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Abstract— Peer-to-peer content distribution networks can suf-
fer from malicious participants that intentionally corrupt content.
Traditional systems verify blocks with traditional cryptographic
signatures and hashes. However, these techniques do not apply
well to more elegant schemes that use network coding techniques
for efficient content distribution.

Architectures that use network coding are prone to jamming
attacks where the introduction of a few corrupted blocks can
quickly result in a large number of bad blocks propagating
through the system. Identifying such bogus blocks is difficult
and requires the use of homomorphic hashing functions, which
are computationally expensive.

This paper presents a practical security scheme for network
coding that reduces the cost of verifying blocks on-the-fly while
efficiently preventing the propagation of malicious blocks. In
our scheme, users not only cooperate to distribute the content,
but (well-behaved) users also cooperate to protect themselves
against malicious users by informing affected nodes when a
malicious block is found. We analyze and study such cooperative
security scheme and introduce elegant techniques to prevent DoS
attacks. We show that the loss in the efficiency caused by the
attackers is limited to the effort the attackers put to corrupt the
communication, which is a natural lower bound in the damage
of the system. We also show experimentally that checking as
low as 1-5% of the received blocks is enough to guarantee low
corruption rates.

I. INTRODUCTION

Peer-to-Peer (P2P) networks have recently emerged as al-
ternative to traditional Content Distribution solutions (e.g.
Akamai [4]) to deliver large files. Such P2P networks create a
fully distributed architecture where commodity PCs are used to
form a cooperative network and share their resources (storage,
CPU, bandwidth). By capitalizing the bandwidth of end-
systems, P2P cooperative architectures offer great potential
for providing a cost-effective distribution of software updates,
critical patches, videos, and other large files to thousands of
simultaneous users both Internet-wide and in private networks.

Despite their enormous potential and popularity, existing
end-system cooperative schemes, that use a mesh-like archi-
tecture (e.g. [16]), suffer from a number of inefficiencies which
decrease their overall performance [28], [33], [34]. Such inef-
ficiencies arise from the fact that there is no central scheduler
that decides how content should propagate through the overlay
mesh, and nodes perform decisions in a large distributed
setting with local information only. These inefficiencies are
more pronounced for large and heterogeneous populations,

when the publisher has limited resources, or when cooperative
incentive mechanisms are in place.

Recent developments in network coding, have provided
elegant algorithms for the efficient propagation of information
in a large scale distributed system with no central scheduler.
Network coding was first considered in the pioneering work
by Alswede et al. [8], where they showed that a sender can
communicate information to a set of receivers at the broadcast
capacity of the network provided one allows network coding.
The principle behind network coding is to allow intermediate
nodes to encode packets.! A growing body of literature has
recently considered network coding in the context of file
distribution [2], [34], [35] and proposed practical network
coding systems [5], [6], [34].

There is, however, a significant downside to using network
coding for file distribution since any untrusted node is allowed
to produce new encoded packets. A malicious node can gener-
ate corrupted packets and then distribute them to other nodes,
which in turn use them to (unintentionally) create new encoded
packets that are also corrupted. Observe that commonly used
methods for protecting the integrity of each packet by using
digital signatures do not work with network coding, since each
peer produces unique encoded packets which cannot be signed
by the server.

A receiver may discover after downloading the full file
that it was receiving corrupted blocks from misbehaving or
malicious nodes and cannot decode the file. We call attacks
that alter and corrupt the content of the encoded blocks
jamming attacks. As we shall see in this paper, jamming
attacks can result in huge reduction in the performance of
the distribution network, wasting bandwidth in distributing
corrupted content, and increasing the time to download the
entire file. Hence, there is a strong incentive to check blocks on
the fly to prevent nodes from downloading corrupted blocks.

To prevent a jamming attack in a network coding system,
we need a hashing scheme such that the hash of an encoded
packet can be easily derived from the hashes of the packets
contributing to the encoding. One such class of functions are
collision-resistant homomorphic hashing functions.

In [21], homomorphic hashing functions were first intro-
duced to allow nodes to check blocks on-the-fly in a system
where content is encoded at the source using rateless codes

'In the rest of the paper we will use packets and blocks inter-exchangeable.



[]. However, such homomorphic hashes are computationally
expensive and often require that nodes check blocks proba-
bilistically to reduce the cryptographic overhead, opening the
door for malicious blocks to infect a larger portion of the
network.

We propose a novel cooperative security scheme where
users not only cooperate to distribute content, but (well-
behaved) users also cooperate to protect themselves against
malicious users by alerting affected nodes when a malicious
block is found. Even though each node checks for bad blocks
infrequently, at any point in time there are many nodes in the
system that perform such checks, and when they find corrupted
blocks they alert the rest of the nodes. Hence, our system
greatly reduces the computation overhead at each node and,
at the same time, quickly eliminates corrupted blocks.

We study and analyze such cooperative security scheme, and
show that the loss in the efficiency caused by the attackers is
limited to the effort the attackers put to corrupt the commu-
nication, which is a natural lower bound in the damage of
the system. Moreover, we show that nodes need check only
1 —5% of the packets and still be able to quickly find most of
the malicious blocks. To ensure that nodes are not overloaded
by bogus alert messages, we present a novel and light-weight
scheme that prevents bogus alerts from traveling through the
system. Alert messages are quickly verified against the data
stored at each node using random masks and mask-based
hashes and bogus alerts are quickly discarded thus preventing
nodes from performing unnecessary expensive homomorphic
hashing checks.

In this paper, we also address other possible attacks that are
possible due to the use of network coding. More specifically,
we discuss a particular attack that attempts to reduce the
diversity of the encoded blocks in the system, and, hence,
results in increased download times since the users do not find
innovative content to download. We call such attacks entropy
attacks. We present a practical mechanism that prevents such
attacks by requiring the sender to transmit a short description
of how the encoding is produced prior to the block download.
Given this description, the receiver can check whether the en-
coding is innovative, and, hence, useful prior to downloading
1t.

The rest of the paper is organized as follows. In Section II,
we give an overview of network coding. In Section III, we
describe the threat model, and give a short overview of
homomorphic hash functions, which can be used to verify
network encoded blocks. In Section V, we present strawman
approaches for improving computing time and discuss their
limitations. In Section VI we present our cooperative security
scheme to share the cryptographic work involved in checking
for malicious blocks. We also present a mechanism to prevent
DoS attacks from bogus alerts during the cooperation process.
In Section VIII, we give analytical and experimental results
related to the benefits of cooperate protection. We provide
related work in Section IX and summarize in Section X.
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II. BRIEF OVERVIEW OF NETWORK CODING FOR
CONTENT DISTRIBUTION

Network coding is a novel mechanism proposed in the last
years to improve the throughput utilization of a given network
topology [8]. The principle behind network coding is to allow
intermediate nodes to re-encode packets. Compared to other
traditional approaches, network coding makes optimal use of
the available network resources and computing a scheduling
scheme that achieves such rate is computationally easy. An
overview of network coding and a discussion of possible
Internet applications is given in [3].

