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Figure 1: Synthetic refocusing using micro-baseline stereo: The depth map computed using micro-baselines can be used to create a synthetic
shallow depth-of-field image. We blur the image with a pillbox point-spread function that is scaled as a function of the difference of the
relative depth of a particular pixel and a chosen reference depth, which will remain in focus. We show focus for three depths: the foreground,
mid-ground, and background.

Abstract

Tradeoffs exist between the baseline or distance between cameras
and the difficulty of matching corresponding points in stereo and
structure from motion. Smaller baselines result in reduced dispar-
ities reducing the accuracy of depth estimation. Larger baselines
increase the range of observed disparities, but also increase the dif-
ficulty of finding corresponding points. In this paper, we explore
the use of very small baselines, called micro-baselines. Micro-
baselines, typically just a few millimeters, provide the advantage
that they can be captured using a single camera. That is, a “static”
camera that is either hand-held or mounted on a tripod will typi-
cally vibrate some small amount while capturing video. We take
advantage of the vibrating motion to compute depth information.
For hand-held cameras a small amount of motion is generally al-
ways present, while many surveillance applications involve cam-
eras mounted outside or on high poles that exhibit this type of mo-
tion. Even indoor cameras mounted on tripods move due to human
traffic and machine vibrations.

1 Introduction

The baseline or distance between cameras is an important factor
in stereo and structure from motion. Smaller baselines reduce the
accuracy of computed depths, since the observed disparity of cor-
responding points is reduced relative to changes in depth. Larger
baselines increase the observed disparities, but increase the diffi-
culty of finding corresponding points.

Several works address this issue by using multiple cameras. For
instance, multi-baseline stereo uses cameras with large dispari-
ties to increase the accuracy of depth estimation, while cameras
with smaller baselines are used to disambiguate correct correspon-
dences [Okutomi and Kanade 1991]. When matching images with
small baselines, simple window matching costs may be used such
as sum of squared distances or normalized correlation [Hirschmller
and Scharstein 2007; Tombari et al. 2008]. Many multi-view stereo
algorithms also take advantage of these techniques [Seitz et al.
2006]. The use of large baselines [Pritchett and Zisserman 1998] re-
quires more sophisticated matching measures, such as SIFT [Lowe
2004] or MSER [Matas et al. 2002]. Even with these measures,
robust correspondence algorithms such as RANSAC are neces-
sary. In structure from motion approaches [Triggs et al. 2000], im-
ages with varying baselines can be used to refine correspondences
across several images. The robustness of these techniques has been
demonstrated in several recent papers using large databases of im-
ages [Snavely et al. 2006; Agarwal et al. 2009].

We explore the use of very small baselines, called micro-baselines.
Micro-baselines, typically just a few millimeters, provide the ad-
vantage that they can be captured using a single camera. That is, a
“static” camera that is either hand-held or mounted on a tripod will
typically vibrate some small amount while capturing video. We
take advantage of the vibrating motion to compute depth informa-
tion. For hand-held cameras a small amount of motion is generally
always present, while many surveillance applications involve cam-
eras mounted outside or on high poles that exhibit this type of mo-
tion. Even indoor cameras mounted on tripods move due to human
traffic and machine vibrations.



The use of micro-baselines provides three main challenges. First
the disparity between images or frames in the video is typically a
small number or even a fraction of a pixel. As a result, accurate
sub-pixel disparity estimates must be computed. Second, even with
accurate sub-pixel estimates, large numbers of images must be ob-
tained to offset inherent noise in the disparity estimation. Finally,
the motion of the camera is from random vibrations, so extrinsic
calibration information is not known.

2 Previous Work

A broad comparison of stereo vision techniques is the paper by
Scharstein and Szeliski [2002]. Several methods have been pro-
posed for sub-pixel correspondence. The work of Takita et.
al [2004] use a Phase-Only correlation technique to align two win-
dows. The approach of Psarakis et. al [2005] handles both sup-
pixel alignments as well as photometric distortions. Thevenaz et.
al [1998] use a pyramid based approach for sub-pixel registration.
Shimizu and Okutomi [2005] analyze sub-pixel estimation error us-
ing different functions.

Previous works have also addressed computing depth with a single
image [Hoiem et al. 2005].

3 Micro-Baseline Stereo

We will now describe the framework for micro-baseline stereo.
Let {I1, ..., Ij , ..., In} denote a sequence of n images of an object
where each image is a different frame of an input video-sequence.
We assume each frame of the sequence is captured from a slightly
different viewpoint. For a point ρ, the observed intensity is denoted
as ij(ρ). Given a reference world-space coordinate system, which
we choose to be coincident with coordinate system of a reference
image I0, correspondence between reference-coordinate points and
coordinates in an arbitrary image is established given the points rel-
ative depth, z(x, y), corresponding to the object’s surface and the
camera-projection matrix Pj at time j. Observations across all n
views for all points {ρ1...ρj ...ρm} can be related to the reference
coordinate system by:

I0(x, y) = Ij(Pj(xj , yj , z(xj , yj))). (1)

In our work, the central goal in our method is to solve for cor-
respondence and, in turn, the unknown disparity map. The un-
knowns in this system are the correspondence, disparity map, and
camera projection matrices {P1...Pj ...Pm}. To recover these com-
ponents we use a structure from motion approach that derives
from Tomasi-Kanade factorization [Tomasi and Kanade 1992] and
plane+parralax [Criminisi et al. 1998; Vaish et al. 2004].

