
Anatomy of Alternating Quantifier Satisfiability
(Work in progress)

Anh-Dung Phan
Technical University of Denmark

Nikolaj Bjørner
Microsoft Research

David Monniaux
Verimag

Abstract
We report on work in progress to generalize an algorithm recently introduced in [10] for checking

satisfiability of formulas with quantifier alternation. The algorithm uses two auxiliary procedures:
a procedure for producing a candidate formula for quantifier elimination and a procedure for elim-
inating or partially eliminating quantifiers. We also apply the algorithm for Presburger Arithmetic
formulas and evaluate it on formulas from a model checker for Duration Calculus [8]. We report on
experiments on different variants of the auxiliary procedures. So far, there is an edge to applying
SMT-TEST proposed in [10], while we found that a simpler approach which just eliminates quanti-
fied variables per round is almost as good. Both approaches offer drastic improvements to applying
default quantifier elimination.

1 Introduction

Can formulas with nested quantifiers be checked effectively for satisfiability? Several algorithms exist
in the context of Quantified Boolean Formulas that handle alternation of quantifiers [12, 1]. They are
specialized for eliminating variables over Booleans. An algorithm for alternating quantifier satisfiability
was given in [10] for the case of linear arithmetic over the Reals. It integrates tightly an All-SMT loop
and projection based on Fourier-Motzkin elimination or Chernikov projection. A question arises whether
the ideas lift to other projection procedures. Also, are there reasonable alternatives to All-SMT and
how do they compare? This ongoing work presents a generalized algorithm of that presented in [10]
which abstracts the auxiliary procedures. We instantiate the generalization to projection functions based
on virtual substitutions, i.e. substitution methods that replace quantifiers by disjunctions of bounded
variables. The specialization is for Linear Integer Arithmetic based on Cooper’s procedure and used for
formulas that arise from Duration Calculus Model Checker (DCMC).

Linear Integer Arithmetic (LIA) or Presburger Arithmetic, introduced by Mojzaesz Presburger in
1929, is a first-order theory of integer which accepts + as its only operation. A classic example of
representing some amount of money by 3-cent coins and 5-cent coins appears in LIA as follows:

∀z (z≥ 8→∃x ∃y (3x+5y= z))

After Presburger proved decidability of LIA [14], LIA attracted a lot of attention due to applications
in different areas. Cooper’s algorithm [4] is a substitution-based decision procedure. The Omega Test is
a projection-based decision procedure for LIA and employed in dependence analysis of compilers [13].
A variant that integrates elements from both Cooper’s method and the Omega Test is implemented in
Z3 [2]. While Z3 can handle non-trivial LIA problems, applications from DCMC also expose limitations
of using quantifier elimination alone. The time complexity of all procedures for Presburger Arithmetic is
high. Let n denote the length of a LIA formula; running time of any decision procedure is at least 22cn

for
some constant c > 0 [6]. Moreover, Oppen proved a triply exponential upper bound 222cn

for worst-case
running time of Cooper’s algorithm [11].

This paper is organized as follows. Section 2 presents the generalized algorithm with a few sup-
porting procedures. Section 3 presents different methods for producing candidate formulas. Section 4
instantiates the algorithm with a concrete procedure for virtual substitutions. We discuss implementation
details and benchmarks in Section 5 and Section 6 concludes the paper.

1

Anatomy of Alternating Quantifier Satisfiability Phan, Bjørner and Monniaux

2 Alternating Quantifier Satisfiability

This section develops an algorithm that is an abstraction of the alternating quantifier satisfiability al-
gorithm presented for Linear Real Arithmetic in [10]. The abstraction is formulated such that various
quantifier elimination methods can be plugged in, including virtual substitutions.

2.1 Definitions

The algorithm being developed relies on two procedures for extrapolation and projection. We first de-
scribe the requirements for these procedures and discuss the main algorithm later.

Definition 1 (Extrapolant). Given two formulas A and B, a formula C is an extrapolant of A and B if the
following conditions are satisfied:

A∧B is unsat then C = f alse
A∧B is sat then A∧C is sat, ¬B∧C is unsat

We use 〈A, B〉 to denote an extrapolant.