With network coding, every time a client needs to send a
packet to another client, the source client generates and sends a
linear combination of all (or part) of the information available
to it (similarly to XORing multiple packets). After clients
receive enough linearly independent combinations of packets,
they can reconstruct the original information. To illustrate
how network coding improves the propagation of information
without a global coordinated scheduler we consider the fol-
lowing (simple) example. In Figure 1 assume that Node A has
received from the source packets 1 and 2. If network coding is
not used, then, Node B can download either packet 1 or packet
2 from A with the same probability. At the same time that
Node B downloads a packet from A, Node C independently
downloads packet 1. If Node B decides to retrieve packet 1
from A, then both Nodes B and C will have the same packet
1 and, the link between them can not be used.

If network coding is used, Node B will download a linear
combination of packets 1 and 2 from A, which in turn can be
used with Node C. Obviously, Node B could have downloaded
packet 2 from A and then use efficiently the link with C,
however, without any knowledge of the transfers in the rest of
the network (which is difficult to achieve in a large, complex,
and distributed environment), Node B cannot determine which
is the right packet to download. On the other hand, such a task
becomes trivial using network coding. It is important to note
that the decision on which packets to generate and send at
given node does not require for nodes to keep information
about what the other nodes in the network are doing, or how
the information should propagate in the network, thus, greatly
simplifying the content distribution effort.

Network coding can be seen as a generalization of Erasure
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Fig. 2. Sample description of our network coding system.

Codes [23] [24] (e.g. Digital Fountain) since both the server
and the end-system nodes perform information encoding.
Note, however, that restricting erasure codes only to the origin
server implies that intermediate nodes can only copy and
forward packets. This results in the same erasure codes being
blindly copied over from one node to another without knowing
whether they will be of use to other nodes downstream.

A. Content Propagation with Network Coding

Assume a file F' that originally exists at the server. File F is
divided into n blocks (b1, b, ...b,). Then each block b; is
subdivided into m codewords by ;, k € 1,..,m. The file F' is
considered as an m X n matrix of elements of Z,, where m
is a predetermined number of codewords.

bl,l b1,2 bl,n

b2,1 b2,2 b2,n
= (by,ba,...by) =

bm,l bm,2 bm,n

With network coding, both the server and the users perform
encoding operations. Whenever a node or the server needs
to forward a block to another node, it produces a linear
combination of all the blocks it currently stores. The operation
of the system is best described in Figure 2.

Assume that initially all users are empty and that user A
contacts the server to get a block. The server will combine all
the blocks of the file to create an encoded block el as follows.
The server will pick some random coefficients ¢y, ca, ..., cp,
then multiply each codeword of block b; with ¢;, and add the
results of the multiplications together.

For the purpose of this paper, we will be using scalars,
vectors, and matrices defined over modular subgroups of Z,,
however, network coding operations can be performed in any
finite field (e.g. Galois Fields are also possible [34]). Hence,
addition of blocks is defined as component-wise addition of
the corresponding block codewords. That is, to combine the
blocks of the file with coefficient vector & = (¢;), > i_| cib;
the server computes:?

2Observe that this is a correction on the original paper that appeared on
Infocom 2006, which stated that

((e1b1,1 + ...+ cnb1,n)modg, ..., (c1bm,1 + ...+ cnbm,n)modq)
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Fig. 3. Download times for each node (rounds) depending on the cod-
ing scheme used (no coding, source coding, network coding). Nodes
arrive dynamically (20 nodes every 20 rounds). File is composed of
50 blocks.

(c1b1,1 + ... + cpb1 n)modg

(c1bm1 + - .. + cpbm,n)modg

The server will then transmit to user A the result of the
linear combination and the coefficient vector ¢. Assume now
that user A has received another block of encoded information
e2, either directly from the server or from another peer, with its
associated vector of coefficients. If user A needs to transmit an
encoded block e3 to user B, A generates a linear combination
of its two blocks el and e2 as follows. User A picks two
random coefficients ¢} and ¢J, multiplies each element of
block e; with the coefficient ¢} and similarly for the second
block es, and adds the results of the multiplication. The block
transmitted to user B will be the addition of the multiplications
¢/ -e1 and ¢ - e,. Note that the coefficient vector ¢/ associated
with the new block is equal to ¢/ - @4 ¢ - ¢'.

Observe that a node can recover the original file after
receiving n blocks for which the associated coefficient vectors
are linearly independent to each other. The reconstruction
process is similar to solving a system of linear equations.

B. Network Coding Benefits

The benefit we expect to get by using network coding is due
to the randomization introduced each time we generate a new
encoded block. If at least one of the combined blocks is of use
to other nodes down the path, then the linear combination will
also be useful. Network coding minimizes the response time
in the absence of a centralized scheduler that decides which
node will forward which part of the content.

The benefits of network coding vs source coding and no
coding are summarized in Figure 3. In Figure 3 we show
the download times for each node in a well-connected mesh
network of 250 nodes where nodes arrive randomly. The file
size is 50 blocks (or equivalent rounds).

From this Figure we can see that network coding provides
near-optimal response times since most nodes are able to

Many thanks to Man Liang for pointing out the mistake.



download the file soon after the full file is served once (note
that there is a small number of rounds required for blocks to
propagate into the network). However, with source coding and
no coding at all, the time that it takes to download the file is on
average much larger. Moreover, the performance experienced
by nodes not using network coding is much more variable,
resulting in some nodes having to wait for very long times to
receive the full file. For instance, certain nodes using source
coding have to wait 1.4 times longer than the worse behaving
nodes with network coding. Given the clear benefits of network
coding, in the rest of the paper we will study how to ensure
high efficiency even in the presence of various types of security
attacks.

III. THREAT MODEL

Traditional P2P cooperative architectures can suffer from a
number of attacks including disrupting the topology, blocking
access to the tracker node, or steering nodes toward a certain
set of malicious neighbors. In this paper we do not consider
such types of attacks, which often require a more distributed
peer-discovery protocol [47], [48]. Instead, we focus on those
attacks that arise from the use of Network Coding for content
distribution. Next we describe the threat model scenario.

We assume that an original source file F' exists on a
single server and a large population of users are interested in
retrieving F'. The users trust the source server but users form a
large set of untrustworthy nodes. A subset of these users want
to disrupt the distribution of the file by propagating corrupted
blocks, so that legitimate users cannot decode the original file,
and/or the rate of content dissemination is reduced *.

When a server wishes to publish a file F', he encodes the
file and distributes such encodings to multiple users simulta-
neously. Users download blocks from the server or other users
and distribute new encoded blocks that are produced as linear
combinations of all of the encoded blocks they hold. Thus,
new encoded blocks are produced at each node even if the
download has not been completed.

A node A only knows the identities and can up-
load(download) blocks from(to) a small number of other
nodes. We call this subset of users the neighbors of A. The
neighboring relationship is symmetric. Malicious users are a
fraction of the total user population and can fully coordinate
their activities. We do not address the issue of how to limit the
number of malicious users in this paper; a possible approach
could be to use a human verification test before a user joins
the network.

We aim at providing a best effort security system. This
means that we are not trying to identify and remove malicious
nodes. Instead, we focus on making sure that the system pro-
vides high throughput even in the presence of such attackers.
We do not require that peers build trust relationships. However,
we do assume that legitimate users will disconnect from peers
that frequently supply them with corrupted content. Hence, we

3We do not explicitly consider attacks against the underlying physical
routers or network links

assume that malicious users will try a mixed strategy in which
they serve a mixture of valid and corrupted blocks.

