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Abstract— Supporting interactive, multiplayer games on mobile phones
over cellular networks is a difficult problem. It is particularly relevant now
with the explosion of mostly single-player or turn-based games on mobile
phones. The challenges stem from the highly variable performance of cel-
lular networks and the need for scalability (not burdening the cellular in-
frastructure, nor any server resources that a game developer deploys). We
have built a service for matchmaking in mobile games – assigning players
to games such that game settings are satisfied as well as latency require-
ments for an enjoyable game. This requires solving two problems. First,
the service needs to know the cellular network latency between game play-
ers. Second, the service needs to quickly group players into viable game
sessions. In this paper, we present the design of our service, results from
our experiments on predicting cellular latency, and results from efficiently
grouping players into games.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network management; K.8.0 [Personal Computing]: Gen-
eral—Games

General Terms
Design, Measurement, Performance

Keywords
Latency Estimation, Matchmaking, Mobile Gaming

1. INTRODUCTION
Games have become very popular on mobile phones. The

iPhone app store has over 300,000 applications as of October 2010,
roughly 20% of which are games [26], and yet 80% of application
downloads are games [16]. On the Windows Phone 7 platform, the
top applications are games, all the way down to number 29 (as of
10 December 2010). Despite this popularity, mobile gaming is still
in its infancy. The vast majority of mobile games are either single
player, turn-based (latency-insensitive games such as card games
or strategy games), or multiplayer only over Bluetooth or Wi-Fi.

We believe that interactive multiplayer games, such as FPS
(first-person shooter) or racing games, that work over cellular data
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are just around the corner. While a few are currently available,
for them to become numerous and successful, there are many
mobile systems challenges to overcome. In a very recent inter-
view [27], John Carmack, co-founder of id Software, said (in
the context of FPS games and 3G) : “multiplayer in some form
is where the breakthrough, platform-defining things are going to
be in the mobile space”. One urgent challenge is managing the
highly variable network performance that applications experience
over 3G cellular [21]. Already a difficult problem for multiplayer
games on home broadband connections [5], a player with poor
network performance can destroy the experience of others in the
same networked game.

The key to solving this problem is effective matchmaking. Play-
ers should be grouped into games where each player’s network per-
formance meets the needs of the game, and the size of the group
is as large as possible within the limits of the game’s architecture.
For matchmaking to be effective, it must solve two problems. First,
the network performance between (potentially many) game players
needs to be estimated. This estimation should be done quickly so
that impatient gamers are not left waiting, and in a scalable way
so as not to overburden cellular network links nor expensive server
bandwidth. Second, players need to be grouped together into games
based on their network performance and desired game characteris-
tics (e.g., game topology or size). This can be difficult if there are
many players.

A particularly challenging type of matchmaking is that for P2P
games. In such games, the game developer is not burdened with the
expensive task of maintaining high-powered and high-bandwidth
servers in many locations across the planet. Instead, individual
player devices are matchmaked into different game sessions and
they exchange game state among themselves. This is a very popular
architecture for multiplayer gaming – Xbox LIVE supports game
sessions in this way that are measured in the 100s of millions each
month [5].

In this work, we address the problem of matchmaking for P2P
multiplayer games over cellular data networks. Today, a major US
cellular carrier charges an additional $3 per month for a public IP
address and unrestricted inbound traffic to a phone. With this op-
tion, we have been able to communicate directly between phones
over 3G without going through a server on the Internet. We take the
controversial stance that soon, most cellular data plans will include
this feature by default and there will be many such P2P applications
on phones. Even though we address matchmaking for P2P games,
our system and contributions are also applicable to the traditional
server-based game matchmaking problem.

As far as we know, this is the first paper to address the match-
making problem for multiplayer mobile games over cellular net-
works. Specifically, our contributions include:



• We show that not only is phone-to-phone traffic feasible over
cellular networks, it reduces latency compared to via an In-
ternet server.

• Despite the difficulty that prior work [7, 21] implies, we
show that it is actually possible to estimate or predict the
latency that a phone will have. We do so based on the ex-
perience of other phones and information about the cellular
connection that is available to the phone. Our goal is not
to identify all such predictors – that is a moving target with
rapidly evolving cellular networks. Rather, our goal is to
show that such predictors do exist and can be easily deter-
mined automatically without requiring detailed and propri-
etary information from cellular networks.

• We show how, using such latency estimation, we can signif-
icantly reduce the burden on individual phones and cellular
networks for effective matchmaking.

• We design and implement Switchboard, a matchmaking
system for mobile games that is scalable not only in the
measurement overhead but also in grouping players together
quickly even when there are tens of thousands of players.

2. MOTIVATION AND PRIOR WORK

2.1 Latency in multiplayer games
Multiplayer gaming has gone past the confines of a single con-

sole or set of consoles on the same LAN to working across the Inter-
net. This has come at the cost of additional latency. Studies have es-
tablished that user behavior and performance in games can change
significantly with 50ms-2000ms of additional latency, depending
on the type of game [12]. Some games use high-precision objects
(e.g., rifles and machine guns) and first-person perspectives which
tighten the latency bounds that a player can tolerate. As a result,
researchers and game developers have built several techniques for
hiding latency in networked games. Not surprisingly, these tech-
niques rely on manipulating how time is perceived or handled by
different components of the game.

Some games advance time in lockstep [8] or with event-locking.
A player can advance to the next time quantum only when all other
players (or all other players that this player is directly interacting
with) are also ready to advance. So if any player experiences oc-
casional high network delay, the lockstep protocol will ensure that
everyone proceeds at the (slowest) pace so that there is no incon-
sistency in the distributed game state.

Some games use dead reckoning [9] to predict the future posi-
tions of players or objects (such as bullets). So if due to network
delay, I do not receive a new position update from a remote player
or object, I can use the last few updates to plot a trajectory and
speed and guess the current position. If the packet arrives later and
the position calculation does not match, the software will have to
reconcile inconsistent game state [11], which often appears to the
player as a “glitch in the matrix” – an object that suddenly jumps
from one spot to another. Some games use simple linear trajectory
calculations, while others calculate more complex angular veloci-
ties and use human movement models.

These techniques are effective and commonly used for hiding
network jitter. That is, if the additional network delay is occasional,
the player may not notice the side effects of these techniques. How-
ever, if the typical network latency of one (or more) player(s) is
high, then the experience for all players suffers because games in
lockstep will progress very slowly, or there will be many consis-
tency corrections with dead reckoning.

2.2 Matchmaking in online games
To reduce the impact of players with persistently high latency,

many online games use some form of matchmaking to setup each
game session. When a player launches a game and selects online
gameplay, the game will typically make the player wait in a virtual
“matchmaking lobby”. While in this lobby, game clients connect to
a matchmaking service that maintains a current list of servers with
game sessions that are waiting for players to join [15]. At any point
in time, there may be many game servers available for hosting a
game. Clients will estimate their latency to each of these servers,
and join one that they have low latency to.

While there are many online games that have servers on the Inter-
net, there are major costs associated with maintaining these servers.
Servers across the planet are needed to provide low latency games
to players in different geographic regions. Each such location may
need many servers to host the large numbers of game sessions that
popular games experience. The traffic consumed by such hosting
can be enormous, especially considering that FPS games frequently
exchange packets and can last for as long as 7-19 minutes [17].

