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Abstract –
We study the problem of placing streaming queries into servers.

Unlike previous work, we focus on queries that consume events of
relative low rates, each computed in a single server (i.e. no scaling-
out per query). However, we need to place a very large and dynamic
number of queries in relatively few servers. Our focus is motivated
by the need to support a platform for hosting end-user streaming
queries that may come from a variety of applications, such as the
Cortana personal assistant.

The placement strives to reduce network and computational
overheads. It exploits the observation that a large number of queries
consume the same sources of events, and, hence, placing them in
the same server in the platform reduces network overheads. How-
ever, the placement also needs to balance the load among the servers.
A further complication arises from the requirement to allow the
queries to read events from multiple sources concurrently (i.e., to
join multiple streams).

In this paper, we formulate the problem of placing queries into
the servers of a streaming platform. We propose approximation al-
gorithms and derive approximation bounds for the following cases
(a) the offline case where queries are stable and known ahead of
time, akin to an “oracle”, and (b) the online case without depar-
tures and known query popularities. For the general online prob-
lem, we propose effective heuristic algorithms. An extensive set
of experiments demonstrates that the proposed algorithms provide
good performance in a wide-range of scenarios.

1 Introduction
Complex Event Processing (CEP) has been popular for many appli-
cations [18]. Platforms such as S4 [30, 21], Storm [26], Photon [5],
MillWheel [1] and Amazon’s Kinesis [3], enable scalable data an-
alytics over data streams. More recently, we are observing the rise
of stream processing platforms that ingest slower-rate data streams,
but allow more expressive operations. For example, the back-end
that supports the Cortana personal assistant [19] executes, on behalf
of its users, queries that monitor and process traffic, weather, news,
and other events, and forwards events of interest to its users (Fig-
ure 1). Such queries typically: (a) have low network and compute
overheads (e.g. processing weather updates for a region), (b) may
join multiple streams, such as a personal event stream (e.g. calen-
dar updates) with a global stream (e.g. traffic updates), to generate
user events (e.g. reminder to leave to catch next appointment), (c)
support a very expressive programming model (e.g. using UDF’s
expressed in LINQ [20], or JavaScript as in Amazon’s Lambda [4]).
Requirements (a) and (c) suggest that it is natural to execute each
query in a single server (unlike systems that scale-out processing to
deal with high stream data rates), but due to (c) the processing over-
head is often not trivial to estimate from the query. Even though
each query is rather “small”, the expectation is that there will be
a very large number of queries that need to be supported with low
network and computational resources. Hence, the main challenge
in building a platform to support a vast number of “small” queries
is to allocate queries to servers such as to minimize network and
compute overheads.

Figure 1 depicts a typical platform that hosts queries on behalf
of users. External to the system, there are event sources that gen-
erate events of interest to the users; these can be events of general
interest, such as news, weather, stocks, traffic, flight updates, and
personalized events, such as calendar events, user location events,
etc. Event gateways ingest events from each source, and then for-
ward them to the internal processing nodes (query evaluators). It
is important to observe that there is one or very few event gateways

Figure 1: Example of events flowing from the event sources to
the query evaluators, and finally to users. In addition to global
events, there are also personalized event sources; in this example,
a query combines traffic updates with calendar events to generate
notifications for the user (e.g. time to leave to be on time for next
appointment given current traffic).

per event source, but then the gateway(s) forward the stream to all
query evaluators that host user queries that depend on that event
source, potentially by replicating the stream multiple times. The
query evaluators execute their queries and forward the results to the
end-users. In this paper, we study specifically the problem of min-
imizing the network overhead for forwarding the events from the
event gateways to query evaluators while balancing the load among
the query evaluators. We assume that the service is hosted in a
generic compute platform, such as Azure Compute [29], Amazon’s
EC2 [2], or Rackspace [24]; this is a typical requirement for many
modern services as it separates the management of the platform
from the operation of the service. Hence, we cannot control the
assignment of the query evaluators to the underlying platform, and
cannot rely on an efficient transport (e.g., multicast) of the events
from the gateways to the evaluators. However, we can assume that
each stream will be delivered at most once to each query evaluator,
even when the evaluator serves multiple queries operating on that
stream. Hence, there is a unique network connection per stream be-
tween the gateway and each of the query evaluators interested in the
stream, and we want to minimize the network overheads incurred
by those connections.

As a simple example, consider that all streams have the same
popularity and that their aggregate rate is W (this is the rate from the
event sources to the gateways). The aggregate rate W can be many
10’s of Gbps, even though each individual stream is much smaller.
The rate from the gateways to the evaluators will be at least W (best
case). However, if there are k query evaluators, typically k is many
100’s, a naïve allocation of queries of evaluators can result into
W incoming rate per evaluator, which can violate the evaluator’s
capacity, and a total rate inside the platform of k ·W , which incurs
significant network load.

Our approach strives to minimize total network load, and at the
same time be mindful of capacity constraints and processing over-
heads incurred when executing the queries. These are non-trivial
because the platform allows a flexible query processing program-
ming model. In other words, a solution that places all queries using
the same stream to the same query evaluator does not scale for pop-
ular queries and streams. One approach to capture this requirement
would be to associate capacity limits for all critical resources of the
system (e.g., network bandwidth, processing and memory demands
per server). However, this approach requires a priori knowledge of
those limits, and in our experience may result in very unbalanced
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allocations that are not desirable from an operational point of view.
Instead, our allocation strives to balance the load in the system and
reduce network overheads.

The main insight that enables us to optimize the allocation of
queries to evaluators is the observation that many queries will use
the same input streams. For example, many users may be inter-
ested in traffic updates from the same city, or weather updates for
the same region. This is akin to the existence of many applications
for e.g., smart-phones that present weather, news, and other infor-
mation to end-users using the same sources, and the large number
of users for many of these similar applications. Hence, we antici-
pate large benefits by co-locating similar queries to the same query
evaluator, and transporting the relevant network streams once.

Three practical requirements complicate query assignment. First,
the queries should be able to subscribe to more than one stream.
This is required, for example, to support joins, and it is a common
feature in many CEP systems. Second, the assignment of queries
to servers should be semi-permanent. That means that the plat-
form should avoid moving queries between servers, for example
to reduce overheads, as this requires moving (query) state while
guaranteeing that the query does not miss any stream updates. Ob-
viously, queries will be re-assigned when their server fails, but such
events should be an exception. Hence, the platform must make a
good decision when assigning a query to a server, upon query ar-
rival. Third, we expect churn both in the queries (queries have lim-
ited lifetime) and in servers (due to server failures and re-cycles).
The queries arrive and depart dynamically, and the assignment of
queries to servers should be robust to query and server dynamics.