Under these assumptions, the P2P cooperative model is
vulnerable to a) Entropy attacks where malicious clients
try to disrupt the diversity of the system and the tit-for-tat
exchange balance and b) Jamming attacks where malicious
clients try to inject bogus blocks in the content distribution
process.

A. Entropy Attacks

With network coding a node does not need to worry about how
to pick the block to transmit to another node; it combines
all its available blocks. However, such encoded blocks are
only useful to a given node if they carry new information,
i.e. they are innovative. Determining innovation needs to take
into account the coefficient vector used to generate the block;
the encoded block downloaded can be different to each of the
locally available encoded blocks, but, still, if its coefficient
vector can be written as a linear combination of the vectors
of the locally available blocks, then it is not innovative.

Using encoded blocks, would be very easy for an attacker to
send non-innovative blocks that are trivial linear combinations
of already existing blocks at the recipient. We call this an
entropy attack since malicious users try to decrease the entropy
or diversity in the system, reducing the opportunities that
nodes have for making download progress and thus the rate
of the system. Another side effect of such attacks is that
a malicious user can easily become a free-rider even when
incentive mechanisms like tit-for-tat are used by basically
sending non-informative data and getting useful data in return.

To solve this problem we ensure that each node, prior to
downloading a block, first downloads the coefficient vectors
of all the blocks in the neighborhood. By using the neighbors’
coefficient vector and its own coefficient vectors, a given
node then calculates the rank of the combined matrices and
determines which neighbors can provide innovative blocks and
moreover how many blocks they can provide.

Rather than checking all the vectors from a potential sender,
an alternative and often cheaper approach is to have the sender
generate a random linear combination of all its coefficient
vectors. The receiver checks whether the generated coefficient
vector can be expressed as a linear combination of its coeffi-
cient vectors. If it cannot be written as a linear combination,
then the sender has at least one innovative block that the
receiver can download. If it can, then either the sender does not
have any innovative blocks, or the random linear combination
produced by the server fails to prove that the sender has indeed
innovative information. This latter case is very rare and we can
ignore such events.

Observe that the transfer of the coefficient vectors generates
little overhead since the size of each vector can fit in a couple
of packets, whereas the size each block is in the order of
several hundreds of KBytes [18].

B. Jamming Attacks

In large scale P2P distributed systems, there exists the possi-
bility that some nodes are malicious and inject bogus packets



in the network to jam the download. Jamming attacks happen
when a malicious node sends a pair of an encoded block and
a coefficient vector where either one does not carry valid
information. The receiver will obtain corrupted information,
and, if the receiver uses this information to create encoded
blocks, it will inject (involuntarily) more corrupted blocks in
the network.

Since receivers have limited bandwidth, they would clearly
benefit from a mechanism that detects cheating as it happens,
so they can terminate connections to bad neighbors and seek
out honest nodes elsewhere in the network. Another alternative
is to wait for the receiver to finish the download and try to
decode the full file. However, if the file is infected with bad
blocks, it is very difficult to identify such bad blocks at decod-
ing time. Downloading extra blocks and performing multiple
decoding operations with different combinations of blocks in
an attempt to reconstruct a valid file has prohibitive cost. This
is clearly unacceptable, especially for large downloads where
the cost of multiple decodings becomes prohibitive. One bad
block should not ruin hundreds or thousands of valid ones.

To protect clients against jamming attacks, P2P cooperative
systems require some form of source verification. That is,
downloaders need a way to verify individual check blocks.
Furthermore, this verification should work whether or not the
original publisher is online. In standard P2P systems, this is
achieved by hashing each block and distributing the block
hashes from a central trusted publisher. By comparing the hash
of each downloaded block to the corresponding hash given by
the publisher, a node can quickly check whether a block is
valid or not.

When blocks are encoded only at the server, or at a limited
set of servers, then the standard way to prevent an attack
by a malicious user injecting bad data into the system is
to require that valid senders sign all their encoded packets
cryptographically [21].

However, using network coding, jamming attacks are par-
ticularly serious because undetected malicious blocks will be
used to generate more malicious blocks, and quickly every
block transmitted in the network is corrupted. Observe that
each encoded block is unique and cannot be signed by a
trusted authority, like for example the server. Thus, to prevent
a jamming attack in an open system that uses network coding,
one would need a hashing scheme such that the hash of an
encoded packet can be easily derived from the hashes of the
original packets and from the coefficient vector that describes
the encoding. Homomorphic hashes have this property and are
described in the following section.

IV. HOMOMORPHIC HASHES FOR NETWORK CODING

To prevent bogus packets from jamming the system, we require
special hashing functions that survive the construction of linear
combinations of original blocks at intermediate nodes. We next
describe such functions and show how they can be used to
prevent jamming attacks in the presence of network coding.
In [21], the authors demonstrate how to use homomorphic
hash functions to validate encoded blocks that were produces

using rateless codes. In [21] coding takes place only at the
source, or at receivers that have finished downloading. An
encoding in their case is performed by adding sub-block wise a
small subset of the blocks in Z,,. In the case of network coding,
we need to verify random linear combination of blocks, which
can be thought as weighted additions of all or of a subset of the
blocks. We next show how to extend the basic homomorphic
hash function to deal with network coding. More details on
the use of homomorphic hash functions can be found in [21].

A hash function, say h(-), maps a large input, which is a
block of information, say b, to an output h(b) typically of
much smaller size. Function h(-) has the important property
that given b it is difficult to find another input block b’
with the same hash value h(b') = h(b). Homomorphic hash
functions have the additional property that the hash value of
a linear combination of some input blocks can be constructed
efficiently by a combination of the hashes of the input blocks.
More specifically, if the original blocks are b;, with Vi € [1,n],
then the hash value of the linear combination ' = c1b; +
caby + ...+ epby is h(V') = he(by) - h%2(by) - ... - he (by).
We prove that property in Lemma 4.1 below.

Recall from Section II-A that each block b; is divided into m
codewords by ;, k = 1...m. Before computing the hash of a
block we need to decide on the hash parameters G = (r, ¢, g).
The parameters  and ¢ are prime numbers of order A, and
Aq chosen such that ¢|(r — 1).

The parameter g is a vector of m numbers such that each of
the elements of the vector can be written as z("~1)/9, where
X € Zq and x # 1. The number of codewords m is such that
each element is less than 2*«~!. More details about the sizes
of the prime numbers r and ¢ and algorithms for the efficient
construction of GG can be found in [21] and in Table I.

TABLE 1
HOMOMORPHIC HASHING FUNCTION PARAMETERS
| Name [ Description e.g.
A | discrete log security parameter 1024 bit
Aq | discrete log security parameter 257 bit
r | random prime |r| = A,
g | random prime ¢|(r — 1), |q| = A,
m | number of “sub-blocks” per block 512
g | 1 x m row vector of order ¢ in Z,
B | block size 16 KB
We define a hash for each block b; = [b1,;b2; ... ] as

h(b;) = H gzk”"modp
k=1

The hash of the file F' is simply the vector of the hash of
each b;:

H(F) = (h(b1), h(b2), ..., h(bn))

Whenever a node first joins the system, it downloads from
the server the hash of the file H(F') as well as the security
parameters GG. This hash will be used to check encoded blocks
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We now show that the hash of an encoded block can be
constructed by the hashes of the original blocks. Hence, it
is possible to check whether a received encoded block and
coefficient vector are indeed correct.

