
Applications and Challenges in Satisfiability Modulo Theories
Leonardo de Moura
Microsoft Research
One Microsoft Way

Redmond, WA 98052
leonardo@microsoft.com

Nikolaj Bjørner
Microsoft Research
One Microsoft Way

Redmond, WA 98052
nbjorner@microsoft.com

Abstract

The area of software analysis, testing and verification is now undergoing a revolution thanks
to the use of automated and scalable support for logical methods. A well-recognized premise is
that at the core of software analysis engines is invariably acomponent using logical formulas for
describing states and transformations between system states. One can thus say that symbolic logic
is the calculus of computation. The process of using this information for discovering and checking
program properties (including such important properties as safety and security) amounts to automatic
theorem proving. In particular, theorem provers that directly support common software constructs
offer a compelling basis. Such provers are commonly called satisfiability modulo theories (SMT)
solvers. Z3 is the leading SMT solver. It is developed by the authors at Microsoft Research. It can
be used to check the satisfiability of logical formulas over one or more theories such as arithmetic,
bit-vectors, lists, records and arrays.

This paper examines three applications of Z3 in the context of invariant generation. The first lets
Z3 infer invariants as a constraint satisfaction problem, the second application illustrates the use of
Z3 for bit-precise analysis and our third application exemplifies using Z3 for calculations.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers have been the focus of increased recent attention thanks
to technological advances and an increasing number of applications. The Z3 solver from Microsoft
Research has several applications. We describe several of them, some are shipped with Windows 7;
others are used as part of internal security testing and someare in an earlier research stage. Z3 is the
premier SMT solver. It is currently mainly targeted at solving problems that arise in software verification
and software analysis. Consequently, it integrates support for a variety of theories that arise naturally in
the context of program analysis. Z3 is released publicly fornon-commercial use and is available from
Microsoft Research for download at

http://research.microsoft.com/projects/z3.

You can try Z3 on-line at

http://rise4fun.com/z3.

This paper describes three uses of Z3. Section 2 takes as starting point the VS3 project that treats
problems, such as invariant generation, ranking function synthesis, and program fragment synthesis as
a constraint satisfaction problem. We illustrate how a recent feature in Z3 can be used to solve such
satisfaction problems. Section 3 recalls a project using Z3in the context of the scalable program analysis
system PREfix. Many invariant generation techniques take asstarting point solvers for the domains of
mathematical integers and reals. This is at best imprecise in the context of software analysis. We use
the PREfix experience as an illustration for the use for bit-precise static analysis techniques. Our last
example in Section 4 is about using SMT solvers for generating test-cases from models. It is not directly
related to invariant generation; it illustrates using Z3 for symbolic calculations. Section 5 summarizes
several important applications of Z3.

1

http://research.microsoft.com/projects/z3
http://rise4fun.com/z3

Applications and Challenges in Satisfiability Modulo Theories de Moura and Bjørner

2 From Models to Invariants

The VS3 [31] project uses Z3 to automatically discover inductive invariants for proving safety properties
of systems. The project also explores techniques for using SMT solvers to synthesize program fragments.
Other work involving Z3 aim to determine the precise asymptotic run-time bounds of programs [21].
The associated tools can extract asymptotic bounds for a majority of routines from the .NET base class
library (of the formO(n), O(nlog(n)), etc.). The perspective of program analysis (invariant generation
and ranking function synthesis) as a constraint solving problem has been pursued in several contexts,
including [12, 5, 20]. We will here sketch a technique that uses a newer feature available in Z3, called
Model-Based Quantifier Instantiation[39]. We will adapt an example used previously in [14] to illustrate
the feature. Considering the template while-loop to the left below. The invariant synthesis problem is to
synthesize an intermediary assertionI that can be used to show thatpostholds in the end of thewhile-
loop. Letpre[s] be a formula encoding the set of states reachable before the beginning of the loop,c[s] be
the encoding of the entering condition,T[s,s′] be the transition relation for the loop body, andpost[s] be
the encoding of the property we want to prove. The loop invariant exists if the formulaϕI is satisfiable.
Any model that provides an interpretation forI can be used to extract the loop invariant.

