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Abstract

In the last decade we have seen a huge deployment of
cheap clusters to run data analytics workloads. The
conventional wisdom in industry and academia is that
scaling out using a cluster is better for these workloads
than scaling up by adding more resources to a single
server. Popular analytics infrastructures such as Hadoop
are aimed at such a cluster scale-out environment, and
in today’s world nobody gets fired for adopting a cluster
solution.

Is this the right approach? Our measurements as well
as other recent work shows that the majority of real-
world analytic jobs process less than 100 GB of input,
but popular infrastructures such as Hadoop/MapReduce
were originally designed for petascale processing. We
claim that a single “scale-up” server can process each of
these jobs and do as well or better than a cluster in terms
of performance, cost, power, and server density. Is it time
to consider the “common case” for “big data” analytics
to be the single-server rather than the cluster case? If so,
this has implications for data center hardware as well as
software architectures.

Unfortunately widely used platforms such as Hadoop
perform poorly in a scale-up configuration. We de-
scribe several modifications to the Hadoop runtime to
address this problem. These changes are transparent, do
not require any changes to application code, and do not
compromise scale-out performance. However they do
significantly improve Hadoop’s scale-up performance.
We present a broad evaluation across 11 representative
Hadoop jobs that shows scale-up to be competitive in all
cases and significantly better in some cases, than scale-
out. Our evaluation considers raw performance, as well
as performance per dollar and per watt.

1 Introduction

Data analytics, and in particular, MapReduce [8] and
Hadoop [1] have become synonymous with the use of
cheap commodity clusters using a distributed file sys-
tem that utilizes cheap unreliable local disks. This is the
standard scale-out thinking that has underpinned the in-
frastructure of many companies. Clearly large clusters
of commodity servers are the most cost-effective way to
process exabytes, petabytes, or multi-terabytes of data.
Nevertheless, we ask: is it time to reconsider the scale-
out versus scale-up question?

First, evidence suggests that the majority of analytics
jobs do not process huge data sets. For example, at least
two analytics production clusters (at Microsoft and Ya-
hoo) have median job input sizes under 14 GB [10, 17],
and 90% of jobs on a Facebook cluster have input sizes
under 100 GB [4].

Second, many algorithms are non-trivial to scale out
efficiently. For example, converting iterative-machine
learning algorithms to MapReduce is typically done as
a series of MapReduce rounds. This leads to significant
data transfer across the network between the map and re-
duce phases and across rounds. Reducing this data trans-
fer by changing the algorithm is expensive in terms of
human engineering, may not be possible at all, and even
if possible results in an approximate result.

Third, hardware price trends are beginning to change
performance points. Today’s servers can affordably
hold 100s of GB of DRAM and 32 cores on a quad
socket motherboard with multiple high-bandwidth mem-
ory channels per socket. DRAM is now very cheap, with
16 GB DIMMs costing around $220, meaning 192 GB
costs less than half the price of a dual-socket server and
512 GB costs 20% the price of a high-end quad-socket
server. Storage bottlenecks can be removed by using
SSDs or with a scalable storage back-end such as Ama-
zon S3 [3] or Azure Storage [6, 5]. The commoditization
of SSDs means that $2,000 can build a storage array with
multiple GB/s of throughput. Thus a scale-up server can
now have substantial CPU, memory, and storage I/O re-
sources and at the same time avoid the communication
overheads of a scale-out solution. Moore’s law contin-
ues to improve many of these technologies, at least for
the immediate future.

Is it better to scale up using a well-provisioned single
server or to scale out using a commodity cluster? For the
world of analytics in general and Hadoop MapReduce in
particular, this is an important question. Today the de-
fault assumption for Hadoop jobs is that scale-out is the
only configuration that matters. Scale-up performance is
ignored and in fact Hadoop performs poorly in a scale-
up scenario. In this paper we re-examine this question
across a range of analytic workloads and using four met-
rics: performance, cost, energy, and server density.

This leads to a second question: how best to achieve
good scale-up performance. One approach is to use a
shared-memory, multi-threaded programming model and
to re-implement algorithms to use this model. This is the
easiest way to show good performance as the implemen-
tation can be tuned to the algorithm. However, it is inten-
sive in terms of human work. It also means the work is
wasted if the job then needs to scale in the future beyond
the limits of a single server.

A second approach is to provide the same MapRe-
duce API as is done for scale-out but to optimize the
infrastructure for the scale-up case. In fact, ideally the
switch between scale-out and scale-up would be com-
pletely transparent to the Hadoop programmer. This is
the approach we take: how can we get all the bene-
fits of scale-up within a commonly used framework like
Hadoop. Our solution is based on transparent optimiza-



tions to Hadoop that improve scale-up performance with-
out compromising the ability to scale out.

While vanilla Hadoop performs poorly in a scale-up
configurations, a series of optimizations makes it com-
petitive with scale-out. Broadly, we remove the initial
data load bottleneck by showing that it is cost-effective
to replace disk by SSDs for local storage. We then show
that simple tuning of memory heap sizes results in dra-
matic improvements in performance. Finally, we show
several small optimizations that eliminate the “shuffle
bottleneck”.