Lemma 4.1 (Homomorphic hashing for network coding):
The hash value of the encoded block e = Y7 | ¢;b; can be
computed by the hashes of the original blocks:

h(e) = H h (b;) modp

Proof: Assume an egcoded block e = Z?:l c;b;; all
arithmetic operations are in the Z, field. The hash of this
block is:

h(e)

i=1

=
m n
" 1 Cib,;)mod
= Hgl(vz“l brmoddy od p
k=1

Observe that the sum in the exponent can be written as

n n
Z ¢ibi,i = q - quot + (Z ¢ibi,;)mod ¢
i=1 =1
where quot is the quotient of dividing >~ ; ¢;by, by ¢.

27 Cibkyi

and, hence, g;; mod r can be written as

(gg'qu()tmod r)- (g,(czzl:1 cibei)modq 4 r)mod r

Recall that g, = 2\ 1/

rem,

, and from Fermat’s Little Theo-

gr " mod r = (Jc,(ffl)mod r)'modr = 1

Thus, h(e) can be expressed as

m m n
H g,?ﬁl “imodr = H H (g¢*)*modr
k=1 k=1i=1
n m n
= H (H gzk’i)cimodr = H h(b;)““modr
i=1 k=1 i=1

V. STRAWMAN APPROACHES

In the previous section we have shown how homomorphic
hashing functions can be used with network coding to verify
blocks as they are received at each node. However, such ho-
momorphic hashing functions are computationally expensive
and users cannot check every block. For instance checking
rates for homomorphic hashing functions on a Pentium IV at
3GHz is approximately 300 Kbps, compared to 560 Mbps for

“Hashes are elements in Z,, (typically 128 bytes long), which is %8 times
the size of a block of size 16 KB. Thus, the hash of the file H(F]) will be
typically 1% the total file size. To avoid smaller scale attacks during the hash
download, nodes can use Merkle hash trees [45].

SHA1 [21]. Our own implementation of homomorphic hashes
produces rates of 160 Kbps on a slower 2GHz computer.
These rates are one order of magnitude lower than the rate
at which encoded packets can be produced, therefore, limiting
the overall throughput of the over system. For instance, our
implementation of network coding using modular arithmetic
produces encoding rates greater than 8§ Mbps for a 1 GByte
file, which are sufficient relative to typical residential network
throughput; many P2P nodes are restricted by their access
capacity which is typically less than 2-3 Mbps.

Our goal is to improve the speed of checking, so that a
downloader can, at least, verify blocks as new blocks can
be produced. In this section, we consider some strawman
approaches to improve the computation time and show how
existing techniques that are applied with source-coding, do not
work well with network coding.

A. Batching with Network Coding

One possible solution to improve computation time is to verify
blocks in batches, either probabilistically or periodically. In
such scheme nodes do not check every block, but they check a
window of blocks all at once. This solution was first proposed
in [32] and then used in [21] to improve the verification
performance of homomorphic hashes for erasure codes. We
next describe how batching can be done with network coding.

Batching is possible thanks to the homomorphic property
of the hashing functions. Let’s assume we have a window
of L encoded blocks to verify all together. We can build
a batched encoded block e, as a linear combination of all
L encoded blocks and check the resulting combination. Let
L = ({e1,c1),...{er,cr)), and let the resulting batched
block e, = Zi:l e;, with combined coefficient vector ¢, =
Zle ¢;. The advantages of using batching is that nodes only
need to check one e, block rather than L blocks.

However, this batching scheme is exposed to a specific
byzantine attack, which we call the pairwise byzantine attack
[32]. Such an attack consists of sending two blocks that
make the batch verification scheme fail. For instance, assume
(e1,c¢1) and (ea,c2) to be two correct messages hold by an
attacker. The attacker now creates the two following corrupted
blocks, €] = e1 +¢, and €, = e5 —e. When this two corrupted
vectors are checked together in batch, it is easy to see that
the verifier will fail to capture the corrupted packets since the
value of e, will remain the same.

Our solution to this problem is to create a batched en-
coded vector e, using a random set of coefficients w: e, =
ZiLzl w;e;, where ¢, = 25:1 w; X ¢;. Doing this, an attacker
can only succeed with such pairwise byzantine attack if it is
able to create two blocks that after being multiplied by random
coefficients w; and w; will cancel each other, which is very
unlikely.

Although batching can decrease the computation time al-
most linearly with the size of the batch, batching block
verification has the risk of letting some malicious packets
propagate since packets are exchanged without being checked.
This opens the receiver to small-scale attacks in the case of
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Fig. 4. Download times (rounds) for each node using network coding
depending on the batching window size. Blocks in the batching
windows are not used for network coding. Nodes arrive dynamically
(20 nodes every 20 rounds). File is composed of 50 blocks.

source coding (a receiver accepts a batch worth of check
blocks before closing a connection with a malicious sender).
However, with network coding, batching can cause more se-
rious effects since malicious packets are quickly re-combined
with other valid packets at each node and corrupt a large
portion of the download. For instance, if the batch size is equal
to 256 blocks (as suggested in [32]), more than 97% of the
blocks will be corrupted by an attacker that injects only 5% of
malicious the packets. Thus, standard batching techniques do
not work well with network coding. For more detailed analysis
see Section VIII.

B. Isolating Unverified Blocks

To prevent unverified blocks in a batch from corrupting other
blocks, an alternative solution is to isolate unverified blocks in
the batch window, preventing them from being re-combined
with other blocks. Only once blocks in the batch window have
been verified then they are involved in the network coding
process.

The benefit of this solution is that all packets are checked
before they are forwarded to other nodes, thus, drastically
limiting the scope of a possible infection. However, the
problem with this approach is that new information is delayed
at each node before it can be propagated to the rest of the
network. Such delay can seriously impact the efficiency of the
system since nodes may have to wait much longer to download
missing blocks. In Figure 4 we highlight such effect.

Figure 4 shows the download times per node for a file of
50 blocks (each block is one time unit) in a network where
nodes arrive dynamically at a rate of 20 nodes each 20 rounds.
We show the impact of increasing batching windows sizes.
When there is no batching, network coding provides optimal
download times (i.e. 50 rounds). However, as the batching
window size increases, blocks are delayed and the efficiency
of network coding sharply decreases. In fact, if the batching
window is greater than two packets, then, the efficiency of

network coding decreases by a factor of three to four.’ Thus, to
ensure that the network coding efficiency remains high, blocks
in the batching window should be made part of the network
coding process as soon as they are received.

VI. COOPERATIVE SECURITY

To reduce the cryptographic work at each node while still
preventing malicious packets from infecting large portions of
the network, we propose a cooperative security scheme where
nodes cooperate in checking for malicious blocks. Users not
only cooperate to distribute the content, but (well-behaved)
users also cooperate to protect themselves against malicious
users by informing affected nodes when a malicious block
is found. By having a large number of nodes checking at
every point in time and making them cooperate, expensive
homomorphic hashing can be applied less frequently without
significantly weakening the resistance of the scheme to re-
source adversarial behavior. Next we describe the details of
how such cooperative security system works.

We assume that nodes check blocks with probability p.
Blocks that pass the check are marked as safe, while blocks
that have not yet been checked are kept in an insecure window.
Blocks are checked in batches. The batch window is equal to
the insecure window. Whenever a node verifies its insecure
window, valid blocks are marked as safe and the insecure
window is reset (Refer to Section V-A for more detail about
batch verification).

