

Engineering Satisfiability Modulo Theories Solvers for Intractable Problems

Nikolaj Bjørner Microsoft Research Tractability Workshop – MSR Cambridge July 5,6 2010

This talk

Z3 – An Efficient SMT solver: Overview and Applications.

A "hands on" example of Engineering SMT solvers: Efficient Theory Resolution using DPLL(T).

Some Microsoft Engines using Z3

- **PREfix:** The Static Analysis Engine for C/C++.
- **Pex:** Program EXploration for .NET.
- SAGE: Scalable Automated Guided Execution
- Spec#:
- **VCC**:
- HAVOC:
- SpecExplor
- Yogi:
- FORMULA:
- **F7:**
- M3:
- VS3:
- VERVE:
- FINE:
- **he Viridian Hyper-Visor** bf C-code. The protocol specs. <u>n + abstraction.</u> Hyper-V Virtualization licrosoft[•] Defect 1 of 1 Source Location In Function test001.c(28) Test1_bad est001.c(35) Test2_bad est001.c(44) Test3_bad est001.c(48) Test4_bad est001.c(59) Test5_bad Test6_bad est001.c(64) equires x != 0 30500 c... test001.c(75) Test7_bad 30500 c... test001.c(105) Test8 bad res x == nJres x < n 30500 c... test001.c(123) Test9_bad 10 Annotation error: Unknown field for type struct _FOO: y Test10 bad 30501 c... test001.c(130)

ioor can ying certineu coue

SAGE by the numbers

Slide shamelessly stolen and adapted from [Patrice Godefroid, ISSTA 2010]

100+ CPU-years - largest dedicated fuzz lab in the world

100s apps - fuzzed using SAGE

100s previously unknown bugs found

1,000,000,000+ computers updated with bug fixes

Millions of \$ saved for Users and Microsoft

10s of related tools (incl. Pex), 100s DART citations

100,000,000 + constraints - largest usage for any SMT solver

PREfix [Moy, B., Sielaff]

-INT_MIN= INT_MIN

3(INT_MAX+1)/4 + (INT_MAX+1)/4 = INT_MIN

while (low <= mg.

int binary_se

// Find middle value int mid = (low + high) / 2; int val = arr[mid]; if (val == key) return mid; if (val < key) low = mid+1; else high = mid-1;

return -1;

Package: java.util.Arrays Function: binary_search id itoa(int n, char'
if (n < 0) {
 *s++ = '-';
 n = -n;
}
// Add digits to s</pre>

Book: Kernighan and Ritchie Function: itoa (integer to ascii)

Example: an overflowed allocation size

What is Satisfiability Modulo Theories?

$$x + 2 = y \Rightarrow f(read(write(a, x, 3), y - 2)) = f(y - x + 1)$$

Array Theory

Arithmetic

Uninterpreted Functions

read(write(a, i, v), i) = v $i \neq j \Rightarrow read(write(a, i, v), j) = read(a, j)$

What is Z3?

By Leonardo de Moura & Nikolaj Bjørner http://research.microsoft.com/projects/z3

Constraints from Software Applications are

in spite of

Constraint language highly intractable

Algorithms

high worst case complexity

Tractable

VCC Performance Trends Nov 08 – Mar 09

Constraints from Software Applications are Tractable

 $a \leq b \land$ $b < c \land$ $c \leq a \land$ $x \leq y \land$ $y < z \land$ $z < u \land$ $x \leq w \land$ $x \leq w \land$ $x \leq v \land$ $x \leq 1 \land$ $x \leq 2 \land$ $x \leq 3$

$$a \leq b \land$$

$$b \leq c \land$$

$$c \leq a \land$$

$$x = w \land$$

$$x = v \land$$

$$x = v \land$$

$$x = 1 \land$$

$$x \leq 2 \land$$

$$x \leq 3 \land$$

$$x \leq y \land$$

$$y < z \land$$

$$y < z \land$$

$$y, z, u "free"$$

Proofs are small

Models are determined or free

What is then important for engineering solvers?

Solve tractable parts

Strong Simplification

Efficient Indexing

Avoid getting stuck

- efficient theory solvers
- reduce the clutter
- minimize & reuse work
- restarts, parallel search

What is then important for engineering solvers?

