
Mixing with Mozar t 

Sumit Basu 

Microsoft Research 
sumitb@microsoft.com 

Abstract 
A variety of tools exist in hardware and software for mixing 
dance music.  These work by estimating the “ beats-per-
minute”  count of music with heavy beats.  These tools aid a 
DJ in finding the appropriate speed change and time shift to 
smoothly combine or transition between two pieces of 
music.  In this work, we present a method for finding these 
alignments and combining a wider class of songs with 
dance music (e.g., Mozart with techno).  We do this by 
jointly optimizing the energy alignment of both signals 
instead of attempting to detect individual beats/tempos. 
Though computationally intensive if naively computed, we 
introduce an approximation to greatly speed up the 
evaluation of the tens of thousands of possible matches. This 
results in a set of a few top choices for alignment 
parameters.  We also develop a measure of the quality of the 
match to help assess whether the best alignment is actually 
a good fit.  We show a variety of results demonstrating the 
use of this method. 

1 Introduction 
DJing has become a popular and successful art; the DJ and 

her craft have come to permeate everything from nightclub 
scenes to clothing commercials.  One of the fundamental 
aspects of this craft is music mixing, blending song A 
smoothly with song B, typically to transition from one piece 
to the next, but sometimes only to enhance the sound of 
both pieces.  Given song A, this requires determining five 
parameters: (1) which song to mix it with, (2) where in song 
A to do the mixing/transition,  (3) where in song B to mix 
from,  (4) the timescale adjustment necessary to align A and 
B, and (5) the time offset required to align A and B. 

Over time, a variety of tools have been developed in 
hardware and software to help DJs with this process, mostly 
with respect to the last two parameters.  In general, these 
tools estimate the beats per minute (BPM) of each song.  
The DJ can then change the speed of the first/second song 
until they match, and manually find an offset to match up 
the beats.  In more sophisticated software/hardware, the 
system automatically determines the offset as well by 
finding the locations of the beat sounds. 

In this work, we attempt to extend the range of music DJs 
can use by doing automatic alignment of music from a 
variety of genres, for instance mixing Mozart’s K. 331 with 

a piece of heavy techno.   Our method looks across the two-
dimensional space of parameters (4) and (5) above – for a 
variety of possible timescalings of song B, it tests a wide 
range of possible offsets, and returns the top few matches 
that the DJ can preview and then choose from.  It also aids 
in determining parameters (1) through (3) by returning a 
suitability score, which describes how strong the given 
match is.  However, the bulk of the responsibility for 
choosing the next song is still on the DJ, for it is up to her to 
know what songs will make sense together – we can only 
help with the assembly.  For instance, even though two 
pieces of music in different keys may line up well, the 
combination of the melodic aspects of the two may still 
sound terrible. 

The closest prior work in this area is in estimating the beat 
structure of a single piece of music.  Scheirer  (1998) 
approaches this via correlations across filter banks, while  
Laroche (2001) has a probabilistic approach that allows for 
variation in the beat.  Goto and Muraoko have a long history 
of work in this area, and have a sophisticated multi-agent 
method for estimating the rhythm in drumless signals (Goto 
and Muraoko 1997).  All of these methods are quite 
successful but are still prone to problems. The main 
difference between our work and these approaches to beat 
tracking is that instead of individually trying to determine 
the tempo/phase of each song, we consider both songs 
together.  In this way, we are able to compute the best 
possible alignment against our metric without ever 
determining the BPM of either song. 

We will begin by describing our method for aligning the 
two pieces, including a fast mechanism for computing the 
different timescales that allows for real-time application of 
the algorithm.  This method will produce several match 
candidates.  We will then develop a metric for the suitability 
of each match to help the user select among these.  Finally, 
we will show our results on a variety of types of music and 
discuss failure modes and future work. 

