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Abstract. The program verification tool SLAyer uses abstractions dur-
ing analysis and relies on a solver for reachability to refine spurious coun-
terexamples. In this context, we extract a reachability benchmark suite
and evaluate methods for encoding reachability properties with heaps us-
ing Horn clauses over linear arithmetic. The benchmarks are particularly
challenging and we describe and evaluate pre-processing transformations
that are shown to have significant effect.

1 Introduction

When a proof attempt by a static analyzer or model checker fails, an abstract
counterexample is commonly produced. The counterexample does not necessarily
correspond to a real bug because the analyzer’s abstraction could be too coarse.
Here we describe and evaluate new techniques to check concrete feasibility of
abstract counterexamples produced as failed memory safety proofs by SLAyer, a
separation logic–based shape analyzer [?]. The problem addressed in this paper is
a particular instance of the more general one of state reachability in “resourceful”
abstract transition systems, where the state space is theoretically unbounded,
and changes over time, due to behavior such as dynamic allocation of memory.
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Fig. 1. Average solving time
(Sat+Unsat), relative to the
solving time of 100 unrollings

This poses challenges to reachability tools
along two dimensions: scaling search for long
counter-examples, and encoding state trans-
formations for heaps in a scalable way. Pre-
vious work [?] developed an encoding using
bit-vectors and quantifiers and used bounded
model checking (BMC). Fig. 1 illustrates that
on a representative instance, unfortunately, it
exhibits exponential slowdowns as the length
of the explored path is increased. To further
evaluate tradeoffs we extracted around 100
benchmarks from SLAyer that come from
failed proof attempts in analysis of real-world C programs.

We encode reachability into logic as satisfiability of Horn clauses and use two
backends of the Z3 SMT-solver for solving such clauses. The PDR solver handles
Horn clauses over linear arithmetic (HORN-LA). It is compared with a solver
based on BMC. (For details on the underlying semantics of the Horn-clause
fragment and on the internals of the PDR solver, please see [?]).



Our main methodological contribution is encodings for resourceful reacha-
bility into Horn-LA. A basic encoding (§2.2) is refined (§2.3) to use a family of
transition relations indexed by “worlds”. These limit the state space based on
the amount of memory allocated. This refinement allows the solver to explore
smaller state spaces over fewer variables, constrained by smaller formulae. Our
evaluation shows that this encoding helps the PDR solver on the hard instances,
while causing visible overhead on the easy cases. The results (Fig. 6(b)) with
the BMC solver are similar, but the overhead is significantly more detrimental.
Additionally, we propose and evaluate (Fig. 5) two alternative approaches to
shrinking heaps of error states. The evaluation of our methodology establishes
that our PDR solver benefits critically from pre-processing transformations that
we identify and evaluate (Fig. 7(a),7(b)). This paper is our first thorough exper-
imental evaluation of [?] over arithmetical benchmarks.

2 Resourceful Transition System Reachability

1 void access_error()

2 {

3 int* x0, *x1;

4

5 x1 = malloc(sizeof(int));

6 if (nondet()) {

7 x0 = malloc(sizeof(int));

8 }

9 while (nondet()) {

10 *x0 = 3;

11 }

12 }

Consider the faulty routine on the
right. It contains a memory access er-
ror. SLAyer [?] can be used to find
such errors. When SLAyer fails in its
attempt to establish memory safety, it
produces an abstract counterexample
in the form of a Resourceful Transition
System (RTS) – a transition system
over states of some resource (memory,
in our case). Fig. 2 is an RTS extracted
from this example. An RTS is given by
〈V,E, v0, verr, ν, ρ〉, where V and E are
sets of vertices and edges respectively, v0 identifies the root and verr the error ver-
tex, ν labels vertices with states, and ρ labels edges with transition relations. The
abstract counterexample is feasible if there is a path v0, e0, v1, e1 . . . , vn, en, verr
such that the conjunction ν(v0)(s0) ∧

∧
ρ(ei)(si, si+1) is feasible.