Solve tractable parts - efficient theory solvers [Efficient, Generalized Array Decision Procedures de Moura & B]

Strong Simplification

Efficient Indexing

Avoid getting stuck

- reduce the clutter [Z3 An Efficient SMT Solver de Moura & B]
- minimize & reuse work [Efficient E-matching de Moura & B]
- restarts, parallel search

[Parallel Portfolio, Wintersteiger, Hamadi & de Moura]

Constraints from Software Applications are Tractable

Problem solved, end of talk

Constraints from Software Applications are Tractable

sometimes quite intractable for existing techniques

Symptom of a problem

public void Diamond(int a) {
if
$$(p1(a))$$

 $a++;$
else
 $a--;$
}
...
if $(p100(a))$
 $a++;$
else
 $a--;$
}
 $a--;$
 a

 $assert(old(a) - 100 \le a \le old(a) + 100);$

Poses a challenge to Z3

Another challenge

Bit-vector multiplication using SAT

A Framework and its limitations

DPLL(T) is Z3's main core search framework

Efficient SAT technologies

• DPLL + CDCL + Restart = Space Efficient Resolution

Efficient integration of incremental theory solvers

- Theory lemmas (T-Conflicts)
- Theory propagation
- (T-Propagation)

But we claim

• Contemporary DPLL(T) < Resolution

A Framework and its limitations

But ... DPLL(T) < Resolution

Possible remedies:

- Forget DPLL(T). Use other core engine.

- Adapt DPLL(T). Elaboration here. We call it:

Conflict Directed Theory Resolution

Review: SAT made "tractable"

Review: SAT made "tractable"

Builds resolution proof

General Resolution = DPLL + CDCL + Restart (CDCL: Conflict Directed Clause Learning)

- Space Efficient
 - DPLL does not create intermediary clauses
- Efficient indexing and heuristics
 - 2-watch literals, Restarts, phase selection, clause minimization

Review: Modern DPLL in a nutshell

Initialize	$\epsilon \mid F$	F is a set of clauses
Decide	$M \mid F \implies M, \ell \mid F$	l is unassigned
Propagate	$M \mid F, C \lor \ell \implies M, \ell^{C \lor \ell} \mid F, C \lor \ell$	C is false under M
Conflict	$M \mid F, C \implies M \mid F, C \mid C$	C is false under M
Resolve	$M \mid F \mid C' \lor \neg \ell \Longrightarrow M \mid F \mid C' \lor C$	$\ell^{C \vee \ell} \in M$
Learn	$M \mid F \mid C \Longrightarrow M \mid F, C \mid C$	
Backjump	$M \neg \ell M' \mid F \mid C \lor \ell \Longrightarrow M \ell^{C \lor \ell} \mid F$	C has no literals in M'
Unsat	$M \mid F \mid \emptyset \implies Unsat$	
Sat	$M \mid F \implies M$	F true under M
Restart	$M \mid F \implies \epsilon \mid F$	

Adapted and modified from [Nieuwenhuis, Oliveras, Tinelli J.ACM 06]

DPLL(T) in a nutshell

T- Propagate $M \mid F, C \lor \ell \implies M, \ell^{C \lor \ell} \mid F, C \lor \ell$ C is false under T + MT- Conflict $M \mid F \implies M \mid F \mid \neg M'$ $M' \subseteq M$ and M' is false under T

T-Propagate $a > b, b > c | F, a \le c \lor b \le d \implies$

 $a > b, b > c, b \le d^{a \le c \lor b \le d} \mid F, a \le c \lor b \le d$

T- Conflict $M \mid F \Rightarrow M \mid F, a \le b \lor b \le c \lor c < a$ where $a > b, b > c, a \le c \subseteq M$

Introduces no new literals - terminates

DPLL(T) misses short proofs

The **Black Diamonds** of DPLL(T)

Has no short DPLL(T) proof.

Has short DPLL(T) proof when using $a_1 \simeq a_2$, $a_2 \simeq a_3$, $a_3 \simeq a_4$, ..., $a_{49} \simeq a_{50}$

Example from [Rozanov, Strichman, SMT 07]

DPLL(T) misses short proofs

Idea: DPLL(⊔)

[B, Dutertre, de Moura 08]

Compute the join \sqcup of the two equalities – common equalities are learned

Still potentially $O(n^2)$ rounds just at **base** level of search.

DPLL(L) base) misses short proofs

Single case splits don't suffice

Requires 2 case splits to collect implied equalities

Conflict Directed Theory Resolution

We now describe an approach we call:

Conflict Directed Theory Resolution

 $\[\] resolve literals from conflicts \] \rightarrow simulates resolution proofs. \]$

Engineering: **Throttle** resolution dynamically based on activity.

Th(Equality) - Example

$$\neg (a_1 \simeq a_{50}) \land \bigwedge_{i=1}^{49} [(a_i \simeq b_i \land b_i \simeq a_{i+1}) \lor (a_i \simeq c_i \land c_i \simeq a_{i+1})]$$

Eventually, many conflicts contain: Use E-resolution, add clause: Then DPLL(T) learns by itself:

 $a_1 \simeq b_1 \wedge b_1 \simeq a_2$ $a_1 \simeq b_1 \wedge b_1 \simeq a_2 \rightarrow a_1 \simeq a_2$ $a_1 \simeq a_2$

