overall architecture of Darwin is sum-
marized in Figure 5. We built Darwin based on the BitBlaze platform [Song et al. 2008].
Most of the modules used by Darwin are contained in the recent open-source release of
BitBlaze. However, BitBlaze does not have the modules for formula manipulation and
optimization. We built our these modules for Darwin on our own.

6.1 Generating Alternate Inputs

Darwin uses a symbolic execution engine for computing the path condition of a given
program execution. Our execution engine is a part of the BitBlaze platform [Song et al.
2008], which works on x86 binaries. Given an input, the platform concretely executes the
program on the specific input and records the trace. It then performs symbolic execution to
compute the path condition of the concrete trace recorded. The path condition represents a
constraint denoting the set of inputs which execute the concrete trace.

The concrete execution is carried out by TEMU, a whole-system emulator based on
QEMU [QEMU 2009]. TEMU can run Windows and Linux as its guest operating system,
enabling us to analyze both Windows and Linux binaries. After the concrete execution,
TEMU generates a trace of instructions executed by the program. The trace is also an-
notated with input dependence information, for example, whether the operand of an in-
struction is dependent on input (an operand is dependent on the input if there is a data
dependence chain from the operand to an input). TEMU allows users to specify several
types of inputs, such as network inputs, files, and keyboard inputs.

The path condition calculation is performed by the VINE component of BitBlaze. It
first defines the bytes in the program input as symbolic variables: each byte in the in-
put is a distinct variable. Then, it makes a forward pass through the trace recorded by
TEMU, considering only tainted instructions i.e. instructions whose operands are (directly
or transitively) dependent on the program input (via data dependencies). Note that such de-
pendency information is present as annotations in the trace recorded by TEMU. For each
tainted instruction in the trace, VINE translates the instruction to a sequence of statements
in its own intermediate language, where the semantics of each instruction is preserved
[Brumley et al. 2007]. This translation helps the VINE tool deal with the complexity of
the x86 instruction set. Finally, VINE performs a traversal of the trace in the intermediate
language to compute the path condition.

Two points need to be noted about the BitBlaze execution engine, and its interplay with
our debugging framework. First, the concrete and symbolic execution engines works on
x86 binaries, so our path conditions are computed at the level of binaries, rather than source
code. Second, the variables appearing in the path condition correspond to the different
bytes of the program input.

Given program versions P , P ′ and a test input t which passes in P and fails in P ′ —
we compute the path conditions f , f ′ of input t in programs P , P ′. In fact, the symbolic
execution engine in BitBlaze constructs these path conditions as formulae in the well-
known SMT-LIB[Ranise and Tinelli 2003] format. The SMT-LIB format is supported by
all the solvers that participated in the SMT annual competition. Thus, expressing the path
conditions in the SMT-LIB format allows us to leverage on a lot of state-of-the-art SMT
solvers. It also allows us to benefit from the ongoing improvement in the solving ability
of the existing solvers — we can use whichever solver is currently the fastest. The solver
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SMT solvingSMT solving
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Potential causes (Assembly level) Potential causes (Source level)Reverse 
translate

Fig. 5. Architecture of our Darwin toolkit. It takes an old program P , a new program P ′ and a test input t which
passes in P but fails in P ′. The output is a report explaining the behavior of test t. The entire flow is automated.

we are currently using is Boolector [Brummayer and Biere 2009], the winner of the SMT
competition in 2009 for quantifier free formulae with bitvectors, arrays and uninterpreted
functions (the QF AUFBV category). Indeed this is suitable for us, since our formulae do
not have universal quantification and any variable is implicitly existentially quantified.

6.2 Reporting root causes

Given the solutions of f ∧ ¬f ′ we first validate them. In case we find f ∧ ¬f ′ to be
unsatisfiable or none of the solutions of f ∧ ¬f ′ can be validated, we solve f ′ ∧ ¬f in a
similar fashion. By following the steps mentioned in the previous section (solving either
f ∧ ¬f ′ or f ′ ∧ ¬f ), we obtain a set of branches at the assembly level as potential root
causes of the bug. Using standard compiler level debug information, these can be reverse
translated back to lines in source code.

Accuracy of our reports. We now discuss some low-level issues which make a sub-
stantial difference to the accuracy of our results. Given the path conditions f and f ′, let
f ′ = (ψ1∧ψ2∧. . .∧ψm) where ψi are primitive constraints. As mentioned in the previous

section, we solve the m formulae {ϕi | 0 ≤ i < m} where ϕi
def
= f ∧ψ1 ∧ . . . ψi ∧¬ψi+1

The VINE symbolic execution engine ensures that the path conditions contain only con-
straints from branches which are dependent on the program input. In practice, this greatly
cuts down on the number of ψi constraints, and hence the number of ϕi formulae that
need to be dispatched to the SMT solver. Since each ϕi formula contributes at most one
statement in our report, we get a smaller sized report by reducing the number of ϕi. If the
number of root causes is still high (due to large number of alternate inputs), we prioritize
statements obtained from successful alternate inputs over other statements since these are
more likely to reveal the real root cause.

ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 3, September 2001.



16 · Qi, Roychoudhury, Liang, Vaswani

7. DEBUGGING EXPERIENCE

We report on our experience in using Darwin for locating error causes in real-life case
studies.

