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Abstract

We present a Universal Rate Control Protocol (URCP), which provides applications with fair and full link utilization while
operating at low delay and loss levels as needed by interactive real-time communications (RTC) applications across a range of
complex networks in use today, such as Wi-Fi hotspots, 4G (HSPA+), and WiMAX. As opposed to many existing rate control
techniques which are specially designed for differing network types and application requirements, URCP attempts to provide a
universal framework for rate control by learning network parameters and then automatically adapting a utility maximization based
rate control framework to achieve good performance across any network.

URCP is able to provide significantly improved performance over state-of-art rate control techniques for RTC applications,
in terms of throughput, delay, and loss. On real-world network tests, URCP provides similar throughput to commonly used loss
based schemes while achieving up to a 100x improvement in operating delay (compared to TCP NewReno on the Clearwire
WiMAX network). Compared to existing delay based rate control protocols commonly used by RTC applications, URCP provides
similar operating delay while achieving close to 2.5x improvement in throughput on noisy networks (compared to WebRTC on
the T-Mobile HSPA+ network).

I. INTRODUCTION

Networks are becoming increasingly more complex. In today’s networks, we see an abundance of challenging network
access links such as Wi-Fi hot spots, 3G/4G mobile broadband, and WiMAX. In addition, there are a significant number of
middle boxes through which traffic is routed, for example gateway and proxy servers, network address translation (NAT) boxes,
firewalls, intrusion detection devices, and traffic policers.

A common issue which occurs when traffic is routed over complex access links is the introduction of inherent delay and

loss noise to packets traversing the network. For example, a device operating on wireless and cellular links (e.g., Wi-Fi hot
spots, 3G/4G, and WiMAX) may incur additional packet delay and loss due to weak wireless signal or interference which leads
to link layer retransmissions [11]. Scheduling policies of cellular networks and internet service providers (ISPs) (e.g. cable
modem) may result in additional latency due to the device waiting for its turn to transmit packets [17], [27]. When a packet
passes through network middleboxes, e.g., a 3G/4G gateway, a corporate firewall, or a network intrusion detection device, it
may incur additional processing latency or loss if the CPU of the middlebox is overloaded or if there are software issues.

To be more precise, we define the observed network delay and packet loss that is uncorrelated with the transmission rate
over the bottleneck link as the inherent delay (δ) or loss (ε). This is in contrast to the congestion-induced delay or loss which
is caused by queuing when the transmission rate is larger than the bottleneck link capacity. The operating delay or loss is the
sum of the inherent delay or loss and the congestion-induced delay or loss. We can write

δoperating = δpropagation + δnoise︸ ︷︷ ︸
δinherent

+δqueuing, (1)

εoperating = 1− (1− εnoise)(1− εqueuing)

≈ εnoise︸ ︷︷ ︸
εinherent

+εqueuing. (2)

That is the inherent delay noise, δnoise, is defined to be the inherent delay observed on the network regardless of what
transmission rate we are operating at minus the propagation delay (assumed to be the minimum delay seen). The inherent
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loss noise, εnoise is defined to be the loss rate observed regardless of the transmission rate. The approximation in Eqn. 2 for
εoperating holds true for low loss rates.

Inherent delay and loss noise can present significant problems to rate control protocols which attempt to control the
transmission rate for applications. Rate control techniques can be roughly classified into two main categories, (i) rate and
window based congestion control techniques where the rate is controlled by increasing or decreasing the rate in response
to congestion signals (delay, loss, and/or ECN) and (ii) available bandwidth estimation (ABE) techniques where the rate is
directly estimated or forecasted as a function of congestion signals. Regardless of the exact technique being used, they all
utilize congestion signals which are some combination of delay, loss, and/or ECN.

Since the observed delay and loss is the operating delay and loss, a typical way to estimate congestion signals caused by
queuing is to use

δ̂queuing = δoperating − δpropagation
ε̂queuing = εoperating. (3)

Eqn. 3 is clearly a good estimate of congestion signals on clean networks such as data center networks, corporate infrastructure
networks, and ISP core networks, where δnoise and εnoise in Eqn. 2 are close to zero. However, it does not hold true for noisy
networks commonly seen today such as Wi-Fi hotspots, 3G/4G, and WiMAX.

For non-RTC applications, such as file download and video-on-demand (VOD), the primary measure that determines the
performance is long-term average throughput. Since there are several rate control strategies that are able to achieve high
throughput at the expense of high operating delay and loss levels, the performance of these applications does not suffer much
on noisy networks. For example, a rate control strategy may only use loss as a congestion signal as opposed to delay since it
is a less noisy signal. In addition, by allowing a larger queuing delay, such strategies can often prevent the mis-interpretation
of noise for congestion [4] allowing for high link utilization as we will show in Sec. V.

The same strategies which are able to achieve full throughput for non-RTC applications cannot typically be used for RTC
applications. We consider any interactive application that communicates among several parties (people or devices) with tight
end-to-end (E2E) delay constraint as an RTC application. The performance of RTC applications depends critically on both the
short-term throughput as well as the instantaneous (per-packet) delay and packet loss. For example, video conferencing has
perceivable degradation to human observers if the E2E delay is larger than 200ms or the uncorrectable packet loss is larger
than 1%. At the same time, these applications are also bandwidth intensive as a higher operating bandwidth leads to noticeable
improvement in audio/visual quality. Therefore, strategies which deliver high link utilization at the expense of high operating
delay and loss levels cannot be used. In addition, rate control strategies which operate at low delay and loss levels typically
result in link underutilization over noisy networks, delivering sub-par performance.

Besides video conferencing, other examples of RTC applications include VoIP, virtual reality, online meetings (e.g. WebEx,
Lync), tele-presence, online games, and interactive software applications (e.g. desktop remoting, application streaming, appli-
cations running in the cloud). With the rise of cloud computing, all categories of RTC applications are seeing rapid adoption
and are extremely valuable.