Th(Equality) - Example

$$\bigwedge_{i=1}^{N} (p_i \lor x_i \simeq v_0) \land (\neg p_i \lor x_i \simeq v_1) \land (p_i \lor y_i \simeq v_0) \land (\neg p_i \lor y_i \simeq v_1) \land \neg (f(x_N, \dots, f(x_2, x_1) \dots) \simeq f(y_N, \dots, f(y_2, y_1) \dots))$$

Eventually, many conflicts contain:

$$\begin{aligned} x_i &\simeq u_i \wedge y_i \simeq u_i \quad u_i = v_0 \text{ or } u_i = v_1 \text{ for } i = 1..N \\ \neg (f(x_N, \dots, f(x_2, x_1) \dots) \simeq f(y_N, \dots, f(y_2, y_1) \dots)) \end{aligned}$$

Add:
$$(\bigwedge_{i=1}^N x_i \simeq y_i) \rightarrow f(x_N, \dots, f(x_2, x_1) \dots) \simeq f(y_N, \dots, f(y_2, y_1) \dots)$$

$$a = f(f(a)), a = f(f(f(a))), a \neq f(a)$$

First Step: "Naming" subterms

$$a = v_2, a = v_3, a \neq v_1,$$

 $v_1 \equiv f(a), v_2 \equiv f(v_1), v_3 \equiv f(v_2)$

... and merge equalities

$$a = v_2, a = v_3, a \neq v_1,$$

 $v_1 \equiv f(a), v_2 \equiv f(v_1), v_3 \equiv f(v_2)$

Second step. Apply Congruence Rule: $x_1 = y_1, ..., x_n = y_n$ implies $f(x_1, ..., x_n) = f(y_1, ..., y_n)$

$$a = v_2, a = v_3, a \neq v_1,$$

 $v_1 \equiv f(a), v_2 \equiv f(v_1), v_3 \equiv f(v_2)$

Second step. Apply Congruence Rule: $a \simeq v_2$ implies $f(a) \simeq f(v_2)$: $v_1 \simeq v_3$

$$a, v_2, v_3, v_1$$

CDTR for Th(Equalities)

Dynamic Ackermann Reduction If Congruence Rule repeatedly learns

 $f(v,v') \sim f(w,w')$

Then add clause for SAT core to use

$$v \simeq w \land v' \simeq w' \to f(v, v') \simeq f(w, w')$$

Used in Yices and Z3 to find short congruence closure proofs [Yices Tool 06, Dutertre, de Moura] [Model-based Theory Combination 07, de Moura, B]

CDTR for Th(Equalities)

Dynamic Ackermann Reduction If Congruence Rule repeatedly learns

 $f(v,v') \sim f(w,w')$ for literal $f(v,v') \simeq f(w,w')$

Then add clause for SAT core to use

$$v \simeq w \land v' \simeq w' \rightarrow f(v, v') \simeq f(w, w')$$

Leo identified the following useful optimization filter heuristic used in Z3

"Peel the onion from outside"

CDTR for Th(Equalities)

Dynamic Ackermann Reduction If Congruence Rule repeatedly learns

 $f(v,v') \sim f(w,w')$

Then add clause for SAT core to use

$$v \simeq w \land v' \simeq w' \to f(v, v') \simeq f(w, w')$$

Dynamic Ackermann Reduction with Transitivity If Equality Transitivity repeatedly learns

 $u \sim w$ from $u \sim v$ and $v \sim w$

Then add clause for SAT core to use

 $u \simeq v \land v \simeq w \rightarrow v \simeq w$

CDTR: Th(Equalities)

Claim: Ground E-Resolution ≡ DPLL(E) + Dynamic Ackermann Reduction with Transitivity

Alternative: Static Ackermann Reduction [Singerman, Pnueli, Velev, Bryant, Strichman, Lahiri, Seisha, Bruttomesso,Cimatti, Franzen, Griggio, Santuari, Sebastiani] P-simulates ground E-Resolution. But it has high up-front space overhead.

Effect on the Diamond Example:.

 $a < x_1 \land a < x_2 \land (x_1 < b \lor x_2 < b) \land$ $b < y_1 \land b < y_2 \land (y_1 < c \lor y_2 < c) \land$ $c < z_1 \land c < z_2 \land (z_1 < a \lor z_2 < a)$

Context and Extensions

Z3 supported theories all reduce to one of

Arithmetic Equality Booleans

CDTR

- Th(Equalities):
- Th(Differences):
- Th(LRA):
- Th(LIA):

Extended Dynamic Ackermann Cutting loops Fourier-Motzkin resolution Perhaps: Integer FM [B. IJCAR 10]

CDTR and theory combinations:

- Theories communicate equalities between shared variables.
- Build clauses using these equalities.

Summary

 Modern SMT solvers are tuned to but limitations of basic proof calculus shows up.

- Presented a technique to close the gap
 - **Dynamic** to make it practical.
 - Based on applying **Resolution** to conflicts.
- Just one of many possible optimizations.
 The quest for improving search continues
 - e.g. cutting plane proofs, arbitrary cuts (Frege)