7.1 Experience with libPNG

We first describe our experience in debugging the libPNG open source library [LibPNG
2009], a library for reading and writing PNG images. We used a previous version of the
library (1.0.7) as the buggy version. This version contains a known security vulnerability,
which was subsequently identified and fixed in later releases. A PNG image that exploits
this vulnerability is also available online. As the reference implementation or stable ver-
sion, we used the version in which the vulnerability was fixed (1.2.21). Assuming this
vulnerability was a regression bug, we used our tool to see if the vulnerability could be
accurately localized.

The bug we localized is a remotely exploitable stack-based buffer overrun error in
libPNG. Under certain situations, the libPNG code misses a length check on PNG data
prior to filling a buffer on the stack using the PNG data. Since the length check is missing, a
buffer overrun may occur. What is worse, such a bug may be remotely exploited by email-
ing a bad PNG file to another user who uses a graphical e-mail client for decoding PNGs
with a vulnerable libPNG. In Figure 6, we show a code fragment of libPNG showing
the error in question. If the first condition !(png ptr->mode & PNG HAVE PLTE)
is true, the length check is missed, leading to a buffer overrun error. A fix to the error is
to convert the else if in Figure 6 to an if. In other words, whenever the length check
succeeds, the control should return.

if (!(png_ptr->mode & PNG_HAVE_PLTE))
{

png_warning(png_ptr, "Missing PLTE before tRNS");
}
else if (length > (png_uint_32)png_ptr->num_palette)
{

png_warning(png_ptr, "Incorrect tRNS chunk length");
png_crc_finish(png_ptr, length);
return;

}

Fig. 6. Buggy code fragment from libPNG

We now explain some of the issues we face in localizing such a bug using approaches
other than ours. Suppose we have the buggy libPNG program and a bad PNG image
which causes a crash due to the above error. If we want to perform program differencing
methods (such as source code “diff”) to localize the bug, there are 1589 differences in 28
files. Manually inspecting these differences requires a lot of effort. Semantic diff [Jackson
and Ladd 1994; Ren et al. 2004; Horowitz 1990; Apiwattanapong et al. 2004] could only
provide limited help to the manual inspection. Because of the very large number of source
code differences, the number of semantic differences would still be large. Moreover, given
a coarse-grained semantic difference such as method change[Ren et al. 2004], one still
needs to inspect more details to tell whether this change indeed causes the bug.
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If we want to localize the error by an analysis of the erroneous execution trace starting
from the observable error — it is very hard to even define the observable error. Even if
the buffer being overrun is somehow defined as the observable error, tracking program
dependencies from the observable error can be problematic for the following reason. The
libPNG library is used by a client which inputs an image, performs computation and
outputs to a buffer (the one that is overrun due to error inside libPNG). In this case, we
are debugging the sum total of the client along with the libPNG library. Since almost all
statements in the client program and many statements in libPNG involve manipulation of
the buffer being overrun itself — a dynamic slicing approach seems to highlight almost the
entire client program as well as large parts of the libPNG library.

If we want to employ statistical bug isolation methods (which instrument predicates
and correlate failed executions with predicate outcomes), the key is to instrument the
“right predicate”. In this case, the predicates in question (such as !(png ptr->mode
& PNG HAVE PLTE) ) contain pointers and fields. Hence they would be hard to guess
using current statistical debugging methods which usually consider predicates involving
return values and scalar variables.

If we want to perform debugging by trace comparison, we must compare the trace of
the bad PNG image (which exposes the error) with the trace of a good PNG image (which
does not show the error). The question then is how do we get the good PNG image? Even
if we have a pool of good PNG images from which we choose one – making the “right”
choice becomes critical to the accuracy of root cause analysis.

Given the bad PNG image1, Darwin synthesizes an alternate PNG image via semantic
analysis of the execution traces of the bad PNG image in the two program versions. This
image is a minimal modification of the bad PNG image. Our analysis only minimally
changes the bad PNG image to get a good image as alternate program input.

Specifically, Darwin first compute the path conditions of the bad PNG image on the
two libPNG versions 1.0.7 and 1.2.21. Let these be fbuggy and ffixed respectively. We
find that ffixed ∧ ¬fbuggy is unsatisfiable, so we solve for fbuggy ∧ ¬ffixed. By solving
this formula we get 9 alternate inputs from the Boolector solver. These 9 alternate inputs
are essentially 9 PNG images. All these 9 inputs passed validation, hence we report 9
statements as potential root causes.

We prioritize these 9 statements as follows. Among the 9 alternate inputs, we find out
which of them are successful i.e., the program output for a successful input should be
the same in both the program versions. Only one of our 9 alternate inputs is found to be
successful. The branch instruction contributed (to the result) by this input corresponds to
the branch

length > (png uint 32)png ptr->num palette

thereby pointing directly to the cause of failure. This branch is (mistakenly) not executed
in the buggy libPNG version 1.0.7

Discovering New Errors. Interestingly, in the process of this debugging we found other
potential problems in libPNG. As mentioned earlier, Darwin obtained 9 alternate inputs,
only one of which exhibits bug-free behavior, and pointed us to the error. Interestingly, the
other branch instructions point us to other deviations between the two versions of libPNG.