This paper makes two contributions. First, it shows
through an analysis of real-world job sizes as well as an
evaluation on a range of jobs, that scale-up is a com-
petitive option for the majority of Hadoop MapReduce
jobs. Of course, this is not true for petascale or multi-
terabyte scale jobs. However, there is a large number of
jobs, in fact the majority, that are sub-terabyte in size.
For these jobs we claim that processing them on clus-
ters of 10s or even 100s of commodity machines, as is
commonly done today, is sub-optimal. Our second con-
tribution is a set of transparent optimizations to Hadoop
that enable good scale-up performance. Our results show
that with these optimizations, raw performance on a sin-
gle scale-up server is better than scale-out on an 8-node
cluster for 9 out of 11 jobs, and within 5% for the other
2. Larger cluster sizes give better performance but incur
other costs. Compared to a 16-node cluster, a scale-up
server provides better performance per dollar for all jobs.
When power and server density are considered, scale-up
performance per watt and per rack unit are significantly
better for all jobs compared to either size of cluster.

Our results have implications both for data center
provisioning and for software infrastructures. Broadly,
we believe it is cost-effective for providers supporting
“big data” analytic workloads to provision “big memory”
servers (or a mix of big and small servers) with a view to
running jobs entirely within a single server. Second, it
is then important that the Hadoop infrastructure support
both scale-up and scale-out efficiently and transparently
to provide good performance for both scenarios.

The rest of this paper is organized as follows. Sec-
tion 2 shows an analysis of job sizes from real-world
MapReduce deployments that demonstrates that most
jobs are under 100 GB in size. It then describes 11 exam-
ple Hadoop jobs across a range of application domains
that we use as concrete examples in this paper. Section 3
then briefly describes the optimizations and tuning re-
quired to deliver good scale-up performance on Hadoop.
Section 4 compares scale-up and scale-out for Hadoop
for the 11 jobs on several metrics: performance, cost,
power, and server density. Section 5 discusses some
implications for analytics in the cloud as well as the
crossover point between scale-up and scale-out. Sec-

Figure 1: Distribution of input job sizes for a large analytics cluster

tion 6 describes related work, and Section 7 concludes
the paper.

2 Job sizes and example jobs

A key claim of this paper is that the majority of real-
world analytic jobs can fit into a single “scale-up” server
with up to 512 GB of memory. We analyzed 174,000 jobs
submitted to a production analytics cluster in Microsoft
in a single month in 2011 and recorded the size of their
input data sets. Figure 1 shows the CDF of input data
sizes across these jobs. The median job input data set size
was less than 14 GB, and 80% of the jobs had an input
size under 1 TB. Thus although there are multi-terabyte
and petabyte-scale jobs which would require a scale-out
cluster, these are the minority.

Of course, these job sizes are from a single cluster
running a MapReduce like framework. However we be-
lieve our broad conclusions on job sizes are valid for
MapReduce installations in general and Hadoop installa-
tions in particular. For example, Elmeleegy [10] analyzes
the Hadoop jobs run on the production clusters at Ya-
hoo. Unfortunately, the median input data set size is not
given but, from the information in the paper we can esti-
mate that the median job input size is less than 12.5 GB.1

Ananthanarayanan et al. [4] show that Facebook jobs fol-
low a power-law distribution with small jobs dominating;
from their graphs it appears that at least 90% of the jobs
have input sizes under 100 GB. Chen et al. [7] present
a detailed study of Hadoop workloads for Facebook as

1The paper states that input block sizes are usually 64 or 128 MB
with one map task per block, that over 80% of the jobs finish in 10
minutes or less, and that 70% of these jobs very clearly use 100 or
fewer mappers (Figure 2 in [10]). Therefore conservatively assuming
128 MB per block, 56% of the jobs have an input data set size of under
12.5 GB.
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Job Input Shuffle Output
Log crunching
FindUserUsage 41 GB 4 MB 36 KB
ComputeIOVolumes 94 GB 157 MB 30 MB
Analytic queries
Select Task1 41 GB 0 KB 0 KB
Aggregate Task 70 GB 5 GB 51 MB
Join Task2 113 GB 10 GB 4.3 GB
TeraSort
10 GB TeraSort 11 GB 11 GB 11 GB
50 GB TeraSort 54 GB 54 GB 54 GB
Pig Cogroup 5 GB 7 GB 131 GB
Mahout3

k-Means 72 MB N/A N/A
Wikipedia 432 MB N/A N/A
Indexing 10 GB 34 GB 26 GB
1 Select produces negligible intermediate and output data.
2 Sum of input, output, and shuffle bytes across three stages.
3 Mahout jobs iterate over many map-reduce stages and hence we

only measure input data size.

Table 1: Summary of jobs used with input, shuffle, and output data
sizes.

well as 5 Cloudera customers. Their graphs also show
that a very small minority of jobs achieves terabyte scale
or larger and the paper claims explicitly that “most jobs
have input, shuffle, and output sizes in the MB to GB
range.”

These data are extracted from jobs running in produc-
tion clusters: we are not able to compare their perfor-
mance directly on scale-up versus scale-out infrastruc-
tures. In order to do so, we have collected a smaller set
of jobs from a variety of sources. We describe these jobs
in the rest of the section, and use them as benchmarks
in our evaluation in Section 4. Broadly the jobs we ex-
amine can be classified by application domain into log
analysis, query-based data analytics, machine learning,
and searching/indexing. Table 1 shows the amount of in-
put, shuffle, and output data for each job.

2.1 Log crunching

One of the most common uses of Hadoop and MapRe-
duce is to process text logs. We use two such jobs from a
real-world compute platform consisting of tens of thou-
sands of servers. Users issue tasks to the system that
spawn processes on multiple servers which consume re-
sources on each server. The system writes logs that cap-
ture statistics such as CPU, I/O and other resource uti-
lization on these servers. Administrators can process
these logs to extract both fine- and coarse-grained in-
formation about resource usage. In this paper we use

two such jobs. The FindUserUsage job processes one
such log to aggregate resource. The ComputeIOVolumes
job processes two log files to combine process-level and
task-level information, and hence find the amount of in-
put and intermediate data I/O done by each task.