pre
whi le (c) {

T
}
post

ϕI :
∀s. pre[s]→ I(s) ∧
∀s,s′. I(s)∧c[s]∧T[s,s′]→ I(s′) ∧
∀s. I(s)∧¬c[s]→ post[s]

a s s e r t (n>= 0) ;
x = 0 ; y = 0 ;
whi le (x < n) {

x = x + 1 ;
y = y + 2 ;

}
a s s e r t (y == 2∗n) ;

We use the following very simple sample program. The loop in-
crementsx andy by 1 and 2, respectively. The post-condition asserts
that when the loop terminates, theny= 2n. The pre-condition of the
loop comprises of the assertion and initializations tox and y, thus
pre[x,y,n] is n ≥ 0∧ x = 0∧ y = 0. The loop conditionc[x,y,n] is
x< n, and the transition relation of the loop body isT[x,y,n,x′ ,y′,n′]
given byx′ = x+1∧ y′ = y+2∧n′ = n. Consequently, the formula
corresponding toϕI is:

∀x,y,n. n≥ 0∧x= 0∧y= 0→ I(x,y,n) ∧
∀x,y,n,x′,y′,n′. I(x,y,n)∧x< n∧x′ = x+1∧y′ = y+2∧n′ = n→ I(x′,y′,n′) ∧
∀x,y,n. I(x,y,n)∧¬(x< n)→ y= 2n

The formula is satisfiable, the following interpretation isa model forϕI :

I(x,y,n) 7→ 2x= y∧x≤ n .

Until now invariant and rank-synthesis tools that have usedthis reduction to constraints have relied
on special purpose algorithms for synthesizing these predicates. One method uses Farkas’ lemma. Other
methods usetemplatesthat specify a space of possible interpretations. The templates contain parame-
ters that a separate solving method has to instantiate. Model-based quantifier instantiation, within Z3,
integrates all decision procedures directly and can be usedin lieu of these external methods.

Model-based quantifier instantiation works in the following way. Suppose we are given a constraint
ψ ∧∀x. ϕ [x], whereψ is quantifier-free and supposeM is an interpretation that satisfiesψ . We wish
to check whetherM also satisfies∀x. ϕ [x]. Then let us replace the free symbols inϕ by their values
according toM. We call this new specialized formulaϕM and check if¬ϕM[x] is satisfiable. If it is, then

2

Applications and Challenges in Satisfiability Modulo Theories de Moura and Bjørner

there is an extensionM′ of M that assignsx to a valuevx andM′ satisfies¬ϕ [x]. Consequently,M is not a
model for∀x. ϕ [x]. The idea is to instantiate the quantifier with a termt such thattM = vx, and conjoin the
instantiation toψ to rule out this model that did not satisfy the quantifier. On the other hand, if¬ϕM[x]
is unsatisfiable, thenM does indeed satisfy the entire formula. Note that there may be many termst such
thattM = vx. One simple heuristic it to use a ground termt from ψ if such term exists. In [39], a strategy
for selecting the termt is described, and it is shown that Model-based Quantifier Instantiation equipped
with this strategy is a decision procedure for many fragments of first-order logic.

It is also possible to supply enough guidance to Z3 to build aninterpretation for a predicate or
function symbolI . This is achieved by supplying extra (template) equalitiesthat restrict the possible
interpretations forI . For the purpose of this example, the relevant template equalities could be:

∀x,y. I(x,y,n)↔ ax+by+cn= d∧a′x+b′y+c′n≤ d′

It is furthermore helpful restricting the variablesa,a′, b,b′, c,c′ to range over a finite domain. Then the
instantiation of the templates remain decidable integer linear problems even whenx,y,n are instantiated
by symbolic terms. One way to restrict these variables to be finite domain is to let them range over
bit-vectors.

Z3 recognizes that the template is essentially amacrofor the predicateI . It uses this information to
produce an interpretation forI .The notion of macros is more general than just equations; they include
combining several conditional equalities as well.