Extrapolation is typically understood as finding new data points outside a set of existing points. In-
tuitively, C has empty intersection with ¬B and non-empty intersection with A. There are many possible
extrapolants for each pair of formulas, and the definition here does not specify how to compute an ex-
trapolant. An example of a trivial extrapolant is described in the following procedure: when A∧B is
satisfiable we can take B as an extrapolant, otherwise take false.

Definition 2 (Projection πx.(C|M)). Let M and C be quantifier-free formulas where variable x only oc-
curs in C (x /∈ FV (M) where FV (M) denotes the set of free variables in M). Assume C∧M is satisfiable.
A projection procedure πx.(C|M) computes a quantifier-free formula satisfying the conditions:

1. FV (πx.(C|M))⊆ FV (C)\{x}

2. πx.(C|M) is sat

3. (M∧πx.(C|M))→∃x C

Similar to extrapolation we only gave the conditions that projection functions have to satisfy for
the developing algorithm to be sound. There is a choice of algorithms for implementing πx.(C|M). A
possible way is to use virtual substitutions, where we derive a quantifier-free formulas by substituting
variables by one or more disjunctions. Virtual substitutions will be presented with more details in Section
4.

2.2 Quantifier Test: algorithm QT

QT is defined as a recursive function in Algorithm 1. The four arguments of QT can be explained in the
following way: C is a context formula which reflects collected information at current iteration; x and M
are vectors of quantified variables and formulas respectively, and i is the index to access current elements
in the above vectors. We use the notation Mi to refer to the i-th element of vector M and imply the same
notation for other vectors.

Given any nested quantified formula F1 in the form of Q1x′1Q2x′2...Qkx′k F ′ where Qi ∈ {∀, ∃} and
F ′ is a quantifier-free formula, we can convert F1 into a form of ∀x1¬∀x2...¬∀xn¬Fn where Fn is also
quantifier-free. This leads to a sequence of formulas F i such that: F i ≡ ∀xi¬F i+1 for i < n. Before QT is
called, the initial values of Mi are initialized to true for i < n and Mn is initialized to Fn, The final value
of M1 is false if and only if F1 is unsatisfiable.

2

Anatomy of Alternating Quantifier Satisfiability Phan, Bjørner and Monniaux

Algorithm 1: QT (i, C, x, M)

if C∧Mi is unsat then
return (f alse, M)

end
if i = n then

return (〈C, Mi〉, M)
end
(C′, M′)← QT (i+1, 〈C, Mi〉, x, M);
if C′ = f alse then

return (〈C, Mi〉, M′)
end
M′′k ← M′k, ∀ k 6= i;
M′′i ← M′i∧ ¬(πxi.(C′|M′i));
return QT (i, C, x, M′′);

Algorithm 2: QE(x, Fn)

Mk← true, ∀ k < n;
Mn← Fn;
C← false;
C′← true;
while C′ 6= false do

(C′, M)← QT (1, ¬C, x, M);
C←C∨C′;

end
return C;

Theorem 1 (Partial Correctness). Assume C is satisfiable. The algorithm QT (i, C, x, M) returns a pair
of the form (C′, M′) where C′ is an extrapolant of 〈C, F i〉.

We do not provide a detailed proof, but we briefly discuss correctness and the invariant F i V Mi,
that are mutually inductive. The main idea is that F i V Mi holds for the initialization step for QT, and
F i ⇒ ¬(πxi.(C′|Mi)) also holds for each QT iteration; therefore, we strengthen Mi in the end of QT
and preserve the invariant at the same time. The if branches of QT return 〈C, Mi〉 when Mi cannot
be strengthened any more. Moreover, QT also ensures that 〈C, Mi〉 ∧F i is unsat. Therefore, the last
〈C, Mi〉 (corresponding to the strongest version of Mi) is also an extrapolant of 〈C, F i〉.
Termination: Algorithm QT does not terminate for arbitrary instantiations of projection and extrapo-
lation. The projection and extrapolation operators we examine here are well-behaved (with respect to
termination) in the following sense: (1) The extrapolation procedures do not introduce new atoms, so
there will be only a finite number of new extrapolants one can make. (2) The projection procedures are
also finitary: they produce only a finite set of projections for the case of linear arithmetic.