2.2 Analytic queries
We use three analytical queries from a benchmark that
was created for comparing the performance of Hadoop
against a parallel DBMS [13]. These tasks mimic query
processing on a cluster of HTML documents gathered by
a web crawl. The input data to these tasks consists of
two tables, each sharded across a large number of files.
Both data sets consist of random records generated by a
custom data generator.

Records in the PageRank table associate each unique
URL with a page rank. The UserVisits table contains one
record per user visit, which contains the source IP, the
date of visit, ad revenue generated, user agent, search
word used, URL visited, country code, and language
code. We use three queries (converted into Hadoop jobs)
based on these two tables in our benchmark suite.

The Select task finds the top 1% of URLs by page
rank from the PageRank table. The Aggregate task calcu-
lates the total ad revenue per source IP address, from the
UserVisits table. The Join takes both data sets as input. It
finds the source IP addresses that generates the most rev-
enue within a particular date range and then computes
the average page rank of all the pages visited by those
IP addresses in that interval. It is computed in three
phases, each of which is a MapReduce computation. We
converted each phase into a separate Hadoop job in our
benchmark suite.

2.3 TeraSort
TeraSort is a standard benchmark for data processing
platforms. We use the Hadoop version of TeraSort. De-
spite its name, TeraSort can be used to sort different sizes
of input data. In this paper we consider input sizes of
10 GB, 50 GB, and 100 GB.

2.4 Mahout machine learning tasks
In recent years, Mahout has emerged as a popular frame-
work to simplify the task of implementing scalable ma-
chine learning algorithms by building on the Hadoop
ecosystem. We used two standard machine learning
algorithms implemented in Mahout in our benchmark
suite.

The Clustering benchmark is based on k-means clus-
tering, provided as part of the Mahout machine learn-
ing library [12]. This is an iterative machine-learning al-
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gorithm implemented as a series of map-reduce rounds.
The input to the algorithm is a set of points represented
as d-dimensional vectors, and an initial set of cluster cen-
troids (usually chosen randomly). In each round, the
mappers map each vector to the nearest centroid, and the
reducers recompute the cluster centroid as the average of
the vectors currently in the cluster. We use the Mahout
k-means implementation to implement a tag suggestion
feature for Last.fm, a popular Internet radio site. The
basic idea is to group related tags together so that the
website can assist users in tagging items by suggesting
relevant tags. We use the raw tag counts for the 100 most
frequently occurring tags generated by Last.fm users as
our input data set. The data set contains 950,000 records
accounting for a total of 7 million tags assigned to over
20,000 artists.

The Recommendation benchmark is based on the rec-
ommendation mining algorithm also provided with Ma-
hout. It is also iterative with multiple map-reduce
rounds. We use this algorithm on the publicly available
Wikipedia data set to compute articles that are similar to
a given one. The output of the recommendation algo-
rithm is a list of related articles that have similar outlinks
as the given article and hence, are related to it and should
possibly be linked with it. The Wikipedia input data set
contains 130 million links, with 5 million sources and 3
million sinks.

2.5 Pig

Apache Pig is another platform that has gained
widespread popularity in recent years as a platform that
fosters the use of a high level language to perform large
scale data analytics. We use a “co-group” query from
a standard list of queries used as performance tests for
Pig [18]2. This takes two tables as input and does a
“co-group” that effectively computes the cross-product
of the two tables. It is interesting in that the final output
is much larger than either the input or shuffle data, since
the cross-product is computed at the reducers.

2.6 Indexing

Building an inverted index from text data was part of the
original motivation for MapReduce [8], and inverted in-
dices are commonly used by many search engines. We
implemented a simple indexer as a Hadoop MapReduce
job that takes a set of text files as input and outputs a full
index that maps each unique word to a list of all occur-
rences of that word (specified as file name + byte offset).

2Other queries on this list essentially replicate the selection, aggre-
gation, and projection tasks already included in our benchmark suite.

Optimization Scale-up Scale-out
SSD storage Yes Yes
Local FS for input Yes No
Optimize concurrency Yes Yes
Suppress OOB heartbeat Yes No
Optimize heap size Yes Yes
Local FS for intermediate data Yes No
Unrestricted shuffle Yes No
RAMdisk for intermediate data Yes No

Table 2: Summary of Hadoop optimizations grouped as storage, con-
currency, network, memory, and reduce-phase optimizations. All the
optimizations apply to scale-up but only some to scale-out.

3 Optimizing for scale-up

In order to evaluate the relative merits of scale-up and
scale-out for the jobs described in Section 2, we needed
a software platform to run these jobs. The obvious candi-
date for scale-out is Hadoop; we decided to use Hadoop
as our platform on a single scale-up server as well, for
three reasons. First, there is a large number of applica-
tions and infrastructures built on Hadoop, and thus there
is a big incentive to stay within this ecosystem. Sec-
ond, any scale-up platform will have to scale out as well,
for applications that need to scale beyond a single big-
memory machine. Finally, using the same base platform
allows us an apples-to-apples performance comparison
between the two configurations.