1The bad PNG image is got from http://scary.beasts.org/security with the reference number CESA-2004-001
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For example, by following one of these 8 instructions we find that the two versions of
libPNG use different functions to retrieve the length field of a chunk from the input. In
version 1.0.7, we have

length = png get uint 32(chunk length);

while in version 1.2.21 we have

length = png get uint 31(chunk length);

In particular, the code for png get uint 31 is as follows.

png_get_uint_31(png_structp png_ptr, png_bytep buf)
{

png_uint_32 i = png_get_uint_32(buf);
if (i > PNG_UINT_31_MAX)
png_error(png_ptr, "PNG unsigned integer

out of range.");
return (i);

}

Thus, png get uint 31 first uses png get uint 32 and then performs a length check.
If png get uint 32 is directly used to find the length of a chunk, a length check w.r.t.
the constant PNG UINT 31 MAX is missing. We also report the branch instruction con-
taining this missing length check, thereby pointing to another potential error in libPNG.

7.2 Experience with miniweb-apache

In our second case study, we study the web-server miniweb [Huang 2009], an opti-
mized HTTP server implementation which focuses on low resource consumption. The
input query whose behavior we debugged was a simple HTTP GET request for a file, the
specific query being “GET x”. Ideally, we would expect miniweb to report an error as x
is not a valid request URI (a valid request URI should start with ‘/’). However, miniweb
does not report any errors, and returns the file index.html. We then attempt to localize
the root cause of this observable error.

We found that even the latest version of miniweb contains the error. Therefore, we
cannot choose another version of miniweb as the reference implementation. We chose
another HTTP server apache [Apache 2009] as the reference implementation. Apache
is a well-known open-source secure HTTP server for Unix and Windows. Since both
apache and miniweb implement the HTTP protocol, they should behave similarly for
any input accepted by both implementations. Further, apache does not exhibit the bug
we are trying to fix. It reports an error on encountering the input query “GET x”.

We generate the path conditions of “GET x” in both apache and miniweb. Let these
be fapache and fminiweb respectively. We find fapache ∧ ¬fminiweb to be unsatisfiable.
However, by solving fminiweb∧¬fapache we can get alternate input queries. By following
our methodology described in Section 4.1, we get exactly 5 alternate inputs and hence 5
potential root causes:

GET /, GET \, GET *, GET . and GET %

Based on the first of these 5 branches, we were able to localize the bug immediately.
miniweb does not check for ’/’ in GET queries and treats the query “GET x” similar to
“GET /” thereby returning the file index.html.
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Discovering New Errors. Only one of our 5 alternate inputs was successful, exhibiting
same output in both program versions. The branch instruction corresponding to this input
pointed us to the missing check for ’/’. The other statements pointed us to other missing
checks in miniweb. Indeed, we can locate that apache contains checks for each of these
5 characters while miniweb misses the check for all 5 of them, leading to potential errors.

In a Broader Perspective. Our experiments with apache-miniweb also give us a
broader perspective on the applicability of our method. Even if all versions of a program
exhibit a given error (as was the case with miniweb), we can still use Darwin to localize
the error. We only need a reference program which is intended to behave similarly to the
program being debugged, and does not exhibit the bug being localized. In our experiments,
the apache web-server was the reference program.

7.3 Experience with savant-apache

Savant [Savant 2009] is a full-featured open-source web-server for Windows. We notice
that savant does not report any errors when faced with an input query of the form “GOT
/index.html”, a typo from the valid HTTP GET request “GET /index.html”. We
cannot choose another version of savant as the reference program because the latest
version of savant also exhibits this error. As reference program, we choose the apache
webserver, which reports an error for the query “GOT /index.html”. Both savant
and apache implement the HTTP protocol, and are expected to behave similarly.

In this case study, Darwin found 46 alternate inputs. Out of these only one is successful,
that is, produces the same output in both savant and apache. This is the input “GET
/index.html”. Using the branch instruction corresponding to this alternate input, Dar-
win pinpointed the error to missing checks in savant. The savant program does not
check for all the three letters ‘G’, ‘E’, ‘T’ in HTTP GET requests for HTTP protocol ver-
sion HTTP/0.9 (which is the default assumed since we do not explicitly specify a HTTP
protocol version in the query “GOT /index.html”). Indeed, we found that savant
reports an error if we provide “GOT /index.html HTTP/1.0” as input. In HTTP/0.9
there is only one command, namely GET. The error lies in the fact that savant does not
check for the string “GET”, and assumes any given string to be the GET command.

Discussion. Our experiments with savant also illustrate another additional feature of
Darwin — the ability to rectify program inputs. The process of alternate input generation
in Darwin can help correct errors in an almost correct program input such as the input “GOT
/index.html”. In this case, the input fix was easy and could have been done manually
as well. In the future, we plan to conduct experiments with programs like web browsers to
see if an almost correct HTML file (where the incorrectness in the file is hard-to-see) can
get rectified through alternate input generation.

7.4 Experience with TCPflow

We use two versions of the TCPflow program, namely TCPflow 0.21.ds1-2 and
the same version with the patch 10 extra-opts.diff, which is supposed to provide
the user with some extra options. TCP is the most popular transport layer protocol and
TCPflow is a program which captures and displays data sent through TCP connections.
The statistics about the TCPflow program are given in Table II.

What is the intended functionality of the TCPflow program? If we capture the raw TCP
packets transmitted over the network — there is a TCP header inside each TCP packet. In-

ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 3, September 2001.