In this paper, we propose to solve the problem of rate control for RTC applications on noisy networks while maintaining
good performance on clean networks and for non-RTC applications as well. We develop a Universal Rate Control Protocol
(URCP) which uses a utility maximization (UM) based rate control protocol which automatically adapts and adjusts itself to
deliver fair and full link utilization while operating at low delay and loss levels across a range networks, including both clean
and noisy networks. URCP is able to deliver as much throughput as protocols optimized for maximizing throughput but at
delay and loss levels which are comparable to the inherent delay and loss present on the network. The additional delay and
loss caused by congestion induced queuing is often insignificant when using URCP.

II. NOISY NETWORKS

We first study if inherent delay and loss noise is a real issue on networks commonly used to access the internet these days
by first estimating the distribution of the delay and loss noise present on networks using the following.
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Fig. 1: Distribution of delay (estimate of δnoise) over Cable modem, WiMAX, and 4G (HSPA+) networks when sending at
50% of estimated link capacity.
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Fig. 2: Video conferencing application showing a sender and receiver component.

We use one-way delay (OWD) as the delay measure, δ. In practice, some algorithms may use round-trip time RTT as the
delay measure. We also approximate the propagation delay δpropagation as the minimum OWD observed and subtract out the
propagation delay from the observed (operating) delay to obtain the delay measure δ, i.e.,

δ = OWD −OWDmin = δoperating − δpropagation
= δqueuing + δnoise. (4)

The loss measure, ε, is assumed to directly be the observed loss rate, ε ≈ εqueuing + εnoise.
To perform the experiment, we first send a 1 MB file over the network using TCP and measure the receiving rate. We then

send data over UDP at a constant bitrate which is 50% of this measured rate and compute the delay measure, δ using Eqn. 4
for every packet. Since we are sending at a relatively low rate (at most 50% of capacity), δ and ε are good estimates for δnoise
and εnoise.

We plot the distribution of δ in Fig. 1 for the Cable modem, WiMAX, and 4G (HSPA+) networks. We see that the Cable
modem network has a very narrow distribution with δnoise ≈ 0. However, for the WiMAX and 4G networks, this is not the
case, with the average inherent noise being in 30-50ms range. The actual maximum delay noise for the 4G network is actually
close to 350ms, but in order to better visualize the results, we have truncated the plot to 200ms. From this, we conclude that
the inherent delay noise is highly variable depending on the network and that it is significant enough on certain networks to
affect protocols using delay as a congestion signal.

The loss noise, εnoise, for each of the three networks is 0.0012 for the cable modem, 0.0037 for the 4G (HSPA+), and
0.0185 for the WiMAX network. The noise for the WiMAX network is significant and in this case could affect loss based rate
control protocols as well.

III. RATE CONTROL IN RTC APPLICATIONS

In this section, we give an overview of the typical dataflow used by a video conferencing application, shown in Fig. 2. Other
RTC applications will have a similar dataflow with the common element being that the E2E delay between content generation
and content consumption needs to be low (on the order of network latencies).

At the sender side, the application thread is a loop with a timer which wakes up every 1
fps seconds, where fps is the frame

rate in seconds. At that time, a frame is captured from the camera and encoded using a certain number of bits depending
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on the rate controller’s specified bitrate and the fps. The encoded frame is partitioned into packets (if more than one packet
is needed) and sent to a packet pacer. The packet pacer runs on the network thread and sends packets over the network to
enforce the rate controller’s sending rate and smooth out potential burst of packets in traffic. This is important for HD video
conferencing to avoid a large burst of packets that may cause additional delay noise.

At the receiver side, the network thread places received packets into a de-jitter buffer, which is needed since packets may
experience varying delay over the network, either due to the inherent delay noise or due to congestion-induced queuing delay.
This thread also computes congestion signals such as packet delay and packet loss which are fed to the rate controller. The
application thread wakes up every 1

fps seconds, retrieves packets from the de-jitter buffer, and sends them to the decoder which
generates frames of audio or video to render.

The rate controller may reside at either the sender side or receiver side. If it is at the receiver side, sender timestamps in
the packet header and the receive time can be used to obtain one-way delay (OWD) estimates using clock compensation
[23]. Loss can be computed using sequence numbers present in the packet header. OWD and loss information can be used to
compute a new sending rate which is then sent to the sender. If the rate controller resides at the sender side, acknowledgments
containing sequence numbers and receive timestamps of the packets being acknowledged can be used to compute OWD and
loss information which can be used to adjust the sending rate. The sending rate and/or congestion information feedback is
piggybacked onto coded data to reduce overhead.

We define the end-to-end (E2E) delay as the time difference between when the frame is captured from the camera to the
time it is rendered at the receiver. It can be broken into the following components

δE2E = δencoder + δpacer + δnetwork + δde−jitter + δdecoder. (5)

ITU-T Recommendation G. 114 states that VoIP users will not notice delay if E2E delay is kept under 150ms. For video
conferencing applications, an additional delay of 50ms (total E2E delay of 200ms) is tolerable. It recommends a limit of
400ms E2E delay for network planning purposes.

The encoder delay, δencoder, and decoder delay, δdecoder, are determined by the computation capability of the sending and
receiving device. The pacer delay δpacer is determined primarily by the traffic pattern of the RTC application. δnetwork is
the operating delay of the network rate control protocol, i.e. it is the δoperating in Eqn. 2. Since the inherent network delay

cannot be adjusted, the rate control protocol for an RTC application attempts to maximize link utilization while minimizing
the congestion induced queuing delay δqueuing . The rate controller indirectly also affects the de-jitter buffer delay δde−jitter
which needs to be set to a sufficient size in order to absorb network delay variation. Congestion-induced loss εqueuing also
needs to be minimized. by the rate control protocol.

IV. STATE-OF-ART RATE CONTROL PROTOCOLS AND RELATED WORK

We first review existing state-of-art rate control protocols and study their feasibility for use with RTC applications on noisy
networks.