We first tuned and optimized Hadoop for good per-
formance in the baseline, i.e., cluster scale-out, scenario.
We then further optimized it to take advantage of fea-
tures of the scale-up configuration, such as local file sys-
tem storage and local RAMdisks. In this section we de-
scribe these optimizations. Table 2 lists the optimizations
applied to Hadoop divided into five categories: storage,
concurrency, network, memory, and reduce-phase opti-
mizations. The storage, concurrency, and memory opti-
mizations apply to both scale-up and scale-out configu-
rations whereas the network and reduce-phase optimiza-
tions are only meaningful for the scale-up configuration.
The concurrency and memory optimizations require tun-
ing Hadoop parameters for the specific workload; all the
other optimizations are workload-independent.

Here we describe each optimization. Section 4.5 has
an experimental evaluation of the performance benefit of
each optimization for the scale-up case.

3.1 Storage

Our first step was to remove the storage bottleneck for
both scale-up and scale-out configurations. In a default
configuration with disks, Hadoop is I/O-bound and has
low CPU utilization. We do not believe that this is a re-
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alistic configuration in a modern data center for either
a scale-up or a scale-out system. Storage bottlenecks
can easily be removed either by using SSDs or by us-
ing one of many scalable back-end solutions (e.g. SAN
or NAS in the enterprise scenario, or Amazon S3 / Win-
dows Azure in the cloud scenario). In our experimental
setup which is a small cluster we use SSDs for both the
scale-up and the scale-out machines.

Even with SSDs, there is still substantial I/O overhead
due to the use of HDFS. While HDFS provides scalable
and reliable data storage in a distributed Hadoop instal-
lation, we doubt its utility in single-node, scale-up in-
stallations for several reasons. A scalable storage back
end can easily saturate the data ingest capacity of a sin-
gle compute node. Thus using the compute node itself to
serve files via HDFS is unnecessary overhead. Alterna-
tively, if data is stored locally on SSDs, modern local file
systems like ZFS and BTRFS already provide equivalent
functionality to HDFS (e.g. check-summing) but without
the associated overheads, and can be retrofitted to work
with a single-node Hadoop setup.

Hence for our scale-up configuration we store the in-
puts on SSDs and access them via the local file system.
For the scale-out configuration, we also store the inputs
on SSDs but we access them via HDFS.

3.2 Concurrency

The next optimization adjusts the number of map and
reduce tasks to be optimal for each job. The default
way to run a Hadoop job on a single machine is to use
the “pseudo-distributed” mode, which assigns a separate
JVM to each task. We implemented a multi-threaded ex-
tension to Hadoop which allows us to run multiple map
and reduce tasks as multiple threads within a single JVM.
However, we found that when the number of tasks as well
as the heap size for each tasks are well-tuned, there is no
performance difference between the multi-threaded and
pseudo-distributed mode.

Since our goal is to avoid unnecessary changes to
Hadoop, we use the pseudo-distributed mode for the
scale-up configuration and the normal distributed mode
for the scale-out configuration. In both cases we tune
the number of mappers and reducers for optimal perfor-
mance for each job.

3.3 Heartbeats

In a cluster configuration, Hadoop tracks task liveness
through periodic “out-of-band” heartbeats. This is an un-
necessary overhead for a scale-up configuration where all
tasks run on a single machine. For the scale-up configu-
ration we disable these heartbeats.

3.4 Heap size
By default each Hadoop map and reduce task is run in
a JVM with a 200 MB heap within which they allocate
buffers for in-memory data. When the buffers are full,
data is spilled to storage, adding overheads. We note
that 200 MB per task leaves substantial amounts of mem-
ory unused on modern servers. By increasing the heap
size for each JVM (and hence the working memory for
each task), we improve performance. However too large
a heap size causes garbage collection overheads, and
wastes memory that could be used for other purposes
(such as a RAMdisk). For the scale-out configurations,
we found the optimal heap size for each job through trial
and error. For the scale-up configuration we set a heap
size of 4 GB per mapper/reducer task (where the maxi-
mum number of tasks is set to the number of processors)
for all jobs.

3.5 Shuffle optimizations
The next three optimizations speed up the shuffle (trans-
ferring data from mappers to reducers) on the scale-up
configuration: they do not apply to scale-out configura-
tions. First, we modified Hadoop so that shuffle data is
transferred by writing and reading the local file system;
the default is for reducers to copy the data from the map-
pers via http. However, we found that this still leads to
underutilized storage bandwidth during the shuffle phase,
due to a restriction on the number of concurrent copies
that is allowed. In a cluster, this is a reasonable throttling
scheme to avoid a single node getting overloaded by copy
requests. However it is unnecessary in a scale-up config-
uration with a fast local file system. Removing this limit
substantially improves shuffle performance. Finally, we
observed that the scale-up machine has substantial ex-
cess memory after configuring for optimal concurrency
level and heap size. We use this excess memory as a
RAMdisk to store intermediate data rather than using an
SSD or disk based file system.

4 Evaluation

In this section, we will use the benchmarks and MapRe-
duce jobs we described in Section 2 to perform an in-
depth analysis of the performance of scale-up and scale-
out Hadoop.

In order to understand the pros and cons of scaling
up as opposed to scaling out, one needs to compare op-
timized implementations of both architectures side by
side using several metrics (such as performance, perfor-
mance/unit cost, and performance/unit energy) under a
wide range of benchmarks. In this section we first de-
scribe our experimental setup. We then compare scale-
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Figure 2: Performance/$ for scale-out running TeraSort with HDDs
and SSDs, normalized to performance/$ of 16-node cluster with HDDs.

up and scale-out across all our entire benchmark suite on
several metrics. These results are based on applying all
the optimizations described in Section 3 to all the config-
urations.