We provide an encoding of the constraint satisfaction problem in SMT-LIB2 below.

(set-option :produce-models true)

(set-option :mbqi true)

(set-option :bv-enable-int2bv-propagation true)

(define-sort Char () (_ BitVec 8))

(declare-fun I (Int Int Int) Bool)

(declare-fun a1 () Char)

(declare-fun b1 () Char)

(declare-fun c1 () Char)

(declare-fun d1 () Int)

(declare-fun a2 () Char)

(declare-fun b2 () Char)

(declare-fun c2 () Char)

(declare-fun d2 () Int)

(define-fun linearT ((x Int) (y Int) (n Int) (a Char) (b Char) (c Char) (d Int)) Int

(- (+ (* (bv2int a) x) (* (bv2int b) y) (* (bv2int c) n) d)

(+ (* 128 x) (* 128 y) (* 128 n))))

(assert (forall ((x Int) (y Int) (n Int))

(=> (and (= x 0) (= y 0) (>= n 0)) (I x y n))))

(assert (forall ((x Int) (y Int) (n Int))

(=> (and (< x n) (I x y n)) (I (+ x 1) (+ y 2) n))))

(assert (forall ((x Int) (y Int) (n Int))

3

Applications and Challenges in Satisfiability Modulo Theories de Moura and Bjørner

(=> (and (>= x n) (I x y n)) (= y (* 2 n)))))

(assert (forall ((x Int) (y Int) (n Int))

(iff (I x y n)

(and

(= (linearT x y n a1 b1 c1 d1) 0)

(<= (linearT x y n a2 b2 c2 d2) 0)))))

(check-sat)

(get-model)

In this case Z3 produces the answer:

sat

(model

(define-fun d1 () Int

0)

(define-fun c1 () (_ BitVec 8)

#x80)

(define-fun d2 () Int

0)

(define-fun c2 () (_ BitVec 8)

#x1a)

(define-fun b1 () (_ BitVec 8)

#x60)

(define-fun a1 () (_ BitVec 8)

#xc0)

(define-fun b2 () (_ BitVec 8)

#xc0)

(define-fun a2 () (_ BitVec 8)

#x66)

(define-fun I ((x!1 Int) (x!2 Int) (x!3 Int)) Bool

(ite (and (= x!1 0) (= x!2 0) (= x!3 1)) true

(ite (and (= x!1 (- 1)) (= x!2 1) (= x!3 0)) false

(ite (and (= x!1 (- 1)) (= x!2 2) (= x!3 (- 1))) false

(ite (and (= x!1 1) (= x!2 2) (= x!3 1)) true

(ite (and (= x!1 0) (= x!2 0) (= x!3 0)) true

(ite (and (= x!1 (- 3198)) (= x!2 (- 1704)) (= x!3 (- 254))) false

(ite (and (= x!1 (- 192)) (= x!2 (- 80)) (= x!3 (- 192))) false

(let ((a!1 (not (= (+ (* 2 x!1) (* (- 1) x!2)) 0)))

(a!2 (not (>= (+ (* 13 x!1) (* 51 x!3) (* (- 32) x!2)) 0))))

(not (or a!1 a!2)))))))))))

)

This is close to the expected model. The first conjunct is the expected 2x = y, the second reads 13x−
32y+51n≥ 0, but if we replacey by 2x we get 51n≥ 51x, which isn≥ x in disguise.

Model-based Quantifier Instantiation is a relatively new feature in Z3. The combination with com-
plete quantifier instantiation [39] and macro detection facilities allows it to subsume several known de-
cision classes, including EPR, the Array Property Fragment[9] and pointer data-structures [27]. An
interesting challenge is to develop efficient incremental techniques for applying model-based quantifier
instantiation.

4

Applications and Challenges in Satisfiability Modulo Theories de Moura and Bjørner

3 Bit-precise, scalable analysis with PREfix

Many invariant generation techniques take as starting point solvers for the domains of mathematical
integers and reals. This is at best imprecise in the context of software analysis. This section highlights an
experience with integrating Z3 with the static analysis tool PREfix [10] for bit-precise static analysis [10].