In this paper, we propose and study the problem of assigning
streaming queries to query evaluators (server), under the require-
ments and assumptions described above. We use both analysis and
simulations to understand the complexity of the problem and to de-
sign efficient algorithms for assigning queries to servers. In sum-
mary, the contributions of this work are as follows:
• Formulation of the problem of assigning streaming queries to

servers (Section 2), in the context of an online platform that hosts
queries on behalf of the users as a service.
• We show that the problem of reducing network load while

balancing server load is NP complete (Section 3), and provide ap-
proximation bounds (Section 4).
• We propose and study offline (Section 4) and online (Sec-

tion 5) heuristics for the problem. Offline heuristics assume an ora-
cle that knows ahead of time all queries. We use the offline heuris-
tics to reason about the performance of the assignment process, and
to draw inspiration for the online heuristics.
• Using analysis and simulation (Section 6), we identify the

LeastCost online heuristic that gives the best performance, even
under query and server churn, and is often up to four times better
than (naïve) random assignment.

2 System Model and Assumptions
We consider a stream processing platform with the following three
key components (see also Figure 1): (event) sources, queries, and
servers (query evaluators).

Sources. A source is a publisher that generates new events as a data
stream at some rate. S = {s1,s2, . . . ,sm} denotes a set of sources,
and w(s) is the rate of events published by source s ∈ S. The total
event rate for a subset of sources S′ ⊆ S is denoted by w(S′) =
∑s∈S′ w(s). For convenience, and without loss of generality, we
shall treat sources as if located in the event gateways.

Queries. A query subscribes to one or multiple sources and pro-

cesses the events originating from the sources. A set of queries is
denoted by Q = {q1,q2, . . . ,qn}, and the set of sources subscribed
by a query q ∈ Q is represented as Sq, which is a subset of the set
of sources S.

If two queries subscribe to identical sets of sources, we say that
they are of the same query type. Let T ⊆ 2S be the complete set of
distinct query types. Each query q ∈ Q has a query type t ∈ T ,
where t = Sq. Given n queries, we have n = ∑t∈T nt , where nt is
the number of queries of query type t.

Moreover, N(s) denotes the subset of queries that subscribe to
source s, that is, N(s) = {q ∈ Q | s ∈ Sq}.

Servers. A server is a container that evaluates queries. We as-
sume there are k ≥ 1 servers in a stream processing platform. (The
terms “server” and “query evaluator” are used interchangeably; we
mostly use “server” for brevity.)

2.1 Query Assignment Problem
We consider optimizing query assignment with respect to the fol-
lowing two criteria: network traffic and server load.

Network Traffic. We are interested in minimizing network traffic
between sources and servers. If a server hosts at least one query that
subscribes to a source s, then this contributes w(s) to the network
traffic cost. This implies that it is desirable to co-locate queries that
use the same source(s). Formally, the total network traffic cost of a
server that hosts queries Q′ ⊆ Q is defined as

f (Q′) = ∑
s∈S

w(s) ·1{s is required by some q ∈ Q′}.

The total network traffic of an assignment of queries to servers ac-
cording to the sets of queries Q1,Q2, . . . ,Qk assigned to respective
servers 1,2, . . . ,k is given by: ∑

k
j=1 f (Q j).

Server Load. A query assignment is feasible if it approximately
balances the processing load of servers up to a given slackness. In
practice, it is non trivial to quantify the capacity of a server. Servers
are typically hosted by virtual machines in a cloud service platform.
The capacity of a server depends on several factors including the
processing requirements of queries, and other factors such as the
load of virtual machine to which the server is assigned. Therefore,
we aim at balancing the load over different servers which does not
require knowing exact capacities of individual servers. The under-
lying assumption is that the system operates at a load that allows
for a feasible query assignment. In this case, balancing the load
across different servers is a natural objective.

In this work, we assume that each query contributes a fixed
processing load to the server it is assigned to. For simplicity of ex-
position, we assume queries contribute identical processing loads,
say of unit value, but our results naturally generalize to non iden-
tical query processing loads. In this way, the processing load of a
server corresponds to the number of queries assigned to this server.

Given a slackness parameter ν ≥ 0 for balancing the load across
servers, a query assignment to k servers is specified by a partition-
ing of the set of queries Q into k disjoint subsets Q1,Q2, . . . ,Qk. A
query assignment is said to be ν-load balanced, if it satisfies the
following condition:

|Q j| ≤ (1+ν)
n
k
, for j = 1,2, . . . ,k. (1)

Throughout the paper, we interchangeably refer to the parameter ν

as the slackness parameter or relative relaxation parameter.

Query Assignment Problem (QA) Let P(Q) be the set of all pos-
sible k-partitions Q1,Q2, . . . ,Qk of the set of queries Q such that

2



(a) Q1∪Q2∪·· ·∪Qk = Q; and (b) Qi∩Q j = /0 for every i 6= j.
The QA problem is defined as follows: given a set of sources

S, a set of queries Q, a set of k servers, and a slackness parameter
ν ≥ 0, find (Q1,Q2, . . . ,Qk)∈P(Q) which minimizes the network
traffic

k

∑
j=1

f (Q j)

subject to the server load balancing constraints (1).

3 Hardness and Benchmark
In this section, we first discuss the computational complexity of the
query assignment problem (QA), and then characterize the ineffi-
ciency of a standard load balancing strategy that assigns each query
by sampling a server uniformly at random.

3.1 NP Hardness
In general, it is computationally hard to find an optimal solution
for an arbitrary QA instance in polynomial time as showed in the
following theorem.

THEOREM 1. Query assignment problem is NP-complete.

PROOF. The proof consists of two steps: (a) we first prove QA’s
decision problem is NP-hard; and (b) show that it is NP.

First, we prove its NP-hardness by a reduction from the well-
known bin packing problem [13].

The decision problem of QA is described as follows: Given the
set of sources S, the set of queries Q, k servers, a slackness parame-
ter ν ≥ 0, and a real number γ ≥ 0, does there exist (Q1,Q2, . . . ,Qk)∈
P(Q) such that (a) ∑

k
j=1 f (Q j)≤ γ , and (b) every server is ν-load

balanced?
Consider a special case of QA’s decision problem, where (a)

each query subscribes to exactly one source, (b) each source pub-
lishes events at a unit rate w(s) = 1 for every s ∈ S, and (c) γ = |S|.
In other words, we need to find a feasible solution such that queries
of the same type are assigned to the same server. We can reduce
an arbitrary instance of bin packing problem to an instance of the
special case under consideration: (a) we reduce an item to a query
type, where the item’s size is reduced to the number of queries for
the corresponding type; (b) the number of bins is reduced to the
number servers; and (c) the size of each bin is reduced to the upper
limit for each server’s load. Since bin packing problem is NP-hard,
we conclude that QA’s decision problem is NP-hard.

Second, given a solution to QA’s decision problem, we can
check whether it is feasible in polynomial time, so the QA problem
is NP. Therefore, QA is NP-complete.

The following competitive ratio holds for every feasible query
assignment.

PROPOSITION 1. For every assignment of queries to servers,
the network traffic cost is at most k times the optimum network traf-
fic cost, where k is the number of servers.

3.2 Random Query Assignment
A naïve query assignment strategy is to assign each query to a
server sampled independently, uniformly at random. This is a stan-
dard load balancing strategy that can be implemented by hash par-
tition of query identifiers. This strategy can efficiently balance the
number of queries over servers. Specifically, it is known to guar-
antee the maximum server load of n/k +O

(√
(n logk)/k

)
with

probability o(1) for n� k log3 k [23]. However, this strategy can
be grossly inefficient with respect to network traffic cost, which we
show analytically below and also experimentally in Section 6.