We then look more closely at two of the jobs, Find-
UserUsage and TeraSort. For these two jobs we mea-
sure the individual phases — map, shuffle, and reduce
— to understand better the scale-up/scale-out tradeoffs.
We also measure the individual contributions of each of
our optimization techniques on scale-up performance.

4.1 Hardware

The commodity scale-out cluster we used in this work
consists of 16 data nodes and one name node. Each
node is a Dell Precision T3500 Essential workstation
with a 2.3 GHz E5520 Xeon quad-core processor (8 hy-
perthreads), 12 GB of memory, a 160 GB Western Digi-
tal Caviar Blue HDD, and a 32 GB Intel X25-E SSD. We
used this cluster in two configurations: with 8 data nodes
and with all 16 data nodes.

The scale-up machine is a 4-socket Dell PowerEdge
910 server with 4 8-core 2 GHz Intel Xeon E7-4820 pro-
cessors for a total of 32 cores (64 hyperthreads). The
server is also equipped with two RAID controllers. To
this base configuration we added 512 GB of DRAM, two
Hitachi UltraStar C10K600 HDDs in a RAID-1 configu-
ration, and 8 240 GB Intel 520 Series SSDs in a RAID-
0 configuration. The HDDs are used primarily for the
OS image and the SSDs for Hadoop job data. Table 3
summarizes the hardware configurations and their prices.
The scale-up configuration costs around $25k3, whereas
the 8-machine and 16-machine scale-out configurations
cost $19k and $38k respectively, without counting the
cost of the network switch that would be required in the
scale-out case.

3Since the scale-up machine we used in our study is nearing its end-
of-life period, we use as-on-date pricing of an equivalent configuration
to approximate its acquisition cost.

We use SSDs for both the scale-up and the scale-
out server. This is based on our observation that
without SSDs, many Hadoop jobs become disk-bound.
Thus although SSDs add 13% to the base cost of the
workstation-class machine in Table 3, they improve the
overall performance/price ratio of the cluster. We ver-
ified this by running the 10 GB TeraSort benchmark
on the 8- and 16-node configurations with and without
SSDs. Figure 2 shows the performance/price ratio for
the four configurations, normalized so that the 16-node
cluster using HDDs has a value of 1. We see that SSDs
do improve performance/$ for the scale-out configura-
tion, and we use SSDs consistently for both scale-up and
scale-out in our experiments.

Table 3 also shows the power draw under load of the
two hardware platforms. We measured the power con-
sumption offline using a stress test to ensure consistent
results. We used the 10 GB TeraSort benchmark to gen-
erate load, since it uniformly stresses the resources of all
the servers. We used a Watts up? Pro power meter which
logs power usage statistics at a one second granularity in
its internal memory during the job run, and derive the av-
erage power from this log. We ran this test both on the
scale-up and the scale-out configuration. In the scale-
out case, TeraSort loads all servers equally and thus we
only measure power on a single server. We measured the
power in both the 8-node and 16-node configurations and
found no significant difference.

All configurations have all relevant optimizations en-
abled (Section 3). Thus all three configurations use SSD
storage, and have concurrency and heap sizes optimized
for each job. The scale-up configuration also has heart-
beats disabled and the shuffle optimizations described in
Table 2 enabled.

4.2 Workloads

The benchmarks used in this evaluation are those de-
scribed in Section 2. Both the scale-up and the larger
(16-node) scale-out configuration were able to run all the
jobs. However the 8-node scale-out configuration was
not able to run three of the jobs at their full data size. In
order to have a consistent comparison, we reduced the
data set for these three jobs as described below.

For the Recommendation task, the input data set is
1 GB in size and contains 130 million links from 5 mil-
lion articles to 3 million other articles. The 8-machine
cluster ran out of storage space as the amount of inter-
mediate data produced between iterative phases was too
large. So we halved the data set by limiting the maxi-
mum number of outlinks from any given page to 10. The
resulting data set had 26 million links (compared to the
original 130 million) for a total of 500 MB

For the Indexing task, the input data set consists of
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Machine Base spec Base cost SSD cost DRAM cost Total cost Power
Workstation1 4 x 2.3 GHz, 12 GB, 1 HDD $2130 $2702 none $2400 154 W
Server3 32 x 2.0 GHz, 0 GB, 2 HDD $17380 $21602 $54404 $24980 877 W
1 Dell Precision Fixed Workstation T3500 Essential, http://configure.euro.dell.com/dellstore/config.aspx?oc=
w08t3502&model_id=precision-t3500&c=uk&l=en&s=bsd&cs=ukbsdt1

2 240 GB Intel 520 Series SSD, http://www.newegg.com/Product/Product.aspx?Item=N82E16820167086
3 Dell PowerEdge R910, no DRAM, http://configure.euro.dell.com/dellstore/config.aspx?oc=per910&model_id=
poweredge-r910&c=uk&l=en&s=bsd&cs=ukbsdt1

4 16 GB 240-Pin DDR3 1333 SDRAM, http://www.newegg.com/Product/Product.aspx?Item=N82E16820239169

Table 3: Comparison of workstation (used for scale-out) and server (scale-up) configurations. All prices converted to US$ as of 8 August 2012.

28,800 text files from the Gutenberg project. Since each
file is relatively small compared to a HDFS block, and
Hadoop is not capable of handling such data sizes well,
we merged the text files into 60 MB chunks such that
each file group fit comfortably within a single HDFS
block. The resulting data set was 9.54 GB in size. The
8-node cluster fails to complete this job due to insuffi-
cient memory. There is a large amount of shuffle data,
and reducers try to merge all the shuffle data in-memory
to avoid spilling to disk. We determined empirically
that trimming the data set to 8.9 GB allowed the 8-node
cluster to complete without failures, and so we use this
slightly smaller data set.