We model our scene using a plane+parralax framework. Specifi-
cally, this frame work models the projection process as:

ρ̂ = Pj ∗ ρ̂j = Hj ∗ ρ̂j + ∆cj ∗ ẑ, (2)

where Hj is a planar homography, ρ̂ is a vector of homogeneous
2D points in the reference coordinate system, ρ̂j are the points in a
view j, ∆cj is the relative in-plane displacement of the view rela-
tive to the reference view r, and and ẑ is a vector of relative depths.
The “plane+parralax” nomenclature comes from the process of first
aligning points for each view to a reference plane, captured by the
homography Hj , followed by computing a rank-q factorization to
get the depth-based, i.e. parallax, components ∆cj and ẑ. Typi-
cally, when performing “plane+parralax” one places a planar cal-
ibration grid in the scene and uses features on it to compute the
planar homographies. Alternatively, one can use a robust homogra-
phy fitting approach to detected interest points in the scene.

1. Set The Reference Frame Pick one frame Ir to be the refer-
ence view and set the world-space coordinate system coinci-
dent with this view by accordingly transforming all projection
matrices relative to Pr .

2. Compute Dense Per-Pixel Optical Flow We compute a fine
sub-pixel estimate of pairwise correspondence from each im-
age Pj to the reference image Pr using a dense, optical-flow
approach, resulting in (x, y) flow vectors Fj for each image

3. Compute Camera Projection Matrices Use RANSAC to
compute the camera projection matrix Pj for each frame Ij ,
such that Pj maps Ij to Ir . The RANSAC process will align
a single, arbitrary depth plane

4. Warp Flow Values to Reference Coordinate System Apply
the projection matrices Pj to each view set of flow fields Fj

to globally align a depth plane, resulting in flow vectors F̂j

5. Compute Dense Disparity Map Find the dense disparity
map by computing a rank-1 factorization of the residual flow
Fj − F̂j

Figure 2: Our micro-baseline stereo algorithm.

Our setup is quite similar to the second approach, but has some sub-
tle differences. Particularly as our baseline is extremely small, on
the order of millimeters or less, an in plane rotation and translation
alone are a very good approximations to the full planar homogra-
phy. Under this assumption, the revised projection model is:

p̂ = Rj ∗ p̂j + Tj + ∆cj ∗ ẑ, (3)

where Rj is the in-plane rotation and Tj is a global (x, y) transla-
tion in the image plane. In this model yaw and pitch rotation and
global (non-depth dependent) camera translation are captured by
Tj . We note that Tj is a 2D component as the change in depth of
the camera relative to the scene is negligible in our setup.

Our goal is to recover the relative depths ẑ. Once Rj and Tj are
computed, ẑ can be recovered using an rank-1 factorization [Tomasi
and Kanade 1992]. We recover these transformations using a
RANSAC process on the results of correspondences computed us-
ing an dense optical flow alignment.

There is extensive literature on optical flow [Baker et al. 2007]
for tracking pixels that move small amounts from frame to frame.
Our case is relatively simple compared to finding general flow
since the motion is small with minimal occlusions. We have found
both HornSchunck [Horn and Schunck 1980] and patch based SSD
methods to work well, if global alignment is performed first.

By running optical flow between each image Ij and the reference
image Ir we compute an alternate estimate for Equation 7:

p̂ = p̂j + F̂j , (4)

where F̂j is per-view, vector of per-pixel (x, y) translations chosen
to minimized the re-projection error between the reference view and
a given frame:

F (pj) = argmin
F (pj)

∑
i∈N(pj)

(p(Ir(pi)− I(pij + F (pj)))
2, (5)

for each pixel pj , where N(pj) is the set of neighboring pixels
– we use 5 × 5 pixel windows. Sup-pixel accuracy if found by
re-sampling the image on a 1/10 pixel grid using bi-cubic interpo-
lation, and we search by shifting each window by the same 1/10
pixel stepping size.

By subtracting Equations 7 and 4, we get:

Fj = (Rj ∗ p̂j − p̂j) + Tj + ∆cj ∗ ẑ. (6)



Figure 3: Test Scene: Two frames from the input video and our relative depth map using 500 images.

We estimate the rotations and translations for each view using a
RANSAC procedure; however, instead of computing this in the di-
rect way, i.e., independently for each view, we use a RANSAC pro-
cess that uses the same inliers across all views. By using the same
set of inliers and thus the same set of corresponding points, we en-
sure that the same reference plane is fit across all views. With sep-
arate inliers, different reference planes could be fit, and this would
violate the plane+parralax model.