A popular alternative is to leverage the compute power of large
numbers of game consoles and PCs on the Internet. Some P2P
games use a star-hub topology, where one host player serves as
the central point of coordination and all the client players exchange
game state updates through the host. Hosts can be selected based
on their network connectivity and past success in hosting games.
Such games have similar communication patterns as client-server
games, except that a game player replaces an Internet server as the
hub. Another commonly-used topology is the clique, where one
player can directly communicate with any other player in the group.
It avoids some shortcomings of the star-hub topology, namely the
single point of failure and performance bottleneck. However, it is
more challenging for the game developer to maintain consistency
among players. Microsoft Xbox LIVE is a very popular platform
for P2P games and matchmakes games using the star-hub topology
– it has over 23 million users [29] and the number of online P2P
game sessions for individual popular game titles are measured in
the 100s of millions per month [5], with roughly 16 players in each
game session.

2.3 P2P games over cellular networks
Inspired by the popularity of P2P online games, we believe that

low latency, multiplayer games over cellular data networks are bet-
ter enabled through P2P (peer-to-peer or phone-to-phone, take your
pick). Mobile platforms have a large number of games today, writ-
ten by a variety of developers. These platforms, such as Windows
Phone 7, iPhone, Android, are used in many regions of the world.
Not all game developers can afford to host servers everywhere, pay
for traffic, and manage them.

In addition to the cost benefit, the latency benefit of P2P is signif-
icant. In Figures 1 and 2, we show the latency between two phones,
either directly or by summing up the individual latencies from each
phone to a mutual server. In this fashion, we can compare four
strategies – P2P, using a single server, using two servers, and using
many geo-distributed servers.

A hosting strategy with modest cost would be to have a single
server in one location, for example at the University of Washing-
ton. This strategy is 139ms to 148ms worse than P2P at the 50th
percentile. A more expensive strategy would be to host servers
at both locations in which we conducted experiments and use the
closer one, either University of Washington or Duke University –
the penalty is 47ms to 148ms. The most expensive strategy is to
host servers in many datacenters with direct peering to many ISPs
and use third-party DNS redirection services that optimize for la-
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Figure 1: CDF of ping latency between two phones on 3G
HSDPA connectivity in Redmond, WA, either direct, or via
a nearby University of Washington server, or via the best
server offered by geo-distributed Bing Search. Horizontal axis
cropped at 600ms.
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Figure 2: CDF of ping latency between two phones on 3G HS-
DPA connectivity in Durham, NC, either direct, or via a nearby
Duke University server, or via a distant University of Washing-
ton server, or via the best server offered by geo-distributed Bing
Search. Horizontal axis cropped at 600ms.

tency, such as a large search engine like Bing – this strategy is 27ms
to 69ms worse than P2P. Depending on the type of game [12], these
latency penalties can deteriorate the game experience. Hence, we
believe P2P is an attractive model for mobile games as well.

2.4 Cellular network performance
As is apparent from Figures 1 and 2, phones in different parts of

the same mobile network can experience very different latencies.
One of the most important aspects of matchmaking is knowing the
latency that each player will have to each potential peer. While this
has been studied for consoles on the Internet [5], there are several
open questions in the mobile context. Should each phone ping all
the available peers to estimate this latency? For how long should
it ping? How often do these latency estimates need to be updated?
How will this scale to a popular game with many players? Pre-
dicting future latencies based on past latencies or other information
about the network can be used to reduce the overhead of such mea-
surements.

Recent work has characterized the performance of 3G [28], and
the performance of TCP flows [14] and applications [24, 21] over
3G. This work has shed light on different applications experiencing
different network performance and improvements to TCP through-
put. CDNs select low-latency servers by typically geo-locating the
client (or LDNS server) IP address. However, recent work [7] on
3G phones shows this will not work in the cellular domain. They
note that different cities have different latency distributions, but

with the caveat that the measurements were to a single server, and
time variation was not factored out. That work motivated us to ex-
plore this problem in more depth and understand whether it is even
possible to predict cellular network latency.

For P2P communication to work over cellular data networks,
phones in a game session have to be able to receive inbound traf-
fic connections. While on some mobile networks in the US this
is not currently possible, AT&T Wireless provides a public IP ad-
dress to a phone and unrestricted inbound traffic for an extra US$3
a month [6]. Sprint offers the same feature for free. We believe
that once compelling applications such as fast, multiplayer games
become popular, this will be the default behavior.

2.5 Grouping
Once the latencies between players are measured or predicted,

the remaining challenge in matchmaking is to group them into vi-
able game sessions. Each session should have only those players
that have latencies to each other within the tolerance of the game.
This tolerance may be specified, for instance, as a 90th percentile
latency that must be below a certain threshold. Even though 10%
of the time higher latencies may be experienced, those might be
corrected with software techniques such as dead reckoning. Each
session should be packed with as many viable players as the game
allows (just a single player in each session is an easy solution but
rather boring for the player) 1.

Ideally, a single matchmaking system should accommodate dif-
ferent types of P2P topologies that game developers may use, such
as clique and star-hub. Creating such groups under latency con-
straints while maximizing group sizes is related to the minimum
clique partition problem in graph theory. If we treat each player
as a node and connect two nodes with an edge if their latency is
below the developer’s constraint, we can cast the grouping problem
as partitioning the graph into cliques with the objective of minimiz-
ing the number of cliques under the clique size constraint. Finding
the minimum clique partition of a graph is NP hard [25]. Polyno-
mial time approximation algorithms for this problem exist only for
certain graph classes [22]. Gamers are rather impatient and would
prefer not to spend much time in the matchmaking lobby waiting
for a match to happen. Grouping should run fast and scale to a large
number of players in case a game becomes popular.

This grouping problem for P2P games is markedly different from
that for client-server games. In client-server games, each player
typically picks a game server based on a combination of server
load, client-server latency, and number of players on a server [15].
This selection does not take into account the latency of other play-
ers who have picked that server, and the player may still experience
poor gameplay if other players have chosen poorly.

3. ESTIMATING CELLULAR LATENCY
Each multiplayer game will have its own tolerance for latency

between players. For instance, a fast-paced, action-packed shooter
game may require that for 90% of traffic, the latency should be
under 150ms, while a different game may tolerate 250ms at the
90th percentile because it uses bows-and-arrows or uses very so-
phisticated dead reckoning. If the matchmaking service knows in
advance what latency each player will experience to each of the

1After a game session has been formed and gameplay has begun,
some games still allow new users to join the session. This type of
matchmaking is easier given that for each new player, the choice
is among a (much smaller) number of ongoing game sessions. In
this paper, we focus on the original, harder problem of grouping for
new game sessions.
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Figure 3: Simplified architecture of a 3G mobile data network.
RNC is a Radio Network Controller, and handles radio re-
source management. SGSN is a Serving GPRS Support Node,
and it handles mobility management and authentication of the
mobile device. GGSN is a Gateway GPRS Support Node, and
interfaces with the general IP network that a mobile operator
may have and the Internet.

potential peers for the duration of a future game session, it can ap-
propriately assign players to each other. Due to lack of information
from the future, we need to predict the future latency based on in-
formation currently available.

We now present our findings from several measurements we have
conducted to shed light on how we can predict future latency on
3G networks. Our measurements have been taken over multiple
days, in each of several locations: Princeville (Kauai, HI), Red-
mond (WA), Seattle (WA), Los Angeles (CA), Durham (NC). In
almost all cases, each graph that we present is visually similar to
those from other locations and days. When they are not similar, we
present the dis-similar graphs as well for comparison. Our mea-
surements were conducted primarily using a pair of HTC Fuze
phones running Windows Mobile 6.5 on AT&T Wireless, how-
ever we also have measurements from a pair of Google Nexus One
phones running Android 2.2 on T-Mobile in Durham. Except when
explicitly indicated, we restrict all our measurements in this paper
to the HSDPA version of 3G, and only consider measurements after
the cellular radio has achieved the “full power” DCH mode. Except
when explicitly indicated, in each experiment the phones were sta-
tionary.