Finally, we found that the 8-node cluster could not
complete a TeraSort of 100 GB due to limited storage
space. Hence we use the 10 GB and 50 GB TeraSort for
comparison.

4.3 Scale-up vs. scale-out
We ran all 11 jobs in all three configurations and mea-
sured their throughput, i.e. the inverse of job execution
time. All results are the means of at least 4 runs of each
job on each configuration.Figure 3(a) shows the results
normalized so that the scale-up performance is always 1.
We see that scale-up performs surprisingly well: better
than the 8-machine cluster for all but two jobs and within
5% for those two.

When we double the cluster size from 8 to 16, scale-
out performs better than scale-up for 6 jobs but scale-
up is still significantly better for the other 5 jobs. In
general, we find that scale-out works better for CPU-
intensive tasks since there are more cores and more ag-
gregate memory bandwidth. Scale-up works better for
shuffle-intensive tasks since it has fast intermediate stor-
age and no network bottleneck. Note that Pig Cogroup is
CPU-intensive: a small amount of data is shuffled but a
large cross-product is generated by the reducers.

Clearly adding more machines does improve perfor-
mance; but at what cost? It is important to consider not
just raw performance but also performance per dollar.
We derive performance per dollar by dividing raw per-
formance by the capital/acquisition cost of the hardware

(Table 3). In order to keep the analysis simple, here we
do not consider other expenses like administration costs
or cooling costs. In general we would expect these to be
lower for a single machine.

Figure 3(b) shows the performance per dollar for the
three configurations across all jobs, again normalized to
set the scale-up platform at 1. Interestingly now the 8-
node cluster does uniformly better than the 16-node clus-
ter, showing that there are diminishing performance re-
turns for scaling out even for these small clusters. It
is worth noting that it is currently common practice to
run jobs of these sizes (sub 100 GB) over even larger
numbers of Hadoop nodes; we believe our results show
that this is sub-optimal. Scale-up is again competitive
(though slightly worse) for map-intensive tasks and sig-
nificantly better for the shuffle-intensive tasks, than ei-
ther scale-out configuration.

Interestingly we find that for k-means and Wikipedia,
8 nodes offer better performance/price than 16. This is
because, although the core computation is CPU-bound,
the speed-up from 8 nodes to 16 is sublinear due to the
overheads of frequent task management: every iteration
of the algorithm involves setting up a new MapReduce
round, which impacts the performance substantially.

Figure 3(c) shows normalized performance per watt,
based on the power measurements reported in Table 3.
This is an important metric as data centers are often
power-limited; hence more performance per Watt means
more computation for the same power budget. On this
metric we see that scale-up is significantly better than ei-
ther scale-out configuration across all jobs. We believe
the results are pessimistic: they underestimate scale-out
power by omitting the power consumed by a top-of-rack
switch, and overestimate scale-up power by including a
redundant power supply.

Finally, we look at server density. Like power, this is
also an important consideration, as a higher server den-
sity means more computation for a given space budget.
The scale-up machine is a “3U” form factor, i.e. it uses
three rack units. Although our scale-out machines are
in a workstation form factor, for this analysis we con-
sider them to have a best-case 1U form factor. Fig-
ure 3(d) shows the performance per rack unit (RU). As
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Figure 3: Scale-out performance on different metrics, normalized to
scale-up performance for each of 11 jobs.
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Figure 4: Runtime for different phases with FindUserUsage and 10 GB
TeraSort

with power, we see clearly that the scale-up machine out-
performs scale-out across all jobs.

4.4 Phase-by-phase analysis

Broadly speaking, we expect map-intensive jobs to do
relatively well for scale-out, and shuffle-intensive jobs
to do well on scale-up. To validate this assumption,
we choose two jobs: FindUserUsage, which is map-
intensive, and the 10 GB TeraSort, which is shuffle-
intensive. We then separated out the job execution times
into map, shuffle, and reduce times. Since these can over-
lap we approximate them as follows: the map time is the
time from the job start to the completion of the last map
task; the shuffle time is the time interval from then to the
completion of the last shuffle task; and the reduce time is
the remaining time until the job is completed.

Figure 4(a) shows the results for FindUserUsage and
Figure 4(b) the results for TeraSort. We see that as ex-
pected, runtime FindUserUsage is completely dominated
by map time. Thus scale-up and 8-node scale-out have
similar performance, since they both have 32 cores. The
16-node scale-out on the other hand benefits from twice
as many cores. The scaling is not linear as Hadoop jobs
also have task startup costs: “map time” is overlapped
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(b) Effect of memory and shuffle optimizations on 10 GB TeraSort

Figure 5: Effect of different optimizations on FindUserUsage and
10 GB TeraSort

both with startup and with shuffle and reduce.
TeraSort is clearly shuffle-dominated on the 8-node

cluster. For the 16-node cluster shuffle and map time
appear approximately equal; however this is an artifact
of our methodology where the overlap between the two
is counted as “map time”. In reality both shuffle and map
time are reduced as the larger cluster has more cores as
well as more bisection bandwidth, but the overall run-
time remains shuffle-dominated. In the scale-up case we
see that the runtime is clearly map-dominated, and the
shuffle phase is extremely efficient.

4.5 Effect of optimizations

The results in the previous section used Hadoop setups
that were fully optimized, i.e. all the relevant optimiza-
tions described in Section 3 were applied. In this section
we look at the effect of each optimization individually.
The aim is to understand the effect of the optimizations
on scale-up performance, compared to a vanilla Hadoop
running in pseudo-distributed mode.