Nodes do not rely on other nodes to mark blocks as safe.
However, they actively cooperate with other nodes to detect
malicious blocks. Whenever a node detects a malicious block,
it sends an alert message to all its neighbors. To prevent nodes
that have not been infected from processing the alert message,
a given node keeps an insecure-activity table with the ID of
a) those nodes that downloaded blocks encoded with insecure
window blocks, and b) those nodes that delivered the blocks
inside the insecure window. Note that the state of this table is
reset when the insecure window is checked. If an alert message
is received from a node that is not in this table, the message
is discarded.

Alert messages are propagated from one node to another
until all infected nodes are informed. If the insecure window
is empty, alert messages are not processed. Alert messages
are processed as soon as they are received. However, alert
messages are only propagated after the node is convinced that
a malicious block exists (see Section VII-A for an efficient
alert verification technique). Duplicated alert messages can be
received for the same malicious packet since mesh overlays
often contain loops. However, such duplicated messages will
be discarded when a) the insecure window is empty, or b)
the duplicate message comes from a node that is not in the
insecure-activity table.

In addition to alerting its neighbors, a node takes the
following actions: 1) it puts blocks in the insecure window in

SNote that some nodes in the Figure do not have a corresponding download
time. The reason for this is because their download times are higher than 300
rounds, which is the maximum time considered in the experiment.



quarantine to be checked and cleaned in the background , 2) it
stops using blocks in the insecure window for network coding,
and 3) it starts checking blocks with probability one until the
insecure window is secured and cleaned, thus, preventing new
malicious blocks from infecting the system.

One drawback that arises during the quarantine period is
that valid blocks in the insecure window are not part of the re-
encoding process. Note, however, that network coding ensures
a high level of representation of blocks in the network under
such small temporal glitches, thus, maintaining a high level
of efficiency in the content distribution system. To ensure that
the insecure window is quickly cleaned and valid blocks are
back into the system as soon as possible, nodes use a fast
and effective search mechanism that rapidly discards malicious
blocks.

One simple approach to clean the insecure window, is to
check the hashes of each block individually. However, this may
result in unnecessary checks since it is quite likely that most
blocks will not be corrupted. Another more efficient approach
is to use binary batching trees. Such batching trees work as
follows. A node first verifies all blocks in the insecure window
using batching. If this test does not find any malicious block,
then the process is stopped and all packets are marked as safe.
If the batch verification fails, then the insecure window is
divided in two halves, which are then checked independently
using batching. If one half of the insecure window has not been
corrupted, then, all its blocks are marked as safe and they are
not checked any more. Corrupted parts are again subdivided
in two parts until the individual corrupted blocks are identified
and discarded.

VII. PREVENTING BOGUS ALERT ATTACK

One potential risk of the cooperative security mechanism is
that nodes may be exposed to a DoS attack where a malicious
node sends bogus alert messages, i.e. alert messages that
are not triggered from the discovery of a malicious block.
Such behavior could force well-behaving nodes to check
every block, defeating the purpose of the cooperative security
scheme. Next we discuss a number of techniques that minimize
the impact of bogus alerts.

As discussed in the previous section, alert messages from
nodes that are not in the insecure-activity table will be
discarded. For a sending node to appear in other node’s
insecurity-activity table, the sending node needs to have up-
loaded at least one block worth of data to the receiving one.
This prevents a malicious node from sending bogus alerts at
an arbitrary rate over the distribution network since malicious
nodes need to upload blocks to well-behaving nodes before
their alert messages are taken into account. Furthermore,
even if bogus alert messages are accepted by the immediate
neighbors around the attacker, bogus alerts will be slowed
down by the next tier of non-malicious peers receiving such
an alert. The reason for this is that non-malicious peers also
need to upload content to their neighbors before their alerts are
considered. Since non-malicious peers have a limited upload

capability, this will essentially limit the rate of false alarm
propagation.

Despite all this protection against bogus alerts that is already
embedded in the system’s design, adversaries may still be
able to gather large amount of bandwidth (e.g. through peer
zombies) and target well-connected nodes, which could result
in a more effective bogus alert propagation. To effectively limit
the propagation speed of bogus alerts, we now introduce the
concept of verifiable alerts.

A. Verifying Alerts

We now present a scheme for quickly and cheaply verifying
whether an alert message is correct. This scheme effectively
blocks bogus alerts from getting into the content distribution
network while ensuring that valid alerts are not slowed down.
One way to verify alerts is by appending in the alert message
some kind of proof for quick verification, thus, creating a self-
verifiable alert. However, generating such self-verifiable alerts
can be time consuming and expensive since a node needs to
accurately determine where the corruption is happening to be
able to provide a verifiable proof. This can significantly slow
down the rate of propagation of valid alerts, thus, reducing the
effectiveness of the cooperative security mechanism.

Rather than waiting for a node to generate a self-verifying
proof, we propose to use instead a light-weighted scheme
where each node is capable of quickly and independently
testing for the validity of an alert. To this extend, receivers
use a set of random masks and mask-based hashes. We define
a random mask as a vector £ = {t1,...,t,,}, where t;, is
random element in Z, (recall that each block b; is sub-divided
into m sub-blocks, {b1;,...,bm ;}). We then define a mask-
based hash for each block b; as f(b;) = > ;- , txbk,; and the
corresponding mask-based vector as f = {f(b1), ..., f(bn)},
where n is the total number of original blocks and f(b;) is
in the same field as by ;. Please, note that each mask-based
hash f(b;) per block is produced with the same random mask
vector ¢. Each mask-based hash is of the same size as each sub-
block. Note that one can create a very large number of mask-
based vectors for a given set of original blocks by selecting a
different random mask #.

Using such masks and hashes, a given node can quickly
verify the validity of an alert on the fly. Next we detail
such process. Before the download commences, each node
downloads (using a secure channel) the random mask and
corresponding hashes (Z, ]?).6 Each node will get a different
set of randomly generated masks and hashes, which are kept
secret from the other nodes. Whenever a node receives an
alert, it checks whether the alert is valid or not by testing
whether the blocks in its insecure window are corrupted or not
using the random masks and hashes. To this extend, a node
generates a combination block e of all the encoded blocks
in the secure window. The resulting block has corresponding

Note that there is no need to download the random mask as such %, In
practice, it suffices to download the seed that was used to generate those
random masks, and use the same random generator to reproduce the same
random mask.



coefficient vector ¢, i.e. e = Y., ¢;b;. To verify whether
a block in the invalid window is corrupted or not, the node
applies the random mask to the e block and checks whether
the following equation holds:

fle) = Silitwen = 3 tr(3072 cibi,i)
= Z?:l Ci(zzlﬂ tibyi) = Z?:l cif(by)

By applying the random mask to the encoded block and
comparing it with a combination of mask-hashes weighted by
the coefficient vector, a node can check whether any block
within the insecure window is corrupted or not. If the alert
verification fails, then, the node discards the alert and does not
propagate it further. If in turn the alert verification succeeds,
then the node forwards the alert to its neighbors and starts the
process of cleaning up its insecure window.