Since 1999, PREfix has been used at Microsoft to analyze C/C++production code. It relies on an
efficient custom constraint solver, but addresses bit-level semantics only partially. On the other hand,
Z3 supports precise machine-level semantics for integer arithmetic operations. The integration of PRE-
fix with Z3 allows uncovering software bugs that could not previously be identified, in particular integer
overflows. These typically arise when the programmer wrongly assumes mathematical integer semantics,
and they are notorious causes of buffer overflow vulnerabilities in C/C++ programs. We ran our integra-
tion during the spring of 2009 over several projects from theWindows 7 code base and we uncovered a
number of bugs related to integer overflows.

Let us give a simple example of a buffer overflow that was discovered using Z3/PREfix.

ULONG A l l o c a t i o n S i z e ;
whi le (C u r r e n t B u f f e r != NULL) {

i f (NumberOfBuf fers > MAX ULONG / s i z e o f(MyBuffer)) {
re tu rn NULL;

}
NumberOfBuf fers ++;
C u r r e n t B u f f e r = C u r r e n t B u f f e r−>NextBu f fe r ;

}
A l l o c a t i o n S i z e = s i z e o f(MyBuffer) ∗ NumberOfBuf fers ;
UserBuf fersHead = mal loc (A l l o c a t i o n S i z e) ;

Program 3.1: Allocating a vector of buffers

The semantics of multiplication in C is modulo 232 (on DWORDs). Therefore, multiplication can
overflow. The if statement does protect from an integer overflow in the multiplication

sizeof(MyBuffer)∗NumberOfBuffers,

but asNumberOfBuffers is incremented just before the loop exits, the test is ineffective. The resulting
buffer can therefore be allocated with fewer bytes than anticipated. A buffer overflow will happen when
the buffer is later accessed at positions beyond the allocation boundary.

4 Test-case generation using Spec Explorer

The Spec Explorer tool grew out of efforts at Microsoft Research for developing model-based design
and test tools. The development of Spec Explorer moved to theProtocol Test Team in 2007 to provide
testing support for the 250+ protocol documents that Microsoft furnished to the European Commission
and the Department of Justice. The protocol test challenge has provided a flourishing environment for the
development of Spec Explorer. One use of Z3 in the context of Spec Explorer is for generating pair-wise
independent test inputs for input/output specifications with complex constraints [18]. It can also use Z3
as part of its state-space exploration engine of model-based test programs.

5

Applications and Challenges in Satisfiability Modulo Theories de Moura and Bjørner

Let us illustrate how Z3 can be used for generating pair-wiseindependent tests with arbitrary con-
straints. When there are no side-constraints there are explicit enumeration methods for pairwise inde-
pendent testing. The paper [8] examines several of these methods.

We will use a small artificial example. Suppose we have a helicopter that can fly in any direction,
horizontally (with angleh) or vertically (with anglev), and it can fly backwards or forwards with a
maximal velocityw. We are interested in testing flight-paths of the helicopterover the sphere with
radiusw and we are interested in testing different combinations of horizontal and vertical directions. The
helicopter is allowed to fix a horizontal and vertical direction and then take two legs along the chosen
direction. We can fix two ranges for each choice. We can constrain these choices as follows:

up→ 0≤ v≤ 90 ¬up→−90≤ v≤ 0
right→ 0≤ h≤ 90 ¬right→−90≤ h≤ 0
forward1→ 0≤ `1≤ w ¬forward1→−w≤ `1≤ 0
forward2→ 0≤ `2≤ w ¬forward2→−w≤ `2≤ 0

We can add other constraints, for example constraining the length of the traveled path to be at leastw/2
and at mostw:

w/2≤ |`1+ `2| ≤ w

This leaves four degrees of freedom and a total of 24 = 16 tests. The number of tests grows exponen-
tially in the number of degrees of freedom. We can explore a much smaller set of tests by restricting
the search forpair-wise independent tests by seeking a set of tests that cover each pair-wise combina-
tion of the

(4
2

)

= 6 pairs(up, right), (up, forward1), (up, forward2), (right, forward1), (right, forward2),
(forward1, forward2).