The final step in our algorithm is to compute the relative depth by
factorizing the residual local flow:

(Fj − (Rj ∗ p̂j − p̂j) + Tj) = ∆cj ∗ ẑ. (7)

The left side is the residual flow, computed using the fit rotations,
translations, and per-pixel flows. We stack this system of equations
for all images j = 1...N , creating a significantly over-constrained
system, and compute ẑ using a rank-1 factorization using SVD.

4 Results

To validate our method, we present several experimental scenes.
Our first experiment is a proof-of concept result in a lab setup.
While the remaining results are in real-world, uncontrolled settings.

We filmed datasets with two different setups. For the results in
Figure 3, 4, and 5, we filmed approximately 1000 frames at 30
FPS (about 30 seconds of video) from a video camera mounted on
an unstable tripod. We imparted small vibrations to the tripod to
jitter the camera to acquire micro-baseline views. For the results in
Figure 1, we filmed approximately 100 frames at 30 FPS (about 3
seconds of video) using a hand-held smart-phone.

For each method we ran our algorithm to compute relative depth.
For our flow-based alignment, we have tried and SSD based ap-
proach and Horn-Schunck [Horn and Schunck 1980]. For the SSD
approach, we initially compute a global offset using a whole-image
SSD search to remove large global translation, and then seed the
local flow estimate with this. The local flow computation works on
a±0.5 pixel window in steps of 1/10 of a pixel. We found this two
level approach to be important for our outdoor scene, where wind
causes large global pixel displacements. For Horn-Schunck, we
use a pyramid-based implementation with 3 levels and a moderate
amount of smoothing.

Our final results use 100-500 images each depending on the dataset.
As there is an inherent ambiguity in the sign and magnitude of the
relatively depths (an inherent component of the rank-1 factoriza-
tion), we scale and shift our relative depths to all be positive, with
zero relative depth corresponding to the plane at infinity, i.e., the
plane with zero disparity.

Figure 3 shows our proof-of concept lab setup. Note that the dif-
fering depth planes, as easily visualized using the calibration grid,
show up very distinctly in the displayed depth map. There are rel-
atively sharp transitions in the map corresponding to sharp transi-
tions in depth of the grids.

Our next two results in Figure 4 and 5 show more challenging
real-world scenes – one filmed indoors and one outside. The in-
door scene in Figure 4 is in a small office kitchenette. Note that
the sweeping depth of the low textured wall is correctly captured
in our result. In addition, the result shows the local structures from
objects on the counter. The outdoor scene is very challenging (Fig-
ure 4). There are many objects, such as plants and bricks, that
contain repeating ambiguous patterns that can cause false matches.
These types of ambiguities are extremely hard to handle with a large
based-line stereo step, but are handled well with our micro-baseline
setup. The small baseline reduces the space of ambiguous matches
significantly. This dataset is also challenging as there is a very large
depth range, areas that are saturated and textureless, and scene mo-
tion due to wind moving the plants, yet our depth map shows the
sweeping plane of the building and ground and captures local struc-
tures. The result is noisier than the first two to the many challenging
aspects in the scene, yet the relative depth map is still reasonable.

Figures 4 and 5, respectively show results where we have computed
the relative depth map using 10, 200, and 500 images. As expected,
the reconstruction quality increases and stabilizes as more images
are added, which removes the inherent noise in the flow estimates.

In Figure 1, we show three more real-world scenes with a range
of depths and textures. For these scenes, we use the relative depth
map created from 100 input images, to create a synthetic shallow
depth-of-field. These results are created by blurring the image with
a pillbox (i.e. disk) point-spread function that is scaled as a func-
tion of the difference of the relative depth of a particular pixel and a
chosen reference depth, i.e., the one that will remain in focus. The
shallowness of the depth-of-field is a function of the mapping from
depth difference to the blur kernel size. We create a set of focal
sweep of images by using a fixed set of reference depths evenly
swept through the range of recovered depths. In Figure 1, we show
focus for three depths chosen so that the foreground, mid-ground,
and background are respectively in focus for each dataset. The syn-
thetic re-focusing operation is computationally fast and could used
with a UI, such as a “tap-to-focus”, so that a user could focus on a
particular object at its corresponding depth.

5 Conclusions and Future Work

We have shown how to recover depth maps from small natural vari-
ations that can occur in camera position when recording a short
video clip. Our method recovers reasonable relative depth maps



Figure 4: Indoor Scene: Top row, three images from the input video and bottom row, relative depth maps computed using 10, 200, and 500
images, respectively.

even for quite changing scenes and does this without any user inter-
vention, external pre-calibration, or complex regularization proce-
dures. The methods are computationally simple and fairly efficient.

Our results suggests several directions for future work. While we
intentionally did not explicitly include spatial regularization when
computing the depth map; we, nevertheless, have no doubt that our
results could be improved by including a regularization model such
as Graph Cuts or Belief Propagation. We plan to incorporate one of
these methods in the future.

Another extension is deploying this in an automated camera setup.
Our method lends well to an iterative update rule, by aligning new
input frames to the initial existing coordinate system, and using in-
cremental PCA [Ross et al. 2004] to update the rank-1 factorization.
We believe it would be very interesting to have a camera that con-
tinually refines its depth model as it records more data.
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