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ABSTRACT 

Almost all of the existing work on Named Entity Recognition 

(NER) consists of the following pipeline stages – part-of-speech 

tagging, segmentation, and named entity type classification. The 

requirement of hand-labeled training data on these stages makes it 

very expensive to extend to different domains and entity classes. 

Even with a large amount of hand-labeled data, existing 

techniques for NER on informal text, such as social media, 

perform poorly due to a lack of reliable capitalization, irregular 

sentence structure and a wide range of vocabulary. 

In this paper, we address the lack of hand-labeled training data by 

taking advantage of weak super vision signals. We present our 

approach in two parts. First, we propose a novel generative model 

that combines the ideas from Hidden Markov Model (HMM) and 

n-gram language models into what we call an N-gram Language 

Markov Model (NLMM). Second, we utilize large-scale weak 

supervision signals from sources such as Wikipedia titles and the 

corresponding click counts to estimate parameters in NLMM. Our 

model is simple and can be implemented without the use of 

Expectation Maximization or other expensive iterative training 

techniques. Even with this simple model, our approach to NER on 

informal text outperforms existing systems trained on formal 

English and matches state-of-the-art NER systems trained on 

hand-labeled Twitter messages. Because our model does not 

require hand-labeled data, we can adapt our system to other 

domains and named entity classes very easily. We demonstrate the 

flexibility of our approach by successfully applying it to the 

different domain of extracting food dishes from restaurant reviews 

with very little extra work. 

Categories and Subject Descriptors 

I.2.7 [Artificial Intelligence]: Natural Language Processing – 

language models 

General Terms 

Algorithms, Experimentation, Measurement 

Keywords 

Entity recognition, Entity segmentation, Language modeling, 

Social media, Restaurant reviews 

1. INTRODUCTION 
In addition to already existing online informal text such as 

reviews and forum posts, the advent of microblogging services 

such as Twitter, Tumblr, and Facebook, together with the ability 

to publish from anywhere via smartphones, has lowered the 

barrier to content creation significantly in recent years. Coupled 

with the ease of reaching a broad audience via online social 

networks, casual or informal content creation has seen an 

explosion in popularity.  

The microblogging service Twitter alone reports it publishes over 

340M tweets per day1. The same factors that encourage prolific 

publication also encourage these Twitter messages, or tweets, to 

be more informal, noisier and difficult to interpret than previously 

studied corpora. For example, Ritter et al. [47], reports over 50 

lexical variations for tomorrow. Other factors that confound 

interpretation of informal content include capitalization that 

signals emotional intensity instead of proper noun status, a higher 

frequency of misspellings introduced by limited keyboards on 

mobile devices2, and the abbreviations and grammatical errors 

introduced to fit messages into the 140-character limit imposed by 

services such as Twitter. 

Despite the brevity and difficulty of interpreting individual tweets, 

in large numbers tweets have already been shown useful for 

predicting movie box office revenue [3], political election polls 

[45,49], flu trends [1] and even stock market movements [6]. 

Whether it is movie titles, names of politicians, or company 

names, all of these tasks that currently use keyword matching can 

benefit from a generalized Named Entity Recognition (NER) 

system that can learn different entity classes. Informal content 

exists everywhere and will be increasingly important for us to 

understand. However, current NER systems such as Stanford NER 

that achieve F1 scores of 0.87 on news articles [21], achieve a 

significantly lower F1 score of 0.39 on tweets with a precision as 

low as 0.35.  

Furthermore, there are other services just as popular as Twitter 

such as Facebook generating over 400M status updates per day3, 

Tumblr with over 40M posts per day 4 , Yelp with over 20M 

                                                                 

1 http://blog.twitter.com/2012/03/twitter-turns-six.html 

2 http://allthingsd.com/20110927/nearly-half-of-tweets-originate-

from-mobile-says-twitter-engineering-head/ 

3 http://zonetwork.net/there-are-300-thousand-status-updates-per-

minute-on-facebook 

4 http://techcrunch.com/2011/09/26/tumblr-raises-85-million-

round-from-richard-branson-vcs/ 

 

 



restaurant reviews5 and a myriad of other smaller services with 

tremendous growth. Facebook, for example, does not impose a 

140-character limit on their status updates. This means that it is 

important for the research community to develop a generalized 

NER system that can not only learn different entity classes to 

recognize, such as products and movies, but also adapt to different 

domains of informal content, such as Twitter and Facebook. 