2 The Alignment Method 
The method works on two arbitrary pieces of two songs, to 

be referred to as signals a and b.  The core algorithm is 
outlined below, followed by a detailed description of each 
step: 



1. Compute the frame-based energy for each song, 
Ea and Eb 

2. For each time-scaling and time shift of Eb within 

a specified range: 
a.  Compute the scaled and shifted version of Eb 

(this will be referred to as E’b) 

b.  Measure the alignment of Ea and E’b  

3. Find/present the set of best alignments from step 
2 and allow the user to choose among them 

4. Compute the time-scaled and shifted version of b 
(referred to as b’ ) for the chosen shift/scaling 

5. Find the energy scaling for a and b’  and combine 
the final signals 

2.1  Computing Frame-Based Energy 
To compute the energy of signal a, we first break it up into 

non-overlapping windows (of N samples each).  We then 
compute the energy of each frame, without multiplying by a 
tapered window as is typical in frame-based energy 
computations (Rabiner and Schafer 1978): 
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This results in the energy signal Ea. For the results in this 

paper, we used a sampling rate of 44.1 kHz and a window 
size N of 512 samples, corresponding to 12 ms or about 86 
frames per second.  The reasons for this unconventional 
choice of windowing and the lack of overlap are due to the 
time-scaling operations we will perform on the energy 
signal as we will show in the next section. 

In the figures below, we show the energy signals for a 
piece of classical music and a piece of dance music.  Note 
that while there is a clear, repetitive beat structure in the 
dance piece, there is little such information in the classical 
piece. 
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Figure 1: Energy signal for  par t of a classical piece 
(Mozart's K. 331, 1st movement) 
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Figure 2: Energy signal for  a piece of dance music (The 
Realm’s “ Breakdown” ) 

2.2  I terating Over Scales and Shifts 
We then iterate over all scales and shifts of Eb within 

some specified range, in our case scalings of 0.5 to 2.0 times 
its current length, with an increment of 0.01 (150 scales) 
and a correlation range of 100 samples (each sample 
corresponds to a 12 millisecond energy value, so this is 1.2 
seconds).  This is a total of 100*150 or 15,000 different 
modifications of the Eb and must be computed very quickly 

– in our implementation, this takes only 0.5 seconds.  
Ideally, we would first compute the scaled version of b and 
then compute its energy, but this would be prohibitively 
expensive. To accomplish the rescaling in real time, we 
approximate the energy of the time-scaled signal by 
timescaling the original energy signal.  We do this via a 
linear resampling of Eb: For each floating point scalefactor s 

in the specified range (i.e., resampling Eb at s times its 

current rate), we approximate the energy of the time-scaled 
signal at index n as follows: 
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Because we are not windowing the signal, we have the 

convenient property that the time-scaled version of the 
energy signal (E’b) closely approximates the energy of the 

time-scaled signal (Eb’ ).  We will now show why this is the 

case via an example: consider that signal b was to be slowed 
down by a factor of exactly two via linear interpolation to 
form b’  (i.e., s=0.5).  We can then express the precise values 
for b’  and for the ideal energy of the time-scaled signal as 
follows:   
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If the signal is not varying too quickly and 
[ ] [ 1]b n b n≈ − , we can see that 
 



( ) ][2][2]12[]2[

][2]12[

][2]2[

2/1

1

22/12
'

2
'

2/1

12/

2
'

2/12/

1

2
'

kEnbkEkE

nbkE

nbkE

b

NkN

kNn
bb

NkN

NkNn
b

NkN

kNn
b

=�
�

�
�
�

�≈++

�
�

�
�
�

�≈+

�
�

�
�
�

�≈

�

�

�

+

+=

+

++=

+

+=

 
In other words, the energy of the superframe composed 

from the corresponding frames of Eb’  (2k and 2k+1) has the 

same energy as frame k in Eb, modulo a scalefactor of 2 , 

since there is now twice as long a frame to contend with.   If 
we use the same framesize in the stretched signal and we 
have the further property that the energy is not changing 
rapidly from frame to frame, i.e., ]12[]2[ '' +≈ kEkE bb , we 

see that the energy of the time-scaled signal is indeed 
approximately equal to the energy of the corresponding 
location in the original signal: 
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It is thus reasonable for us to approximate the energy of 

the timescaled signal (Eb’ ) by the time-scaled energy signal 

(E’b). To demonstrate this effect, we show the energy signal 

from the previous example, rescaled to twice its length 
(E’b),  compared to the energy signal for the signal b itself 

rescaled to twice its length (Eb’ ).   
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Figure 3: Our  approximation, the time-scaled energy 
signal E’b[k], vs. the true energy of the time-scaled 

signal Eb’ [k] for  a scaling of s=0.5.  Note the ar tifacts in 

the upper  signal due to our  approximation. 