PROPOSITION 2. Consider the set of sources S (|S| = m) and
k servers, with ds denoting the number of queries subscribed to
source s ∈ S. The expected network traffic cost under uniform ran-
dom query assignment strategy is(

1− 1
m ∑

s∈S

(
1− 1

k

)ds
)

km. (2)

PROOF. The proof is provided in Appendix A.

Proposition 2 implies that the naïve strategy can easily achieve
the upper bound in Proposition 1 and result in a large amount of
network traffic cost. From Equation 2, the expected network traffic
cost of random query assignment is nearly equal to the worst-case
network cost whenever 1

m ∑s∈S (1−1/k)ds � 1. In fact, the worst-
case network traffic cost is achievable under the random query as-
signment policy: consider m sources and n queries partitioned into
k balanced pieces so that there are m/k sources and n/k queries in
respective pieces S1,S2, . . . ,Sk and Q1,Q2, . . . ,Qk, and assume that
each query in Q j only subscribes to the sources in S j and none in
S \ S j. The subscription between queries and sources corresponds
to a collection of k disconnected complete bipartite graphs, each of
which has m/k sources and n/k queries. In this case, the expected
network traffic cost is

(1− (1−1/k)n/k)km,

which for large n tends to the worst-case network traffic cost of km.
On the other hand, the best strategy in this case is to assign each
piece of queries to a distinct server, which achieves minimal net-
work traffic and perfect load balancing. Note that the inefficiency
of the naïve strategy can be made arbitrarily large by taking k large
enough.

The high network traffic cost caused by naïve strategies such
as random query assignment asks for the design of more sophisti-
cated query assignment algorithms. In the next section, we focus
on offline QA problem, and propose approximation algorithms with
better performance guarantees. In Section 5, we discuss online al-
gorithms that irrevocably assign queries to servers at their arrival.

4 Offline Query Assignment
In this section, we investigate practical approximation algorithms
for offline QA problem.

We first consider approximation algorithms for the general case
where each query subscribes to one or multiple sources, which we
refer to as multi-source QA. For sources with identical event rates,
we propose an approximation algorithm that guarantees the net-
work traffic cost of at most 2dmax(1+ logk) of the optimal network
traffic cost, where dmax is the maximum number of sources required
as input to a query, and k is the number of servers. Since the value
of dmax is usually a small constant in practice [5], this is a much
tighter bound compared with the worst-case bound of k. We also
develop several heuristic query assignment algorithms that exhibit
competitive performance in practice.

Moreover, we develop a 2-approximation algorithm for the case
where each query subscribes to exactly one source, which we refer
to as single-source QA.
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4.1 Multi-Source Query Assignment
We first present an approximation algorithm and then introduce two
heuristics for offline multi-source QA.

4.1.1 Minimum Query Type Packing
In this section, we establish the following main theorem.

THEOREM 2. Suppose that all sources have identical event rates.
There exists a polynomial-time algorithm for multi-source QA with
the approximation ratio

2dmax(logk+1)

where dmax = maxq∈Q|Sq| is the maximum number of sources sub-
scribed by a query. Furthermore, the same bound holds for sources
of arbitrary rates with an extra factor ω =maxs∈S w(s)/mins∈S w(s).

Theorem 2 tells us that when queries subscribe to a number
of sources that is bounded by a constant, we have an approxi-
mation guarantee of O(log(k)) where k is the number of servers.
This result is of practical interest in applications where each query
subscribes to a few sources, and the asserted approximation ratio
comes from an algorithm that approximately solves a single-server
minimum query type packing problem, which we introduce shortly.
We shall prove the correctness of Theorem 2 in the following three
steps.

1. We show that if we can optimally solve k single-server min-
imum query type packing (MQP) problems, then we can ap-
proximate multi-source QA within factor 2(1+ logk).

2. MQP is NP-complete.

3. MQP can be approximated within dmax in polynomial time.

We start with the definition of MQP.

Single-Server Minimum Query Type Packing (MQP). Given
the set of queries Q, the set of sources S, and a real number θ > 0,
find a subset of query types T ′ ⊆ T with S′ =

⋃
q∈Q∧Sq∈T ′ Sq that

minimizes w(S′), subject to the constraint: ∑t∈T ′ nt ≥ θ .
The multi-source QA can be approximated by sequentially solv-

ing MQP in k rounds, with the following performed in round j:

1. Select an empty server as the target for query assignment
from the pool of remaining queries Q( j).

2. Suppose we find the optimal subset of query types T ′ ⊆ T
for the MQP problem with queries Q( j) and

θ = n− (1+ν)
(k−1)n

k
. (3)

Let Q̂ ⊆ Q( j) be the subset of queries of query types in T ′.
Assign Q̂ to the selected server.

3. If |Q̂| > (1+ν) n
k , we arbitrarily select a query type t ′ ∈ T ′,

remove a number of queries of type t ′ to make the server ν-
load balanced, and put the removed queries back to the query
pool. Note that since θ < (1+ν)n/k, we only need to select
one query type for query removal. If we need to select more
than one query type, T ′ cannot be an optimal solution.

Since the constraints in the QA problem imply that |Q j| ≥ θ ,
for every server j = 1,2, . . . ,k, the MQP problem with θ can be
seen as a relaxation of the QA problem.

Let Q̂∗j ⊆ Q be the optimal solution for the single-server MQP

problem on the j-th server, f (Q̂∗j) be the network traffic cost, and
OPT be the optimal solution for multi-source QA problem.

LEMMA 1. Given a multi-source QA problem with k servers,
successive solving of k MQP problems yields a feasible solution
for the QA problem. Moreover, if we can solve each MQP problem
optimally with Q̂∗1, . . . , Q̂

∗
k , we can guarantee

k

∑
j=1

f (Q̂∗j)≤ 2(logk+1)OPT.

PROOF. The proof is provided in Appendix B.

In Lemma 1, we derived an approximate algorithm for the QA
problem under assumption of the existence of an oracle that pro-
vides optimal solutions to MQP problems. We next show that
MQP is NP-complete; therefore, it is hard to find a polynomial-
time algorithm that solves MQP optimally.

LEMMA 2. MQP problem is NP-complete.

PROOF. We sketch the proof as follows. (a) To prove NP-hardness,
we can reduce the NP-hard minimum k-union problem [28] to single-
server MQP problem. (b) It is easy to verify a solution in polyno-
mial time.

Due to the NP-hardness, we propose the following algorithm
to approximate MQP.

1. Order query types in decreasing order with respect to the
number of queries;

2. Successively pick a query type with the largest number of
queries until the number of assigned queries is at least θ .

LEMMA 3. Suppose sources have identical event rates. The
above algorithm approximates MQP within dmax = maxq∈Q|Sq|.

For arbitrary source rates with ω = maxs∈S w(s)/mins∈S w(s),
the above algorithm approximates MQP within dmaxω .

PROOF. The proof is provided in Appendix C.