20 · Qi, Roychoudhury, Liang, Vaswani

47 45 54 20 2F 69 6E  64 65 78 24 68 74 6D 20 0D  |GET /index.htm .|
0A 0D 0A                                       |...             |

00 47 45 54 20 2F 69 6E  64 65 78 24 68 74 6D 20  |.GET /index.htm |

Output from the unpatched version of TCPflow

0D 0A 0D 0A                                       |....            |

Output from the patched version of TCPflow

Fig. 7. Output from the TCPflow program

side each raw packet, we also have the header for the network layer protocol (usually the
IP protocol). Thus, it is non-trivial to manually distinguish which parts in a raw packet
correspond to the real data being transmitted. Moreover, there can be multiple active TCP
connections at the same time. As a result it is hard to tell which packets are from the same
connection manually. TCPflow is a program which solves these problems. It analyzes the
raw data (TCP packets) from TCP connections and outputs the actual data being transmit-
ted over the network. A TCP connection is associated with source IP address, destination
IP address, source port and destination port. The output from TCPflow is also classified
by the connections.
TCPflow can read input both from network and file. If the input is from network, then

it captures the data that is being transmitted and analyzes the data. In our experiment, the
input is from a file which is generated by tcpdump.

The bug we investigate is introduced by the patch 10 extra-opts.diff. We pro-
vided two packets from the same connection to TCPflow: an SYN packet to setup the
connection and a simple HTTP request packet. Figure 7 shows the output from both ver-
sions of the TCPflow program, where only the HTTP request payload is shown, and the
headers from TCP layer and IP layer are excluded.

// unpatched version of the TCPflow
handle_tcp (packet_t packet) {

if( this packet has no data) {
return;

}
if ((state = find_flow_state(current_flow)) == NULL)

state = create_flow_state(flow, seq);
offset = seq - state->ins;
write data from offset;

}
// patched version of the TCPflow
handle_tcp (packet_t packet) {

if( this packet has no data) {
if ((state = find_flow_state(current_flow)) == NULL)

state = create_flow_state(flow, seq);
return;

}
offset = seq - state->ins;
write data from offset;

}

Fig. 8. Schematic Code fragment from TCPflow
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The two versions of TCPflow we use are TCPflow 0.21.ds1-2 and the same ver-
sion with the patch 10 extra-opts.diff. Although the patch is supposed to pro-
vide some extra options to the user, it actually introduces a bug into the code. Figure 8
is a simplified code pattern from TCPflow. For each TCP connection, a struct named
flow state t is used in the program to maintain some data associated with the con-
nection. The program processes the packets one by one from the start to the end. So, for
our program input, the SYN packet is processed before the data packet. The bug appears
because the manner in which empty packets are handled is changed by the patch.

In the unpatched version of the program, if we see an empty packet and no other packets
from the same connection have been seen before, the packet is simply ignored (the struct
flow state t for the connection is not created at all). However in the patched version,
empty packets are not ignored (the struct flow state t for the TCP connection is still
created). Note that in TCP connections, each transmitted packet has an sequence number
which is used by the sliding window protocol to make sure the packet is transmitted to the
destination. In our case the sequence number of the data packet is just the sequence number
of the SYN packet increased by one. Given a TCP connection, the corresponding struct
flow state t has one critical member field named ins which is used to store the initial
sequence number the program has seen for this connection. When a flow state t is
created, ins is assigned with the sequence number of the current packet being handled.

Since the SYN packet has no data inside and the manner of handling such packets are
different in the two program versions, the flow state t are created with different ins
values in two program versions. In the un-patched version, because the SYN packet is
ignored, the flow state t is only created when the data packet is seen, so the ins
field is equal to the sequence number of the data packet. In the patched version, the
flow state t for this connection is created when the SYN is seen, so the ins field
is equal to the sequence number of the SYN packet. Note that the ins field is later used to
calculate the offset in the output file when the data is written out. The offset is calculated
via the statement

offset = seq - state->ins;

where seq is the sequence number of the packet being written. So, while writing the data
packet in the unpatched version, the value of seq is equal to the value of state->ins;
they are both set to the sequence number of the data packet. However, in the patched
version, the seq is the sequence of the data packet, the state->ins is the sequence of
the SYN packet. So the offset is 1 in the patched version, making the program write from
the second byte in the output file. As a result there is an additional 0x00 (in the first byte
of the buggy output) as shown in Figure 7.

Once again, we emphasize the bug we described above (and detected using Darwin) is a
real-life bug appearing in a patch of the TCPflow program. The bug happens because the
authors of TCPflow forgot to modify the update of state->ins field after the manner
of handling empty packets was changed. In fact, this bug is only observed when the input
to TCPflow contains at least one empty packet. When we attempted to localize the root
cause of this bug using Darwin the root causes we reported were extremely accurate. Only
6 statements are reported as potential root causes from and one of them points to a branch
condition which checks for empty packets.

Over and above the accuracy, making Darwin work on the TCPflow program presented
us with a substantial challenge in terms of scalability. Although the TCPflow program
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contains only 1000 lines of code, its path condition size was the largest among all our
four case studies. Part of the reason for this comes from the frequent usage of libraries
during the execution of TCPflow. The execution of the libraries bloats up the trace size
and creates substantial time overheads for symbolic execution. Recall that we are trying
to solve formula of the form funpatched ∧ ¬fpatched where funpatched, fpatched are the
path conditions of our chosen program input on the un-patched and patched versions of
TCPflow. Assuming fpatched ≡ ψ1 ∧ ψ2 ∧ . . . ∧ ψm, we actually solve m formulae
{ϕi | 0 ≤ i < m} where

ϕi
def
= funpatched ∧ ψi ∧ ψ2 . . . ∧ ψi ∧ ¬ψi+1

Without the optimizations mentioned in Section 4.2, solving each ϕi takes up to 30 min-
utes, and there are around 2000 ϕi formulae to solve!!