2.3 Quantifier Elimination: algorithm QE

A quantifier-free version of F1 is obtained by executing QT until saturation in Algorithm 2. The algo-
rithm initializes a vector of formulas M and strengthens these formulas as much as possible in a loop.
The intuition of QE is described as follows:

• Run QT (1, ¬ f alse, x, M), we obtain a formula C1 where C1 V F1.

• Execute QT (1, ¬C1, x, M), we get C2, a disjoint formula of C1, where C2 V F1.

• Run QT (1, ¬(C1∨C2), x, M), we obtain a next formula C3 where C3 V F1.

• When QT (1,¬C, x, M) returns false, we get C as a disjunction of disjoint formulas where
C ≡C1∨C2∨ ...∨Ck and C V F1.

2.4 Algorithm QT by example

We use a small example to illustrate the algorithm QT:

∀y ∃z (z≥ 0∧ ((x≥ 0∧ y≥ 0)∨−y− z+1≥ 0)) (1)

3

Anatomy of Alternating Quantifier Satisfiability Phan, Bjørner and Monniaux

The formulas corresponding to (1) are:

F1 = ∀y ¬F2, F2 = ∀z ¬F3, F3 = z≥ 0∧ ((x≥ 0∧ y≥ 0)∨−y− z+1≥ 0)

and quantifiers are:
x1 = y, x2 = z

Algorithm QT also maintains formulas M1,M2 and M3 that are initialized as follows:

M1 = true, M2 = true, M3 = F3 = z≥ 0∧ ((x≥ 0∧ y≥ 0)∨−y− z+1≥ 0)

It maintains the invariants:

F i V Mi, FV (Mi)⊆ {x1, . . . ,xi−1} for i = 1,2,3 (2)

Finally, the algorithm propagates a context formula Ci between levels. The context formula is updated
during propagation. When Ci is propagated from level i to i+1 or i−1, it results in a formula (Ci+1 or
Ci−1) that has non-empty intersection with Ci and is implied by Mi. This formula is an extrapolant of Ci

and Mi as defined in Definition 1. The extrapolant Ci on level i satisfies:

FV (Ci)⊆ {x1, . . . ,xi−1} (3)

It contains only variables that are free above level i.
Let us run QT on the sample formula. In the initial state, vector M = 〈true, true,F3〉, C1 = true, i= 1.

1. C1∧M1 is true∧ true. It is satisfiable, so let us choose an extrapolant C2 for C1 and M1. C2 := true
is an extrapolant because C1∧C1 is satisfiable and ¬M1∧C2 is unsatisfiable. Set i := 2.

2. C2∧M2 is also satisfiable and similarly we set C3 := true, i := 3.

3. C3 ∧M3, which is C3 ∧F3, is satisfiable as well. In this case we will propagate back to level 2 a
formula that intersects with C3 and implies F3. So let us return C3 := z ≥ 0∧ x ≥ 0∧ y ≥ 0 and
update the level i := 2.

4. Now F2 ≡ ∀z.¬F3 implies that ∀z.¬C3 ≡ ¬∃z.C3. So we can strengthen M2 with the negation
of any formula that implies ∃z.C3. This is a projection as denoted by the notation πz.(C3|M2) in
Definition 2. It can take the current state of M2 into account. In this case we set πz.(C3|M2) to
x≥ 0∧ y≥ 0 and update M2 := ¬(x≥ 0∧ y≥ 0).

5. C2 ∧M2, which is ¬(x ≥ 0∧ y ≥ 0), remains satisfiable. Let us set C3 := ¬(y ≥ 0), i := 3. C3
satisfies the conditions for being an extrapolant.

6. C3∧M3 (=C3∧F3) is still satisfiable. We return the extrapolant C3 := z≥ 0∧−y− z+1≥ 0 and
set i := 2.

7. The formula y≤ 1 implies ∃z.C3 (they are actually equivalent), so we can update M2 :=M2∧¬(y≤
1) and maintain the invariant F2 V M2. Let us simplify M2, ¬(x ≥ 0∧ y ≥ 0)∧¬(y ≤ 1), to
x < 0∧ y > 1.