2.1 Encoding Resources

To encode resourceful reachability into SMT we adapt a model where states are
summarized as a predicate over a store and a heap. The store tracks the values of
program variables, X, and the heap tracks memory objects. This representation
is given by a triple (f,x,a), where

– f ∈ N is a frontier counter, indicating the ‘next’ free address,
– x ∈ D|X| is the store over values in D (D includes N), and
– a ∈ Array〈N,B× N× D〉 is an array mapping addresses to triples encoding

if the address is allocated, the size of the allocated object, and its value.

The state labeling ν is a relation over (f,x,a), where initially f is 0 and a maps
all addresses to an un-allocated state. Similarly, ρ is a relation ρ(ei)(f,x,a, f

′,x′,a′).
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v0(`5) : v1(`6) : (x1 7→?)

v2(`9) : (x1 7→?) v3(`7) : (x1 7→?)

v4(`10) : (x1 7→?) v5(`9) : (x1 7→?) ∧ (x0 7→?)

v6 : ERROR

v7(`11) : EXIT

v8(`10) : (x1 7→?) ∧ (x0 7→?)

x1 := alloc(1)

assume(?=0) assume(? 6=0)

assume(? 6=0)

failed(mem[x0] := 3)

x0 := alloc(1)

assume(?=0) assume(? 6=0)

mem[x0] := 3

Fig. 2. failed attempt at proving safety for access error

The unsuccess-
ful transition corre-
sponds to an up-
date into an unallo-
cated memory loca-
tion, and is marked
as failed. An encod-
ing into Horn-LA
requires eliminating
arrays, so we flatten
a into a finite tu-
ple of triples. The
(pre-set) size n of
this tuple, which is
the number of avail-
able memory loca-
tions and therefore

the bound on the resource, plays a crucial role in deciding reachability.

2.2 Resourceful Reachability as SMT - Basic Encoding

Given an RTS 〈V,E, v0, verr, ν, ρ〉, and a bound n, reachibility can be modeled
as a predicate R(v, f,x,a), where v ∈ V and (f,x,a) is a state as described
above. R is defined by the following set of Horn clauses, where the schema in
the second line is repeated for each eij ∈ E s.t. eij = (vi, vj):

R(v0, f,x,a)← ν(v0)(f,x,a)

R(vj , f
′,x′,a′)← R(vi, f,x,a) ∧ ρ(eij)(f,x,a, f

′,x′,a′) ∧ f ′ ≤ n (1)

false ← R(verr, f,x,a)

The free variables f, f ′,x,a,x′,a′ are implicitly universally quantified. Reacha-
bility corresponds to unsatisfiabilty of these Horn clauses:

Proposition 1 (Bounded Resource Reachability). For an RTS, there is
a feasible path from v0 to verr allocating at most n resources if and only if the
clauses defined by (1) are unsatisfiable.

Conversely, if the clauses are satisfiable, the error state is unreachable within
a resource of size n. At this point we see why the bound is crucial: unreachability,
i.e. safety, can be proven only relative to a given bound.

Example 1 (RTS encoding). Continuing our running example, below we show
the clauses encoding the edges between v0 and verr = v6 of the ATS in Fig. 2
over a space of four addresses, i.e. n = 4.

R(0, f,x,a)← f = 0 ∧ a = (false, , ), . . . , (false, , )︸ ︷︷ ︸
4

// initial state
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R(1, f ′,y,b)← R(0, f,x,a) ∧ y = 〈x0, f〉 //v0 → v1 : alloc(x1, 1)
f ′ = f + 1 ∧ f ′ ≤ 4

∧
∧h<4

h=0 b[h] =
(
if h = f then (true, 1, ) else a[i]

)
R(2, f,x,a)← R(1, f,x,a) //v1 → v2 : assume(nondet() = 0)

R(4, f,x,a)← R(2, f,x,a) //v2 → v4 : assume(nondet() 6= 0)