A. Available Bandwidth Estimation

Available bandwidth estimation (ABE) techniques [13], [19], [25], [28], [29] use the packet delay variation (PDV) to estimate
the available bandwidth. PDV is defined as the difference in end-to-end OWD between a pair of packets with any lost packets
being ignored. ABE techniques are commonly used by many existing video conferencing and other RTC applications. The
reason for their popularity is that they can quickly converge on a rate (i.e., the available bandwidth estimate) through a few
packet pairs. Another advantage is that the algorithm does not need to calculate clock-skew between the sender and the receiver.
For a pair of packets, its PDV can be calculated as the receive time spread (often referred to as the inter-arrival time) minus
send time spread. If the packet pair is sent back-to-back, the send time spread is zero, and only the inter-arrival time needs to
be measured.

PDV estimates are used to either directly estimate available bandwidth [28] or fed through either a Kalman filter [19] or a
probabilistic inference algorithm [29] which estimates the bandwidth using standard queuing models for the network.
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Several limitations of ABE based rate control techniques are discussed in [14], with fairness across multiple flows being one
of the major ones. In addition, ABE techniques often fail to deliver link utilization across noisy networks without manually
tuning parameters in the network model for different networks. For example, [29] uses a network model specifically tuned for
a cellular network.

B. TCP Congestion Control

TCP is a well studied protocol, with many variants of congestion control in the literature. TCP uses a congestion window
W to control the number of bytes that can be outstanding at any time over the network. For a given round trip time RTT ,
the average sending rate is roughly R ≈ W

RTT . TCP variants typically use delay and/or loss as congestion signals to adjust the
congestion window, W .

Loss-based TCP congestion control techniques include TCP New-Reno [7], [12] and CUBIC TCP [9]. In TCP New-Reno, the
TCP sender additively increases (AI) its window every acknowledgment by α until it sees a loss at which point it multiplicatively
decreases (MD) the window by β, often referred to as AIMD behavior [7], [12].

Although loss-based TCP congestion control techniques often achieve close to full link utilization across many networks,
this occurs at the expense of high operating delay levels as shown in Sec. VII. This is because on networks with low inherent
loss noise, loss occurs only when buffers are full. If the buffer size is large, congestion induced loss implies a high congestion
induced delay. Thus they are not suitable for use with RTC applications.

Delay-based TCP variants such as TCP Vegas [3], [26] have been proposed to deal with high queuing delays present with
loss-based congestion control schemes. In TCP Vegas, the protocol increases or decreases the congestion window W by α by
estimating the bottleneck queue depth using delay. Specifically, if Wδ

RTT < γ1, the window is increased by α; and if Wδ
RTT > γ2,

the window is decreased by α. Upon loss, TCP Vegas multiplicatively decreases the window by β.
For clean networks, such as networks in data center, delay-based TCP congestion control can deliver good throughput at

low operating delay levels. However, for noisy networks, it tends to under-utilize the network bandwidth. In addition, due to
the additive-increase, additive-decrease (AIAD) property in its delay adaptation stage, TCP Vegas has issues in fairly sharing
bandwidth with other flows [26].

C. TFRC

TFRC (TCP-friendly Rate Control) has also been proposed for media applications. In TFRC [10], a sending rate is determined
by looking at congestion signals and then determining the sending rate by using the throughput equation for that protocol.
However, if TFRC is using the throughput equation derived from a loss based TCP protocol, then the resulting operating delay
and packet loss will be identical as that of TCP rate control, with the exception that the sending rate will be smoother.

D. Delay-Based Utility Maximization

Since the seminal framework introduced by Kelly, [16] and Low [18], network utility maximization (UM) has attracted
significant attention in the research community. In this framework, network rate control protocols are considered as distributed
algorithms that maximize aggregate user utility subject to network resource constraints. It provides a powerful tool to reverse
engineer existing TCP protocol designs [15] and also allows systematic design of new protocols, see [6] for a detailed discussion.

Utility maximization (UM) based rate control attempts to maximize the total network utility, often using the log-utility

function U(R) = k0 log(R), subject to deterministic worst delay guarantees. After applying the primal-dual algorithm via a
fluid limit analysis, the rate control equation in utility maximization takes the form:

∆R = k2(k0 − ρR(t))∆T

R(t+ ∆T ) = max(R(t) + ∆R, 0), (6)

where R(t) is the rate at time t, ρ is an estimate of the congestion level, ∆T is the time since the last update, and k0 and k2

are parameters in the protocol. Typically ρ is assumed to be the delay measure from Eqn. 4.
Although delay-based UM schemes have good operating delay performance across all networks and good throughput on

clean networks, they fail to saturate the link on noisy networks.
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E. Other Related Work

TCP congestion control protocols using ECN have also been proposed to reduce queue lengths such as Data Center TCP
(DCTCP) [1]. Although ECN markings should be relatively clean and not subject to noise, ECN markings are not widely used
in the Internet today and thus DCTCP is well suited to data center environments where there is greater control on network
configuration.

The issue of adapting to differing network conditions has also been discussed in the literature. In AdaVegas [20], the authors
adapt parameters in TCP Vegas to improve the convergence rate. However, they do not discuss the issue of adapting to noisy
networks. The work of Generalized AIMD [31] also considers variable parameters to allow a protocol to be TCP fair. However,
this only shows the relationship between α and β which allows for the same operating point as TCP NewReno, but there is no
mention of how to set α and β for a given network. In [2], the authors discuss how one can dynamically switch between two
pairs of (α, β) to give a smoother rate when needed, but does not address the issue of adapting for noisy network conditions. In
[22], manual parameter tuning is proposed to deal with the issue of noise on mobile networks. However, there is no automatic
adaptation strategy presented.

To the best of our knowledge, existing work does not propose to automatically adapt the rate control protocol in response
to varying network conditions as we are proposing in URCP.

V. PROTOCOL PERFORMANCE

Before explaining the design of URCP, we first examine the fundamental reason why existing protocols fail to deliver
satisfactory performance for RTC applications on noisy networks and examine what is needed to design a protocol which can
work well.