8. At this point M2 implies x < 0. So the next extrapolant C3 will also imply x < 0. However, M3
cannot be satisfiable with C3. We are done with level 3 and return false to level 2. In response,
level 2 propagates the extrapolant C2 := (x < 0∧ y > 1) up to level 1.

4

Anatomy of Alternating Quantifier Satisfiability Phan, Bjørner and Monniaux

9. Similar to step 4, F1 ≡ ∀y.¬F2 implies that ∀y.¬C2 ≡ ¬∃y.C2. So if we take πy.(C2|M1) to be
x < 0, then we can update M1 := ¬(x < 0), which is x≥ 0.

10. At this point let us check the levels below using x ≥ 0. Then M2∧ x ≥ 0 is unsatisfiable, so there
is no refinement under this assumption. Return false to level 1. Level 1 is done, and we conclude
the formula is satisfiable and an output quantifier-free formula is x≥ 0.

3 Extrapolation

A trivial extrapolant has been described in Section 2.1. We will here discuss two other versions of
computing extrapolants 〈A,B〉.

3.1 SMT-TEST

The approach used in [9, 10] is to enumerate conjunctions of literals that satisfy A∧B. Suppose L :=
`1, . . . , `n are the literals in the satisfying assignment for A∧B. An extrapolant is the intersection of L
and an unsatisfiable core of L ∧¬B. Our implementation of SMT-TEST extrapolation is using a single
satisfiability check to extract a (not necessarily minimal) unsatisfiable core.

3.2 NNF strengthening

Algorithm 3: NNF extrapolant

C← NNF(B);
foreach literal ` ∈C do

C′←C[l/ false];
if A∧C′ is sat then

C←C′

end
end
return C

NNF strengthening is a process of deriving a stronger for-
mula by replacing literals by f alse. We start with a formula C
which is a transformation of B to NNF. For each literal in C in
order, replace that literal by f alse and check the conditions for
extrapolation so that ¬B∧C is unsat and A∧C is sat. The
first check is redundant (which holds by construction) and the
second is not redundant. An extrapolant C = 〈A, B〉 is com-
puted according to Algorithm 3. NNF strengthening gives us
stronger formulas which potentially help reduce the number of
iterations in procedure QT. We currently check satisfiability in
each round during NNF strengthening. Another approach is to
evaluate C[l/ false] using a model for C.

4 Projection specialized to Linear Integer Arithmetic

We are here interested in LIA since LIA decision procedure is used as the core of DCMC and plays a
central role in feasibility of the model-checking approach [8]. Duration Calculus (DC) is an extension of
Interval Temporal Logic with the notion of accumulated durations allowing succinct formulation of real-
time problems. Chop (_) is the only modality appearing in DC; however, the model-checking problem
in DC is transformed to satisfiability-checking of a LIA formula in size exponential to the chop-depth
[7].

Cooper’s algorithm for Presburger Arithmetic corresponds to quantifier elimination using virtual sub-
stitutions, and besides SMT-TEST for extrapolation we also consider strengthening formulas in negation

5

Anatomy of Alternating Quantifier Satisfiability Phan, Bjørner and Monniaux

Algorithm 4: CS(ϕ)

if ϕ is unsat then
return false

end
let M be a model for ϕ;
let p be a fresh propositional
variable;
assert p 6= ϕ;
return CS(ϕ,M , p)

Algorithm 5: Auxiliary algorithm CS(ϕ,M , p)

if (p = M (ϕ)) is unsat in current context then
return M (ϕ)

end
foreach immediate subformula ψi in ϕ[ψ1, . . . ,ψk] do

push;
let pi be a fresh propositional variable;
assert ϕ[ψ1, . . . ,ψi−1, pi,ψi+1, . . . ,ψk] = p;
ψi←CS(ψi,M , pi);
pop;

end
return ϕ[ψ1, . . . ,ψk]

normal form (NNF) by replacing literals by false. Virtual substitution methods work directly on formulas
in NNF, so SMT-TEST is potentially not required.