R(6, f,x,a)← R(4, f,x,a) ∧ a[x0] = (false, , ) //v4 → v6 : unsuccessfull store

false ← R(6, f,x,a)
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Fig. 3. Slowdown when n increases:
BMC ×, PDR ◦

Observe that the value of n, which is
fixed prior to encoding, has two effects on
the relation R: First, it affects satisfiability
of the Horn clauses. Second, it affects, and
in fact dominates, the number of parame-
ters of R, which is given by 1+|X|+3n. The
problems this can cause are demonstrated
by the example in Fig. 2. First, suppose the
edge (v0, v1) was labeled with ‘alloc(x1, 5)’,
allocating 5 words rather than one word.
In that case, the corresponding rule would
contain a constraint equivalent to f+5 ≤ 4,
and as a result, verr would become unreach-
able. However, given an n ≥ 5 it would still
be reachable. That is to say, underestimat-

ing the size of n required to reach verr may result in a loss of completeness.
Second, notice that none of a[1], a[2] nor a[3] are required in a traversal from
v0 to verr here. However, they all contribute to the resulting constraints and be-
come part of the search space during solving. Fig. 3 shows that as n is increased,
the runtime and memory-outs increase as well.

2.3 Encoding Reachability - Kripke Style

To reduce the cost of propagation over large predicates, we propose and evaluate
a method that introduces a sequence of predicates of increasing arity. The aim is
to search over low arity predicates first, and resort to larger arity predicates only
when search in the lower arity predicates has been exhausted. If a counterexam-
ple trace exists that requires only a part of the available resource, finding it does
not require assigning (irrelevant) values to the entire resource. This encoding is
inspired by possible-world semantics of programming languages. The idea is that
of Kripke models for intuitionistic logics where sets of possible worlds or facts
grow monotonically.

The idea is to choose a chain W := w0(= 0) < w1 < · · · < wm = n,
of increasing sizes for the available resource a. From W we encode a set of
predicates {R0, . . . , Rm}, such that Rk has arity 1 + |X| + 3wk. Analogously
to the monotonically growing worlds in a Kripke-style program semantics, the
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predicates Rk capture the set of reachable states with increasing precision. Each
Rk is defined by clauses instantiating the second clause of (1), for each e ∈ E,
s.t. eij = (vi, vj). The first clause of (1) is replaced by the single non-recursive
clause, reflecting that initially no resource is allocated:

R0(v0,x)← ν(v0)

In addition, to allow the solver to access Rl from Rk for all l > k, ‘world-
changing clauses’ are introduced at each step instantiating the following schema
for all k < l ≤ m, where |a| = wk and |b| = wl:

Rl(vj ,f
′,x′,b′)← Rk(vi, f,x,a)

∧ ρ(eij)(f,x,b, f
′,x′,b′) ∧ wl−1 < f ′ ≤ wl (2)

∧
∧h<wl

h=0 b[h] =
(
if h < wk then a[h] else (false, , )

)
When changing worlds, first the current state of the smaller world a is ‘copied’

over to a ‘fresh’ larger one b, in which the new elements are initialised to be free.
In practice, this step is only required for transitions that may actually consume
resource (alloc in SLAyer).

R0(verr, )

R1(verr,x, )

. . . Rk(verr,x, ) . . .

Rm(verr,x, )

R0(verr, )

R1(verr,x, )

...

Rn(verr,x, )

Fan Chain

Fig. 4. Schemata for ways of connecting R0 to Rk in a set of Kripke predicates

Since there are several predicates Rk in this encoding, verr may be reachable
in each of them. The purpose of this encoding is to explore smaller Rk before
larger ones, hence we will pose the query in R0 – R0(verr,x) – and let the
solver choose a larger one if neccessary. There are several ways of setting up that
choice: we could either add m clauses of the form R0(verr,x) ← Rk(verr,x,a)
(creating a fan into R0, so to speak); or add a chain of clauses Rk(verr,x,a)←
Rk+1(verr,x,a

′) for 0 ≤ k < m – see Fig. 4.