Let us now examine the impact of the different optimizations mentioned in Section 4.2.
In the experiment with Tcpflow, we use one additional optimization technique to further
shorten the formula solving time. We only solve those ϕi formulae where ψi+1 corre-
sponds to a branch in the source code. The effect of this technique is discussed in the next
paragraph. By considering only ϕi formulae from the source code, there are still 86 for-
mulae left to solve. The estimated time to solve these formulae comes to 2 days (since the
solving of each ϕi formulae in the TCPflow program seems to take about 30 minutes).
However, recall that in the first step of our formula simplification (see Section 4.2), we
check whether ψ1∧ . . . ψi∧¬ψi+1 is satisfiable in a time-bounded fashion. In other words,
we set a time limit (10 seconds for our experiments), and see how many of the ϕi formulae
can be proved to be unsatisfiable within this time limit. Clearly, if ψ1 ∧ . . . ψi ∧ ¬ψi+1 is
unsatisfiable, ϕi cannot be satisfiable! We find that 64 out of the 86 formulae are proved
to be unsatisfiable in this fashion. Thus, we are left with (86− 64), that is, 22 formulae to
solve. The time to solve these formulae without any further optimization comes to around
12 hours. As mentioned in Section 4.2, we further employ dynamic slicing and constant
propagation to reduce the burden of the SMT solver. By using all of the formula simpli-
fication steps mentioned in Section 4.2, the total time taken by the SMT solver is reduced
to only 10 minutes. The total debugging time (which includes tracing as well) comes to
33 minutes. The final result from Darwin contains only 6 statements including the line
containing the error cause.

7.5 Experiment with Latent Bug

In this section, we report our experience with a latent injected bug to show a special feature
of our debugging method. We want to demonstrate the scenario where the actual bug exists
in the old stable program, however it only gets manifested in the new changed program.
Note that in such scenarios change analysis based debugging methods such as [Zeller 1999]
will not work — since they seek to report a subset of the changes (between the old and new
programs) as the cause of error. However our method, being based on semantic analysis of
the old and new programs, can still locate the error cause.

We use the unpatched and patched versions of the TCPflow program as described in
Section 7.4. The injected bug is shown in Figure 9. The code in Fig. 9 is injected in both
versions of TCPflow. In the unpatched version of TCPflow, whenever the code is exe-
cuted, state->ins is always equal to seq, the second condition !(IS SET(flags,
TH ACK)) is never evaluated and the return statement is never executed. However, in
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if((state->ins != seq) && !(IS_SET(flags, TH_ACK))){
return; /* ERROR here: should be printf("Warning: xxxxxx\n"); */

}

Fig. 9. Injected bug in TCPflow

Programs LOC Trace size # Branches # Tainted
(# instructions) in trace instructions

libPNG v1.0.7 31,164 87,336 13,635 2999
libPNG v1.2.21 36,776 108,769 15,472 2592

Miniweb 2,838 270,856 26,201 331
Savant 8,730 121,714 16,212 1613
Apache 358,379 60,380 5,388 264

(miniweb) (miniweb) (miniweb)
74,002 (savant) 9,672 (savant) 6889 (savant)

TCPflow (unpatched) 895 56838 7210 7753
TCPflow (patched) 934 58079 7375 7860

Table II. Properties of the subject programs

Programs Time in Time in Time in Time in Total
step 1 step 2 step 3 steps 4&5 Time

libPNG(v1.0.7-v1.2.21) 3m 57s 1m 49s 7m 44s 4s 13m 34s
Miniweb-Apache 2m 4s 1m 1s 2m 42s 1s 5m 48s
Savant-Apache 2m 27s 1m 11s 5m 2s 10s 8m 50s

TCPflow(unpatched-patched) 7m 9s 57s 20m12s 3m32s 31m 50s

Table III. Performance of Darwinś extended debugging method (m=minutes, s=seconds)

the patched version, because of other code modifications, state->ins can be not equal
to seq. As a result, the return statement is executed, manifesting the error.

Although we have the same buggy code in both versions, the injected code is actually
executed differently in the two versions. This difference is caused by other modifications in
the patched version. Change analysis based delta debugging [Zeller 1999] cannot expose
such error causes since the error is in a line which was not changed across versions.

Using our technique, the difference in program executions is captured in the path con-
ditions funpatched and fpatched of the unpatched/patched program versions. The branch
!(IS SET(flags, TH ACK)) appears in fpatched but not in funpatched. So, our tech-
nique is able to construct an alternate input that satisfies funpatched∧¬fpatched by negating
the branch !(IS SET(flags, TH ACK)). Thus one of our ϕi formulae corresponds to
a deviation in the branch !(IS SET(flags, TH ACK)), since this is a branch recorded
in the path condition. This deviation results in !(IS SET(flags, TH ACK)) being
selected as a potential root cause. On the whole, we identify 10 potential root causes.
Clearly, the inclusion of the branch !(IS SET(flags, TH ACK)) as a potential root
cause helps the programmer diagnose the issue.