Many state-of-the-art NER systems have focused on methods that 

require hand-labeled training data. However, we would need a 

significantly larger corpus of training data to capture the same 

amount of representation in large amounts of informal content 

such as Twitter. With tweets like the following: 

mi luv yuh long time Amazon 

It is unlikely that manageable sizes of labeled training data will be 

sufficiently representative of the Twitter corpus and corpora from 

other domains of informal content. We, therefore, need an 

approach that can process large-scale corpora to train models that 

are representative of these domains of informal content without 

hand-labeled training data.  

With this motivation, we present a new model and use large-scale 

weak supervision signals to replace the need of hand-labeled 

training data. This system matches state-of-the-art NER systems 

trained on a large corpus of hand-labeled Twitter data. 

In this paper, we present the following contributions: 

1. A generative model which we call N-gram Language 

Markov Model that explicitly models entity boundaries 

and combines ideas from Hidden Markov Model 

(HMM) and n-gram language models. 

2. Use of Wikipedia titles and page view counts as weak 

supervision signals to replace hand-labeled training 

data. While many NER systems use Wikipedia as a 

resource to learn entity names, to the best of our 

knowledge, we are the first to use popularity data 

improving F1 score by 78%. 

3. A generalized NER system that can not only learn 

different entity classes but also adapt to different 

domains with very little extra work. We demonstrate 

this by adapting the NER system to recognize food 

dishes from restaurant reviews. 

The rest of this paper will be structured as follows. In Section 2 

we present related work. Section 3 presents details of our model. 

Section 4 describes the background language model. Section 5 

formulates the foreground language model and in Section 6 we 

evaluate our NER system against existing baselines. To 

demonstrate the flexibility of our model in adapting to other entity 

classes and domains, we also evaluate our NER system for food 

recognition. We then discuss areas of future work in Section 7 and 

finally conclude in Section 8. 

2. RELATED WORK 
Thanks to popular conferences such as MUC, ACE, CoNLL and 

their easily accessible training sets, NER on formal text such as 

news articles has been a widely studied task in the past two 

decades [43]. Earlier techniques include rule-based approaches 

[32] and Hidden Markov Models (HMM) [4,42,52] while later 

                                                                 

5 http://officialblog.yelp.com/2011/07/four-score-and-20-million-

reviews-ago.html 

approaches have favored Conditional Random Fields (CRF) 

proposed by Lafferty et al. [33] enabling state-of-the-art systems 

such as the Stanford NER to achieve F1 scores of 0.87 [21] and 

over 0.90 from Ratinov and Roth [46]. 

Although NER on news articles have achieved near-human 

results, NER on other domains have been much less studied. 

Recent approaches have proposed domain adaptation [17] to 

alleviate the need of additional labeled data in the new domain for 

supervised learning systems [2,5,11,13,22,24,29,50]. However, 

even for seemingly identical domains such as Reuters and Wall 

Street Journal, Ciaramita and Altun [12] reported a significant 

degrade in F1 score from 0.91 to 0.64 making transfer learning 

from the news domain to social media such as tweets rather hard.  

Finin et al. [20] uses both Amazon Mechanical Turk and 

CrowdFlower to collect named entity annotations for Twitter. Liu 

et al. [37] present a semi-supervised approach for NER on Twitter 

combining CRF trained from human labeled tweets with k-nearest 

neighbor. Ritter et al. [47] use over 350k tokens of labeled news 

and Twitter data to rebuild all the components of a CRF-based 

NER system including a part-of-speech (POS) tagger, noun-

phrase chunking, capitalization classifier and named entity 

segmentation while using LabeledLDA and Freebase dictionaries 

for distant supervision. 

The motivation of this paper is to create a generalized NER 

system that can not only easily learn different entity classes but 

also easily adapt to different domains by replacing hand-labeled 

training data with weak supervision signals. In contrast to prior 

art, we present a novel generative model combining the ideas 

from HMM and n-gram language models that uses weak 

supervision signals and does not rely on capitalization or POS 

tagging. Because our statistical approach does not use domain 

specific features or significant amounts of labeled data, we are 

able to easily adapt the same learning across domains, and in this 

paper, demonstrate this by adapting the same system to recognize 

food dishes in restaurant reviews. In Section 3, we present this 

knowledge-intensive generative model called N-gram Language 

Markov Model (NLMM). 