While the resulting signals are very similar, there are 
visible differences, in that the approximation (top) is a 
smoothed version of the actual signal, as expected by our 
development.  However, a timescaling of 0.5 is at the very 
edge of the range we are considering.  For a smaller scaling, 
s=0.9, note that the signals are nearly identical: 
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Figure 4: Our  approximation, the time-scaled energy 
signal E’b[k], vs. the true energy of the time-scaled 

signal Eb’ [k] for  a scaling of s=0.9.  Note that the 

ar tifacts are much reduced. 

After this, we need to compute the alignment score for this 
scaled energy signal for all possible shifts in the range 
specified against Ea.  We do this by computing the 

normalized correlation between the entirety of Ea against 

the entirety of E’b for each integer shift in the range of 

correlations specified  (-50 to 50 in our case), over a 
correlation range of M samples (M=1000 in our case).  



Within scaling s for Eb, For each correlation k, we compute 

the inner product as follows: 
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We then choose the maximum score to represent the 

overall score for each timescale: 

][max][ kCsC s
k

=  

In the figure below, we show the correlation peaks across 
timescales for the signals from Figures 1 and 2 (Mozart’s K. 
331, movement one, and The Realm’s “This Is Not a 
Breakdown.” )  In this instance, there are two strong peaks, 
at s=0.65 and 0.98, both corresponding to slowdowns of the 
dance song against the Mozart. 
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Figure 5: Correlation scores C[s] representing the best 
possible shift for  each timescale k between 0.5 and 2.0. 

The correlation length, M, is a critical choice, and 
represents how long the segments of the song pieces we will 
do the matching over.  The results in this paper for the most 
part used a correlation length of 1000 frames, which 
corresponds to about 12 seconds.  This is rather a long time, 
and can become a liability if the tempos of the component 
songs are changing rapidly, but because song a is not 
heavily beated, this longer window allows us to more 
confidently find a scaling of b against which it is best 
aligned.  The effect of this can be seen by the sharpening of 
the peaks as M goes from 200 to 1000, as shown in the 
figure below.  In this case, the songs are the third movement 
of Mozart’s K. 331, and again The Realm’s “Breakdown.”   
Note that with a short window of 200 frames, there are no 
clear peaks, and in fact the strongest peak of the set is not 
yet visible.  As M increases, we see the measure become 
increasingly confident of the peaks at about 1.2 and 0.6, 
which are in fact the best matches for this particular pair of 
signals. 
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Figure 6: Correlation scores across timescales showing  
sharper  peaks with increasing cor relation length M. 

2.3  Selecting the Best Alignment 
We now have a set of possible alignments indexed by s 

along with the corresponding scores.  For each scaling s, we 
find the peak locations by choosing all points that are 
greater than both their left and right neighbor.  While this is 
a simplistic measure, it guarantees that we will cover all 
possible peaks while avoiding the redundancy resulting 
from just choosing the top n values.  If we did the latter, the 
top values would all be neighbors of the highest peak and 
not correspond to unique peaks. We choose the top n scores 
from all peaks over all scalings k. In the figure below, we 
show the top 5 identified peak locations: 
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Figure 7: Top 5 peaks identified in C[s] using our  simple 
peak picking cr iter ia. Peaks are marked with (+). 

In our implementation, we allowed the user to iterate 
through the top peak values to choose the best match.  Note 
that while this lets us choose among the best matches, it 
does not tell us whether any of the matches in fact result in a 
strong mix. In section 3, we will describe a method for 
evaluating the suitability of the set of matches. 