2.4 Evaluation

There are now several parameters to an encoding: the size of the maximum
available resource n, the set W of increasing sizes of parts of the resource, and
the choice between a fan and a chain of clauses for reaching R0(verr,x).

5



0.1

1

10

100

1k

T/O

M/O

0.1 1 10 100 1kT/OM/O

C
h

ai
n

Fan

×

×

×

×

×
×

×× ××

××

×

×
×
××

×××
××

×

×

×

××××

×

×

××

×

×

×

××

×

××

×
×××

×
×
××××××

×
×
×

×
×

××

×

×

×

× ×

×××
××

×

×××

××××

×

×
×
××

◦

◦

◦

◦

◦◦◦ ◦

◦◦

◦◦

◦

◦◦ ◦

◦◦ ◦◦◦
◦

◦◦

◦

◦

◦◦◦

◦◦

◦

◦◦

◦ ◦

◦

◦◦◦ ◦◦◦

◦◦
◦

◦
◦
◦◦◦◦ ◦◦ ◦◦◦

◦

◦

◦◦

◦

◦

◦

◦

◦◦◦◦◦◦◦

◦◦◦

◦◦◦◦

◦

◦

◦

◦
◦◦

×

××

×

×

×× ××× ×

× ××××× ×××× ×

×

×

◦ ◦◦◦ ◦

◦

◦

◦◦◦◦◦ ◦

◦ ◦

◦◦

◦

◦

◦ ◦◦◦

◦

◦

◦◦◦◦ ◦◦◦

◦◦◦

◦

◦

◦◦ ◦◦◦◦◦◦◦◦

Fig. 5. Fan vs. Chain; PDR ×: 64, ◦:
512 addresses

We considered growing wk with a linear
increase and a log-step increase, i.e. each
wk+1 is double the size of wk and settled
for the latter encoding for our evaluation.
Fig. 5 also suggests that the fanning ap-
proach on large heap sizes is better overall,
though remarkably chaining handles some
hard instances not handled by fanning.

Reducing the sensitivity to the bound
n on heap size exhibited by the previous
encoding was the motivation for the encod-
ing using Kripke transition relations. This
aim is largely achieved when using the PDR
backend, as shown in Fig. 6(a). The results
show that solving problems encoded using
Kripke relations with the PDR backend times out much less frequently, and
solves many problems that time out with the single relation encoding.
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Fig. 6. Single vs Kripke Relations

The improvements can be quite dramatic, but the results also indicate that
the Kripke predicates encoding imposes a considerable overhead, and a number
of problems exhaust memory only with it. Overall, there is a clear improving
trend from above to below the break-even line as problems get hard enough that
less sensitivity to heap size dominates the overhead. We have observed this effect
in both the chaining and the fanning approach.

As shown in Fig. 6(b), the Kripke predicates encoding is, on the other hand,
detrimental to the BMC backend. This effect is independent of the chaining
or fanning approach. The basic encoding solves many more problems than the
Kripke encoding, only a few problems are solved only using the latter. This
should not be surprising because BMC effectively causes the largest arity pred-
icate to always be present in the constraints sent to the SMT solving backend.
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3 Pre-processing Simplifications

We here evaluate pre-processing simplifications that are key to the performance
of our Horn clause solvers. We summarize two transformations on a set of Horn
clauses C. The Inline transformation replaces two clauses by a single clause in
a transformation of the form C, p(u) ← B1 ∧ q(t), q(s) ← B2 =⇒ C, (p(u) ←
B1 ∧B2)θ, where the head predicate q(s) unifies with q(t) with the substitution
θ and there are no other occurences of q in C that unifies with q(s). The Unfold
transformation generalizes inlining by replacing m clauses with q in the body and
n clauses with q in the head and creating up to m×n new clauses. It corresponds
to an iterative squarring transformation or a Davis Putnam resolution step.
Figures 7(a),7(b) demonstrate the significant effect of the exhaustive application
of these transformations on PDR and neutral effect on BMC.
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Fig. 7. Effects of Inline and Unfold transforms