4.1 Virtual substitutions

Virtual substitutions on LIA are performed by means of Cooper’s algorithm. The algorithm removes
quantifiers in the inside-out order using the following transformation:

∃x. φ ⇐⇒ φ [>/ax< t, ⊥/ax> t] ∨
δ∨

i=1

∨
ax<t

φ [t+i/ax]∧δ
′ | t+i

where δ is the least common multiple of all divisors d in divisibility constraints d | t and δ ′ is the least
common multiple of all coefficients a in comparison constraints ax ./ t where a > 0 and ./ ∈ {<,≤,=
,≥,>}.

A quantified formula is transformed to a disjunction by a series of substitution steps. The disjunction
can be represented symbolically (it corresponds to an existential quantifier over a finite domain) and
may contain redundant disjuncts. The new divisibility constraint δ ′ | t + i could be replaced by many
divisibility constraints of small divisors a in each substitution. In this setting, smaller divisors of inner
formulas lead to fewer number of case splits for the next quantifier alternation.

4.2 Contextual simplification

Our projection procedure πx.(C|M) admits using a context M when processing C. The simplification
depends on the strength of M and it helps to trim down unnecessary cases in a virtual substitution method
later. This process is called contextual simplification which is easy to implement in an SMT solver.
Algorithm 4 contains a procedure for contextual simplification of formula ϕ . It works with a logical
context, asserts that ϕ is unequal to p and recurses over sub-formulas of ϕ to replace them by true or
false.

The approach also applies to non-Boolean domains (although this generalization is not required for
QT): the auxiliary algorithm then takes terms of arbitrary types and checks if the terms are forced equal
to the value provided in the model M . Instead of recursing on sub-formulas it can recurse on sub-terms
of arbitrary types. When ϕ is represented as a DAG and has exponentially many sub-formulas, the result
can in fact get much larger than the input. A practical implementation of CS should therefore impose
limits on how many times a sub-formula is traversed.

6

Anatomy of Alternating Quantifier Satisfiability Phan, Bjørner and Monniaux

Contextual simplification is used in STeP [3] for simplifying formulas produced from verification
condition generators and [5] develops a routine that works on formula trees in NNF, where it is used to
speed up abstract interpreters that propagate formulas. Algorithm 4 is used in Z3 with the observation that
a model M for ϕ can be used to prune checks for value forcing and it applies to subterms of arbitrary
type. Z3 also contains cheaper contextual simplification routines that rely on accumulating equalities
during a depth-first traversal. While this cheaper algorithm can replace sub-terms by constants, it is not
necessarily an advantage to use in context of SMT solving: a non-constant sub-term can be much more
useful for learning general purpose lemmas during search.

5 Evaluation

We implemented different combinations for the instantiated algorithm in the preview version of Z3 4.0.
Projection procedures have been used including (A) - full quantifier elimination and (B) - partial quanti-
fier elimination. There are three variants of extrapolation: (0) - trivial extrapolation, (1) - NNF strength-
ening and (2) SMT-TEST. Furthermore, we also implemented (X) - contextual simplification and (Y) -
no contextual simplification. These components in order constitute 12 different combinations which are
named in short as aix where a ∈ {A, B}, i ∈ {0, 1, 2} and x ∈ {X , Y}. For example, A0Y denotes a
combination of trivial extrapolation, full quantifier elimination and no contextual simplification.

We attempt to compare our algorithm (from now on called AQS algorithm) with Z3’s quantifier
elimination algorithm. Non-random benchmarks are collected from DCMC. Not only is the huge size
(exponential to the chop-depth of DC formulas) of LIA formulas problematic, the nested nature between
universal and existential quantifiers makes the problems even harder [8].

We divided benchmarks into two sets. Set 1 consists of 32 easy formulas having from 56 to 94 quan-
tifiers with file sizes ranging from 15KB to 33KB in SMT-LIB format. Z3’s quantifier elimination can
process these formulas within a few seconds. They are chosen for the purpose of recognizing incompe-
tent candidates in 12 combinations above. Set 2 have 64 hard instances with 69-768 quantifiers and take
50-500KB in SMT-LIB format. They are beyond the scope of Z3’s quantifier elimination algorithm. We
use them to test scalability of different combinations. Benchmarks and experimental results are avail-
able on the Z3 website 1. The benchmark sets have some specific characteristics: coefficients are quite
small and constraints are sparse (consisting of a few variables). These features help limit the number of
disjunctions in virtual substitutions.