2.4  Computing the Time-Scaled Signal b’  
Once the candidate scalings/shifts have been determined, 

the signal b needs to scaled and shifted in the same way as 
E’b to produce b’ .  There are a variety of ways to do this, 

and we have implemented two.  The first is to do the same 
linear resampling described in step 2 above.  The second is 
to use a pitch-preserving time-scaling algorithm such as 
SOLA (Roucos and Wilgas 1985).  The former is equivalent 
to playing the sound faster or slower, resulting in both 
length and pitch changes but a greater preservation of signal 
quality, whereas the latter maintains the pitch and changes 
only the length.  We tested both methods, but in our final 
implementation chose the resampling approach due to its 
speed.    

2.5  Combining the Signals 
The signals a and b’  are summed together with a scaling 

factor r for b’ .   We choose this scaling factor in a way to 
make the average energy of a and b’  equal.  The scaling 
factor for b’  is thus 
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This auto-scaling is quite effective for most samples, but it 
is important to allow for manual adjustments in order to get 
the most aesthetic mix of the two signals. Note that in DJing 
situations, it is typical for a user to modify this parameter 
dynamically, bringing the mixed-in sound in and out based 
on the musical context. 

3 A Mixing Suitability Metr ic 
Now that we have a variety of matches, we would like to 

evaluate how good each match is.  There is of course the  
correlation value C[s]  of each match, but this number is not 
very informative.  It is more the relative shape of the peak 
with respect to the other matches – we have found that if the 
match values are fairly uniform across timescale (see figure 
below), none of the matches are likely to be particularly 
good.  On the other hand, if there are clear, isolated peaks, 
the matches are significantly better.  In the Figures below, 
we show the difference between bad and good match ranges 
for C[s] : 
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Figure 8: Correlation values C[s] for  matching two 
melodic pieces (Mozar t K . 331, 3 and Clay Aiken's 
" Invisible" ). 
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Figure 9: Correlation values C[s]  for  matching a rock 
song (Outkast's " Hey Ya" ) and a techno song (Jan 
Johnston's " Superstar" ). 

From looking at Figures 8 and 9, we can easily see that 
while the correlation scores for both examples are in the 
same range, the latter plot has a clear set of peaks while the 
former has no values that really stand out.  Of course, it is 
probably not practical to show this plot to the DJ; instead, 
we would like to encapsulate this property of the matches in 
a single number that can represent that suitability of each 
match.  To do this, we simply take the value of the peak 
normalized by the mean and variance of the match curve, 
but with one caveat: we remove the area corresponding to 
the peak of interest.  We do this because we do not want the 
values from the peak itself to affect the variance; if it is 
indeed a true outlier, it can significantly affect the 
mean/variance.   

To remove the peak context, we bracket the peak by the 
valleys to the left and right of the peak, where we define 
valleys in the same way that we defined peaks, i.e., points 
that are lower than both their left and right neighbors.  In the 
figure below, we show a zoomed-in view of a peak and its 
surrounding valleys: 
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Figure 10: Peak (marked by red +) and  sur rounding 
valleys (marked by green +'s). 

For a particular peak location at s* , we compute the peak 
suitability p as follows: 
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where C is the mean of C[s] , again excluding the context 
of the peak k* .  Using this measure, the suitability for the 
top peak in Figure 9 is 2.74, whereas for Figure 10 it is 7.88.   
In general, we found that peaks with suitability values 
greater than 3.0 tended to result in good matches, while the 
rest were of variable quality.  



4 Choosing the Right Mix 
In order to test our method on a wide variety of songs, we 

developed a simple exploratory interface that would allow a 
user to apply our methods to arbitrary music files. We show 
a screenshot in the figure below:  

 
Figure 11: Inter face for  mixing song pieces.  The user  
can load pieces of songs into the two selection boxes, see 
their  respective energies, compute the best alignments 
(shown in the lower  window), and then choose and play 
the mixes from the top peaks in the alignment scores. 