We examine two jobs from our benchmark suite. Find-
UserUsage is map-intensive with little intermediate data
and a small reduce phase. We use it to measure all op-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cloud
scale-out

(8)

Scale-out
(8)

Cloud
scale-out

(16)

Scale-out
(16)

Scale-up

N
o

rm
al

iz
e

d
 p

e
rf

o
rm

an
ce

 

Figure 6: Relative performance of cloud and single-node scale-up with
a scalable storage back-end

timizations except those that improve the shuffle phase,
since the shuffle phase in FindUserUsage is very small.
TeraSort is memory- and shuffle- intensive. Thus we use
it to measure the effect of the memory and shuffle-phase
optimizations. In all cases we use the scale-up server de-
scribed previously.

Figure 5(a) show the effect on FindUserUsage’s ex-
ecution time of successively moving from disk-based
HDFS to an SSD-based local file system; of optimiz-
ing the number of mappers and reducers; of removing
out-of-band heartbeats; and of optimizing the heap size.
Each has a significant impact, with a total performance
improvement of 4x.

Figure 5(b) shows the effect on execution time of
10 GB TeraSort starting from a baseline where the stor-
age, concurrency, and heartbeat optimizations have al-
ready been applied. The heap size optimization has a
significant effect, as input and intermediate data buffers
are spilled less frequently to the file system. Moving to
the file system based rather than http based shuffle and
unthrottling the shuffle has an even bigger effect. Fi-
nally, using a RAMdisk for that intermediate data im-
proves performance even further. For TeraSort, heap size
optimization improves performance by 2x and shuffle-
phase optimizations by almost 3.5x, for a total perfor-
mance improvement of 7x.

5 Discussion

In the previous section we evaluated 11 jobs to show that,
for real-world jobs and job sizes, scale-up is competitive
on performance and performance/$, and superior on per-
formance per watt and per rack unit. Here we consider
implications for cloud computing and then the limits of
scale-up.
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5.1 Scale up vs. scale-out in the cloud

Our analysis so far was based on a private cluster and
scale-up machine. As many analytic jobs including
Hadoop jobs are now moving to the cloud, it is worth
asking, how will our results apply in the cloud scenario?
The key difference from a private cluster is that in the
cloud, HDFS is unlikely to be used for input data and
the compute nodes, at least today, are unlikely to use
SSD storage. Instead, input data is read over the net-
work from a scalable storage back end such as Amazon
S3 or Azure Storage. Intermediate data will be stored in
memory and/or local disk.

We re-ran the FindUserUsage job using Azure com-
pute nodes to scale out and the Azure Storage back end to
hold input data. We used extra-large instances (8 cores,
16 GB of RAM) as being the closest to our scale-out
workstation machines. This is the largest size offered by
Azure, and still only comparable to our scale-out rather
than our scale-up machine. Figure 6 shows the perfor-
mance of both the cloud and the private cluster scale-
out configurations, normalized to that of the standalone
(SSD-based) scale-up configuration. Performance in the
cloud is significantly worse than in the private cluster;
however even in the best case, we would expect it to
match but not exceed that of the private cluster.

More importantly, the scale-up configuration when
reading data from the network comes close (92%) to that
of a scale-up configuration when using SSDs. Hence
we believe that with a 10 Gbps NIC, and a scalable stor-
age back-end that can deliver high bandwidth, our results
from the private cluster also hold for the cloud.

As high-bandwidth networking hardware becomes
cheaper (40 Gbps is already on the market and 100 Gbps
on the horizon) it will be more cost-effective to add band-
width to a single scale-up node than to each of many
scale-out nodes. We thus expect that cloud “scale-up”
instances (which are already being offered for applica-
tions such as HPC and large in-memory databases) will
be a cost-effective way to run the majority of Hadoop
jobs with our optimizations to Hadoop.

5.2 Limitations to scale-up

Our results show that, contrary to conventional wisdom,
scale-up hardware is more cost-effective for many real-
world jobs which today use scale-out. However, clearly
there is a job size beyond which scale-out becomes a bet-
ter option. This “cross-over” point is job-specific. In
order to get some understanding of this crossover point,
we use TeraSort as an example since its job size is easily
parametrized.

Figure 7 shows the results, again normalized to set the
values for scale-up at 1. All three of our test configu-
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Figure 7: TeraSort performance/$ normalized to that of scale-up as a
function of input size

rations are able to sort up to 50 GB of data, with the
scale-up configuration providing by far the best perfor-
mance per dollar. However the 8-node cluster cannot
sort 100 GB of data without running out of storage, and
the scale-up machine cannot sort significantly more than
100 GB without running out of memory. At 100 GB,
scale-up still provides the best performance/$, but the
16-node cluster is close at 88% of the performance/$ of
scale-up.

These results tell us two things. First, even with
“big memory”, the scale-up configuration can become
memory-bound for large jobs. However we would ex-
pect this point to shift upwards as DRAM prices continue
to fall and multiple terabytes of DRAM per machine be-
come feasible. Second, for TeraSort, scale-out begins to
be competitive at around the 100 GB mark with current
hardware.

Given that most job sizes are well under 100 GB and
based on the results in Section 4 we believe that for many
jobs, scale-up is a better option. However, some jobs still
perform better with scale-out. Also, clearly Hadoop and
MapReduce are also used for larger jobs for which scale-
out is the best or the only option. Thus it is important to
support both scale-up and scale-out transparently. While
it is feasible to provision a data center with a mix of large
and small machines, it is not desirable to maintain two
versions of each application. By making all our changes
transparently “under the hood” of Hadoop, we allow the
decision of scale-up versus scale-out to be made at run-
time.