7.6 Time Taken by our Debugging Method

In this section, we evaluate the performance of our debugging method. The properties of
our subject programs in terms of trace size and other statistics appear in Table II.
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Recall from Section 4 that our debugging method involves five steps. The steps are:
(i) constructing and checking the satisfiability of the ψ1 ∧ . . . ψi ∧ ¬ψi+1 (ii) slicing on
the f ′ (iii) concretize all the inputs that are not in the slicing result and perform constant
propagation, (iv) check the satisfiability of the simplified formula ψ1∧ . . . ψi∧¬ψi+1 after
constant propagation (v) solving the simplified formula f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1 (if the
simplified ψ1 ∧ . . . ψi ∧ ¬ψi+1 is found to be satisfiable in step iv).

Table III summarizes the time taken in these steps by Darwin for all programs including
TCPflow. The input validation only compares whether two execution traces are the same
or different, no formula generation is needed. It takes hardly any time to validate the inputs
in all our case studies.

In the first step of our method, we construct the path conditions in the two program
versions, and then construct several formulae ϕi. We also use a very short time to check
the satisfiability of ψ1 ∧ . . . ψi ∧ ¬ψi+1. We count the time taken to generate the traces
and raw path conditions into this step. The total time taken in this step was less than 7
minutes in all the case studies. In the second step, we use dynamic slicing to find out the
relevant input bytes for each formula. The time taken is less then 2 minutes in all the case
studies. In the third step, we concretize all the irrelevant input bytes and perform constant
propagation to simplify the formulae. The time taken by this step was less than 21 minutes
in all our case studies. In the last two steps, we first check the satisfiability of the simplified
formula ψ1 ∧ . . . ψi ∧ ¬ψi+1 after constant propagation. If it is satisfiable, we solve the
whole formula f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1 (which also has been greatly simplified by now
due to constant propagation). The time taken by this step was less than 4 minutes in all the
case studies.

Overall, Darwin took less than 32 minutes in all the case studies. We consider this time
to be very tolerable, considering that programmers often take hours and days to find the
root causes of errors in large code bases.

7.7 Additional Overheads due to Predicate Instrumentation

Our debugging method is most suited for debugging branch errors (errors in program
branches) and code-missing errors. For errors in assignments, our technique needs to be
augmented with predicate instrumentation as discussed in Section 5. Our predicate instru-
mentation is geared to expose assignment errors as mentioned in Section 5. We introduce
branches with branch conditions checking the following —

—function return values at each function return site, and

—binary constraints describing equality of a program variable x with other variables of the
same type, at each assignment to x. Thus, if x, y are of the same type — we introduce
branches to check x == y.

Table IV shows the overhead for our predicate instrumentation. The additional branches
and instructions are introduced because of our predicate instrumentation. We only show
the numbers for TCPflow (a program with high instrumentation overhead) and miniweb
(a program with low instrumentation overhead). The overhead in terms of number of ad-
ditional branches and instructions is less than 20%. The instrumentation is done at source
code level, and hence library code is not instrumented. This also prevents the instrumenta-
tion overhead from blowing up.
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Programs Additional branches (%) Additional Instructions (%)
TCPflow 17.78% 16.48%

Miniweb 4.06% 3.83%

Table IV. Overhead of Predicate Instrumentation

8. RELATED WORK

Validation of evolving programs is an important problem, since any large software moves
from one version to another. Among the established efforts in this direction are the work
on regression testing which focus on which tests need to be executed for a changed pro-
gram. Even though regression testing in general refers to any testing process intended
to detect software regressions (where a program functionality stops working after some
change), often regression testing amounts to re-testing of tests from existing test-suite. In
the past, there have been several research directions which go beyond re-testing all of the
tests of an existing test-suite. One stream of work has espoused test selection [Chen et al.
1994; Rothermel and Harrold 1997] — selecting a subset of tests from existing test-suite
(before program modification) for running on the modified program. Another stream of
works propose test prioritization [Elbaum et al. 2000; Srivastava and Thiagarajan 2002] —
ordering tests in existing test suite to better meet testing objectives of the changed program.
Finally, [Santelices et al. 2008] has studied test-suite augmentation — developing certain
criteria for new tests so that they are likely to stress the effect of the program changes. Our
technique is complementary to regression testing — regression testing detects or uncovers
software regressions, whereas we explain (already detected) software regressions.

Using path conditions to partition input space has been explored in concolic testing
works [Godefroid et al. 2005; Sen et al. 2005]. However the problem tackled by us is
entirely different from concolic testing. The main focus of concolic testing is to explore the
input space of one program to find test cases, whereas our technique performs simultaneous
analysis of two program versions for debugging a given test.

The issues in comprehending program changes for an evolving code base have been
articulated in [Sillito et al. 2006]. Program differencing methods [Horowitz 1990; Api-
wattanapong et al. 2004; Ren et al. 2004] try to identify changes across two program ver-
sions. Indeed, this can be the first step towards detecting errors introduced due to program
changes — identifying the changes themselves! The works on change impact analysis are
often built on such program differencing methods (e.g., see [Ren et al. 2004] — where
the analysis identifies not only the changes, but also which tests are affected by which
changes). A recent work [Person et al. 2008] uses symbolic execution to accurately capture
behavioral differences between program versions. Overall, the works on program differ-
encing try to identify (via static analysis) possible software regressions, rather than finding
the root-cause of a given software regression. Dynamic analysis based change detection
methods have also been studied (e.g., [Giroux and Robillard 2006], which analyzes via
regression testing the change in dependencies between parts of a program). These works
focus on qualitative code measures and the possible impact of program changes. Instead
we focus on the issue of root-causing a bug that has surfaced due to program changes.