The algorithm used in [18] for enumerating pair-wise independent choices involves also a notion of
seed and other concepts, but we will here in the interest of keeping the exposition simple provide a basic
algorithm for choice enumeration. For this purpose let us introduce a propositional variablec(p,q) for
each of the 6 choices. For example with the choice(up, right) we introduce the variablec(up,right). The
set of choice variables are calledchoicesand we assert

∨

c∈choices

c

as our objective is to force at least one new pair to be coveredduring each test case. We can reduce the
number of test cases bymaximizingthe set of new choices that are covered with one test. This canbe
achieved by adapting algorithms for MaxSAT in the context ofSMT. The Z3 distribution comes with two
sample programs that compute MaxSAT1.

We can now enumerate new pairs by successively adding constraints that enforce that a new as-
signment is chosen. We sketch an algorithm below. It first checks whether the current constraints are
satisfiable, and if it is the case maximizes the number of propositional variables inchoicesthat are sat-
isfied in the assignment. Then, for each pairp,q and associated propositionc(p,q) it evaluatesp andq in
the current model. Then it adds a constraint that forcesc(p,q) to befalsewhenever a subsequent model
evaluatesp andp to the same value.

whi le (n u l l != model← MaxSAT(choices)) {
f o r c(p,q) ∈ choices {

vp ← model→ eval(p) ;

1http://research.microsoft.com/en-us/um/redmond/projects/z3/group__maxsat__ex.html

6

http://research.microsoft.com/en-us/um/redmond/projects/z3/group__maxsat__ex.html

Applications and Challenges in Satisfiability Modulo Theories de Moura and Bjørner

vq ← model→ eval(q) ;
a s s e r t p' vp∧q' vq→¬c(p,q)

}
}

We encoded this algorithm and withw = 100, Z3 produces the following six (instead of 16) test
vectors:

(= h -1)

(= v -1)

(= l1 -51)

(= l2 1)

(= h 0)

(= v 0)

(= l1 51)

(= l2 -1)

(= h -1)

(= v -1)

(= l1 51)

(= l2 -1)

(= h 0)

(= v 0)

(= l1 -1)

(= l2 51)

(= h 0)

(= v -1)

(= l1 1)

(= l2 49)

(= h -1)

(= v 0)

(= l1 -49)

(= l2 -1)

We see that some pairs are covered more than once, but this is unavoidable.
The constraints can of course also have an effect on how many pair-wise independent tests are exer-

cised. Suppose we add
`1 < 0∨ `2≥ 0,

then solutions wherè1 is non-negative and̀2 is negative are ruled out. With this constraint Z3 generates
5 test vectors.

(= h -1)

(= v -1)

(= l1 49)

(= l2 1)

(= h 0)

(= v -1)

(= l1 -49)

(= l2 -1)

(= h -1)

(= v 0)

(= l1 -51)

(= l2 -1)

(= h 0)

(= v 0)

(= l1 49)

(= l2 1)

(= h -1)

(= v -1)

(= l1 -51)

(= l2 1)