A. Protocol Operating Point

With the exception of ABE techniques, each of the rate control protocols presented in Sec. IV has an operating congestion

signal point which is either the operating delay or the operating loss rate. This operating point can be written as a function of
(i) the steady-state rate, (ii) the operating rate R, (iii) parameters in the rate control protocol, and (iv) optionally the RTT . In
addition, each of the protocols has parameters which control the rate of convergence and this is independent of the operating

point.
For example, in the TCP NewReno case, the Mathis equation [21] is widely accepted as stating the relationship between

throughput, delay, and congestion induced packet loss and is given by R = 0.93α
RTT

√
ε
, where R is the steady-state rate, α is the

maximum packet size, ε is the loss rate, and RTT is the round-trip time. From this we can write the operating loss rate for
TCP NewReno as ε =

(
0.93α
RTT∗R

)2
.

For TCP Vegas, if we are operating in the delay regime, the operating delay point is given by δ = γ
R , where γ is the TCP

Vegas parameter that controls how many packets are to be queued within the network.
For UM based rate control presented in Sec. IV-D, the operating delay point is δ = k0

R , at which point the rate adjustment
∆R is zero. The k2 parameter controls the rate of convergence but does not affect the operating delay point.

B. Impact of Inherent Delay and Loss Noise

We see that all rate control protocols have a decreasing operating congestion signal point (delay or loss level) with increasing

operating rate, R. That is we can write,

ρoperating = f(Roperating, θ)

= ρnoise + ρqueuing (7)

where ρoperating is the operating congestion signal point (either operating delay measure or loss measure), Roperating is the
final operating rate, θ are protocol parameters, and f is a function which decreases with increasing Roperating. In Eqn. 7, we
assume that the entire inherent measure of the congestion signal is caused by noise (for example, by removing propagation
delay to obtain the delay measure as in Eqn. 4).
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Since, the portion of congestion signal from queuing caused by the protocol, ρqueuing , cannot be negative, ρoperating ≥ ρnoise.
Since f decreases with increasing Roperating and since it is a function of θ, we can make the following to conclusions regarding
protocol performance.

1) For a fixed value of θ, the maximum achievable operating rate Roperating decreases with increasing congestion signal
noise ρnoise.

2) For a given congestion signal noise, ρnoise, we can find protocol parameters θ that allow for an arbitrarily large operating
rate Roperating (up to the link capacity). That is we can find θ so that

ρoperating(Roperating, θ) ≥ ρnoise. (8)

This forms the basis for an adaptive parameter design which allows for a protocol with high link utilization at low
operating congestion levels.

C. Achieving Full Link Utilization

Eqn. 8 becomes a necessary and sufficient condition for full link utilization. Since the noise is a stochastic random variable,
we can write

δoperating(Roperating, θ) ≥ E[δnoise] (9)

εoperating(Roperating, θ) ≥ E[εnoise], (10)

for the operating delay and loss points, where E[.] is the expectation or average value of the noise.
Let R̄MAX be the true bottleneck link capacity. Since by definition Roperating ≤ R̄MAX , in order for a protocol to achieve full

link utilization, it is sufficient (but not necessary) for the operating congestion level when operating at the bottleneck link capacity
to be larger than or equal to the inherent congestion level noise present in the network. That is ρoperating(R̄MAX , θ) ≥ ρnoise
is a sufficient condition.

VI. URCP

Since the delay-based UM protocol presented in Sec. IV-D provides nice fairness and convergence properties in addition to
good performance in the presence of clean networks [5], URCP starts with Eqn. 4 as the fundamental rate change equation.
However, from Eqn. 8, we see that other protocols can also utilize similar strategies to achieve the desired properties.

From Eqn. 6, for the delay-based UM rate control protocol, the operating point is controlled by k0 and is given by

δoperating =
k0

R
. (11)

Combining this with Eqn. 10 gives the following conditions for full link utilization

k0 ≥ RoperatingE[δnoise], (necessary and sufficient) (12)

k0 ≥ R̄MAXE[δnoise], (sufficient). (13)

Although k0 = RoperatingE[δnoise] is the minimum value we can use, it is not really practical as it requires prior knowledge
of the operating rate which is what the rate controller is supposed to find.

However, directly using the sufficient condition also has issues in that over-estimations in R̄MAX as well as multiple flows
cause a linear increase in k0 which causes a linear increase in operating delay which is bad for RTC applications. For example,
if R̄MAX is over-estimated by a factor of N or if N flows are sharing the link, then k0 will be N times larger than the
minimum resulting in the operating delay being N times larger than E[δnoise], with queuing delay being (N − 1)E[δnoise].

To alleviate these issues, we would like to use Eqn. 12. Since we cannot directly use Roperating, an alternative is to use
k0 = RAV EE[δnoise], where RAV E is a sliding window average of the operating rate. By using a different timescale, we can
allow for both R and δ to converge.
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TABLE I: The three stages of adaptation in URCP.

At time t, when a new packet is received, add current
rate R(t) to sliding window used to compute RAV E and
add current packet delay measure δ to sliding window
used to compute δAV E .
Update bottleneck link capacity estimate using

RMAX ← max(RMAX , RAV E). (14)

Update inherent delay noise estimate using

δMIN ← min(δMIN , δAV E). (15)

Update k0 using

k0 =

(√
RMAX

RAV E
δMIN + β(δAV E − δMIN )

)
RAV E .

(16)
Update k2 using

k2 =
RMAX

k0M
√

R
RMAXRTTmin

, (17)

Update rate R using

∆R = k2(k0 − δR(t))∆T

R(t+ ∆T ) = max(R(t) + ∆R, 0), (18)

A. Protocol Adaptation

We use the notation R̄MAX to be the actual bottleneck link capacity and define the term δ̄MIN = E[δnoise] to be the average

inherent delay noise on the network. We use the terms RMAX and δMIN to be their corresponding estimates. We also define
the term RAV E to be the average rate (as specified by the rate controller) over a sliding window of certain duration and δAV E

to be the average observed delay measure (OWD −OWDmin) over the sliding window.
As opposed to existing rate control protocols which simply adapt the rate, URCP performs the following three-stage adaptation

shown in Table I, (i) updating estimates for RMAX and δMIN , (ii) updating the parameters k0 and k2, and (iii) updating the
actual rate, R, each using successively smaller timescales. β and M are parameters in URCP which we will discuss in
Secs. VI-B and VI-C.