In the area of computer security, deviation detection of various protocol implementations
have been studied (e.g., see [Brumley et al. 2007]). This problem involves finding corner
test inputs in which two implementations of the same protocol might “deviate” in program
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output. We note that finding such deviating program inputs bears similarities with uncov-
ering software regressions, whereas our work is focused on explaining already uncovered
software regressions. Even though superficially [Brumley et al. 2007] appears to employ
techniques similar to ours — the goal of [Brumley et al. 2007] is to generate a deviat-
ing program input which can demonstrate the behavior difference between two programs,
while the goal of our work is to explain such a behavior difference. Thus, the deviating
program input generated by [Brumley et al. 2007] can be fed to our debugging method.

Turning now to works on software debugging, the last decade has seen a spurt of research
activity in this area. Some of the works are based on static analysis to locate common bug
patterns in code (e.g., [Hovemeyer and Pugh 2004]), while others espouse a combination
of static and dynamic analysis to find test inputs which expose errors (e.g., [Csallner and
Smaragdakis 2006]). Another section of works address the problem of software fault lo-
calization (typically via dynamic analysis) — given a program and an observable error for
a given failing program input, these works try to find the root cause of the observable error.
Our work solves this problem of fault localization, albeit for evolving programs. We now
discuss the works on fault localization.

The works on software fault localization proceed by either (a) dynamic dependence
analysis of the failing program execution (e.g., [Sridharan et al. 2007; Zhang et al. 2006;
Zhang et al. 2007]), or (b) comparison of the failing program execution with the set of all
“correct” executions (e.g., see [Ball et al. 2003]), or (c) comparison of the failing program
execution with one chosen program execution which does not manifest the observable error
in question (e.g., [Zeller 2002; Renieris and Reiss 2003; Guo et al. 2006]). Our work bears
some resemblance to works which proceed by comparing the failing program execution
with one chosen program execution. Our approach tries to construct an alternate input
with whose trace we compare the failing program execution. However, the main novelty
in our approach lies in its ability to consider two different programs in the debugging
methodology. We do so by a separation of concerns — the two different program versions
are used to generate alternate program input (apart from the failing program input), while
the executions of the alternate input and failing input in the modified program version are
compared.

Comparing with delta debugging [Zeller and Hildebrandt 2002], we find that it cannot
be used in general to construct alternate inputs for evolving program debugging. Consider
a test input t showing a regression bug (failing in one program version, passing in another).
Delta-debugging generates alternate inputs by deleting certain fields of t which are irrele-
vant to the bug. However, it cannot generate new test inputs by modifying certain fields of
t; this is done in our method. For example, in our libPNG case study, the “bad” PNG im-
age contains a chunk (a PNG file is divided into “chunks”) with an incorrect length field.
To make the bug disappear, we need to correct the length field, rather than delete fields
in the PNG input. Moreover, arbitrary deletion in the PNG input will create illegal PNG
inputs since the checksum will not match. In contrast, the semantic analysis supported by
our path conditions (where the relationship between the checksum and the other fields is
captured in the path condition) ensures that we generate an alternate test input which is a
legal PNG image and avoids the bug in question.

The work of [Zeller 1999] studies debugging of evolving programs and proposes to
identify failure inducing changes. However, this is restricted to only reporting the changes
as error causes. Errors present in the old version which get manifested due to changes
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cannot be explained using such an approach. Moreover, suppose during program evolution
we encounter a bug for the first time (a test input which was ignored during the testing of
the past versions). Such bugs are not regression bugs. Our approach can still be applied,
provided a reference implementation is available; this is demonstrated in our experiments
with web-servers. In such a situation, searching among changes across implementations
is unlikely to work since the reference implementation is a completely different program,
often with different algorithms / data structures.

In summary, existing works on program analysis based software debugging have not
studied the debugging of evolving programs. In particular, the possibility of exploiting
stable implementations (which were thoroughly tested) for finding the root-cause of an
observable error in a buggy implementation has not been studied. This indeed is the key
observation behind our approach. Moreover, existing works on evolving software test-
ing/analysis primarily focus on finding tests which show differences in behavior of differ-
ent program versions. These works do not prescribe any method for explaining or debug-
ging a failed test — an issue that we study here.

9. THREATS TO VALIDITY

In this section, we discuss certain threats to validity of the results presented in this paper.
This also clarifies any implicit assumptions on which our debugging method may be built.