We note that in theory it is also possible to scale out
using large machines, i.e. combine scale-up and scale-
out, and hence use fewer machines (e.g. 2 instead of 32).
However this would sacrifice the 4x performance bene-
fit of our shuffle optimizations (using the local FS, un-
restricted shuffle, and a RAMdisk for intermediate data)
while also losing the pricing advantage of the low-end
machines. Thus at current price points it seems that the
choice is effectively between scale-up on a large machine
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versus scale-out on a large number of low-end machines.
The optimal choice depends both on job characteris-

tics and input job sizes. This crossover point is job-
specific and currently, the decision whether to scale out
or up for a given job must be made manually at job start
time. We are now working on ways to automate this de-
cision based on profiling and static analysis.

6 Related Work

One of the motivations for this work was the observation
that most analytic job sizes, including Hadoop job sizes,
are well within the 512 GB that is feasible on a standard
“scale-up” server today. We collected information about
job sizes internally, where we found median job sizes
to be less than 14 GB, but our conclusions are also sup-
ported by studies on a range of real-world Hadoop in-
stallations including Yahoo [10], Facebook [4, 7], and
Cloudera [7].

Piccolo [14] is an in-memory distributed key-value
store, aimed at applications that need low-latency fine-
grained random access to state. Resilient Distributed
Datasets (RDDs) [19] similarly offer a distributed mem-
ory like abstraction in the Spark system, but are aimed
at task-parallel jobs, especially iterative machine learn-
ing jobs such as the Mahout jobs considered in this pa-
per. Both of these are “in-memory scale-out” solutions:
they remove the disk I/O bottleneck by keeping data in
memory. However they still suffer from the network bot-
tleneck of fetching remote data or shuffling data in a
MapReduce computation. Our contribution is to show
that scale-up rather than scale-out is a competitive op-
tion even for task-parallel jobs (both iterative and non-
iterative) and can be done with transparent optimizations
that maintain app-compatibility with Hadoop.

Metis [11] and Phoenix [15] are in-memory multi-core
(i.e. scale-up) optimized MapReduce libraries. They
demonstrate that a carefully engineered MapReduce li-
brary can be competitive with a shared-memory multi-
threaded implementation. In this paper we make a sim-
ilar observation about multi-threaded vs. MapReduce in
the Hadoop context. However our distinct contribution
is that we provide good scale-up performance transpar-
ently for Hadoop jobs; and we evaluate the tradeoffs of
scale-up vs. scale-out by looking at job sizes as well as
performance, dollar cost, power, and server density.

In previous work [17] we showed that certain machine
learning algorithms do not fit well within a MapReduce
framework and hence both accuracy and performance
were improved by running them as shared-memory pro-
grams on a single scale-up server. However this ap-
proach means that each algorithm be implemented once
for a multi-threaded shared-memory model and again
for MapReduce if scale-out is also desired. Hence in

this paper we demonstrate how scale-up can be done
transparently for Hadoop applications without sacrificing
the potential for scale-out and without a custom shared-
memory implementation. We believe that while custom
multi-threaded implementations might be necessary for
certain algorithms, they are expensive in terms of hu-
man effort and notoriously hard to implement correctly.
Transparent scale-up using Hadoop is applicable for a
much broader range of applications which are already
written to use Hadoop MapReduce.

The tradeoff between low-power cores and a smaller
number of server-grade cores was extensively studied
by Reddi et al. [16] in the context of web search. Al-
though this is a different context from that of our work,
they reach similar conclusions: scaling to a larger num-
ber of less capable cores is not always cost-effective
even for highly parallel applications. Similarly, recent
work [2] shows that for TPC-H queries, a cluster of low-
power Atom processors is not cost-effective compared
to a traditional Xeon processor. In general, the scale-
up versus scale-out tradeoff is well-known in the parallel
database community [9]. A key observation is that the
correct choice of scale-up versus scale-out is workload-
specific. However in the MapReduce world the conven-
tional wisdom is that scale-out is the only interesting op-
tion. We challenge this conventional wisdom by showing
that scale-up is in fact competitive on performance and
cost, and superior on power and density, for a range of
MapReduce applications.

7 Conclusion

In this paper, we showed that, contrary to conventional
wisdom, analytic jobs — in particular Hadoop MapRe-
duce jobs — are often better served by a scale-up server
than a scale-out cluster. We presented a series of trans-
parent optimizations that allow Hadoop to deliver good
scale-up performance, and evaluated our claims against
a range of Hadoop jobs from different application do-
mains.

Our results have implications for the way Hadoop and
analytics clusters in general are provisioned, with scale-
up servers being a better option for the majority of jobs.
Providers who wish to support both scale-up and scale-
out will need an automated way to predict the best ar-
chitecture for a given job. We are currently working on
such a predictive mechanism based on input job sizes and
static analysis of the application code.

Our results also imply that software infrastructures
such as Hadoop must in future be designed for good
scale-up as well as scale-out performance. The opti-
mizations presented in this paper provide a good ini-
tial starting point for improving scale-up performance.
We are considering further optimizations: exploiting
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shared memory for zero-copy data exchange between
phases; changing the intermediate file format to avoid
(de)serialization and checksumming; and using a cus-
tomized grouping implementation for map outputs in-
stead of the standard sort-based grouping.
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