We use the term FRH throughout the paper – it is the “First Re-
sponding Hop” – that is, when a traceroute is attempted from a
phone to any destination on the Internet, it is the first hop beyond
the phone to respond with ICMP TTL Expired packets (typically at
a TTL of 2). Based on our measurement experience and textbook
understanding of HSDPA 3G cellular networks, we believe this is
the GGSN [20]. This device is deep in the mobile operator’s net-
work, and all IP traffic to/from the phone traverses this device, as
shown in Figure 3. When considering latency variation, we focus
on the FRH because much of the variability is to this observable
hop, and subsequent latencies to various Internet endpoints show
almost no additional variability in comparison. Our measurements
use 40 byte packets, and occur at the rate of once every 80ms to a
variety of destinations – the rate to the FRH is once per second.

3.1 Predicting the future latency of a phone
based on current latency

3.1.1 How does 3G latency vary over time?
For wired connections to the Internet, a common latency metric

is the mean of a small number of pings. This generally suffices as
a reasonable predictor of future latency for many applications be-
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Figure 4: RTT from a phone in Princeville, HI on AT&T Wire-
less to the FRH. Each point is the median latency over 15 sec-
onds. Graph is zoomed into a portion of the data to show detail.
Data from Redmond, Seattle, Durham, and Los Angeles are vi-
sually similar.
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Figure 5: RTT from a phone in Redmond, WA on AT&T Wire-
less to the FRH. On the horizontal axis, we vary the length of
time window over which we calculate the latency at the various
percentiles indicated by the different lines. On the vertical axis,
we show the difference in ms between two consecutive time win-
dows at the different percentiles, averaged over the entire trace.
Data from Princeville, Seattle, Durham, Los Angeles for AT&T
Wireless are visually similar.

cause packet loss is typically minimal, and routing and congestion
change at relatively longer timescales. However, it is unclear if the
same applies for cellular data. We need to understand how latency
varies over time – for instance, are latency measurements from one
second representative of the duration of a game (e.g. next several
minutes)?

In Figure 4, we show the latency that a phone experiences over
a short duration of time. As the figure shows, there is a significant
amount of latency variation, and at first glance, it does not appear
that a 15 second window of measurements is very predictive of
future latencies.

3.1.2 Over what timescale is 3G latency pre-
dictable?

If we pick too short a window of time over which to do latency
measurements (e.g. 15 seconds), those measurements do not fully
capture the variability of this connectivity and hence are not pre-
dictive of future latency. If we pick too long a time window, it may
capture longer term drift in network characteristics, and require a
larger measurement overhead. Thus we now vary the time window
over which we compute a latency distribution, and examine how
similar that latency distribution is to the next time window.



0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250

m
ea

n
 s

eq
u

en
ti

al
 d

if
fe

re
n

ce
 (

in
 m

s)
 

interval size (in minutes) 

95th

90th

50th

25th

Figure 6: RTT from a phone in Durham, NC on T-Mobile to the
FRH. On the horizontal axis, we vary the length of time window
over which we calculate the latency at the various percentiles
indicated by the different lines. On the vertical axis, we show
the difference in ms between two consecutive time windows at
the different percentiles, averaged over the entire trace.
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(in minutes) for a phone in Redmond, WA on AT&T Wire-
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points from each of two successive time windows. The percent-
age of null hypothesis rejection is shown as the intersection of
a distribution with the chosen significance level. A lower per-
centage of rejected null hypotheses is an indication of greater
stability across successive time windows. The horizontal axis is
clipped on the left. For clarity, a limited set of window sizes are
shown. Data from Princeville, Seattle, Durham, Los Angeles
are visually similar.

In Figure 5, we show the mean time window-to-window change
in latency to the FRH, which shows a dip around 15 minutes.
Across different time durations, this is the duration where one
measurement window is most similar to the next window. Note
that across our different measurements, this analysis for the T-
Mobile network in Durham exhibited slightly different behavior,
and hence we present Figure 6. However again 15 minute time
windows are most predictable of the next for this different net-
work (using similar HSDPA 3G technology but at different radio
frequencies). For a more rigorous statistical analysis, we include
Figure 7, which confirms the highest stability for the 15 minute
duration.

3.1.3 For how many future time windows is one win-
dow predictive of?

We have empirically established that latency measurements from
a 15 minute time window are fairly predictive of the immediately
subsequent time window. In Figure 8, we consider how rapidly
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Figure 8: For any given 15 minute time window, from how far
back in time can we use latency measurements and still be ac-
curate? The horizontal axis shows the difference in latency at
the 95th percentile between a time window and a previous time
window. The age of the previous time window is shown in the
legend. The vertical axis shows the CDF across all the different
15 minute intervals in this trace. The horizontal axis is clipped
on the right.

this predictive power degrades over successive 15 minute time win-
dows. If a game developer is concerned about the 95th percentile
of latency that players experience, we see that using measurements
that are 15 minutes stale give an error of under 17ms for 90% of
the time. If we reach back to measurements from 105 minutes ago
(the “7 previous” line), this error increases to 29ms. For brevity
we do not show graphs of other percentiles, but for instance, at the
50th percentile the errors are 8ms and 12ms respectively. For the
remainder of this paper and in the design of Switchboard, we use
measurements that are stale only by 1 time window to minimize
prediction error. However, the measurement overhead of our sys-
tem can be improved by allowing older, less accurate predictions.

3.1.4 How many measurements are needed in each
time window?

The results we have presented so far have been generated from
latency measurements at the rate of once per 1 second. For a 15
minute window, 900 measurements can be a significant overhead
for a phone, both on the battery and on a usage-based pricing plan.
In Figure 9, we consider by how much we can slow down this mea-
surement rate while still obtaining a latency distribution that is sim-
ilar. If the sampling rate is once per 15 seconds, there is relatively
little degradation in the latency distribution. There is less than 11ms
difference at the 50th percentile for all of the latency distributions
for every 15 minute window in the trace, between sampling at once
per 1 second and once per 15 seconds. For the 95th percentile, for
more than half of the time windows, the difference in latency is only
11ms. We believe that sending and receiving 60 packets over the
course of 15 minutes is a reasonable trade-off between expending
limited resources on the phone and measurement accuracy.

3.2 Using the latency of one phone to predict
the future latency of a different phone

So far, our experiments have found that a phone needs to mea-
sure its latency about 60 times in a 15 minute window to predict
its latency in future 15 minute windows. While this significantly
improves accuracy compared to naively using a few ping mea-
surements, and significantly reduces overhead compared to naively
pinging continuously for several minutes, there is still a large net-
work overhead to every phone measuring its own latency when
multiplayer mobile gaming becomes popular.
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Figure 9: Impact of reducing the measurement sampling rate
for a 15 minute window of latency from a phone in Durham,
NC on AT&T Wireless to the FRH. The horizontal axis shows
the difference in latency at the specified percentile between us-
ing a measurement rate of once per 1 second and using a mea-
surement rate of once per 5 to 600 seconds as indicated. The
vertical axis shows the CDF across all the different 15 minute
intervals in this trace. Note that at a sampling rate of once per
90 seconds for 15 minutes, we have only 10 samples and hence
we cannot calculate the 95th percentile. The horizontal axis is
clipped on the right. Data from Princeville, Redmond, Seattle,
Los Angeles are visually similar.

We now consider the extent to which one phone’s latency is rep-
resentative of another phone’s, and hence reduce the burden on the
network by sharing recent measurements with other phones. As we
showed in Figures 1 and 2, a phone in Redmond has very different
latency to one in Durham, and hence we need to determine what
parameters of connectivity that if are the same between two phones
also mean that they share similar latency.