—One key assumption of our approach is the program requirements vis-a-vis the buggy
input do not change. The program requirements for the buggy input define the supposed
behavior of the program execution with the buggy input. In reality, what commonly
happens is that the program requirements vis-a-vis existing features do not change (al-
though new features may be added). In such a case, our assumption is guaranteed to be
satisfied. In fact a typical scenario where Darwin is applicable may be described as fol-
lows. A program version P evolves to a new program version P ′ because the customers
want some new features to be added. However in trying to program the new features, the
code for the old features mistakenly gets affected. Thus, a test case t which used to pass
in program P , fails in the new program P ′. In other words, in going from program P to
program P ′ there is code evolution but no evolution of requirements. The requirements
for the old features (those supported by both P and P ′) remain unchanged. Darwin is
most suited to explain and root-cause such errors resulting from code evolution.
Note that the above assumption does not conflict with our claim that Darwin works
with two different implementation of the same specification. Suppose P and P ′ are two
different implementations such as miniweb and apache. As long as the behavior of
the buggy input is supposed to be the same in both P and P ′, we can use P as a reference
implementation to debug P ′.
To illustrate the issue with a more concrete example, consider a banking system P sup-
porting some basic features like “login”, “logout”, “view balance” and so on. Suppose
now the customers of the banking system demand a new feature for transferring funds
between accounts. In trying to implement this system and produce a new banking system
P ′, the programmer may make mistakes and incorrectly modify the account balance. As
a result, the “view balance” functionality, which used to work correctly earlier, may not
work correctly any more, leading to an observable error. Darwin is most suited for ex-
plaining the root-cause of such observable errors. Consider an alternate scenario where
the requirements of the banking system itself being changed. Suppose the “view bal-
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ance” functionality earlier used to be interpreted as viewing of the account balance, and
is now changed to display the account balance for current accounts and displays the ac-
count balance minus $50 (the minimum deposit) for savings accounts. In this situation,
the requirements of the “view balance” feature itself has changed. Darwin approach is
not suited to explain any errors resulting from such evolution of software requirements.

—Path conditions serve as the basis of our debugging technique. In particular, the ap-
proach hinges on the observation that the path conditions f, f ′ of the test input t being
debugged are different in the two program versions. What if f and f ′ are logically
equivalent? This means that the effect of the error being debugged is not observable by
a difference in control flow. Our DARWIN approach is not inherently suited to explain
such errors. Thus, the approach is most suited for explaining errors that manifest as
changes in control flow. In Section 5, we proposed some methods to introduce more
control flow paths to handle assignment errors that do not affect control flow. Even
with heavy instrumentation, our solution cannot guarantee that all such errors will be
correctly diagnosed.
Apart from the assignments discussed in section 5, some other program elements such as
function pointers cannot affect the path conditions either. Some ideas similar to those in
section 5 could be used to introduce more branches. We can also control the compilation
process to avoid optimizations that remove branches. For example, switch-cases should
be compiled into conditional jumps instead of direct jumps using jump tables.

—Regarding the scalability of our technique, the size of generated SMT formula largely
depends on the number of tainted instructions in the execution trace. This is because only
the tainted instructions are analyzed in the path condition generation and all subsequent
steps of our tool. From our experience in the experiments, we found that the number of
tainted instructions depends on the input size as well as the size of the program. Since
SMT solving is extensively used in our approach, the scalability of our approach is also
directly tied to the scalability of the SMT solvers. We believe that there are generally
two ways to increase the scalability of our approach. First, we can use various methods
to reduce our SMT formula size. The high-level idea is to remove something unrelated.
In the paper, we have presented a means that concretizes some unrelated input bytes
and backward slices out unrelated components. For a particular program, the user may
know which modules/functions are trustable. These information can be used to reduce
the formula size further. If a program has large structured input, the technique from
[Zeller and Hildebrandt 2002] would be useful to simplify the input before applying our
tool. Secondly, the scalability of the SMT solvers is increasing all the time. This could
also benefit our approach.

—Although our Darwin tool is built based on the C binary executables, our technique is
generalizable to other languages. As long as the errors can affect program flow and pro-
gram requirements vis-a-vis the buggy input are the same, our technique should apply.

—Finally, there are some limitations regarding our experiments. Long program execu-
tion with large input size would produce large SMT formulae. We did not perform any
experiments on programs of this kind. For programs with large structured inputs, we
suggested that some input simplification techniques should be adopted. We did not per-
form any experiments to evaluate the effectiveness of these simplification techniques on
Darwin. For errors in assignment, one may need to follow dependency links to find the
root cause if our instrumentation technique in section 5 is not used. Some manual code
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inspection is needed in this case. We did not perform any case studies to evaluate this
manual effort. However, as suggested by the result in subsection 7.7, the instrumentation
overhead is affordable. Therefore, users could employ the instrumentation technique to
expose errors in assignment.

10. CONCLUDING REMARKS

In this paper, we presented Darwin a debugging methodology and tool for evolving pro-
grams. Darwin takes in two programs and explains the behavior of a test input which
passes in the stable program, while failing in the buggy program. The stable program and
buggy program can be two completely different implementations of the same specifica-
tion. Darwin handles hard-to-explain code missing errors inherently by pointing to code
in the stable program. We have conducted experiments using several real world applica-
tions such as the Apache web server, libPNG (a library for manipulating PNG images), and
TCPflow (a program for displaying data sent through TCP connections). Our experience
with real-life case studies demonstrates the utility of our method for localizing real bugs.

Developers are often faced with hard-to-locate bugs when a large software system changes
from one version to another. As long as the program requirements vis-a-vis existing fea-
tures do not change, Darwin can truly be an useful automatic debugging assistant for de-
velopers.

The alternate inputs generated by our method can also help detect new errors, apart from
localizing a given observable error. This can also help test-suite augmentation of evolving
programs — when a program changes we can find out potentially new test cases to be
tested for stressing the change.
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