The initial value of δMIN (estimate of average delay noise) is obtained by first sending data at a low rate and averaging the
delay measure for the corresponding packets. The initial value of RMAX (estimate of capacity) is obtained by using a slow
start (exponential) ramp-up. Other methods could also be used to obtain these. The initial value of k0 is set using Eqn. 13.

B. k0 Adaptation

k0 adapts according to Eqn. 16 where β is a parameter between 0 and 1. The term
√

RMAX

RAV E δ
MIN + β(δAV E − δMIN ) in

k0 is the target operating delay. If we simply set the operating delay to δMIN , then the operating point would be independent
of rate and fairness could not be obtained, since two flows of differing rates could both have ∆R = 0. Using the term√

RMAX

RAV E δ
MIN allows for the flow with smaller rate to have larger k0 and thus a higher operating delay, allowing it to take

rate from the flow with a larger share. However it also ensures that the operating delay changes as a square root of the RMAX

RAV E

which is a desirable property for RTC applications. For example, N flows would only increase this term in the operating delay
by
√
N .
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The term βδAV E is present in order to allow URCP to effectively compete with more aggressive (TCP-style) flows as well
as deal with under-estimations of δMIN . A TCP flow will increase δAV E and thus URCP will increase its k0 in response to

this. However, by using β < 1, there is a downward pressure to bring the operating delay back to
(
√

RMAX

RAV E −β)

1−β δMIN .
1) Convergence and operating point: Since in steady state R ≈ RAV E and δ ≈ δAV E , if we solve for the case when

∆R = 0 in Eqn. 18, we get the following delay/rate operating point (δoperating, Roperating),

δoperating = max

δ̄MIN , δMIN

√
RMAX

Roperating
− β

1− β

 ,

Roperating = min

R̄MAX ,
RMAX(

δoperating

δMIN (1− β) + β
)2

 . (19)

If δMIN and RMAX are accurate estimates of δ̄MIN and R̄MAX respectively, then in the single flow case, we see that the
operating point is δoperating ≈ δMIN and R ≈ RMAX , that is we get close to full link utilization with delay levels that are
close to the inherent delay noise on the network link (i.e. no noticeable queuing delay will be present).

Since the delay-based UM scheme with fixed k0 has nice convergence properties, URCP also maintains the same convergence

properties provided the estimates of RMAX and δMIN converge. By definition, RMAX and δMIN will have to converge and
cannot oscillate since the the all time maximum can never decrease (Eqn. 14) from the previous value and the minimum can
never increase (Eqn. 15). Thus convergence is guaranteed in URCP.

2) Effect of β: In URCP, the parameter β is similar to k0 in the delay-based UM rate control with fixed parameters since it
affects the operating congestion point. In the single flow case, if δMIN and RMAX are accurate estimates, from Eqn. 19, we
see that δoperating ≈ δMIN and R ≈ RMAX regardless of β. Thus, no parameter tuning is needed to get optimal performance
in the single-flow case.

However, if either δMIN or RMAX are inaccurate or if we have multiple flows, β affects the operating point. In particular, if
β = 0, then overestimates in RMAX and multiple flows cause the operating delay point to only increase as

√
RMAX

Roperating
which

is desirable for keeping the operating delay low. For example, 10 flows will only increase this term in the operating point by

a factor of
√

10 instead of 10. If we underestimate δMIN , then the achievable rate decreases as
(
δ̄MIN

δMIN

)2

. For example, if
we underestimate δMIN by a factor of two, then the achievable rate is only 1

4 of capacity. Under-estimates in RMAX and
over-estimates in δMIN are easily corrected and not an issue as can be seen from Eqns. 14 and 15.

On the other hand if β = 1.0, then underestimating δMIN does not cause any reduction in the achievable rate. However,
this comes at the expense of the operating delay growing without bound. For example, even if RMAX is slightly larger than
Roperating, we see infinite delay from Eqn. 19.

The trade-off between increasing operating point with increasing RMAX

Roperating
and decreasing achievable rate with increasing

δ̄MIN

δoperating
is unavoidable. Through experimentation, we set β = 0.8 in our implementation.

In the fixed parameter delay-based UM protocol, the operating delay point and the achievable rate are functions of k0, RMAX

and δMIN . However, in URCP, from Eqn. 19, we see that the operating delay point and the achievable rate are functions of
β, RMAX

Roperating
, and δoperating

δMIN . From this we conclude that the choice of the parameter β is independent of the absolute value

of RMAX and δMIN , but rather is a function of the ratios RMAX

Roperating
and δoperating

δMIN . This allows us to choose β which is
completely independent of the network, thus making URCP universal.

C. k2 Adaptation

The parameter k2 in the delay-based UM scheme affects the rate of convergence and has no effect on the operating point.
Although k2 can be fixed while k0 adapts, we also adapt k2 using Eqn. 17, where M is a parameter which controls the rate
of convergence and the amount of oscillation in steady-state. Since ∆R = k2k0 if δ = 0, we can view the term M

√
R

RMAX

as the number of RTTmin until we reach a rate of RMAX . The factor
√

R
RMAX makes the number of RTTmin small when

R is small relative to RMAX . As R approaches RMAX , the number of RTTmin approaches M .
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For example if M = 100, then when R = RMAX

10 , then, we try to reach RMAX in 100√
10

= 31.6 round-trip times. This allows
us to ramp up faster when we are far from RMAX and as R approaches RMAX , we adaptively lower k2. After experimentation
on several networks, we set M = 100.

The rate of convergence parameter M is also independent of the network since it is scaled by
√

R
RMAX and reflects the

number of RTTmin needed to reach RMAX .

D. Fairness

Since the fixed parameter delay-based UM protocol is fair with respect to multiple flows if all flows have the same k0,
URCP will also be fair provided all flows converge to the same value of k0. From Eqn. 19, we see that this will happen
provided all flows have the same estimates of the bottleneck link capacity RMAX and the inherent delay noise δMIN . Since
these are relatively stable network parameters which can be estimated, URCP is fair with respect to multiple flows. This fact
is validated empirically in Sec. VII.