5 Several Other Tools and Applications

There are many other tools and applications of Z3. Several ofthese are surveyed in other places [6,
14] and we will not repeat a detailed treatment of these here,but only summarize some developed at
Microsoft. The Static Driver Verifier tool SDV [1] uses Z3 to extract and check a finite state abstraction of
programs. Windows 7 ships with SDV 2.0 using Z3. SDV is available for external parties writing drivers
and it has identified hundreds of bugs in internal drivers. SLAM is related to the BLAST tool [23]. They
use SMT solvers to help build a finite abstraction (a Boolean program). Newer tools refine also effectively
build finite state abstractions using SMT solvers, but use internally different algorithms. The SLAyer
tool [4] also targets device drivers, but uses an engine based on separation logic to help find memory
errors (bugs that involve pointer-de-referencing). Yogi [19, 28] uses Z3 as part of the DASH/Synergy
algorithms to refine abstract states for a program. An abstract state is a control location (program counter)
together with a formula that summarizes a set of states. The states are connected by transitions that
correspond to the control flow. The abstract states and transitions are refined by computing weakest
pre-conditions. The weakest pre-conditions are simplifiedusing models: a symbolic simulation of a
candidate counter-example is used to prune case analysis for may-aliases. Yogi is not the only tool that
takes advantage of the additional information available from dynamic symbolic execution. The SAGE
and Pex [17] tools realizesmart white-box fuzzing. SAGE and Pex collect explored program paths as
formulas and use Z3 to identify new test inputs that forces execution into new branches. SAGE is used
internally at Microsoft as part of a substantial security testing effort, and Pex is available for .NET-based
development in the form of a Visual Studio power-tool.

Model programs are behavioral specifications that can be described succinctly and at a high-level
of abstraction as Abstract State Machines or ASMs. ASMs can be represented as guarded commands
encoded as logical formulas. Furthermore, the abstract data-types typically used in abstract state machine
descriptions can often be directly encoded using theories for arrays, sets and bags. The use of bounded

7

Applications and Challenges in Satisfiability Modulo Theories de Moura and Bjørner

model checking techniques and SMT solvers is investigated in a sequence of recent papers. Bounded
model program checking (BMPC) problems are investigated in[36, 37, 33]. Bounded Conformance
Checking [26] is a variant of BMPC where it is checked if two model programs are related using a
refinement relation. The Bounded Input Output Conformance Problem [25] checks if programs are
input-output conformant (ioco). It can be checked directlyfor input-output model programs or reduced
to BMPC. Regular and context-free string automata, regularstring transducers and regular tree automata
and transducers can be treated as useful special cases of abstract state machines. Unlike general abstract
state machines, several decision problems, such as language inclusion, equivalence and idempotence
under composition are decidable. Similar to general abstract state machines, it is possible to exploit
symbolic representations of the transition relation, as pursued in [34, 24, 32, 7, 35].

Program verification is a natural stronghold for the use of SMT solvers. The programming system
Spec# [2] integrates contracts for extended type safety. Togenerate verification conditions, Spec# pro-
grams are translated into a low-level procedural language Boogie [15], which is used for generating
verification conditions (logical formulas) that are handled by Z3. Boogie can also be used in stand-alone
mode and several other tools described next are based on Boogie. HAVOC, the Heap-Aware Verifier
for C Programs uses the same Boogie verification condition generator, but targets extended type safety
and heap properties of low level code [30, 13]. The VerifyingC Compiler system [16] uses Boogie
just like Spec# and HAVOC, but targets more ambitious functional correctness properties of the Viridian
Hyper-Visor. The Hyper-V is a relatively small (100K lines)operating system layer. The VCC system
was analyzed in multi-year joint project between MicrosoftResearch EMIC in Aachen and Saarbrücken.
Substantial portions of the Hyper-V were verified. The system F7 [3] checks refinement types of F7 pro-
grams. It produces verification conditions directly as formulas which are then processed by Z3. F7 is an
extension of F#. The FINE tool [11] also integrates refinement types. It adds certificates and features for
refinement. Chris Hawblitzel has used Boogie directly to encode low-level assembly level components
of the Singularity research operating system kernel. Usingthis approach, he has verified several different
garbage collector implementations [22]. The project also includes verifying low-level (assembly-level)
operating system kernel code [38].

6 Conclusions

The leading SMT solver, Z3, is developed at Microsoft Research. It is currently used in an array of prod-
ucts and research proto-types at Microsoft. The rich and expressive ways of interfacing with Z3 allows
for building new and diverse set of tools on top of it. We believe it presents a growing set of opportu-
nities for building new tools for software analysis and development. We are constantly encouraging and
looking for new and useful ways to apply the technology underlying Z3.