3.2.1 Connectivity parameters with little influence
We have conducted many experiments in several locations to ex-

plore how much different connectivity parameters influence a cell-
phone’s latency. Due to lack of space and for conciseness, we now
briefly summarize our negative findings before presenting our pos-
itive findings in more detail.

We know from prior work [7] that the public IP address a phone
is assigned can vary and does not correlate with its location. Using
similar data to that prior work, we reconfirmed this finding and
hence do no believe that the public IP address is representative of
a phone’s latency. In fact, for Figures 1 and 2, each phone had the
same IP address regardless of which location it was in.

Our experiments show no discernible correlation between 3G
signal strength at the phone and its latency to the FRH. While ini-
tially counter-intuitive, this observation is borne out by our “text-
book” understanding of modern cellular standards. Unlike earlier
3G standards [10], the HSDPA standard provides a reliable wire-
less link to the cellular phone by performing retransmissions at the
L1 physical layer between the phone and the celltower [20]. Poor
signal strength should result in higher BLER (block error rates).
However, in general, power control and adaptive modulation keep
the channel fast and efficient at a variety of signal strengths. BLER
appears to be a concave function of SNR [20], and hence the sig-
nal strength has to be extremely low before a bad BLER of above
10% is experienced. Furthermore, the use of dedicated channels,
short TTI (transmission time interval) of 2ms, and explicit ACK
/ NACK mechanisms mean that retransmitting corrupted blocks is
extremely fast (in the order of a few ms).

We have also conducted experiments at a variety of speeds while
driving in city streets and highways. After accounting for cell-
tower changes, we see little correlation between speed and latency,
though unfortunately the highway patrol did not let us conduct ex-
periments much beyond 60mph.

Our experiments do show a long term trend in latency variation
that suggests a diurnal effect, that we suspect is due to human-
induced load on the network. However, the same time window
from one weekday is not very predictive of the same window for
the next weekday or the same day the following week.

All of the results we present in this paper are specific to HSDPA
connectivity. Earlier versions of 3G do exhibit different latency dis-
tributions, and especially 2G technologies GPRS and EDGE which
are dramatically different. We do not explore these older technolo-
gies further in this paper.

3.2.2 Phones under the same celltower
When a phone is connected to a cellular network, certain parame-

ters of that connectivity are exposed to the mobile OS – CID, LAC,
MNC, MCC. The CID (Celltower ID) is a number that uniquely
identifies the celltower. The LAC (Location Area Code) is a logi-
cal grouping of celltowers that share signaling for locating a phone
(a phone that roams between celltowers with the same LAC does
not need to re-update the HLR and VLR location registers). The
MNC and MCC numbers uniquely identify the mobile operator
(e.g., AT&T Wireless or T-Mobile).

We conducted experiments where we placed one phone at a fixed
location for a long duration of time, and placed a second phone for
30 minutes each in a variety of locations. One such experiment
was in Seattle, another in Redmond, and one in Durham. Figure 10
shows maps of each of these locations and Table 1 shows the CID
and LAC numbers for the celltowers that the phones connected to.

Figure 11 shows the results of the Seattle experiment. The “S-
home” lines show the difference in latency when both phones were
placed next to each other, which is about 30ms in most instances.
The “Latona” lines show the difference when both phones were
connected to the same celltower but one was further away. These
lines are almost indistinguishable from the “S-home” lines. The
other locations have different CIDs from “S-home”. Some of these
locations have very different latency to the stationary phone at “S-
home”, while some are similar. We see similar behavior with ex-



Figure 10: Maps showing measurement locations in (top) the
Seattle area of Washington, (middle) the Redmond area of
Washington, (bottom) the Durham and Raleigh areas of North
Carolina.

Seattle Experiment
location CID LAC
S-home 10932 42981
Latona 10932 42981
Northgate 11403 42980
U Village 11038 42981
Herkimer 11847 42981
1st Ave 12192 42981

Redmond Experiment
location CID LAC
M-home 15539 42993
mailbox 15539 42993
J-home 15539 42993
H-home 15539 42993
QFC 15499 42993
REI 15341 42993

Durham Experiment
location CID LAC
R-home 919 12998
Breakfast Restaurant 919 12998
J-Home 308 12998
Large Retailer 308 12998
Durham Mall 1618 12998
Raleigh Mall 337 12998

Table 1: Network parameters observed at 6 different locations
in each of the three experiments – top left is Seattle, top right is
Redmond, bottom is Durham. In all cases, the phones were con-
nected to AT&T Wireless with MNC 410 and MCC 310, over
HSDPA with 3-4 bars of signal strength. For the Seattle exper-
iment, one phone was left at “S-home” while the other visited
each of the 6 locations. For Redmond, the stationary phone was
at “M-home”, and for Durham it was “R-home”.

periments in other locations. In Figure 12, the locations with the
same CID as the stationary phone experience similar latency. Of
the ones with different CIDs, one has very different latency (“REI”)
while another has very similar latency (“QFC”). With Durham in
Figure 13, the two locations with the same CID (“R-home” and
“Breakfast Rest.” have similar latency, while most of the other
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Figure 11: Difference in latency between a stationary phone at
“S-home” and a phone placed at a variety of locations in Seat-
tle. Each line is a CDF of ((xth percentile latency over a 15-
minute interval from stationary phone at “S-home”) - (xth per-
centile latency over the same 15-minute interval for the other
phone at the location in the legend)) computed for all possible
15-minute windows, in 1 minute increments. The xth percentile
is 50th for the top graph, 90th for the middle, and 95th for the
bottom. Horizontal axis is cropped on the right.

CIDs are different. We have seen similar behavior across different
days (both on weekdays and weekends) and several other locations
in each of these areas, but we do not enumerate those experiments
here for conciseness.

From these experiments, we believe that phones under the same
RNC (see Figure 3) experience similar latency. The RNC is a phys-
ical grouping of celltowers, where the RNC controls radio resource
allocation for the celltowers under it. We believe that latency de-
pends a large part on congestion and provisioned capacity, which
varies from RNC to RNC, and this theory is also suggested by prior
work based on 3G measurements in Hong Kong [28].

Unfortunately, the identity of the RNC is not exposed to the OS
on the phone, as far as we know. While the LAC identity is ex-
posed, LAC is a logical grouping having to do with signaling which
has little impact on latency once a phone has initiated a data con-
nection. Not knowing which RNC a celltower is part of, we use
the more conservative approach of sharing latency profiles between
phones connected to the same CID only. There will be phones un-
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Figure 12: Difference in latency between a stationary phone at
“M-home” and a phone placed at a variety of locations in Red-
mond. Each line is a CDF of ((xth percentile latency over a 15-
minute interval from stationary phone at “M-home”) - (xth per-
centile latency over the same 15-minute interval for the other
phone at the location in the legend)) computed for all possible
15-minute windows, in 1 minute increments. For conciseness,
we present only the 50th percentile graph. Horizontal axis is
cropped on the right.
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Figure 13: Difference in latency between a stationary phone
at “R-home” and a phone placed at a variety of locations in
Durham. Each line is a CDF of ((xth percentile latency over
a 15-minute interval from stationary phone at “R-home”) -
(xth percentile latency over the same 15-minute interval for the
other phone at the location in the legend)) computed for all pos-
sible 15-minute windows, in 1 minute increments. For concise-
ness, we present only the 50th percentile graph. Horizontal axis
is cropped on the right.

der other celltowers with similar latency as our experiments show,
but we are unable to reliably identify them.

3.3 Predicting the latency between phones
So far, the results we have presented have been intentionally lim-

ited to predicting the latency between a phone and its FRH. We
have found the ideal duration of time over which measurements
need to be taken, how many measurements are needed, and among
which phones these measurements can be shared to reduce over-
head.