Fairness can also be guaranteed if for example there was some central server which knew the network topology and
characteristics which could notify each flow with accurate values of RMAX and δMIN (or directly k0 and k2), ensuring that
each flow uses the same k0. In addition, if we repeatedly connect from the same endpoint (say the same 4G connection or
cable connection), then we can use pre-cached values to initialize these parameters thus obtaining more accurate and stable
estimates.

E. Multiple Congestion Signals

URCP can be easily modified to incorporate multiple congestion signals such as delay, loss, and ECN, by using multiple
URCP rate controllers each reacting to different congestion signals using Table I and each specifying a rate (e.g. Rδ from
controller reacting to delay and Rε from controller reacting to loss). Then, we can define the actual rate R to be the minimum of
all rates, e.g. R = min(Rδ, Rε). The actual operating congestion level then becomes the minimum of the operating congestion
levels from each controller.

For example, in the shallow buffer case, if δoperating is larger than the buffer size, the operating delay is not achievable and
Rδ will grow without bound. However, Rε will be controlled from the controller which reacts to loss and we will achieve an
operating loss rate of εoperating.

VII. EVALUATION

We use several real-world networks to show the performance of URCP: ADSL, cable modem, Ethernet (with rate limiting),
public Wi-Fi hotspot, WiMAX (Clearwire), and 4G (HSPA+) (T-Mobile). We use a server connected to a well provisioned
network on one end of the connection. At the other end, we use a client connected to each of the networks mentioned above.
In our sessions, the client sends data to the server. In this setup, the client’s connection is the bottleneck link. If we reverse
the direction of traffic, we get similar results as those presented here. In our implementation, we implement the rate control
on the sender side in Fig. 2.

In the evaluations, we measure the following network parameters: throughput (receiving rate), operating delay measure, and
operating packet loss. The operating delay measure is computed using Eqn. 4 by subtracting the minimum observed delay
from the observed delay. The operating packet loss is simply the observed packet loss rate. We note that the operating delay
measure presented is the sum of both the inherent delay noise and the congestion-induced queuing delay from Eqn. 4.

We test URCP and compare with the following state-of-art rate control protocols in the literature.
1) TFRC: We use the TFRC throughput equation based on TCP NewReno from [10] in our test application.
2) TCP NewReno congestion control: We use the default implementation in Windows and use tcpdump to obtain the

performance an RTC application would see.
3) TCP Vegas: We use the implementation provided in Linux [24] and port the congestion control portion to our test

application.
4) WebRTC: We use the rate control specified in [19].
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TABLE II: Comparison of URCP, TFRC using TCP NewReno throughput equation, Loss-based TCP New Reno (labeled
TCP-NR), Delay-based TCP Vegas (labeled TCP-V), WebRTC, and delay-based UM (labeled UM) rate control protocols over
various networks showing throughput (in kbps), operating delay (in msec), loss rate (as a fraction), and PSNR of video sequence
(in dB).

NetworkProt.
Avg.
Rate
(kbps)

Avg.
De-
lay
(msec)

90%
delay
(msec)

Loss
Rate

Avg.
PSNR
(dB)

ADSL
URCP 753.3 11 16 0.0022 47.3
TFRC 820.5 442 724 0.0004 36.3
TCP-NR 825.3 860 1295 0.0057 32.4
TCP-V 661.4 23 24 0.0070 44.8
WebRTC 636.7 19 32 0.0003 46.5
UM 733.6 20 33 0.0043 46.6

Cable
Modem

URCP 990.6 14 27 0.0005 48.3
TFRC 986.6 562 830 0.0002 29.8
TCP-NR 1001.8 386 489 0.0003 30.2
TCP-V 814.9 13 22 0.0027 46.7
WebRTC 292.5 2 3 0.1219 28.6
UM 1039.2 13 23 0.0002 48.5

Ethernet
URCP 8136.0 0.77 1.10 0.0000 52.4
TFRC 3865.9 2.51 5.74 0.0542 46.5
TCP-NR 9218.1 6.90 6.98 0.0250 48.3
TCP-V 6834.1 5.36 10.4 0.0001 52.4
WebRTC 7989.5 5.27 12.0 0.0000 52.3
UM 6871.1 2.07 3.78 0.0000 52.3

Wi-Fi
URCP 516.4 41 82 0.0249 44.7
TFRC 515.6 136 214 0.0296 38.7
TCP-NR 501.7 252 403 0.0164 34.0
TCP-V 485.6 78 195 0.0244 40.5
WebRTC 461.0 16 42 0.0020 44.4
UM 486.2 35 109 0.0099 43.3

WiMAX
URCP 451.1 26 41 0.0002 45.1
TFRC 467.4 526 1010 0.0007 30.8
TCP-NR 459.0 2050 2926 0.0010 28.9
TCP-V 378.6 60 53 0.0020 42.0
WebRTC 212.2 58 94 0.0000 40.5
UM 332.6 57 105 0.0080 41.5

4G
(HSPA+)

URCP 1491.9 37 69 0.0039 50.2
TFRC 1306.2 100 185 0.0179 44.2
TCP-NR 1472.7 281 401 0.0026 42.8
TCP-V 665.1 27 36 0.0178 45.3
WebRTC 639.7 39 53 0.0008 47.5
UM 639.2 25 32 0.0683 44.5

5) Delay-based UM using fixed k0 and k2: We implement the rate control using Eqn. 6 with k0 = 16000 bits and k2 = 0.6.
In addition to just comparing network metrics, we also estimate the video quality we would get if the rate control protocol

was used in a video conferencing application. The video is encoded using the JM reference software encoder [8] using a fast
encoding mode with a single reference picture and is representative of what would be used in a video conferencing setting.
Using the packet level trace generated by each protocol when running over a real network, we determine whether the packet is
received or lost and it’s reception time. The video is then decoded using the JM reference software using the error concealment
provided. The decoder has a fixed size dejitter buffer and packets which arrive with a delay larger than it’s size are also
considered lost. The PSNR between the original and reconstructed frames is computed for the luminance (Y) component.
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TABLE III: Results obtained when initial parameters, RMAX and δMIN are mis-estimated.