References

[1] T. Ball and S. K. Rajamani. The SLAM project: debugging system software via static analysis.SIGPLAN
Not., 37(1):1–3, 2002.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Programming System: An Overview. InCASSIS
2004, LNCS 3362, pages 49–69. Springer, 2005.

[3] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. Refine-
ment types for secure implementations. InCSF, pages 17–32. IEEE Computer Society, 2008.

[4] Josh Berdine, Byron Cook, and Samin Ishtiaq. SLAyer: memory safety for systems-level code. In Ganesh
Gopalakrishnan and Shaz Qadeer, editors,CAV. Springer, 2011.

8

Applications and Challenges in Satisfiability Modulo Theories de Moura and Bjørner

[5] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Rybalchenko. Invariant synthesis for
combined theories. In Byron Cook and Andreas Podelski, editors,VMCAI, volume 4349 ofLecture Notes in
Computer Science, pages 378–394. Springer, 2007.

[6] Nikolaj Bjørner and Leonardo Mendonça de Moura. Tapas:Theory combinations and practical applications.
In Joël Ouaknine and Frits W. Vaandrager, editors,FORMATS, volume 5813 ofLecture Notes in Computer
Science, pages 1–6. Springer, 2009.

[7] Nikolaj Bjørner and Margus Veanes. Symbolic transducers. Technical Report 2011-3, January 2011.

[8] Andreas Blass and Yuri Gurevich. Pairwise testing.Bulletin of the EATCS, 78:100–132, 2002.

[9] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’sdecidable about arrays? In E. Allen Emerson
and Kedar S. Namjoshi, editors,VMCAI, volume 3855 ofLNCS, pages 427–442. Springer, 2006.

[10] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer for finding dynamic program-
ming errors.Softw., Pract. Exper., 30(7):775–802, 2000.

[11] Juan Chen, Ravi Chugh, and Nikhil Swamy. Type-preserving compilation of end-to-end verification of
security enforcement. In Zorn and Aiken [40], pages 412–423.

[12] Michael Colón. Schema-guided synthesis of imperative programs by constraint solving. In Sandro Etalle,
editor,LOPSTR, volume 3573 ofLNCS, pages 166–181. Springer, 2004.

[13] Jeremy Condit, Brian Hackett, Shuvendu K. Lahiri, and Shaz Qadeer. Unifying type checking and property
checking for low-level code. In Shao and Pierce [29], pages 302–314.

[14] Leonardo Mendonça de Moura and Nikolaj Bjørner. Bugs,moles and skeletons: Symbolic reasoning for
software development. In Jürgen Giesl and Reiner Hähnle,editors,IJCAR, volume 6173 ofLecture Notes in
Computer Science, pages 400–411. Springer, 2010.

[15] R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for checking object-oriented pro-
grams. Technical Report 2005-70, Microsoft Research, 2005.

[16] E. Cohen and M. Dahlweid and M. Hillebrand and D. Leinenbach and M. Moskal and T. Santen and W.
Schulte and S. Tobies. VCC: A Practical System for VerifyingConcurrent C. InTPHOL, 2009.

[17] P. Godefroid, J. de Halleux, A. V. Nori, S. K. Rajamani, W. Schulte, N. Tillmann, and M. Y. Levin. Automat-
ing Software Testing Using Program Analysis.IEEE Software, 25(5):30–37, 2008.

[18] Wolfgang Grieskamp, Xiao Qu, Xiangjun Wei, Nicolas Kicillof, and Myra B. Cohen. Interaction coverage
meets path coverage by smt constraint solving. In Manuel Núñez, Paul Baker, and Mercedes G. Merayo,
editors,TestCom/FATES, volume 5826 ofLecture Notes in Computer Science, pages 97–112. Springer, 2009.

[19] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani. Synergy: a new algorithm for
property checking. In Michal Young and Premkumar T. Devanbu, editors,SIGSOFT FSE, pages 117–127.
ACM, 2006.

[20] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Program analysis as constraint solving.
In Rajiv Gupta and Saman P. Amarasinghe, editors,PLDI, pages 281–292. ACM, 2008.