4 PDR and BMC Backends

We have compared the two backend solvers on our benchmark suite. The results,
shown in Fig. 8(a), show that there are instances where each solver succeeds
while the other does not. On instances where both succeed, the BMC solver
tends to spend less time than the PDR solver. For unsatisfiable instances, there
is also a tendency for the BMC solver to succeed only on the very easy ones,
while the PDR solver has more success. This effect is more clearly seen when
considering smaller heap sizes, see Fig. 8(b). In this configuration we see that the
PDR solver dominates for unsatisfiable instances, where the BMC solver usually
exhausts resources; while for satisfiable instances, the BMC solver is faster.
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(a) BMC in simple encoding vs PDR in
Kripke-style encoding - 256 addresses
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(b) BMC vs PDR, both in the simple en-
coding - 64 addresses

Fig. 8. BMC vs PDR. Reachable ◦, Unreachable ×

5 Comparison with other Solvers

Horn Clause Solvers. Z3 is not the only SMT solver that can check satisfiability
of Horn clauses over linear arithmetic. The HSF/QARMC tools [?] check satisfia-
bility of Horn clauses over linear real arithmetic and the Eldarica tool [?] accepts
Horn clauses over linear real and integer arithmetic. Furthermore, constraint
logic programming systems, such as MAP [?], TRACER [?], and CHiAO [?]
support different aspects of Horn clauses over arithmetic. To our knowledge,
they don’t yet work in a way compatible with the SMT-LIB benchmark suite.

HSF/QARMC solves Horn clauses where constraints are given as a conjunc-
tion of literals. It therefore relies on converting constraints in the bodies of Horn
clauses into disjunctive normal form (DNF). Given the way memory is encoded
in our benchmarks, the DNF transformation is infeasible and therefore the tool
times out on all the problems we have produced.

Eldarica uses the SMT solver Princess [?] for handling arithmetical con-
straints and generating interpolants. It is able to handle Horn clauses with nested
constraints and we include a comparison in Figure 9. First of all, we interpret
the results to establish these benchmarks as highly challenging for current state-
of-the-art Horn clause solvers. We also see the results as a testament to the
significance of pre-processing that we described in Section 3.

Bounded Model Checking Tools. We have compared our implementation of BMC
on Horn clauses against both the implementation reported in [?] and the well-
established, well-tested model checking tool CBMC [?]. The first comparison,
shown in Fig. 10(a), indicates that while our BMC backend sometimes outper-
forms that of [?], when the a priori unrolling depth is chosen well the latter
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(b) Fanning Encoding

Fig. 9. Eldarica vs. Z3
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(b) BMC vs CBMC

Fig. 10. BMC vs. CAV12 and CBMC

performs very well. At present, there is a meaningful price our method pays for
the robustness with respect to choice of unrolling bound.

The results of the second comparison, shown in Fig. 10(b), demonstrate that
our backend can compete with CBMC on instances of these problems, returning
relatively quickly for numerous instances for which CBMC runs out of memory.

There is a significant caveat regarding these results though: our backends
operate over the theory of linear real arithmetic, while the other two are over bit-
vectors. The benchmarks themselves do not exercise the difference between these
theories, so the same high-level problem is being solved here. So the currently
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best-performing solving method to establish unsafety/reachability is BMC and
is based on quantified bit-vectors, while the main available method establishing
safety is based on linear arithmetic.

6 Summary

We have presented encodings of resourceful reachability problems into HORN-
LA and evaluated these using two engines BMC and PDR. PDR can solve for
both reachability and unreachability, wheareas BMC can only determine reach-
ability. We found that BMC is generally faster on the reachable cases, but given
significant attention to encoding and pre-processing, our implementation of PDR
performs adequately. The raw data from our experiments is available at:
http://www.cs.kent.ac.uk/people/rpg/jek26/cex-data.zip.
The experimental data forms the basis of publicly available benchmarks:
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/SLayerCF.
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