In summary, Theorem 2 is proved using Lemma 1, 2, and 3.

4.1.2 Heuristics
In this section, we present two heuristics for the offline QA, includ-
ing incremental cost (referred to as IC) and min-max traffic cost per
server (referred to as MMS). These heuristics are observed to ex-
hibit competitive performance in practice.

Incremental Cost Based Approach. IC assigns queries in succes-
sive rounds. At each round, it assigns queries to a server in three
steps. (a) Given a query type t ∈ T with non-zero number of unas-
signed queries and a server j of spare capacity to host more queries,
we consider the incremental traffic cost resulting from assigning at
least one query of type t to server j. (b) We select a pair of a query
type and a server (t∗, j∗) that results in the least incremental cost.
(c) We assign queries of type t∗ to server j∗ as many as possible
until server j∗ is full or there are no unassigned queries of type t∗.

Min-max Traffic Cost per Server. MMS aims to minimize the
maximum traffic cost among servers in successive rounds. At each
round, it assigns queries to servers in three steps. (a) Given a query
type t ∈ T with non-zero number of unassigned queries and a server
j with spare capacity to host queries, we consider the traffic cost
after assigning at least one query of type t to server j. (b) We select
a pair of a query type and a server (t∗, j∗) that results in the least
traffic cost. (c) We assign as many as possible queries of type t∗ to
server j∗ until server j∗ is full or there are no unassigned queries
of type t∗.
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4.2 Single-Source Query Assignment
In this section, we consider single-source QA, where each query
subscribes to exactly one source. In this case, there is a one-to-one
correspondence between query types and sources. Therefore, we
use the term source and the term query type interchangeably.

We present an approximation algorithm for single-source QA
that assigns queries to servers over successive rounds as shown in
Figure 2. For server j, let d j to be the spare capacity of server
j. At the beginning of round 0, we initialize d j = b(1+ν)n/kc,
where ν ≥ 0 is the slackness parameter. Let ns be the number of
unassigned queries that subscribe to source s.

Input: A single-source QA instance;
Output: A query assignment.

1. while True
2. Select server j with the largest free capacity
3. Select query type (source) s of the largest event rate w(s)
4. b←min(d j,ns)
5. Assign b type-s queries to server j
6. d j ← d j−b
7. ns← ns−b
8. if there is no more queries
9. return

Figure 2: 2-approximation for single-source QA.

THEOREM 3. The approximation algorithm given in Figure 2
has the following approximation guarantees:

1. The approximation ratio 1+k/m≤ 2, where m is the number
of sources and k is the number of servers, for sources with
identical event rates;

2. The approximation ratio 2, for sources with arbitrary event
rates.

PROOF. We consider only the cases where 0 < ns < d j (with
d j = b(1+ν)n/kc) for every s ∈ S and j = 1,2, . . . , or k as the
other cases can be reduced to these cases. (If there exists s′ with
ns′ ≥ d j, then we reserve a server for query type s′, reduce ns′ by
d j , remove the server, and repeat; this assignment is optimal.) We
also assume that k < m. (If m ≤ k and since 0 < ns < d j for every
s and j, an optimal assignment is to allocate each query type to a
distinct server.)

Identical Source Event Rates. Without loss of generality, we as-
sume w(s) = 1, ∀s ∈ S. We show the lower bound for the optimal
solution and the upper bound for the approximate solution.

The lower bound for the optimal solution is m, since every
source is required by at least one server in the system.

The upper bound for the above algorithm is k +m. In each
round, we either make a query type consume all the spare space of
a server, or make a server host all the remaining queries of a query
type. In other words, either the number of available servers or the
number of available query types decreases by 1. It follows that the
number of rounds is at most k +m. Since each round increases
network traffic rate by at most 1, the total traffic rate cannot be
larger than k+m.

Using the asserted lower bound and upper bound, we obtain
the approximation ratio of 1+ k/m.

Arbitrary Source Event Rates. Similarly, we demonstrate the
lower bound for the optimal solution and the upper bound for the
approximate solution.

The lower bound for the optimal solution is w(S), since we
have to send the data stream of each source to a server at least once.

The upper bound for the approximate solution is 2w(S). Let rs
be the number of rounds to assign queries of query type s, which in
total introduces rs ·w(s) of network traffic cost into the system. By
the same argument as for the case of identical source event rates,
the total number of rounds is at most m+ k, i.e., ∑s∈S rs ≤ k+m.
From this, it follows that: ∑s∈S(rs−1)≤ k. Since 0 < ns < d j, we
can guarantee that the top-k query types with respect to the traffic
rate will be assigned at most once. Therefore,

∑
s∈S

(rs−1)w(s)≤ kwk+1 ≤ w(S)

where wk+1 is the k+ 1-largest traffic rate among all query types.
The total event rate satisfies

∑
s∈S

rsw(s)≤ w(S)+ ∑
s∈S

(rs−1)w(s)≤ 2w(S).

Hence, the algorithm provides a 2-approximation.

Remark. For single-source QA, there exists a constant factor ap-
proximation algorithm, and this guarantee holds for any number of
sources m, number of queries n, and number of servers k. More-
over, if the source event rates are identical, then the approximation
ratio of 1+ k/m can be guaranteed. Thus, this approximation ratio
guarantee can be arbitrarily near to the optimal one whenever the
number of sources relative to the number of servers is sufficiently
large. In a practical system with single-source queries and many
sources of approximately identical event rates, the proposed algo-
rithm can guarantee nearly optimal performance.

5 Online Query Assignment
In this section, we consider online QA, where each query is irrevo-
cably assigned to a server at its arrival time. We focus on the class
of online algorithms that decide which server to host an incoming
query based on (a) the set of sources required by an incoming query
and (b) the queries that were previously assigned to servers and are
still in the system.

The key to design such an online algorithm is to choose a met-
ric for assigning queries to servers. Such a metric should consider
both load balancing and network traffic cost. We introduce and
discuss several greedy metrics for online query assignment in Sec-
tion 5.1. Moreover, in Section 5.2, we discuss how to make use of
the extra information (Section 5.2.1) or resources (Section 5.2.2) to
improve the performance of online algorithms.

5.1 Greedy Online Algorithms
In this section, we present three greedy online algorithms, and de-
scribe the intuition behind the design of these online algorithms.

Input: (a) an incoming query q requiring a set of sources Sq;
(b) k servers and the queries they are hosting Q1, . . . ,Qk;
(c) relative relaxation ratio ν ;
(d) a predefined metric M;

Output: the server that will host q.

1. Find candidate servers C =
{

i | |Qi|+1 < (1+ν)
∑

k
j=1 |Q j |

k

}
2. Find C∗ ⊆C such that ∀i ∈C∗,
3. M(Qi,q)≤M(Q j,q),∀ j ∈C
4. if |C∗|== 1
5. return the only server in C∗
6. else
7. return the server p = argmini∈C∗{|Qi|}

Figure 3: Greedy algorithms for online QA

The three algorithms use different metrics to decide which server
to host an incoming query; however, they share the common pipeline
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as shown in Figure 3. Given an incoming query q, k servers along
with the corresponding set of queries a server is hosting, the rel-
ative relaxation ratio ν , and a predefined metric M, the server to
host q is decided as follows. (a) From all k servers, we find the
candidate servers C each of which will not violate the balance con-
straint if we add q into the server. (b) From C, we find the servers
C∗ each of which with the lowest cost in terms of M if we add q
into the server. (c) If there is only one server in C∗, we assign q to
the server; otherwise, we select the least loaded server from C∗ and
then assign q to the server.