The user can choose pieces from arbitrary songs, with the 
first song as the “master,”  which is preserved with its 
original timescale, and the second as the “slave,”  which will 
be modified and shifted to best fit the first song.  The user 
can then see the energy waveforms of the signals, compute 
the matches, and then choose from the peaks of C[s]  and 
play the resulting mixes.  Because we can compute C[s]  for 
12 second segments in only 0.5 seconds, the user can play 
with different mixes in real time.   

This brings us to the important question of which peak to 
choose, if any.  The particular choice depends both on the 
suitability and on the context.  If the suitability is low, it 
may be better not to mix at all.  Even with a strong match, 
though, there will in general be several choices to pick from. 
The highest peak will tend to produce the best mix, but if 
the method is being applied to a DJing context, it is more 
important to choose a peak with a value of s close to 1, so as 

to require minimal distortion/stretching of the backing 
signal. 

5 Results 
To demonstrate the results of our method, we will both 

graphically show the different alignments chosen by the 
algorithm and present audio examples of the match results.   

5.1  Across Genres 
We will first show graphically the different alignments 

selected by our algorithm.  Returning to the songs from 
Figures 1 and 2, Mozart’s K. 331 movement 1 and The 
Realm’s “This Is Not a Breakdown,”  we show the 
correlation scores C[s] across timescales for this set: 
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Figure 12: Correlation scores C[s] for  The Realm's 
" Breakdown"  scaled and shifted against Mozar t's K. 
331, movement 1. 

The two strongest peaks, with suitabilities 7.81 and 3.07 
respectively, are at timescalings 0.65 and 0.98.  In the 
figures below, we show the energy waveforms of the scaled 
and shifted signal, b’ , along with the energy for the 
untouched a, the master signal.  
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Figure 13: Energy waveforms E[k] for  the or iginal signal 
a and the timescaled/shifted  b', choosing the peak s=0.65 
(K. 331 mixed with “ Breakdown” ).   Note that the 
energy is now aligned (compare to Figure 1). 

Notice how this best match has resulted in the alignment of 
the beats from “Breakdown” with the rises and falls in the 
Mozart piece (compare to the original pair in Figure 1).  



While this match corresponds to a significant slowdown of 
“Breakdown,”  it is far stronger than the other match.  Also, 
since “Breakdown” is heavily beated, the slowed version 
still sounds reasonable, and the strong alignment of the 
signals is pleasing to the ear.   

In the next figure, we show the results of using the second 
match (s=0.98): 
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Figure 14: Energy waveforms E[k] for  the or iginal signal 
a and the timescaled/shifted b' , choosing the peak s=0.98 
(K. 331 mixed with “ Breakdown” ). 

In this case, the techno piece is much closer to its original 
speed.  While it is not as strong a match in terms of its 
suitability value, it still makes for a good mix. 

In this next example, we use a different genre for the 
master signal – classical Indian music.  While there are 
drums in this music, they are not at all regular, and the time 
signatures of such pieces can be very complicated indeed.  
In this case, we are using Ravi Shankar’s “Dadra”  as the 
master signal, and Transa’s “Enervate”  as the signal to mix 
in. 
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Figure 15: Correlation scores C[s] for  Transa’s 
“ Enervate”  scaled and shifted against Ravi Shankar ’s 
“ Dadra.”  

Again we see some fairly strong peaks; here the top values 
are at s=1.01 and 0.69 with suitabilities of 3.4 and 2.33.  
Though the latter suitability is low, it is clear from how it 
stands out that it is still a significant peak, and in fact when 
played results in a good mix.  This again shows that our 
suitability metric tends to be a sufficient but not necessary 
condition for a good mix; in the end, a visual inspection of 

the match peaks C[s]  is still the best way to determine 
whether a peak is worth investigating. 

We now look at the match from the stronger peak, s=3.4.  
This results in a great mix, and in the figure below it is 
possible to see how the beats have been timescaled and 
shifted to match the energy in the Shankar raga. 
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Figure 16: Energy waveforms E[k] for  the or iginal signal 
a and the timescaled/shifted b' , choosing the peak s=1.01 
(“ Dadra”  mixed with “ Enervate” ). 