Network Param
Avg.
Rate
(kbps)

Avg.
De-
lay
(msec)

90%
delay
(msec)

Loss
Rate

Init
RMAX

(kbps)

Final
RMAX

(kbps)

Init
δMIN

(msec)

Final
δMIN

(msec)

ADSL
Correct 753.30 11 16 0.0022 841.90 841.90 5 4
RMAX = 2R̄MAX 762.97 21 28 0.0178 1683.79 1683.79 5 2
RMAX = .5R̄MAX 728.92 8 11 0.0010 420.95 822.96 5 5
δMIN = 2δ̄MIN 772.04 60 121 0.0075 841.90 841.90 10 8
δMIN = .5δ̄MIN 598.13 8 11 0.0009 841.90 841.90 3 2

Wi-Fi
Correct 512.23 45 92 0.0199 555.21 591.67 50 16
RMAX = 2R̄MAX 558.62 194 309 0.0294 1110.42 1110.42 50 47
RMAX = .5R̄MAX 513.56 32 69 0.0078 277.61 600.24 50 8
δMIN = 2δ̄MIN 520.62 90 172 0.0390 555.21 597.52 100 49
δMIN = .5δ̄MIN 458.80 76 166 0.0191 555.21 583.93 25 25

Ethernet
Correct 8136.05 0.77 1.10 0.0000 9086.86 9086.86 1 0.59
RMAX = 2R̄MAX 8490.08 1.79 2.35 0.0002 18173.73 18173.73 1 0.54
RMAX = .5R̄MAX 7771.81 0.69 0.82 0.0002 4543.43 8589.81 1 0.50
δMIN = 2δ̄MIN 8566.19 0.82 0.97 0.0001 9086.86 9086.86 2 0.73
δMIN = .5δ̄MIN 6073.68 0.69 0.76 0.0001 9086.86 9086.86 0.5 0.25
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Fig. 3: Results for WiMAX network.

A. Performance of URCP

We first show the performance of URCP and compare it with the protocols described above. In Table II, we show the
following statistics: receiver rate (throughput), operating delay, 90-th percentile operating delay, packet loss, and the average
PSNR of a standard video test sequence (“akiyo” [30]) using the method described. The video sequence has CIF-size resolution
(352x288) at 30 fps and is representative of a video conferencing session. In Figs. 3, 4, 5, and 6 we also show the throughput
vs. time, operating delay vs. time, lost packets vs. time, CDF of operating delay, and the PSNR vs. time for various protocols
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Fig. 4: Results for 4G (HSPA+) network.
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Fig. 5: Results for Wi-Fi network.

for the Clearwire WiMAX, T-Mobile 4G (HSPA+), public Wi-Fi hotspot, and cable modem respectively.
From the results, we see that for all networks URCP is able to achieve similar throughput as the loss based protocols, TCP

NewReno and TFRC. However, the operating delay, 90-th percentile operating delay, and packet loss are significantly better.
The operating delay is sometimes better by up to two orders of magnitude. This is obvious from the CDF of the operating
delay in Figs. 4 and 5. This is expected as loss based protocols target to have full link utilization but at high operating delay
levels whereas as URCP attempts to have an operating delay which is close to the inherent delay noise, making the congestion
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Fig. 6: Results for cable modem network.
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(a) Original (b) URCP (c) TFRC

Fig. 8: Frames taken from decoded video sequence using various protocols.

induced queuing delay insignificant. Although TCP NewReno and TFRC have fairly high throughput, when looking at PSNR
values from a video conferencing application, both suffer due to the fact that high operating delay results in packets which are
considered lost due to late arrival which results in the frames being reconstructed using the error concealment logic present in
the decoder.
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Fig. 9: Results for cable modem network with multiple flows.
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Fig. 10: Results for WiMAX network with multiple flows.

TABLE IV: URCP performance with two URCP flows (first five rows) and URCP plus competing TCP flow (last row).

Time 0-300sec (Flow 0) Time 300-600sec (Flow 0 & 1) Time 600-900sec (Flow 0)

Network Flow
Avg.
Rate
(kbps)

Avg.
De-
lay
(msec)

90%
De-
lay
(msec)

Loss
Rate

Avg.
Rate
(kbps)

Avg.
De-
lay
(msec)

90%
De-
lay
(msec)

Loss
Rate

Avg.
Rate
(kbps)

Avg.
De-
lay
(msec)

90%
De-
lay
(msec)

Loss
Rate

ADSL
0 654.90 10 16 0.0019 345.21 20 36 0.0023 692.87 9 12 0.0019
1 - - - - 398.43 20 35 0.0024 - - - -

Cable
Modem

0 969.61 13 24 0.0060 537.73 43 74 0.0011 987.70 15 27 0
1 - - - - 478.32 45 75 0.0001 - - - -

Ethernet
0 8176.34 0.9 1.2 0.0013 4259.61 2.7 4.1 0.0023 8254.17 1.0 1.5 0.0009
1 - - - - 4410.91 2.6 4.0 0.0020 - - - -

Wi-Fi
0 502.76 88 176 0.0257 274.31 196 317 0.0315 489.51 77 153 0.0156
1 - - - - 293.29 195 316 0.0326 - - - -

WiMAX 0 451.98 28 44 0.0008 247.22 94 164 0.0001 455.34 30 47 0.0011
1 - - - - 225.69 94 164 0 - - - -

Wi-Fi,
TCP

URCP 529.13 53 111 0.0132 219.16 232 355 0.0428 489.80 85 170 0.0255
TCP - - - - 347.19 267 414 0.0394 - - - -
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Fig. 11: Adaptation of RMAX and δMIN for Wi-Fi in case they are initially mis-estimated. We see that the parameters are
able to self-correct as new values are observed.