In this work, we propose three metrics to support online as-
signment decision: (a) least incremental cost first (referred to as
LeastCost), (b) least source cost per server first (referred to as
LeastSource), and (c) least number of query types first (referred
to as LeastQT). Given a query q and a set of queries Q j hosted by
server j, the three metrics behave as follows.

LeastCost. If f (Q j∪{q})− f (Q j) results in a smaller incremental
traffic cost, server j will host q with a lower cost defined as

MLeastCost(Q j,q) = f (Q j ∪{q})− f (Q j).

LeastCost is a natural metric for QA: since the ultimate goal of
QA is to minimize traffic cost in a system, LeastCost attempts to
achieve this goal by locally minimizing traffic cost at each query
arrival.

LeastSource. If f (Q j ∪{q}) results in a smaller traffic cost, the
cost of placing q into server j is lower defined as

MLeastSource(Q j,q) = f (Q j ∪{q}).

LeastCost has a potential issue: one server might subscribe to
many sources because of locally optimal decisions such that many
incoming queries are assigned to the server, the server gets full
quickly, and eventually the server becomes unavailable for host-
ing incoming queries. If this effect propagates among servers, the
overall traffic cost in the system can be very high. To mitigate this
effect, we come up with LeastSource that aims to balance the traf-
fic cost among servers such that no server will subscribe too many
sources and result in too high traffic.

LeastQT. Let T (Q j) be the set of query types such that ∀t ∈
T (Q j), there exists at least one query of type t hosted by server j.
If |T (Q j ∪{q})| is smaller, placing q into server j results in lower
cost defined as

MLeastQT(Q j,q) = |T (Q j ∪{q})|.

LeastCost and LeastSource have a common issue: a few servers
might subscribe too many popular sources. If one server subscribes
too many popular sources, it is able to host queries of various query
types, and will be crowded quickly. If this effect propagates in
the system, we have to make many servers subscribe those popular
sources. One way to mitigate this effect is to limit the number of
query types in a server such that no server can host too many query
types and get crowded soon.

5.2 Discussion
In this section, we discuss how we develop online algorithms when
we have more knowledge or more resources. The above metrics
provide heuristic algorithms to solve online QA. Indeed, given the
limited knowledge of only information about the incoming query
and assigned queries in a system, we might not have much space
to develop sophisticated algorithms. In practice, we might know
some statistical information about queries, and may relax the load
balancing constraint at specific conditions.

5.2.1 Known Query Type Distribution
When we deal with online QA, we might know the information
about query type statistics. In particular, such statistics consist of
the rate at which specific query types will arrive in the system, and
may well be available in production systems that have been in oper-
ation for some time, which allows us to collect and maintain statis-
tics about the query workload.

Concretely, with such statistical knowledge, we can develop an
online algorithm as follows. Assume that popularity of query types
is known: the probability that an incoming query is of type t fol-
lows a multinomial distribution with parameters (λt , t ∈ T ), where
T ⊆ 2S is the universe of query types. Knowing this distribution
allows us to develop an online algorithm that makes reservations
for query types in advance, and then assigns queries at their arrival
times based on their query types. This allows one to emulate what
an offline algorithm would do. Given (λt , t ∈ T ), we reduce an
online QA to an offline QA as follows.

1. λt (the probability that a type-t query arrives) is reduced to
nt (number of type-t queries);

2. δ j, the probability that server j receives a query, is reduced to
the balance constraint, the number of queries a server could
host at most, and in particular, we set δ j =

1
k in the algorithm;

3. πt, j, the probability that a type-t query is assigned to server
j, is reduced to the number of type-t queries in server j.

Therefore, with the statistical information on query type distribu-
tion, we can reuse the offline algorithms discussed in Section 4 to
solve online QA.

5.2.2 Relaxed Load Balancing Constraints
QA problem is defined as a bi-criteria optimization problem where
one of the criteria is balancing the load of servers. Specifically, the
problem corresponds to finding a query assignment such that the
maximum load is at most (1+ν) of the mean load across different
servers, for given input parameter ν ≥ 0. For an online QA, requir-
ing to obey this condition at each query assignment instance may
be too restrictive and result in sub-optimal query assignments with
respect to the long-term network traffic cost.

EXAMPLE 1. Consider a system of 10 servers, and a fixed slack-
ness parameter of 0.05. The first 10 queries will be distributed to 10
different servers, and that may result in 10 different copies of the
same data stream, if those queries subscribe to the same source.
This is because the average load times the slackness parameter is
strictly less than 1 until the 10-th query. In general, during the
initialization, the allocation of queries to servers will be grossly
sub-optimal.

To resolve the above problem, we relax the load balancing con-
straints as follows. (a) We define another balance constraint for a
system in its initial phase, and use absolute slackness parameter
to control the balance constraint. (b) In the initial phase, a system
uses a balance constraint decided by absolute slackness parameter.
When the system hosts more than n queries, we switch back to the
balance constraint decided by relative slackness parameter. Let n
be the number of queries in the system. The system is said to be
α-absolutely balanced, if the number of queries in any server is no
more than n

k +α , where α ≥ 0 is the absolute slackness parameter.
The system is said to be (1+ν)-relatively balanced, if the number
of queries in any server is no more than (1+ν) ·n/k, where ν ≥ 0
is the relative slackness parameter.
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In an online system, when the number of input queries is small,
we apply absolute slackness parameter to balance the workload of
servers; when the number of queries becomes sufficiently large,
we switch to relative slackness parameter. In other words, given
the values of parameters α and ν and the number of input queries
n, the load balancing constraint for each server j is defined to be
d j(n) ≤ d(n), where d j(n) is the number of queries already as-
signed to server j and

d(n) = max
{n

k
+α,(1+ν) · n

k

}
. (4)

The system switches to the relative load balancing as soon as the
number of input queries satisfies n≥ (α/ν)k. The configuration of
relaxed load balancing is discussed in Appendix D.

6 Experimental Evaluation
In this section we present performance evaluation of the offline and
online algorithms in Section 4 and Section 5 by an extensive set of
simulations and using data from production system. Overall, our
experimental evaluations provide support to the following claims:

1. Optimizing query assignment provides significant reduction
of network traffic compared to random query assignment.

2. Specific online query assignment heuristic, namely LeastCost,
consistently outperforms other online (and sometimes even
offline) heuristics for a wide range of configurations.

3. LeastCost scales with respect to the number of queries, sources,
and servers, and it is robust to dynamic arrival and departure
of queries and servers.