However, for P2P multiplayer gaming, we need to predict the
end-to-end latency between pairs (or more) of phones. From tracer-
outes we have done between phones in the same location and across
many different locations in the US, the end-to-end latency appears
to be the sum of the component latencies – phone1 to FRH1, FRH1
to FRH2, FRH2 to phone2. This is obviously expected behavior,
and also shown in Figure 14.

The remaining task is to predict the latency between a pair of
FRH. This is a very traditional problem of scalable prediction of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

em
p

ir
ic

al
 C

D
F 

RTT (ms) 

Durham FRH to San Antonio FRH

Durham phone to FRH

San Antonio phone to FRH

phone to phone

Figure 14: CDF of RTT between a phone in Durham, NC and a
phone in San Antonio, TX. Component latencies involving the
respective FRH are also included. The FRH to FRH latency
is calculated by the difference of pings. The horizontal axis is
clipped on the right. Note that the phone-to-phone CDF is not a
perfect sum of the other three CDFs due to small variations in
latency in between traceroute packets issued at the rate of once
per second.

the latency between two points on the Internet. We can use prior
techniques such as Vivaldi [13], Pyxida [23], or Htrae [5], to name
just a few. These techniques work well if the latency does not vary
tremendously over short time scales, which is true of many types
of wired Internet connectivity. In Figure 14, we see that the left-
most line, which is the FRH to FRH latency, is fairly straight in
comparison. Hence, we rely on the demonstrated effectiveness of
prior work to solve this problem and do not discuss it in more depth
here.

In the next section, we present the design of Switchboard and
describe how we use our findings on 3G latency to improve the
scalability of matchmaking.

4. Switchboard
The goal of a matchmaking service is to abstract away the prob-

lem of assigning players to game sessions so that each game devel-
oper does not have to independently solve this. A successful game
session is one in which the latencies experienced by every player
meet the requirements of the game and the number of players is as
large as possible for the game. In using the matchmaking service,
the game developer specifies the latency requirements of the game,
and the number of players it can support.

The matchmaking service has to operate in a scalable manner.
The amount of measurement overhead for each player and on the
network in general has to be as small as possible. This is especially
true of games on phones, where the phone has limited energy and
the network has relatively limited capacity. The amount of time
that a player spends in the matchmaking lobby has to be minimal
as well, and should not grow significantly as a game becomes pop-
ular and more users participate in matchmaking. We now briefly
describe the design of Switchboard, and in particular point out how
it scales while trying to achieve low latency but large matches.

4.1 Architecture of Switchboard
As Figure 15 shows, there are two sets of components to Switch-

board – components on the clients and components on the central-
ized, cloud-based service.

The Switchboard client functionality is split into two parts. The
developer’s game code interfaces with the Switchboard Lobby
Browser – this component interacts with the Lobby Service run-
ning in the cloud. The API is described next in § 4.2. The other
part of the Switchboard client produces network measurements for
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Figure 15: Architecture of Switchboard

class BoomLobby : LobbyBrowser {
private CloudInterface myInterface;
private BoomClient myClient;
private StartGameCallback myClientStart;
private int latencyPercentile = 95;
private int latencyLimit = 250;
private int maxPlayers = 16;
public void BoomLobby(string gameLevel) {
string Hash = "Boom" + gameLevel;
myInterface = new CloudInterface(Hash,

latencyPercentile, latencyLimit, maxPlayers,
new MatchReadyCallback(this.MatchReady));

}
public void Join(BoomClient client, StartGameCallback sg) {
myClient = client;
myClientStart = sg;
myInterface.AddClient(client);

}
public void MatchReady(BoomClient[] clients) {
myClientStart(clients);

}
}
class BoomClient : MatchmakingClient {
public void BoomClient(string gameLevel) {

BoomLobby myLobby = new BoomLobby(gameLevel);
myLobby.Join(this,

new StartGameCallback(this.StartBoomGameNow));
}

public void StartBoomGameNow(BoomClient[] players) {
// ... Do game stuff here

}
}

Figure 16: C# client API of Switchboard as would be used in a
hypothetical game called “Boom”. For brevity, base class defi-
nitions are not shown here.

the cloud service to consume, and this is described in § 4.3. This
part of the client does not directly interact with the developer’s
game code.

The Switchboard cloud service handles matchmaking requests
from the Lobby Browser on the client. The Lobby Service interacts
with the Grouping Agent to place the client in a game session. The
Grouping Agent, described in § 4.4, in turn uses the Latency Es-
timator to assign clients to game sessions based on their measured
or estimated latency profile. If there is insufficient or out-of-date
measurement data, the Latency Estimator may ask the Measure-
ment Controller to schedule measurements on various clients.

4.2 Client API for Lobby Browser
Different games have different requirements for successful

matches. Our design for the Switchboard API must simultane-
ously provide ample flexibility in specifying requirements while
remaining intuitive. We enable developers to impose three types
of constraints on game formation: (1) a simple requirement for the

maximum number of players sharing the same game session; (2) a
simple restriction on the distribution of end-to-end latency between
any pair of players; and (3) segregating players into different
matchmaking lobbies based on the type of game they want to play
(e.g., players that want to play “Boom” with map “hangar” is a
completely different game from players that want to play “Boom”
with map “zombie base”).

Figure 16 summarizes the API that the game developer uses to
interact with the Lobby Browser component of Switchboard.
The game has to implement and instantiate a derived class
of MatchmakingClient. It instantiates a derived class of
LobbyBrowser by specifying the game level that the player has
selected, and the callback function that tells the game client that
matchmaking has been done. The LobbyBrowser interfaces
with the Lobby Service in the cloud, but this interaction or API
is hidden from the game developer. The LobbyBrowser just
needs to instantiate a CloudInterface, which specifies the
hash for this lobby, the latency percentile of interest, the limit for
this percentile, the maximum number of players, and the callback
function. In Switchboard, we uniquely identify each matchmaking
lobby with a hash of the combination of the game’s name and
the map or level. Grouping is conducted independently for each
unique hash. The latencyPercentile of the latency distri-
bution between any two MatchmakingClients should be less
than latencyLimit. We have provided a simple example in the
figure, where the developer wants the 95th percentile to be under
250ms.

On the cloud service side, the Lobby Service will interact with
the Grouping Agent on the client’s behalf. When the Grouping
Agent returns with a list of matches, the Lobby Service will hand
to every client the list of other clients it has been matched with. A
client may wish to re-join the lobby if a null list is returned (because
there are no other players at this time, or no others with low enough
latency).

4.3 Latency Estimator
The Latency Estimator supports the Grouping Agent. The

Grouping Agent may need the latency distribution between any
arbitrary pair of clients. Specifically, it will request latency dis-
tributions only between those clients that have the same lobby
hash. It will apply the distribution test that the game developer has
provided. Each client is identified by a unique ID, and details of
its connectivity (CID, MNC, MCC, FRH, radio link technology) –
this identification is created transparently for the game developer
in the MatchmakingClient base class definition.

The Latency Estimator relies on data stored in the Latency Data
database. This database contains raw latency measurements, of the
same form as the data in the experiments in § 3. Each record has a
timestamp, client unique ID, client connectivity (CID, MNC, MCC,
FRH, radio link technology), RTT latency, destination FRH. The
record is identifying the RTT latency between that client and the
destination FRH that it probed, which may be its own FRH or a re-
mote FRH. The database keeps a sliding window of measurements
from the past 15 minutes, as § 3 shows that older data is of lower
quality.