Figure 1 summarizes the running time of different configurations of AQS as well as Z3’s quantifier
elimination algorithm. Each benchmark is given a 30-second timeout. The graph shows the accumulated
running-time for solving all 32 problems. The winner is the configuration A0Y which means running
AQS with projection implemented as full quantifier elimination and using trivial extrapolation. This
configuration solves all benchmarks within 20 seconds. The configuration A2Y (using SMT-TEST instead
of trivial extrapolation) is a close runner-up. It also solves all benchmarks, but requires 35 seconds. This
benchmark set is simply too small to draw clear conclusions between these approaches. Partial quantifier
elimination (configurations with prefix B) is bad on all configurations. The experiments also suggest that
strong context simplification is pure overhead in all configurations. In an earlier prototype outside of
Z3, however, strong context simplification was an advantage. We attribute this to how constraints get
simplified and subsumed when being passed between AQS and Z3’s quantifier elimination procedure.
Z3’s built-in quantifier elimination procedure has a slower ramp up time and is able to solve all problems
within 175 seconds.

Experiment 2 was performed on Set 2 for all configurations of AQS with timeout of 300 seconds.
Experimental results are shown in Figure 2. We omit running time for configurations with partial quanti-

1http://research.microsoft.com/projects/z3/qt2012.zip

7

http://research.microsoft.com/projects/z3/qt2012.zip

Anatomy of Alternating Quantifier Satisfiability Phan, Bjørner and Monniaux

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35

CP
U
 T
im

e
(s
ec
on

ds
)

Number of problems solved

A0X
A0Y
A1X
A1Y
A2X
A2Y
B0X
B0Y
B1X
B1Y
B2X
B2Y
Z3

Figure 1: Accumulated running time of AQS vs. Z3 on benchmark set 1

fier elimination, they solve almost no problems, and we also omit running time for the default quantifier
elimination routine that also does not solve any problem. The experimental results indicate that AQS
algorithm performs well on formulas with many blocks of nested quantifiers. We have gained an order of
magnitude speedup for Duration Calculus application. The A2Y (using full projection and SMT-TEST)
configuration scales well on our benchmarks although A0Y (using full projection and trivial extrapola-
tion) comes intriguingly close.

6 Conclusions

We presented an anatomy of the algorithm proposed in [10] for checking satisfiability of formulas with
alternating quantification. We proposed a set of generalizations, applied them to Presburger Arithmetic,
and evaluated the generalizations to benchmarks from a model checker for Duration Calculus. So far
the experience has been that the satisfiability algorithms, when instantiated with SMT-TEST (and to
some extent trivial extrapolation) perform orders of magnitude better than general purpose quantifier
elimination. We are currently investigating additional alternatives to the algorithms presented here. One
alternative is to instantiate quantifiers incrementally using virtual substitutions. The idea is similar to
how quantifiers are instantiated using E-matching in SMT solvers. SMT solvers create a propositional
abstraction of formulas, including quantifiers. If there is a satisfying assignment to the abstracted formula
that does not depend on the quantified sub-formulas, then the formula is satisfiable. Otherwise, quantified

8

Anatomy of Alternating Quantifier Satisfiability Phan, Bjørner and Monniaux

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70

CP
U
 T
im

e
(s
ec
on

ds
)

Number of problems solved

A0X

A0Y

A1X

A1Y

A2X

A2Y

Figure 2: Accumulated running time of AQS on benchmark set 2

formulas are model-checked with respect to the current model and only instantiated (by axioms of the
form “(∀xϕ[x])⇒ϕ[t]”) when the interpretation for free variables cannot be extended to an interpretation
that satisfies the quantified formulas.