6.1 Synthetic Workloads
We generated subscription of queries to sources according to a ran-
dom bipartite graph model [15]. The subscriptions of queries to
sources are represented by a bipartite graph G = (S,Q,E), where
S is the set of sources, Q is the set of queries, and there is an
edge (s,q) ∈ E if and only if query q receives input from source
s. G is assumed to be a random bipartite graph with given degree
distribution for the vertices that represent sources and the vertices
that represent queries. Specifically, we consider (a) the degrees of
source vertices according to Zipf distribution with power-law expo-
nent β > 0 , and (b) the degree of query vertices fixed to parameter
d > 0. The popularity of sources typically follow a power-law dis-
tribution [15, 16], which is modeled by a Zipf distribution. In our
experiments, we consider queries of unit processing costs.

Offline Algorithms. We evaluate performance of incremental cost
based approach IC, minimum query packing based approach MQP,
and min-max traffic cost per server MMS, which are defined in
Section 4. As a baseline for comparison, we consider the following
random offline assignment heuristic OffRand: (a) randomly select
all queries of the same query type; (b) randomly select a server with
available space to host queries; (c) assign queries to the selected
server until either the server is saturated or all queries (of query
type) have been assigned; (d) remove server or query type from
further consideration; and (e) repeat from step (a) until all queries
are assigned.

Online Algorithms. We evaluate the following online heuristics:
(a) Least incremental traffic first LeastCost, (b) Least number of
sources first LeastSource, and (c) Least query types first LeastQT.
As a baseline for comparison, we consider the following random
online query assignment OnRand: given an input query, we find
a set of candidate servers that can accept the new query without
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Figure 4: Performance of offline query assignment.

violating the load balancing constraints, and then randomly select
one of servers from this for assignment.

Parameters. In our experiments, we consider four parameters: (a)
the power-law exponent β for the source degree distribution in the
range 1.0 to 3.0 with a default value 2.0, (b) the number of sources
per query in the range from 1 to 10 with a default value 2, (c) the
number of servers in the range from 10 to 1000 with a default value
100; and (d) the number of queries in the range from 10,000 to
1,000,000 with a default value of 100,000.

When considering query or server dynamics, we also have the
following two parameters: (a) mean query life-time (Figure 6.1.2),
and (b) server departure rate (Figure 6.1.2).

For all the offline algorithms considered, we fix the relative
relaxation parameter ν to value 0.05. For all the online algorithms
considered, we fix the relative relaxation parameter ν to value 0.05,
and the absolute relaxation parameter α to value 10 (Section 5.2.2).

Performance metrics. We consider replication factor as the metric
to evaluate the performance of algorithms. Let C be the resulting
traffic cost of an algorithm, S be the set of sources with traffic cost
w, and f (S) = ∑s∈S w(s). The replication factor of the algorithm
is defined as C/ f (S). Intuitively, the replication factor represents
normalized traffic cost under the given algorithm.

We run each configuration 10 times, and average the results.

6.1.1 Offline Algorithms
We examine the replication factor of the offline algorithms in Fig-
ure 4. These results are for sources with unit publishing rates; we
examine heterogeneous source traffic rates in Figure 6.1.2.

In the top graph in Figure 4, we show the network traffic repli-
cation factor versus the power-law exponent of the Zipf distribution
of the number of queries subscribed to a source (source popularity).
The number of sources per query is fixed to 2, the number of queries
is set to 100,000, and the number of servers is fixed to 100. We
observe that the larger the power-law exponent, the better the per-
formance. In other words, the heavier the power-law distribution of
the number of queries subscribed to a source, the larger the replica-
tion factor. This is intuitive as a heavier tail implies the existence of
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Figure 5: Performance of online query assignment without query
departures.

a few sources with many query subscribed to those sources, which
would intuitively make the query assignment problem harder. The
query assignment heuristics IC and MMS consistently exhibit the
best performance, up to four times better than OffRand.

In the bottom graph in Figure 4, we show the network traffic
replication factor versus the number of sources per query. In par-
ticular, the power-law exponent is fixed to value 2.0, the number
of queries is set to value 100,000, and the number of servers is set
to value 100. We observe that the replication factor increases with
the number of sources per query. For single-source queries, the
replication factor is smaller than or equal to 2, which provides ex-
perimental confirmation of the theoretical guarantee in Theorem 3.
The replication factor exhibits a diminishing returns increase with
the number of sources per query. MMS exhibits the best perfor-
mance, and this is matched by IC for sufficiently small number of
sources per query.

We also examined the network traffic replication factor versus
the number of servers, which is not presented for space reasons.
The results suggest that the replication factor increases with the
number of servers logarithmically. We also observed that the net-
work traffic replication factor is largely invariant to the number of
queries, which we also omit to show due to space reasons.

In summary, we observed that MMS consistently outperforms
other offline algorithms, and results in a performance gain of up to
factor 4 compared with random offline query assignment OffRand.

6.1.2 Online Algorithms
In this section, we examine the performance of online algorithms
in the following settings: (a) online arrival of queries without query
departure and a fixed number of servers, (b) online arrival of queries
with query departure and a fixed number of servers, and (c) dy-
namic arrival and departure for both queries and servers.

Query Arrivals, No Departures In Figure 5, show the network
traffic replication factor for online algorithms, in the same settings
as in Figure 5. The two sets of graphs are overall qualitatively very
similar, hence, we only discuss differences.
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Figure 6: Performance of online algorithms with dynamic query
arrivals and departures.

We observe that LeastCost exhibits the best performance, and
sometimes even outperforms the best offline algorithm MMS. The
performance of LeastSource is close to LeastCost. LeastCost per-
forms up to four times better than OnRand, and the performance
gain is close to what we observed between MMS and OffRand in
the offline case. The performance of LeastQT is virtually identical
to that of OnRand. Typically, LeastQT provides no benefits.

Query Arrivals and Departures A streaming query service hosts
queries posted by users, and many such queries would be hosted
only for a limited time, e.g., the user may be interested in travel
updates only while on the road. Hence, it is important to examine
query assignment strategies in a system with query arrivals and de-
partures. We consider query dynamics according to the following
model: (a) at each time step, the number of query arrivals is a ran-
dom variable with Poisson distribution; and (b) each arriving query
has a lifetime, drawn independently from a given distribution. In
particular, we consider two parametric families of distributions: (a)
exponential distribution that models the cases of light-tailed query
lifetimes, and (b) Pareto distribution that models the case of heavy-
tailed query lifetimes. We found similar results for these two dif-
ferent families of distributions, so we only present the results for
the exponential distribution.

Figure 6 shows the performance of online algorithms under dy-
namic query arrival and departure. The mean query lifetime ranges
from 10 to 1,000,000 time steps with the default value 100,000,
the average number of query arrivals per time step is 1, and the
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Figure 7: Performance of online algorithms with dynamic query
and server arrivals/departures.

total number of discrete time steps τ is set to be 1,000,000 in all
cases. Overall, we observe that LeastCost consistently yields the
best performance. By Little’s law, the mean number of queries in
the system is the product of the query arrival rate and the mean
query lifetime, thus, the given range covers the mean number of
queries in the system from 10 to 1,000,000 queries. Given that the
number of servers is 100, we cover the system operating points of
0.1 to 10,000 queries per server, which covers the range of lightly
to highly loaded servers. The result indicate that the network traf-
fic replication factor tends to increase with the load of the servers
for all online algorithms. However, this increase is rather slow for
LeastCost, which is sub-linear in the mean query lifetime.