Note that the field size of the mask-based hashes A\, — 1
is smaller than the field size of the homomorphic collision
resistant hashes \,., providing weaker security guarantees since
fewer possibilities need to be tested during a brute-force attack.
Hence, nodes use the mask-based hashes to quickly determine
whether an alert is valid or not, but revert to the homomorphic
hashes to commit a block as safe.

If the random mask check fails, then, valid alerts may be
discarded (false negatives) and bad blocks may be temporarily
identified as valid ones until the node performs the probabilis-
tic homomorphic hash checking. The probability that a node
discards a valid alert is 1/ 2(A—1) However, even if few nodes
fail to detect the corrupt block, most nodes will still be able to
identify the corrupt blocks and propagate an alert since each
node uses different randomly selected masks. Masks can also
be periodically refreshed from the server.

B. Microbenchmark

We now quantify the overhead of using masks to prevent DoS
attacks in terms of additional data downloaded and processing
overhead. To this extend, we have implemented a version of
the mask-based hash system in C++. We next present the
results of the implementation running on a 2.0 GHz Pentium
4 with the sample parameters given in Table I, 1 GByte file,
and 2'6 blocks.

Using random masks to prevent DoS attacks requires down-
loading additional security information from the server, how-
ever, as we will detail next, the additional overhead compared
to the data already downloaded in terms of homomorphic
hashes is quite small. Each node first downloads a unique
random mask vector ¢ for the whole file. The size of each
random element ¢, is A\, — 1, thus, each node needs to
download m - |tx| bytes, which accounts for 16 KByte of
data. Rather than sending the random mask vector, in our
implementation, each node downloads the seed used by the
server to generate the random mask. Based on the seed, nodes
can reproduce the random mask vector # locally. The size of
the seed, typically 64 bits, is negligible.

TABLE II
EFFICIENCY DROP DEPENDING ON THE ALERT’S SPEED.
Alert Rate/Block Rate H Efficiency Drop

172 19%
1 15%
0%

In addition to the seed, each node also downloads a mask-
based hash f(b;) per block. The size of the mask-based hash
vector f is n - (A¢ — 1), which results in 2 MBytes of data.
The amount of data that needs to be downloaded in terms of
homomorphic hashes is roughly equal to 8 MBytes for the
same number of blocks, which is four times the amount of
data downloaded in terms of masks and mask-based hashes.
Thus, adding protection against DoS attacks caused by bogus
alerts increases the overhead of downloading security-related
data by 25%.

Our current implementation of this mask-based scheme is
able to generate and check masks at rates close to 160 Mbps.
This throughput is about 20 times the rate at which network
coded blocks can propagate in our current implementation and
about one thousand times the rate at which we are able to
check homomorphic hashes. These high throughputs permit
each node to check alerts very fast, thus, efficiently blocking
bogus alerts and adding a negligible delay on the propagation
of valid alerts.

C. Impact of Alert speed propagation

Given that alert messages are very small and they require little
processing at each node, valid alerts can propagate much faster
than malicious blocks, thus, efficiently halting the malicious
block propagation wave. However, if alerts did not propagate
fast enough, then, the wave of malicious content could not be
halted and the whole system would get easily infected.

To study the impact of the rate of alerts in the efficiency of
the content distribution system, we consider a well connected
network with average degree equal to 4 with a varying number
of attackers and alert speeds. We considered various rates of
infection varying from 5% to 20%, resulting in similar results.
Table II shows the efficiency drop in terms of additional
corrupted packets created as alerts are slowed down, compared
to the case where alerts propagate at an infinite rate.

From table II we can see that if the speed of propagation
of alert messages is 4-5 times the speed of block propagation,
then the performance of the content propagation is almost the
same as if the propagation of alert messages was instantaneous.
It is reasonable to assume that in realistic scenarios alert
messages will propagate at such speeds, specially given that
the alert messages are only of small size (compared to the size
of encoded blocks) and require little processing at each node.
On the other hand, if the speed of alert propagation is the same
as the propagation speed of encoded blocks or even lower,
the drop in performance, measured as the ratio of correct
blocks over the total blocks, is about 15-19 percentile points
lower compared to the case of instantaneous propagation; such
scenarios are, however, unrealistic.



VIII. PERFORMANCE OF COOPERATIVE PROTECTION

In this section we analyze the performance improvement of
cooperation in detecting corrupted blocks of information when
network coding is used. We measure the performance in
terms of the percentage of correct blocks transmitted. Our
cooperative scheme performs significantly better compared to
non-cooperative schemes. We notice that a cooperative scheme
provides significant benefits when content is encoded in the
network but also when content is not encoded at all (or is
encoded only at the server), although the benefits in the later
case are smaller.

We start by presenting a simple model that captures many
important properties of content propagation, and show ana-
Iytically the benefits of cooperation. Then, we show using
simulation of more complicated models, that cooperation is
essential when network coding is used and we quantify the
improvement gained by using such cooperative scheme.

A. Analysis

Assume that a non-malicious node gets infected at time ¢ =
1. Then, the node with probability p checks the packet and
discards the infected packet, and with probability of 1 — p
sends infected packets to one or more of its neighbors at time
(more accurately, round) ¢ = 2. Let’s denote with P(t) the
number of nodes that are infected at time ¢, with P(1) = 1
and P(0) =0
We assume that each node checks independently with prob-
ability p and that the error is detected and corrected by all
infected nodes when at least one user checks the packet and
cooperation is used. If there is no cooperation for protecting
against corrupted packets, then each node detects and discards
the corrupted blocks only when it checks with probability p.
a) The case of cooperative protection: The probability
of correcting the error at time ¢ is equal to the probability that
at time ¢ (and not earlier) at least one infected node checked
its content, discovered the corrupted packets, and informed the
rest of the infected nodes. This probability is:

Pr[Detect and correct at time t] =
(1— p)Zi_:ll P(T) (1 ~- (1 _p)P(t))

In order to compute the expected cost per bad packet
introduced into the network, measured in terms of the wasted
network capacity, we need to estimate the number of corrupted
packets transmitted at each round. The total cost if the mali-
cious packet is discovered at time ¢ is

Cost(t) =

Thus, the expected cost per bad packet is:
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with Q(t) = S°L_, P(7).

Each term of the summation in Eq. 1 decreases fast as the
number of infected users increases, which means that the loss
of efficiency gets smaller at each time step. The reason for this
is that even though the cost in terms of wasted blocks increases
linearly with as more users are infected, the probability that
a larger number of users do not find the malicious packet
decreases exponentially.

Lemma 8.1 (Cooperative protection): When nodes cooper-
ate to detect and remove corrupted packets, the cost a ma-
licious user can cause by inserting one corrupted packet is
constant on average.

Proof: From Eq. 1 we have:
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Let’s assume that the population of infected nodes does
not increase arbitrarily fast, i.e. no faster than exponential.
This translates to P(t) < c¢Q(t — 1), for a constant c. Thus,
we need to show that the sum Y i O(t — 1) - (1 — p)2t—D
converges to a constant. By the definition of Q(t) > ¢, since
Q(t) = X0, P(r) and P(t) > 1. For p > 0, the terms in
the summation decrease exponentially, and the summation and
the expected cost converge to a constant. [ ]

The result of Lemma 8.1 is qualitative. It says that the
damage created by a single corrupted block is constant, but
it does not give any indication of the expected number of
corrupted packets (and, thus, wasted network resources) that
will be generated.