The database is fed by the Measurement Controller. The Mea-
surement Controller divides the global set of clients (that are cur-
rently in any matchmaking lobby) into three queues: (1) the free
pool; (2) the active pool; and (3) the cooloff pool. Clients in the
free pool are grouped by their CID, and one client under each CID
is chosen at random. The chosen clients are moved into the active
pool and are requested to conduct a batch of measurements (the
quantity and duration of measurements is configurable; we assume



10 probes per request in our experiments). Once they report back
measurements, they enter the cooloff pool.

Information from the Latency Estimator determines if clients are
moved from the cooloff pool into the free pool. The Latency Es-
timator identifies for which CIDs it does not have sufficient mea-
surements – at least 60 measurements within the last 15 minutes
from any clients under that CID to their common FRH. This list of
CIDs is handed to the Latency Estimator (every 30 seconds), which
moves all clients under any of these CIDs from the cooloff pool into
the free pool (and any that are not into the cooloff pool).

When the Measurement Controller asks a client to perform mea-
surements, it hands over three parameters: (1) the measurement
duration; (2) the measurement rate; and (3) a list of unique FRHs.
The Measurement Client will interleave pings from the phone to its
FRH with pings to a randomly-selected distant FRH. At the end of
the measurement duration, the results are reported back. The mea-
surement rate has to be high enough to keep the phone radio awake
in DCH mode – in our experience, sending a packet every 100ms
suffices.

The Grouping Agent calls the Latency Estimator to get a latency
distribution between a pair of clients. The Latency Estimator com-
putes this as the sum of three components: (1) latency of the first
client to its FRH; (2) latency of the second client to its FRH; and
(3) FRH to FRH latency. For between a client and its FRH, the
Latency Estimator calculates a distribution among all latency mea-
surements from any client under the same CID to the same FRH,
from the past 15 minutes 2. For FRH to FRH latency, we rely on
a system like Htrae [5]. It feeds on the Latency Data database,
but subtracts client to FRH latency from client to remote FRH la-
tency to feed the network coordinate system. Since we do not have
a geo-location database that works with FRH IP addresses, this is
practically similar to Pyxida [23].

4.4 Grouping Agent
For each unique lobby hash, the Lobby Service hands over to the

Grouping Agent the list of clients, the maximum number of players,
and the latency test parameters 3. The Grouping Agent treats each
lobby hash completely separately (there are multiple instances of
the Grouping Agent, each handling one hash).

The Grouping Agent obtains the latency distributions between
each pair of clients in this lobby from the Latency Estimator. It con-
structs a graph of these clients. The weight (or length) of the edge
between two clients is the latency between them at the given per-
centile. This graph, along with the latency and size limits from the
game developer, are handed to the grouping algorithm, described
next in § 4.5.

Once the grouping algorithm successfully places clients into
game sessions, it returns the list of sessions to the Lobby Service.
A session is viable only if it has at least 2 players. The Lobby Ser-
vice removes all clients in viable sessions from the Measurement
Controller’s client pools and returns the list of session peers to
the respective clients. Any clients that were not placed in a viable
session remain in the lobby for another round of matchmaking or
until they voluntarily leave (that part of the API is not described in
Figure 16). Clients can remain in the lobby when there is insuf-

2If there are insufficient measurements, the return value to the
Grouping Agent identifies the client(s) with insufficient data and
they are removed from the current grouping round (and remain in
the measurement pools).
3For any particular lobby hash, we expect all game clients to
specify the same latencyPercentile, latencyLimit and
MaxPlayers. Alternatively, we can incorporate these three pa-
rameters into the hash itself to further segregate players.

ficient latency data for that client’s CID, or there are insufficient
players with whom they can form a viable session.

4.5 Grouping algorithm
The goal of the algorithm is to assign players to different groups

in a way that: i) maximizes the number of players in each group;
and ii) satisfies the latency and group size constraints specified by
game developer. An important factor that affects the grouping pro-
cess is the topology formed by players within a group. While we
now focus on grouping for the clique topology, our grouping algo-
rithm can be easily adapted to accommodate other topologies.

As mentioned in §2.5, the grouping problem can be casted into
the minimum clique partition problem which is NP-hard. Given
that a popular mobile game may attract tens of thousands of play-
ers, we need an algorithm that is both effective and scalable. We
find that cluster analysis [3] is particularly well suited to solve the
grouping problem. Clustering refers to the assignment of a set of
observations into clusters based on a distance measure between ob-
servations. If we treat each player as an observation and the latency
between two players as their distance, we can leverage a wealth of
well-established clustering methods to solve the grouping problem.

While there exist many clustering methods, we pick hierarchi-
cal [18] and quality threshold (QT) [19] clustering because they
have low computational complexity and can easily accommodate
different group topologies (e.g., clique and star-hub). We do not
consider K-means (which is another commonly-used clustering
method) because it requires specifying the number of clusters a
priori, making it difficult to enforce the latency constraint.

Hierarchical clustering starts with each individual player as one
cluster. It progressively merges pairs of closest clusters according
to a distance measure, until the cluster diameter exceeds the latency
constraint. In contrast, QT clustering first builds a candidate clus-
ter for each player by progressively including the player closest to
the candidate cluster (according to a distance measure), until the
candidate cluster diameter exceeds the latency constraint. It then
outputs the largest candidate cluster, removes all its members, and
repeats the previous step. Note that when the size of a cluster is too
large, we need to further divide it into smaller clusters to meet the
group size constraint.

For the clique topology, the distance between two clusters is de-
fined as the maximum latency between players of each cluster. The
diameter of a cluster is defined as the maximum latency between
players in the cluster. The time complexity of hierarchical and QT
clustering is o(n3) and o(n5) respectively.

We emphasize that both clustering methods can work with any
type of topology in which distance and diameter are well defined.
For instance, in star-hub topology, the distance between two clus-
ters can be defined as the latency between the hub players of each
cluster. The diameter of a cluster can be defined as the maximum
latency between the hub player and any star player in the cluster.

The grouping algorithm is polynomial, and hence its running
time can be long when there are a large number of players. Waiting
in the matchmaking lobby for a long time can degrade the experi-
ence of game players. To tackle this problem, we first divide all
the players into smaller buckets with at most B players in a bucket,
and then apply the grouping algorithm to each bucket. In this way,
we can easily parallelize the grouping of all the buckets and con-
trol the grouping time by adjusting B. While a smaller B shortens
grouping time, it can lead to less optimal groups. We evaluate how
B impacts grouping time and group sizes in §5.2. In our current
implementation, we randomly assign players to different buckets.
In the future, we plan to explore other assignment strategies, such
as based on geographic location or LAC.



While waiting in a matchmaking lobby for grouping to finish,
other players may join or leave the lobby. The graph that the group-
ing algorithm is operating on could be modified in real time as
the algorithm runs. However, for simplicity, the Lobby Service
in Switchboard calls the Grouping Agent at fixed intervals for each
lobby. This not only limits grouping overhead but also allows the
accumulation of a sufficient number of players to feed into the
grouping algorithm. The choice of the interval needs to balance
player wait time with the popularity of a particular game.

5. IMPLEMENTATION & EVALUATION

5.1 Implementation
The service side of Switchboard is implemented on the Microsoft

Azure cloud platform. In our current deployment, we use a single
hosted service instance and a single storage service instance, both
in the “North Central US” region. Matchmaking itself is not very
sensitive to small latencies (hundreds of ms) because it is only sets
up the game session and is not used during gameplay itself. Hence
we have deployed only a centralized instance of the service.

The service is written entirely in C#, and heavily leverages the
.NET 4.0 libraries. The Measurement Controller is written in 457
lines of code, with an additional 334 lines of message formats and
API that is shared with the client. The Lobby Service is 495 lines
of code. The Latency Estimator is 2,571 lines of code, but contains
a very large amount of analysis code to support this paper and can
be significantly slimmed. The Grouping Agent is 363 lines.