Server Arrivals and Departures In practice, we also expect some
level of server churn; servers may fail, and hence queries need to be
re-assigned, and new servers may be added to cope with increased
demand, or after recycling failed servers. It is thus important to ex-
amine the robustness of different query assignment strategies with
respect to arrivals and departures of servers.

We modeled server dynamics similarly to query dynamics: we
start with k servers, and queries arrive in τ time steps. At each
time step, the number of query arrivals is a random variable with
Poisson distribution, and each query is associated with a lifetime
that is a random variable with exponential distribution. Starting
at time step 1, after every γ time steps (where γ is referred to as
server departure rate), we make a Bernoulli trial: with probability
0.5, we add a new server; otherwise, we randomly delete a server,
and re-assign its queries using the online algorithm (i.e., assuming
that they are new queries).

The results in Figure 7 demonstrate the performance of on-
line query assignment under both query and server dynamics. By
default, we consider 100 servers, the power-law exponent β for
source popularity distribution of value 2.0, the number of sources
per query of value 2, the total number of time steps is 1,000,000,
the mean number of query arrivals per time step of value 1, the
mean query lifetime of value 100,000, and the server departure
rate γ is 10,000. Consistent with the results presented earlier, we
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Figure 9: Performance of three different online query assignment
strategies for a real-world workload.

observe that LeastCost exhibits the best performance, and is robust
with respect to the dynamics of the server arrival and departure.

Heterogeneous Source Traffic Rates Thus far, we have examined
the performance of query assignment algorithms for the case of
sources with identical traffic rates. We now examine the case of
heterogeneous source traffic rates. Since many phenomena in na-
ture follow a power-law distribution [16], we assume that the source
traffic rates follow a power-law distribution. We consider the range
of values of the power-law parameter that span the case of a fast
decaying tail (exponent value of 3) and a slow decaying tail (ex-
ponent value of 1). To define the source traffic rates, we also need
to decide the assignment of source traffic rates to sources, and how
this assignment correlates with other factors such as the popular-
ity of sources (measured by the number of query subscriptions to a
source). To cover different possible scenarios, we consider the fol-
lowing three cases: (a) random: source traffic rates are assigned to
sources independently of their popularity, (b) positively correlated:
the traffic rate of a source is proportional to its popularity, and (c)
negatively correlated: the traffic rate of a source is inversely pro-
portional to its popularity.

The results are presented in Figure 8. In particular, we discuss
the best offline algorithm MMS, all three online algorithms, and the
online random algorithm OnRand, and note the following obser-
vations: (a) The more positive the correlation between the source
traffic rates and the popularity of sources is, the larger the network
traffic replication. (b) Typically, the best performing query assign-
ment strategy is LeastCost. In the case when the source traffic rates
are negatively correlated with popularity of sources, LeastCost is
substantially better than MMS.

6.2 Real-World Workloads
We compare the performance of LeastCost query assignment strat-
egy using traces from a production environment with two alterna-
tive query assignment strategies: the “worst-case” that amounts
to supplying each stream of a source to every server, and round-
robin that assigns each query according to the round-robin policy
(whose performance is expected to be essentially that of random
query assignment, which we studied in Section 3.2). The trace
contains information about query arrivals over a week long inter-
val collected in April 2014 from a production deployment of a
stream processing query platform with 100’s of servers. The re-
sults in Figure 9 show that round-robin query assignment strategy
performs nearly as badly as the worst-case, and that a significant
reduction of the network traffic cost can be achieved by LeastCost
query assignment strategy. Specifically, the network traffic cost un-
der LeastCost query assignment is observed to be approximately
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Figure 8: Performance of query assignment algorithms on heterogeneous source traffic rates: (left) random, (middle) positively correlated,
and (right) negatively correlated.

only 11% of that under the round-robin query assignment.

7 Related Work
The query assignment problem studied in this paper aims at clus-
tering similar queries together so as to minimize the network traffic
and balance the load of servers. A variety of formulations of co-
clustering of similar vertices of a graph was studied in previous
work under various assumptions, e.g. see [12] for a survey. In par-
ticular, it was studied in the context of publish/subscribe systems,
e.g. [22], [31], and [14]. However, to the best of knowledge, none
of the previous work addressed the query assignment problem as
formulated in this paper.

The problem of assigning tasks to machines to balance the
load is a well-known problem, see [6] for a survey of online al-
gorithms. Specifically, it is known that online greedy assignment
provides a 2−1/k approximation. The problem of assigning balls
into bins was also studied by various authors, e.g., see [8, 23, 9]
and the references therein. A standard objective here is to mini-
mize the maximum load (aka minimize congestion), e.g. [7], and
packing under knapsack constraints, e.g. [25, 11]. The uniform
random assignment load balancing strategy is known to have the
maximum load of n/k+O(

√
(n logk)/k) with probability o(1), for

n� k(logk)3 [23]. Other load balancing strategies have also been
studied, e.g. power of two choices, where each ball is assigned
to the least loaded out of two bins picked uniformly at random
for each assignment of a ball: the maximum load is known to be
n/k+O(log logk), with high probability, for n� k [9]. A related
work is online bin packing where the bounds on the competitive ra-
tio with respect to the offline solution were derived for input arrival
order according to random permutation or independent and identi-
cally distributed sequence, e.g., see [11] and the references therein.
Our main difference is that we consider a bi-criteria optimization,
where the server load balancing is only one of the two criteria.

The query assignment problem studied in this paper is an in-
stance of a non-standard balanced graph partitioning problem. Stan-
dard balanced graph partitioning problem is defined as follows:
given a graph with n vertices, a positive integer k and a parame-
ter ν ≥ 0, the goal is to partition the set of vertices into k parti-

tions such that each contains at most (1+ ν)n/k vertices and the
number of edges cut is minimized. The best known approxima-
tion ratio for this problem is O(

√
logn logk) [17]. The query as-

signment problem has the same form of constraints. However, the
objective function is a different submodular function. The uncon-
strained problem of minimizing a submodular function in the con-
text of graph partitioning was considered, e.g.,, by [10], who de-
rived a 2-approximation algorithm. A notable difference with our
work is that the query assignment problem minimizes a specific
type of a submodular objective function subject to cardinality con-
straints. The problem of minimizing a submodular function subject
to cardinality constraints was studied by [27]: they established a
Θ(
√

n/ logn) approximation ratio for this problem. The approxi-
mation algorithms in this paper provide much better approximation
ratios whenever the maximum number of sources to which a query
is subscribed is sufficiently small, e.g. much smaller than O(

√
n).