Acknowledgments

This work grew out of a course on SMT solving organized by Flemming Nielson and Hanne R. Niel-
son. We are grateful for valuable comments and permission of using DCMC benchmarks from Michael
R. Hansen. Anh-Dung Phan is supported by the IDEA4CPS project granted by the Danish Research
Foundation for Basic Research.

References

[1] Armin Biere. Resolve and Expand. In Holger H. Hoos and David G. Mitchell, editors, SAT (Selected Papers,
volume 3542 of Lecture Notes in Computer Science, pages 59–70. Springer, 2004.

[2] Nikolaj Bjørner. Linear Quantifier Elimination as an Abstract Decision Procedure. In Jürgen Giesl and Reiner
Hähnle, editors, IJCAR, volume 6173 of Lecture Notes in Computer Science, pages 316–330. Springer, 2010.

[3] Nikolaj Bjørner, Anca Browne, Edward Y. Chang, Michael Colón, Arjun Kapur, Zohar Manna, Henny Sipma,
and Tomás E. Uribe. STeP: Deductive-Algorithmic Verification of Reactive and Real-Time Systems. In
Rajeev Alur and Thomas A. Henzinger, editors, CAV, volume 1102 of Lecture Notes in Computer Science,
pages 415–418. Springer, 1996.

9

Anatomy of Alternating Quantifier Satisfiability Phan, Bjørner and Monniaux

[4] D. Cooper. Theorem proving in arithmetic without multiplication. In Machine Intelligence, 1972.
[5] Isil Dillig, Thomas Dillig, and Alex Aiken. Small formulas for large programs: On-line constraint simplifica-

tion in scalable static analysis. In Radhia Cousot and Matthieu Martel, editors, SAS, volume 6337 of Lecture
Notes in Computer Science, pages 236–252. Springer, 2010.

[6] Michael J. Fischer and Michael O. Rabin. Super-Exponential Complexity of Presburger Arithmetic. In
Proceedings of the SIAM-AMS Symposium in Applied Mathematics, 1974.

[7] Martin Fränzle and Michael R. Hansen. Efficient Model Checking for Duration Calculus? Int. J. Software
and Informatics, 3(2-3):171–196, 2009.

[8] Michael R. Hansen and Aske Wiid Brekling. On Tool Support for Duration Calculus on the basis of Pres-
burger Arithmetic. In Carlo Combi, Martin Leucker, and Frank Wolter, editors, TIME, pages 115–122. IEEE,
2011.

[9] David Monniaux. A Quantifier Elimination Algorithm for Linear Real Arithmetic. In Iliano Cervesato,
Helmut Veith, and Andrei Voronkov, editors, LPAR, volume 5330 of Lecture Notes in Computer Science,
pages 243–257. Springer, 2008.

[10] David Monniaux. Quantifier Elimination by Lazy Model Enumeration. In Tayssir Touili, Byron Cook, and
Paul Jackson, editors, CAV, volume 6174 of Lecture Notes in Computer Science, pages 585–599. Springer,
2010.

[11] Derek C. Oppen. A 222pn
Upper Bound on the Complexity of Presburger Arithmetic. J. Comput. Syst. Sci.,

16(3):323–332, 1978.
[12] David A. Plaisted, Armin Biere, and Yunshan Zhu. A satisfiability procedure for quantified Boolean formulae.

Discrete Applied Mathematics, 130(2):291–328, 2003.
[13] William Pugh. The Omega test: a fast and practical integer programming algorithm for dependence analysis.

In Proceedings of the 1991 ACM/IEEE conference on Supercomputing, Supercomputing ’91, pages 4–13,
New York, NY, USA, 1991. ACM.

[14] Ryan Stansifer. Presburgerś Article on Integer Airthmetic: Remarks and Translation. Technical report,
Cornell University, Computer Science Department, September 1984.

10

	Introduction
	Alternating Quantifier Satisfiability
	Definitions
	Quantifier Test: algorithm QT
	Quantifier Elimination: algorithm QE
	Algorithm QT by example

	Extrapolation
	SMT-TEST
	NNF strengthening

	Projection specialized to Linear Integer Arithmetic
	Virtual substitutions
	Contextual simplification

	Evaluation
	Conclusions