When compared to the delay based state-of-art protocols, TCP Vegas, WebRTC, and delay-based UM, we see that URCP is
able to maintain similar throughput and operating delay levels on clean networks such as ADSL, Cable Modem, and Ethernet.
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However, on noisy networks such as Wi-Fi, WiMAX, and 4G (HSPA+), the throughput with URCP is significantly better than
existing delay based protocols, whereas the operating delay and loss levels are similar. This is because URCP adapts the UM
framework to have an operating level which allows for full link utilization. The delay seen by all protocols is similar since
even if there is no protocol induced congestion, we cannot go below the inherent delay noise. When looking PSNR values
for the video conferencing application, the reduced throughput results in poorer PSNR values for TCP Vegas, WebRTC, and
delay-based UM.

In conclusion, we see that URCP gives similar throughput as existing loss based protocols, but at much lower operating
delay levels. In addition, it gives higher throughput than existing delay based state-of-art techniques on noisy networks.

In Fig. 7, we show the PSNR results as a function of dejitter buffer size for the WiMAX network. We see that we are able to
maintain a high PSNR even if the dejitter buffer size reduces to 100ms. Only if it is reduced to 50ms do we see performance
degradation.

We also show a representative decoded frame in Fig. 8. If the URCP protocol is used, frames arrive in time and the decoding
is similar to the original. If TFRC is used, some frames are lost due to late arriving packets. The error concealment logic in
the decoder copies a previous frame which may look very different than the original. In this frame, the newscaster’s eyes are
different.

In Figs. 4 and 5, we also show parameter adaptation (k0 and k2) vs. time for URCP. We also plot the estimated bottleneck
link capacity, RMAX , and the estimated operating delay noise, δMIN . We see that even for noisy networks such as HSPA+
and Wi-Fi, we are able to obtain fairly stable estimates of RMAX and δMIN .

B. Effects of Initial Parameter Mis-Estimation

In Sec. VII-A, the initial parameter estimates for RMAX and δMIN are good estimates of the capacity and operating delay
noise. To study the effects of mis-estimation, we modify the actual initial parameters obtained and analyze the performance.
We show results for the four possible mis-estimation cases:

1) Over-estimation of R̄MAX : RMAX = 2R̄MAX

2) Under-estimation of R̄MAX : RMAX = 0.5R̄MAX ,
3) Over-estimation of δ̄MIN : δMIN = 2δ̄MIN ,
4) Under-estimation of δ̄MIN : δMIN = 0.5δ̄MIN ,
The throughput, operating delay, and packet loss results are shown in Table III for several of the networks. In the Table, we

also show the initial mis-estimated values of RMAX and δMIN and show the final values after in-session adaptation. We plot
the results for two of the cases, under-estimation of R̄MAX and over-estimation of δ̄MIN , in Fig. 11 for the Wi-Fi network.
In the case R̄MAX is under-estimated, we see that RMAX increases as higher rates are seen. Similarly, in the case δ̄MIN is
over-estimated, δMIN decreases as lower operating delay values are seen.

If R̄MAX is over-estimated, we achieve full throughput at the expense of a slightly higher operating delay. This over-
estimation can only be corrected by re-probing the network. However, the effect of the over-estimation is limited since the
additional delay due to this grows as

√
RMAX

R̄MAX as we see from (19) (sub-linear increase).
If R̄MAX is under-estimated, we can still achieve close to full throughput, as RMAX can correct itself (from Eqn. 14) if

we see higher rates in the session. From Fig. 11 and Table III, we see that RMAX does increase during the session. In this
case, RMAX increases from 420kbps to 822kbps.

If δ̄MIN is over-estimated, we see that we can achieve full rate and still operate at low congestion levels. This is due to the
fact that δMIN can correct itself if we see lower delay values in the session as we see from Eqn. 15. δMIN decreases from
10ms to 8ms for the Wi-Fi network. It is not able to see the true value (4-5ms) since we are constantly pushing the network
with traffic. In a real case, a video conferencing session may have some quiet periods where it can see lower operating delay
noise. The effect of this is that the operating delay is slightly higher than if it was estimated correctly.

If δ̄MIN is under-estimated, we may under-utilize the link slightly as the only way to correct for under-estimation of δMIN

is to re-probe the network. However, as we see from (15), since we adjust the operating congestion level using observed

operating delay, δAV E , the affect of under-estimation is mitigated (the rate only drops from 750kbps to 600kbps).
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C. Multiple URCP Flows

We examine the performance of URCP when multiple flows are sharing a bottleneck link. We consider the case when one
flow is sending from 0-900 seconds and the other flow from 300-600 seconds. The overall performance of this is summarized
in Table IV for several of the networks (first five rows of the table). The performance is also plotted in Fig 10 and 9 for the
WiMAX and cable modem network respectively. We note that URCP is able to fairly share the bottleneck link when multiple
URCP flows are present. Although the operating delay does increase when two flows are present (as predicted from (19)), it
reduces once the second flow departs.

D. Competing TCP Flows

We also study the case when a competing TCP flow joins the network and present the result in the last row of Table IV.
We run a URCP flow from 0-900 seconds and a TCP flow joins from 300-600 seconds. We run this experiment on the Wi-Fi
network. When the TCP flow joins, the average rate reduces from 529kbps to 219kbps with the TCP flow taking the remaining
rate. The average delay increases from 53msec to 232ms and the loss rate increases from .01 to .04. Once the TCP flow leaves,
both delay and loss return to original levels. This shows that we are able to effectively compete with TCP flows while still
being able to return to low operating congestion levels.

VIII. FINAL REMARKS

In this paper, we have shown that existing rate control protocols either deliver high throughput with high operating delay and
loss or low throughput with low operating delay and loss on noisy networks. Since RTC applications require high throughput
while maintaining low operating delay and loss levels, we developed a novel Universal Rate Control Protocol (URCP) which
is able to achieve the desired characteristics on a range of networks include noisy ones such as Wi-Fi, WiMAX, and 3G/4G.

The key insight in URCP is that parameter adaptation based on stable and relatively easy to estimate network characteristics
can be used to modify the operating delay and loss point of the rate control protocol so that congestion induced delay and

loss can be minimized while still being able to achieve the full bottleneck link capacity.
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