8 Conclusions
In this paper, we have proposed and studied the assignment of
streaming queries to servers. This is important in the design of plat-
forms that execute small streaming queries as a service. For such
scenarios, where many streams need to be delivered to servers and
the density of queries to servers is high, we need to minimize net-
work traffic while balancing load among servers; we demonstrated
that this problem is NP complete, and derived approximation guar-
antees. We studied, analytically and with simulations, off-line and
on-line heuristics for this multi-objective problem. In particular,
we proposed a heuristic that performs well under a wide range of
scenarios, including query and server churn.
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APPENDIX

A Proof for Proposition 2
Consider an arbitrary source s ∈ S and an arbitrary server j ∈ K.
Under random query assignment, at least one query that requires
input from source s is assigned to server j with probability 1−
(1−1/k)ds . Summing over all servers j gives the expected number
of servers to which the stream of source s need to be transferred.
Summing further over all sources s ∈ S gives the expected number
of streams that need to be transferred from sources to servers, which
corresponds to total network traffic.

B Proof for Lemma 1
The proof follows by upper bounding the cost incurred in each
round where queries are assigned to a server by solving a single-
server MQP problem. We first show the upper bound for the traffic
cost of assigning queries to the first server, and then show how we
bound the traffic cost for other servers.

Let OPT j(n′) be the optimal solution for a multi-source QA
problem with n′ queries, j servers, and the capacity constraint (1+
ν) n

k . Note that OPTk(n) = OPT. For the first single-server MQP

problem, let Q̂∗1 be an optimal subset of queries assigned to server
1 with traffic cost f (Q̂∗1). Since single-server MQP problem is
a relaxation of the QA problem, it holds f (Q̂∗1) ≤ f (Q∗j), where
Q∗j is the subset of queries assigned to server j in OPT for every
j = 1,2, . . . ,k. Since OPTk(n) = OPT, we obtain

f (Q̂∗1)≤
1
k

OPTk(n) =
1
k

OPT. (5)

Consider now the j-th server. Let OPTk− j+1(n′) be the opti-
mal solution given n′ remaining queries, k− j+1 servers, and the
capacity constraint (1+ ν) n

k (note that this constraint remains the
same throughout the execution of the algorithm). We claim that

f (Q̂∗j)≤
2

k− j+1
OPT, for j = 2,3, . . . ,k. (6)

Suppose inequality (6) is true, then the proof of the lemma fol-
lows by summing up the upper bounds in (5) and (6) and using the
fact that for the harmonic series Hk it holds Hk ≤ logk + 1. We
prove inequality (6) as follows.

First, given n queries and the same capacity constraint per server,
if there exist feasible solutions for a system of j and k servers,
such that j ≤ k, then we prove that OPT j(n) ≤ 2OPTk(n). For
OPTk(n), let cost i be the traffic cost for server i. Without loss
of generality, suppose that the servers are enumerated such that
cost1 ≥ cost2 ≥ . . .≥ costk. Then, we have

OPTk(n) =
j

∑
i=1

cost i +
k

∑
i= j+1

cost i.

Using OPTk(n), we can construct a feasible solution that requires
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only j servers by (1) arbitrarily selecting a server a≤ j with avail-
able space, and (2) sequentially assigning queries on server b > j
to server a. If server a is full before all queries from server b are
assigned, then arbitrarily select another server a′ ≤ j with available
space for the remaining queries from server b, and we repeat the
procedure until all queries from server b are assigned. If all queries
from server b are assigned but server a still has available space,
we find another server b′ > j, and assign queries from server b′ to
server a. By the above procedure, we can construct a feasible solu-
tion using only j servers. The resulting extra cost is no more than
j ∗ cost j+1, since in the above procedure we break the sequential
assignment at most j times, and each time add in no more than the
cost of cost j+1. Therefore,

OPT j(n) ≤
j

∑
i=1

cost i +
k

∑
i= j+1

cost i + j ∗ cost j+1

≤ 2
j

∑
i=1

cost i +
k

∑
i= j+1

cost i

and, thus, it follows that

OPT j(n)
OPTk(n)

≤
2∑

j
i=1 cost i +∑

k
i= j+1 cost i

∑
j
i=1 cost i +∑

k
i= j+1 cost i

≤ 2

Hence,

OPT j(n) ≤ 2OPTk(n), for all 1≤ j ≤ k. (7)

Second, for k servers and the same capacity constraint, if there
exists feasible solutions for assigning ni and n j with ni ≤ n j, then

OPTk(ni)≤ OPTk(n j). (8)

Since f (Q̂∗j)≤
1

k− j+1 OPTk− j+1(n′), (7) and (8), it follows:

f (Q̂∗j)≤
2

k− j+1
OPT, for 1 < j ≤ k.

C Proof for Lemma 3
In the above algorithm, we pick the query types with the largest
number of queries to saturate a server. Suppose we eventually se-
lect h query types, we then conclude that the number of query types
considered in an optimal solution is no less than h. Let h+∆ be the
number of query types obtained from the optimal solution. For each
query type, the above algorithm takes at most dmax times more of
the network traffic rate compared with the optimal solution, when
the source traffic rates are identical. In the case of arbitrary source
traffic rates with the ratio of the maximum source traffic rate to the
minimum source traffic rate at most ω , it takes at most dmaxω times
more network traffic rate. This completes the proof of the lemma.

D Configuring Relaxed Load Balancing
We provide guidelines on how to set the values of parameters α

provided ν based on a probabilistic model. Assume that the prob-
ability of assigning a query to a server is according to a uniform
random distribution across servers. Then, (d1(n),d2(n), . . . ,dk(n))
is a random variable with multinomial distribution with parame-
ters n and (1/k,1/k, . . . ,1/k) where ∑

k
j=1 d j(n) = n. By the union

bound, we have

Pr
(
∪k

j=1{d j(n)> d(n)}
)
≤

k

∑
j=1

Pr(d j(n)> d(n)). (9)

Using Hoeffding’s inequality, we obtain

Pr(d j(n)> d(n))≤ exp

(
−

2(d(n)+1− n
k )

2

n

)
. (10)

Combining with (4), we get: Pr(d j(n)> d(n))≤ exp
(
− 2ν2

k2 n
)
.

Therefore, Pr
(
∪k

j=1{d j(n)> d(n)}
)
≤ ke−

2ν2

k2 n. From this, it fol-

lows that d j(n) ≤ d(n) for every j = 1, . . . ,k with high probabil-

ity provided that the following condition holds k = O
(

ν

√
n

logn

)
.

Note that for given ε > 0, d j(n)≤ d(n) for j = 1, . . . ,k to hold with
probability at least 1− ε , it suffices that

n≥ k2

2ν2 log
(

1
ε

)
. (11)

Suppose that given ν > 0, we want the algorithm to switch to
relative load balancing as soon as the probability of violation of the
relative imbalance is guaranteed to be smaller or equal than given
ε > 0. By (4), the switch from the absolute to relative balancing
constraints happens at the smallest integer n such that n ≥ αk/ν .
Combined with (11), we observe that it suffices to switch over when
the number of queries n satisfies (11) and it suffices that the abso-
lute relaxation parameter α is chosen such that: α ≤ k

2ν
log
( 1

ε

)
.

An important insight from this is that the absolute relaxation ratio
α should not be taken too large, and it should be at most a quantity
that scales linearly with the number of servers k.
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