We have tried our method on a wide variety of other 
popular music and found that we can find strong 
techno/dance matches and good mixes for everything from 
the accordion solos in the Amelie soundtrack to the rap 
rhythms of Outkast.  On the other hand, our attempts to mix 
different melodic songs did not prove very successful for 
two reasons. First, the songs were typically in different keys 
and had different lyrics, resulting in a cacophony of detuned 
voices when combined.  Second, when neither song had a 
strong beat, there would be no matches with a high 
suitability – essentially, all choices of scales and shifts were 
equally bad. 

5.2  Audio Examples 
While we have computed and discussed a wide variety of 

examples with popular music, due to copyright restrictions, 
we cannot place these samples online.  As a result, we have 
combined segments of our own music to produce a number 
of audio examples.  These are available at the following site: 
http://www.research.microsoft.com/~sumitb/musicmixexam
ples.  

5.3  Failure Modes 
Along with the successes of the method, it is important to 
point out where it fails.  The first and most obvious failure 
mode is when trying to combine two segments of non-beat 
oriented music as discussed above. 

The second mode is more subtle and appears in the more 
typical case of mixing beats with a piece of melodic music. 



Though much of the advantage and robustness of our 
algorithm is due to its avoidance of ever counting or even 
paying attention to the beat structure, in certain situations 
this is also its Achilles tendon.   

In essence, our algorithm tries to find the best alignment 
of the energies of the two songs given all scalings and 
shiftings of the beat track.  Songs without beats still often 
have significant energy alignment with respect to their time 
signature, and this is what allows our method to work so 
well.  However, since we are making no attempt to examine 
time signature in either song, there are situations in which 
fitting three beats of the backing track to a measure in the 
other song is almost as good as fitting four, though 
perceptually there is a huge difference.  In the following 
example, we show the results of matching The Realm’s 
“This Is Not a Breakdown” to Beyonce’s “Baby Boy:”  
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Figure 17: Correlation scores C[s] for  The Realm’s 
“ Breakdown”  scaled and shifted against Beyonce’s 
“ Baby Boy.”  

There are a number of very strong peaks in this match.  
The first peak results in an excellent mix, with two beats of 
the techno track to every beat of Baby Boy.  The second 
peak, though, at s=1.05, is another story entirely: 
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Figure 18: Energy waveforms E[k] for  the or iginal signal 
a and the timescaled/shifted b' , choosing the peak s=1.01 
(“ Baby Boy”  mixed with “ Breakdown” ). 

Examining the alignment closely, we can see that there are 
three beats of the techno track to every major beat of the 
first signal – reasonable in terms of energy alignment, but 
terrible in terms of mix quality.  Unfortunately, there is no 
easy fix to this problem – without examining the beat 

structure in some way, it is very difficult to determine this 
match will be perceptually bad.  The ability of the DJ to 
preview the top matches is thus a critical element to 
applying this work.  

6 Future Work 
There are a variety of directions in which we wish to take 

this work.  The first is to allow switching of the master and 
slave signals in the interface, so that a DJ can easily choose 
to stretch the melodic piece instead of the techno.  The 
algorithm is of course agnostic as to which piece is which; 
this is merely an interface issue.  Next, we would like to 
examine the use of this method to blend the ends of songs 
together as a DJ would do in a club – a simple variation on 
our existing procedure. Finally, we would like to 
incorporate some aspects of structure understanding to our 
algorithm in order to avoid the 3/4 mismatches described in 
the previous section. 

7 Conclusions 
We have presented an efficient method for robustly 

aligning beat-oriented music to a wide variety of music 
genres.  We have shown how we can do this via energy 
alignment and thus without doing explicit beat-counting in 
either song, and how we can speed up the computation 
greatly with justifiable approximations.  We hope that this 
method will be useful to expand the range of the DJ’s craft, 
and allow her to now mix in pieces from arbitrary genres 
live without the need for manual, offline alignments. 
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