To get some more quantitative results we model a mesh
cooperative system where each node has exactly k£ + 1 neigh-
bors chosen randomly among the total set of nodes. With
network coding, when a node receives a corrupted block,
then all the following blocks generated from the same node
will be corrupted. Thus, the impacted node starts transmitting
corrupted encodings to the rest of its k neighbors (one of the
neighbors is already infected) one at a time. We assume that
none of its k neighbors has a corrupted packet (which assumes
a very large population of users) and that after exactly &k rounds
all of them will have a corrupted block. This process continues
until at least one user checks its blocks and discovers the bad
blocks. In this model, the population of infected users can be
described with the following set of equations:

>520 Pilt) i=0
Pi(t+1) = ¢ Pi_1(t) 1<i<k—-1 (2
Pr_1(t) +Pi(t) i=k
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Fig. 5. Expected number of corrupted packets when using network coding
and cooperative security as a function of the probability of checking and for
three different values of k, the degree of each node.

where P;(t) is the number of nodes that have infected ¢ of
their neighbors by time ¢, with ¢ = 0,...,k, and Py(1) = 1
and P;(1) = 0 Vi # 0. The total infected population at time ¢
is P(t) = S8 Pilt).

Using Eq. (2) and (1) we can find the expected number of
bad blocks generated by a single corrupted block introduced
by a malicious user. The results are given in Fig. 5. Observe
that the expected number of bad blocks is slightly higher than
the inverse of the probability of checking (1/p), and that this
approximation is more accurate as we increase the probability
of checking. This result is expected since if the probability
of checking is p, then on the average 1/p transmissions will
take place before a node checks its blocks. This result is also
optimal, in the sense that if the nodes cannot check with
frequency higher than p, then on the average 1/p corrupted
blocks will propagate unchecked. Note that changing the
number of neighbors does not have a big impact in the
efficiency of the system since the probability of finding a
malicious block depends mostly on the number of nodes rather
than on the topology of the system. Similar results exist for
other models of propagation, for example assuming that the
distribution takes place in a k-ary tree.

b) The case of non-cooperative protection: Assume now
that users do not cooperate. Then, the only way that the
corrupted block gets removed from the network is that all
infected nodes simultaneously decide to check their content.
First, we show that the number of infected nodes is increasing
with time, under the assumption that the number of nodes is
infinite. (Similar results exist for finite populations of users.)

Lemma 8.2 (Non-cooperative protection): For an infinite
population of users that do not cooperate the expected number
of infected users is P(t+ 1) = P(t) - (1 —p) - (1 + ), where
v is the expected number of (not infected) nodes, a node with
corrupted blocks infects per round.

Proof: Assume that at time ¢ there are P(t) nodes and
that ¢ of them check and remove their corrupted blocks. The
probability of this event is ("")) - pi - (1 — p)PM~%. The
remaining infected nodes P(t) — ¢ will send corrupted blocks
to v(P(t) — i) not yet infected nodes. Thus, the expected

population of infected nodes at time ¢ + 1 is:

P(t) P()
Pt+1) =" ( ; )p%l —p)PO () ) (1 +7)
i=0
which solves to P(t+1) = P(¢)-(1—p)-(14+). The expected
population of infected nodes will increase when (1 — p)(1 +
) > 1. If the probability of checking p = 0.1, then a value of
~ > 1/9 results in an increasing population of infected nodes.
|
An increasing number of nodes with corrupted blocks, results
in an increasing waste of resources, since the infected users
will generate new corrupted blocks. Thus, the introduction to
the system of a single corrupted packet will result in an infinite
waste of resources.

B. Performance Comparison

In Sec. VIII-A we have assumed an infinite population of
users and studied analytically the effect of introducing a
single corrupted block so that we could provide some intuitive
analytical results. In more realistic settings, however, we have
a finite user population and many malicious users that often
introduce corrupted blocks. In this section we simulate such
environments and observe that the conclusions of Sec. VIII-A
are still valid. Moreover, as we shall see in this section, the
analytical results are rather pessimistic since a) in the presence
of many attackers, a single check may discover and clean
multiple attacks, and b) an infected node does not necessarily
transmit corrupted blocks to an non-infected neighbor.

To this extend, we have built a simulator that allows us to
study the damage that malicious users can cause in a coopera-
tive content distribution network under different settings (e.g.
network coding, no coding, or coding only at the source for
non-cooperative and cooperative environments).

We start by generating the overlay topology of the users.
We assume that each user has a constant number of neighbors
k in the overlay and we construct a random well-connected
topology in which each node has k neighbors. The population
size was fixed to 500— 1000 nodes in most of our experiments,
and the number of neighbors was set to 4; but other values
of size and degree gave similar results. We randomly choose
a portion of malicious users that generate malicious blocks
to jam the system. The percentage of the malicious users
varied between 5-20% in our experiments. We also varied the
percentage of bad packets injected by a particular malicious
user.

The rest of the nodes cooperate to distribute a file that
has a large number of blocks and they use either network
coding, no coding or coding at the server only. The simulator
is round-based, and in each round each user can upload
and download at most one block. In each round, each node
with probability p verifies the validity of the blocks and, if
one or more of them are corrupted, then the node removes
them. If cooperative protection is used, then, nodes behave
as described in Section VI to alert other infected nodes, so
that they also check their content. We measure the number of
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transmissions of correct blocks and the number of corrupted
blocks (the efficiency of the system is inversely proportional
to the percentage of corrupted blocks).

Impact of the probability of checking. In Figure 6 we
show the percentage of valid blocks and the number of infected
nodes as a function of the probability of checking. We consider
a network of 500 nodes in which 10% of them are attackers
and send bad packets at a rate of 10%.

From this Figure we can see that for cooperation to be
effective it requires a minimum probability of checking (e.g.
1% provides 92% efficiency). However, once passed that
probability of checking, the efficiency of the system increases
very slowly, hence, not justifying the extra-computational
effort. The average number of corrupted nodes per round also
drops fast as we increase the probability of checking.

Comparison with other schemes. In Table III we show the
percentage of corrupted blocks as a function of the probability
of checking for a network of 1000 nodes in which 5% of them
are attackers and send a constant stream of bad packets. We
study the case of network coding, and no coding (or coding
only at the server), with a cooperative and a non-cooperative
security system.

From this table we can first see that schemes that do not
use encoding or only use source coding can use standard
probabilistic batching schemes and only suffer from minor
damage in the network. For instance, even if nodes check
blocks with probability close to 1%, the damage in the system
is still very low.

However, this is not the case for network coding since
malicious packets get quickly re-encoded in the network. From
Table IIT we can see that simple batching schemes as the ones
proposed in [21], [32] fail to contain the attack. Actually,
with network coding and no cooperation, the damage of the
system decreases linearly with the checking probability, which
requires nodes to check almost every block to have acceptable
levels of efficiency.

If cooperation is added, then the performance of both
network coding and no coding (or source coding) improves.
Such improvement is much more significant for network
coding. In fact, a cooperative scheme improves the efficiency
of the system almost ten-fold for a checking probability of 2%
(see Table III). Thus, with cooperation the system is able to
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Fig. 7. Percentage of bad blocks for Network Coding with collaboration and
no collaboration as a function of the percentage of corrupted blocks generated
by an attacker.

limit the propagation of corrupted blocks. Moreover, observe
that the percentage of corrupted blocks is very close to the
minimum, which in this example is 5%.