The client side of Switchboard is a mix of C# and native C code.
The Measurement Client is 403 lines and the 334 shared with the
Controller. The P2P Testing Service which actually handles the
probes is written in C due to the lack of managed APIs for getting
connectivity information and doing traceroutes. The client side is
implemented for Windows Mobile 6.5. However, we have a port
of just the P2P Testing Service to Android, which we used to help
gather data for this paper. We also use a simple client emulator of
48 lines to to stress test our service on Azure.

5.2 Evaluation of grouping
We now evaluate the importance of pairwise latency estimation

for effective grouping and the impact of bucket size on grouping
time and group sizes. To evaluate grouping at scale, we need a
large number of players and their latency data. Unfortunately, we
are not aware of any large corpus of detailed latency measurements
from a wide set of phones. Therefore, we attempt to generate a
synthetic model of phones, their locations, the locations of towers,
the locations of FRHs, and the latencies associated with each. We
then evaluate how grouping performs on such a topology.

To generate a realistic distribution of players, we use popu-
lation data by county from the US census [2]. To cluster users
by tower, we use cell tower locations from a public US FCC
database [4], which contains detailed information about the
cell towers registered with the FCC. Combining these two data
sources, we break down the towers by county and compute the
fraction of total population served by a tower T in county C

as FracPop(T ) = pop(C)
ntower(C)×TotalPop

. Here pop(C) and
ntower(C) are the population and number of towers in C and
TotalPop is the total population.

Next, we need to connect the towers to FRHs. Today, US op-
erators have many FRHs, but they are typically co-located in a
few datacenters across the US (based on private conversations with
operators). Not knowing where these datacenters are, we simply
divide the US into four Census Bureau-designated regions (North-
east, Midwest, South, and West), and pick a metropolitan area from

each region (Washington DC, Chicago, San Antonio, and San Fran-
cisco) as the FRH datacenter location.

Finally, we generate a set of n players using this model. For
each tower T , we generate n × FracPop(T ) players. Essen-
tially, we proportionally assign n players to each tower according
to the population density of the county in which the tower sits. For
each player p under T , we randomly pick its geographic coordi-
nate (lat(p) and lon(p)) within a predefined radius of T . The
maximum range of a tower varies from 3 to 45 miles, depending
on terrain and other circumstances [1]. We picked a radius of 20
miles. We also assign p to the geographically closest FRH datacen-
ter (FRH(p)). The RTT between p and FRH(p) (rttFRH(p)) is
randomly drawn from the latency distribution to the first pingable
hop collected by prior work [21] from 15,000 mobile users across
the US. As per our findings in §3.2.2, all players under the same
tower are assigned the same RTT to their corresponding FRH data-
center.

We can now compute the latency between any pair of players
(p1, p2) as:

rttFRH(p1) + rttFRH(p2) + rtt(FRH(p1), FRH(p2))

rtt(FRH(p1), FRH(p2)) represents the RTT between FRH(p1)
and FRH(p2), which we derive from a geographic distance-based
latency model from prior work [5]. We compute the geographic
distance using the great-circle distance between a pair of coordi-
nates.

5.2.1 Latency- vs. geography-based grouping
To contrast with our algorithm, we also try a naive algorithm

which groups players by their geographic proximity (instead of la-
tency proximity in Switchboard). In this experiment, we evaluate
the effectiveness of geography- vs. latency-based grouping. We
first generate a game topology of 50,000 players and divide the
players into buckets of 1,000 players each. We then run the hierar-
chical clustering algorithm (described in §4.5) on each bucket, us-
ing pairwise player latency or geographic distance. Note that each
GeoGroup produced by the geography-based grouping is guaran-
teed to meet the specified distance constraint. However, unlike in
the latency-based grouping, a GeoGroup may include players that
violate the latency constraint specified by game developer. We fur-
ther prune outliers from a GeoGroup to obtain the corresponding
viable group which fully satisfies the latency constraint.

Figure 17 shows the CDF of group sizes using the two algo-
rithms. We set the game latency constraint to 250 ms and vary
the distance constraint from 100 to 800 miles for geography-
based grouping. The maximum group size is limited to 16.
Clearly, latency-based grouping produces much bigger groups
than geography-based grouping, with the median group size of 15
vs. 2. Although not shown in the figure, both grouping schemes
assign roughly the same number of players to viable groups.
Geography-based grouping does not work well because 3G latency
between players is poorly correlated with their geographic proxim-
ity. This is unsurprising because our latency experiments show it is
dominated by the latency to FRH and not by the latency between
FRH s.

Figure 17 further shows that geography-based grouping pro-
duces larger viable groups when the distance constraint increases.
However, this effect diminishes as the constraint surpasses 400
miles. Since there is little correlation between geographic distance
and latency in mobile networks, the (viable) group size increase
is mainly because a larger distance constraint produces bigger
GeoGroup’s. Irrespective of the choice of distance constraint,
latency-based group dominates geography-based grouping. We see
similar results in Figure 18 with a latency constraint of 400 ms.
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Figure 17: CDF of number of players in each group after
grouping 50,000 players split into buckets of 1,000 players each,
with a latency limit of 250ms. The top four lines show results
from grouping players based on geographic proximity, while
the bottom line uses latency proximity.
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Figure 18: CDF of number of players in each group after
grouping 50,000 players split into buckets of 1,000 players each,
with a latency limit of 400ms. The top four lines show results
from grouping players based on geographic proximity, while
the bottom line uses latency proximity.
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Figure 19: CDF of number of players in each group after
grouping 50,000 players split into buckets of varying sizes, with
a latency limit of 250ms. The “QT 500” line shows results with
QT clustering on a bucket size of 500 players. The “Hier 1500”
line shows results with hierarchical clustering on a bucket size
of 1,500 players.

5.2.2 Effect of bucket size
Having established that latency-based grouping is the better ap-

proach, we now consider the impact of bucket size and the partic-
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Figure 20: Runtime of grouping algorithms for grouping
50,000 players split into buckets of varying sizes, with a latency
limit of 250ms. The “QT” bars on the left show results with QT
clustering, while the “Hier” bars on the right show results with
hierarchical clustering.

Parameter Value
Maximum end-to-end latency bound 250 ms
Client arrival distribution Poisson
Client arrival rate Varies
ICMP measurement expiration period 15 min
ICMP measurement probes per server request 10
Per-tower measurements required for matchmaking 60
Client “cooloff” period between probe requests 30 - 90 s (random)
Bucket size for grouping 500

Table 2: Experimental parameters for end-to-end experiments.

ular form of clustering – QT or hierarchical. In Figures 19 and 20
we vary both and examine the impact on group size distribution and
running time. While the total number of players who can partici-
pate in viable groups is roughly the same in each experiment (not
shown in the figure), group sizes steadily grow with bucket size as
expected. With a bucket size of 1000 players, 63% of the resulting
groups have 16 players. This ratio improves to 75% with a bucket
size of 1500. While group sizes are roughly similar between hier-
archical and QT clustering, the running time is not. The running
time for either grows with a larger bucket size, that for QT clus-
tering grows much faster due to higher computational complexity
(§4.5). Game players can be tolerant of a small delay (a minute
or two) during matchmaking, as they can be appeased with game
storyboard animation, but anything larger is less tolerable.