[21] Sumit Gulwani and Florian Zuleger. The reachability-bound problem. In Zorn and Aiken [40], pages 292–
304.

[22] Chris Hawblitzel and Erez Petrank. Automated verification of practical garbage collectors. In Shao and
Pierce [29], pages 441–453.

[23] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with blast. InSPIN, pages
235–239, 2003.

[24] Pieter Hooimeijer and Margus Veanes. An evaluation of automata algorithms for string analysis. In Ranjit
Jhala and David A. Schmidt, editors,VMCAI, volume 6538 ofLecture Notes in Computer Science, pages
248–262. Springer, 2011.

[25] Margus Veanes and Nikolaj Bjørner. Input-Output ModelPrograms. InICTAC, 2009.

[26] Margus Veanes and Nikolaj Bjørner. Symbolic Bounded Conformance Checking of Model Programs. In
PSI, 2009.

[27] Scott McPeak and George C. Necula. Data structure specifications via local equality axioms. In Kousha
Etessami and Sriram K. Rajamani, editors,CAV, volume 3576 ofLecture Notes in Computer Science, pages
476–490. Springer, 2005.

9

Applications and Challenges in Satisfiability Modulo Theories de Moura and Bjørner

[28] Aditya V. Nori, Sriram K. Rajamani, SaiDeep Tetali, andAditya V. Thakur. The Yogi Project: Software
Property Checking via Static Analysis and Testing. In Stefan Kowalewski and Anna Philippou, editors,
TACAS, volume 5505 ofLecture Notes in Computer Science, pages 178–181. Springer, 2009.

[29] Zhong Shao and Benjamin C. Pierce, editors.Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009. ACM,
2009.

[30] Shuvendu K. Lahiri and Shaz Qadeer and Zvonimir Rakamarić. Static and Precise Detection of Concurrency
Errors in Systems Code Using SMT Solvers. InCAV’09. Sringer Verlag, 2009.

[31] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. Vs3: Smt solvers for program verification. In
Ahmed Bouajjani and Oded Maler, editors,CAV, volume 5643 ofLNCS, pages 702–708. Springer, 2009.

[32] Margus Veanes and Nikolaj Bjørner. Symbolic tree transducers. InPSI, 2011.

[33] Margus Veanes, Nikolaj Bjørner, and Alexander Raschke. An SMT Approach to Bounded Reachability
Analysis of Model Programs. In Kenji Suzuki, Teruo Higashino, Keiichi Yasumoto, and Khaled El-Fakih,
editors,FORTE, volume 5048 ofLNCS, pages 53–68. Springer, 2008.

[34] Margus Veanes, Peli de Halleux, and Nikolai Tillmann. Rex: Symbolic regular expression explorer. InICST,
pages 498–507. IEEE Computer Society, 2010.

[35] Margus Veanes, David Molnar, and Benjamin Livshits. Decision procedures for composition and equivalence
of symbolic finite state transducers. Technical Report 2011-32, Microsoft Research, March 2011.

[36] Margus Veanes and Ando Saabas. On Bounded Reachabilityof Programs with Set Comprehensions. In
LPAR, pages 305–317, 2008.

[37] Margus Veanes and Ando Saabas. Using satisfiability modulo theories to analyze abstract state machines
(abstract). In Egon Börger, Michael J. Butler, Jonathan P.Bowen, and Paul Boca, editors,ABZ, volume 5238
of LNCS, page 355. Springer, 2008.

[38] Jean Yang and Chris Hawblitzel. Safe to the last instruction: automated verification of a type-safe operating
system. In Zorn and Aiken [40], pages 99–110.

[39] Yeting Ge and Leonardo de Moura. Complete instantiation for quantified SMT formulas. InCAV, 2009.

[40] Benjamin G. Zorn and Alexander Aiken, editors.Proceedings of the 2010 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10,
2010. ACM, 2010.

10

	Introduction
	From Models to Invariants
	Bit-precise, scalable analysis with PREfix
	Test-case generation using Spec Explorer
	Several Other Tools and Applications
	Conclusions