Impact of the rate of attack. We next study the effort that
an individual attacker needs to make to infect the network.
Figure 7 shows the efficiency of the system for a network of
500 nodes where each node uses network coding and checks
with 1% probability as a function of an attacker’s rate (we
assume 10% attackers). We first observe that the efficiency of
the system largely depends on whether a cooperative scheme
is in place, droping to less than 20% if this is not the case.
We also observe that the efficiency of the system increases
linearly as the rate of infection of a malicious node decreases,
achieving 90% efficiency for an attack rate of 10%.

Colliding attackers. We now show that as the number of
attackers increases, attacks overlap and the attack efficiency
drops. As attackers overlap, the same blocks are infected
multiple times by different attackers, and a well-behaving node
is able to halt the damaged caused by multiple attackers with
a single security check operation.

In Table IV we show the effect of an increasing number of
attackers in a network of 1000 nodes, where attackers send
a continuous stream of corrupted blocks, and the probability
of checking is 5%. We see that as the number of attackers
goes from 1 to 100, the mean percentage of corrupted blocks
per attacker decreases from 1% to 0.19%. Thus, the attack’s
efficiency drastically decreases as the number of attackers
increases. This is an important result. Obviously we expect
that the performance of the system decreases as the percentage
of attackers increases. However, as the attack grows, attackers
need to put a very large effort to slightly increase the infection
of the system.

C. Running Time

We now present the overall throughput that can be achieved in
the system with and without our cooperative system. Our cur-
rent implementation of homomorphic hash checking achieves
throughputs of 128 Kbps, which is about 62 times slower than
the rate of 8 Mbps at which we can encode new blocks. For
an average infection rate v of 5% of malicious nodes, nodes
only need to check 1.2% of the blocks to keep the percentage
of bad blocks below 13%.



TABLE III
PERCENTAGE OF BAD BLOCKS AS A FUNCTION OF THE PROBABILITY OF CHECKING.

P Network coding Network coding No network coding | No network coding
with cooperation | without cooperation with cooperation no cooperation
0.5% 26.8% 97.8% 6.2% 16.2%
1.0% 15.5% 97.1% 5.6% 15.1%
1.5% 11.6% 96.7% 5.4% 14.4%
2.0% 9.8% 96.2% 5.3% 13.5%
3.0% 8.1% 95.2% 5.3% 12.4%
4.0% 7.8% 94.3% 5.2% 11.8%
5.0% 7.2% 93.5% 5.2% 11.3%
10.0% 6.0% 88.7% 52% 9.7%
20.0% 5.5% 79.3% 5.1% 7.7%

Note: 1000 nodes with 50 (5%) malicious nodes. No network coding includes both source coding and no coding at all.

TABLE IV
EFFECT OF THE NUMBER OF MALICIOUS NODES.
Number of Mean percentage Mean number of
attackers || of corrupted blocks corrupted nodes
Total | Per attacker | Total | Per Attacker
1 1.0 1.0 | 7.39 7.39
2 1.5 0.76 | 11.80 5.90
5 3.2 0.64 | 22.00 4.40
10 4.8 0.48 | 32.10 3.21
20 7.0 0.35 | 46.47 2.32
50 12.1 0.24 | 64.35 1.29
100 18.8 0.19 | 81.37 0.81

Table V summarizes the rate at which data can be checked
using different schemes. We denote MultCost(r) as the cost
of multiplication in Z;. We also assume that most of the cost
of checking homomorphic hashes is determined by the cost
of making repeated exponentiations (left side of Equation 1).
The first scheme corresponds to a naive homomorphic scheme
that checks every block. In this case the number of corrupted
blocks is limited by the number of malicious packets injected
in the system, however, the throughput of the overall system
is very small. The second scheme uses batching to reduce
the computation overhead of the homomorphic hashes with a
batch size B = 256 blocks. In this case, the throughput of
the system is 32 Mbps, however, the infection rate is close to
100%. Finally, the cooperative scheme has a running time that
depends on the probability of checking p, the infection rate ~,
and the number of infected nodes per malicious packet P. Our
experimental results show that the value of P is usually a small
constant (i.e. < 10). Given this, the cooperative approach
provides a throughput higher than 10 Mbps, which allows
nodes to check blocks faster than they are propagated while
limiting the damage in the system to the attackers’ effort.

IX. RELATED WORK

Network coding performs almost an optimal scheduling of
content among nodes without the need for a global knowledge
of the system. As such, network coding has recently emerged
as a practical and elegant way of maximizing the throughput of
P2P content distribution systems [2], [6], [34], [35]. However,
little effort has been paid to discussing and understanding the
security threats that arise from using network coding in large
scale distributed P2P systems.

Common approaches to providing source-authentication in
multicast systems often rely on either share secret keys or
using asymmetric cryptography; for a taxonomy of security
concerns see [43]. However, in a system where intermediate
nodes in the network are allowed to re-encode content, then,
the standard way of having valid senders sign their packets
cryptographically does not work.

Khron et al. [21] was the first to provide a mechanism that
allows for intermediate nodes to check erasure codes on-the-
fly using homomorphic hashing functions [36]-[42]. Similarly,
Distillation Codes use Merkle hash trees to determine which
is the set of valid packets out of a large set of encoded packets
with both valid and invalid packets.

However, these mechanisms are not efficient in slowing
down attacks when network coding is used. Homomorphic
hashing functions are too costly and often nodes can not afford
to use them on every block received. Similarly, Distillation
codes are based on the assumption that intermediate nodes
do not re-encode the content. Another possible solution is to
batch several blocks and check them all together to reduce
the computational overhead [21] [32]. However, with network
coding, standard batching techniques may cause particularly
serious damage.

X. CONCLUSIONS

Existing, peer-to-peer content distribution networks, can use
simple cryptographic primitives such as hash trees to au-
thenticate data and prevent unverified downloads. However,
these techniques do not work well with recent network coding
techniques that have been proposed to improve the resilience
and the throughput of such networks.

In this paper we study the security issues that arise from
using network coding. We pay special attention to those
attacks that try to destroy the entropy of the system or
jam it completely. To improve the verification efficiency we
propose a novel scheme where users not only cooperate to
distribute content, but (well-behaved) users also cooperate
to protect themselves against malicious users by informing
affected nodes when a malicious block is found. Moreover, we
present an efficient mechanism to prevent DoS attacks against
bogus alert messages based on random masks and mask-based
hashes.

By having a large number of nodes checking at every point
in time and making them cooperate, we are able to efficiently



TABLE V
THROUGHPUT OF CHECKING FOR DIFFERENT SCHEMES.

Scheme H Running Time \ Infection (%) \ Throughput (Mbps) ‘
Naive Homomorphic mAgMultCost(r) v, (5%) 0.128
Batching Homomorphic mAgMultCost(r)/B 1— %, (99.6%) 32.7
Cooperative Security mA,MultCost(r)(p + vP) v, (5%) 10.6

reduce the computation overhead at each node while efficiently
limiting the damage in the system. We currently have an
implementation of a P2P content distribution system based
on network coding similar to the one described in this paper
which supports security against entropy as well as jamming
attacks. We plan on reporting our experiences with such live
system in future work.
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