5.3 End-to-end Evaluation
We evaluate the performance of the complete end-to-end Switch-

board system as a whole, including measurement and grouping.
Our fully-functional Switchboard implementation is deployed as a
Microsoft Azure cloud service. To consider a large client base, we
emulate users by spawning new instances of the client emulator
on a high-powered desktop (with new clients connecting at varied
Poisson arrival rates). When requested by the Switchboard ser-
vice to conduct measurement tasks, emulated clients use the same
model we used to test grouping based on the US Census and FCC
databases. Each client waits for placement in a matchmaking group
until (1) such a group is formed or (2) Switchboard determines that
the client’s first-hop latency is too high, and thus group placement
is impossible. We assume that each client only seeks matchmaking
for a single game. In reality, clients may amortize the matchmaking
costs over multiple games. We summarize experimental parameters
in Table 2.
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Figure 21: Aggregate client-to-server bandwidth by client Pois-
son arrival rate for Switchboard running on Azure. The first 15
minutes reflects a warming period with elevated measurement
activity as the server builds an initial history.

For each of these experiments we compare Switchboard perfor-
mance across a variety of synthetic, Poisson-distributed, client ar-
rival patterns. Of course, the validity of our results is tied to how
well these align with the true arrival pattern of real clients. Thus,
they should only be viewed in relative terms. However, a number of
key properties emerge regarding performance at scale. As the num-
ber of clients using Switchboard increases, (1) server bandwidth
requirements scale sub-linearly, (2) per-client probing (and thus
bandwidth) overheads decrease, (3) larger groups can be formed,
and (4) client delays for measurement and grouping decrease.

5.3.1 Bandwidth and Probing Requirements
We now quantify the client-to-server bandwidth requirements of

phones reporting latency measurements to the Switchboard server
and how probing tasks are distributed among devices. As explained
in §4.3, probing is conducted in bursts of at least one packet per
100 ms, ensuring that the sending rate triggers the phone to enter
the DCH mode. To amortize the energy cost of this traffic burst,
phones report measurements in 10-probe batches. The frequency
at which clients conduct these probe bursts depends on complex
interactions, such as the rate at which clients arrive and when their
measurements expire.

The bandwidth consumed by the matchmaking service to collect
measurement data from phones is primarily determined by the total
number of towers with active game players as the total number of
measurements required for each tower is fixed, irrespective of the
number of clients. Figure 21 shows client-to-server bandwidth over
time, aggregated across all clients connected to Switchboard run-
ning on Azure. We require at least 60 measurements within the
last 15-minute interval for each tower. Clients are not considered
for groups until this minimum number of measurements have been
conducted for their associated tower. The bandwidth consumed sta-
bilizes after an initial warming period during which the Switch-
board Measurement Controller builds an initial 15-minute history
for many towers. Furthermore, as we increase the client arrival rate,
the bandwidth consumed scales sub-linearly – at 10 clients/second,
the bandwidth consumed is not 10 times that at 1 client/second.

Figure 22 shows the distribution of ICMP measurements per-
formed by each client. As the client arrival rate increases, greater
measurement reuse is possible because there are more clients un-
der each tower that benefit from each other’s observations. Fur-
ther, the distribution of measurement tasks becomes more equi-
table (the CDF lines shift to the left), reflecting that at greater load,
Switchboard overhead for each client becomes lower and more pre-
dictable.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

em
p

ir
ic

al
 C

D
F 

ICMP probes per client 

10 clients/s

5 clients/s

2 clients/s

1 client/s

Figure 22: CDF of ICMP probes per client at different client
Poisson arrival rates, as conducted by the Measurement Con-
troller in Switchboard running on Azure. Data reflects hour-
long experiments and exclude warming period.
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Figure 23: CDF of resulting group sizes at different client Pois-
son arrival rates. Grouping uses 500-client buckets. Data re-
flects hour-long experiments and exclude warming period.

5.3.2 Client Matchmaking Experience
We now evaluate the size of viable groups that Switchboard cre-

ates and how long clients wait for those results.
In Figure 23, we show that at higher client arrival rates, it is pos-

sible to form larger matchmaking groups. This is expected, since
at higher arrival rates, the steady-state number of waiting clients is
also higher—providing a larger pool of clients on which to clus-
ter. Note that the analysis in §5.2 reflects absolute grouping perfor-
mance, with all clients available for clustering simultaneously and
immediately. In this section, we additionally consider the effects of
client arrival rate and re-grouping through multiple rounds, more
closely reflecting real-world performance. Here, bucket size (cho-
sen as 500) reflects the maximum number of clients that may be
simultaneously clustered. At insufficient arrival rates, there will be
fewer than 500 waiting clients. Further, since clients are placed into
groups as soon as one is available, those clients that wait through
multiple clustering attempts are likely to be the hardest to place
(with relatively higher latency). These factors will typically lead
to the creation of smaller-size groups. If larger groups are desired,
Switchboard can be configured to reject groups of insufficient size.

Figure 24 shows the total amount of time a client spends in
matchmaking, broken down by the measurement delay and the
grouping delay. Clients are grouped using random buckets of 500
clients. Each bucket is processed in parallel by separate threads. A
client may have to wait through multiple grouping attempts before
one or more peer clients are ready with which it can be grouped
(again, these results are not directly comparable to those in § 5.2
as client arrival rate and re-grouping contribute to grouping per-
formance). Note that since higher arrival rates enable both greater
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Figure 24: Client time spent in measurement and grouping.
Measurement reflects the time from when a client joins a lobby
until there is sufficient data for the client’s tower. Time re-
quired for grouping reflects the total time from when measure-
ment data is sufficient until the client is placed into a viable
group (one or more clustering attempts). Grouping performed
with randomized buckets of up to 500 clients.

measurement reuse and increase the pool of clients for clustering,
these delays substantially reduce with more users.

5.4 Summary of Evaluation Results
Our implementation and evaluation confirm our intuitions for

Switchboard performance, especially as function of scale. Switch-
board’s mechanisms to cluster groups by latency proximity are sub-
stantially more effective than geography-based techniques. Com-
paring QT and hierarchical clustering for group formation, we find
that hierarchical clustering is more effective, creating similarly-
sized groups to QT at a smaller computational delay. Finally, with
increasing utilization, server bandwidth requirements scale sub-
linearly, per-client probing overheads decrease, larger groups are
formed, and client delays for measurement and grouping decrease.

6. CONCLUSIONS
Turn-based multiplayer games are available on multiple phone

platforms and are popular. We want to enable fast-paced multi-
player games over cellular data networks. While 3G latencies can
often be within the tolerance of some fast games [12], such games
are not common because it is difficult for the game developer to
deal with the highly variable nature of 3G latencies.

First, we demonstrate that P2P over 3G is a viable way to both
reduce the latency of such games and the cost to the developer to
maintain game servers. Depending on the number and location of
servers, P2P can save as much as 148ms of median latency. Sec-
ond, we have built Switchboard to reduce the burden on the game
developer for managing this highly variable latency. It solves the
matchmaking problem, or specifically assigning players to game
sessions based on latency. Switchboard achieves scalability both
in measurement overhead and in computation overhead. Based on
experiments, we show that a small number of measurements in a
15 minute window sufficiently characterizes not only the latency of
that phone, but also of other phones under the same celltower. This
latency distribution is also highly predictive of the next 15 minutes.
Using this information, Switchboard is able to significantly reduce
the measurement overhead by coordinating across many phones.
Switchboard then exploits the nature of this latency in a heuristic
that quickly assigns players to game sessions.

This is a ripe new research area with many other open problems.
Specifically in matchmaking, our work does not consider phones
that are moving (e.g., on a bus) – perhaps one can predict future

celltowers (and hence future latency) by looking at the phone’s tra-
jectory. We do not attempt to estimate and predict bandwidth over
3G. We do not consider remaining energy in assigning measure-
ment tasks to phones, or any other explicit form of fairness. There
are interesting challenges in energy conservation during game play,
and improving touch-based UI for fast action gaming.
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