3. N-GRAM LANGUAGE MARKOV 

MODEL 
In this section, we propose a generative model for recognizing 

named entities that combines ideas from HMM and n-gram 

language models into a novel N-gram Language Markov Model 

(NLMM). For convenience and clarity, we use the task of 

recognizing three types of named entities: PERSON, 

LOCATION, and ORGANIZATION to explain our framework. 

At test time, we use NLMM to find and segment entity mention 

boundaries. During this stage, we do not separate PERSON, 

LOCATION and ORGANIZATION. All entity types are tagged 

as foreground, and all other words are tagged as background. 

After finding the entity mentions, we then use three models, one 

for each type, to classify the entity mentions into their categories.  

In training time, however, we do not use any hand-labeled data. 

One main contribution of our framework is that we replace the 

large amounts of hand-labeled training data for POS tagging, noun 

phrase chunking, segmentation and type classification with large-

scale weak supervision signals to estimate the parameters in 

NLMM. While not all parameters of NLMM can be estimated 

precisely given that we do not use labeled data, the scale of the 

weak supervision signals still makes our model very competitive 

as shown in Section 6. 



3.1 Motivation  
Our motivation is to create a generalized NER system that 1) is 

expressive enough to model and predict entity mentions 

accurately, and 2) allows use of weak supervision to estimate the 

model parameters so that the model can easily learn new entity 

classes and adapt to different domains. Before presenting our 

model, we first analyze several machine learning models for 

sequential tagging including HMM (Figure 1a, left), MEMM 

(Figure 1a, right) and CRF (Figure 1b, left). 

We first consider discriminative models such as MEMM and 

CRF. Typically discriminative models need a large amount of 

labeled data to estimate a model. While there is prior art for using 

weak supervision signals to reduce the amount of hand-labeled 

training data, Li et al. show that performance may degrade 

significantly [35]. Even the smallest 500 label set used by Li et al. 

will not scale as we increase the number of domains and entity 

types our generalized NER system needs to handle. Therefore, 

discriminative models such as MEMM and CRF are not a good fit 

for building a generalized NER system. 

Finally, we consider the HMM. Given a word sequence W1…n = w1 

w2 … wn, the goal is to find the stochastic optimal tag sequence 

T1…n = t1 t2 … tn with the standard BIO tagging schema 

(Beginning, Inside and Outside of an entity). By applying Bayes’ 

rule we have the following generative model for HMM: 

        (    |    )         
 (         )

 (    )
 

                   (         ) 

HMM then models the above joint probability as follows:  

 (         )   (    ) (    |    ) 

However, we argue that HMM does not have enough expressivity 

for named entity recognition. Consider the generative process for 

a first-order HMM:  

                      

Where the tag    only depends on the previous tag     and the 

word    is generated from   . This model does not capture enough 

context information. Consider the following phrase: 

listening to am 

In HMM,         will cause am to almost never be labeled as an 

entity where in fact, am6 is a name of a musician. However, if we 

observe the count of the bigram to am, which is rare, we can then 

learn that am is likely an entity. 

3.2 Generative Story  
In NLMM, we bring in the idea of using a language model here – 

the generation of the current word does not only depend on the 

current tag, but also on the n-gram history h. The definition of h is 

context dependent; we will give a precise definition later. 

Intuitively, if a word belongs to the background, or the O-tag, this 

word should be generated using the background language model. 

On the other hand, if a word belongs to the foreground, B-tag or I-

tag, this word should be generated using the foreground language 

model we build from named entities. Moreover, we also want to 

explicitly model the boundaries of entity mentions. For example, 

to switch from an I-tag to an O-tag, we want to consider how 

                                                                 

6 http://en.wikipedia.org/wiki/AM_(musician) 

likely the previous word appears at the end of an entity name. 

Hence, the generation of the current tag also depends on the 

previous word as shown in Figure 1. This is one of the key 

differences between NLMM and HMM.  

In NLMM, the probability of generating the next tag depends on 

both previous tags and words. More formally, for tag    and a k-th 

order NLMM model, we have the following: 

      (   ) (   )   (   ) (   ) 

The parameter specification for generating tag    is shown in 

Figure 2. In addition to the BIO tags, we have a symbol <> we 

call the boundary token. We explicitly model the boundary of an 

entity mention with the boundary token. A prior   is included 

every time we enter the foreground language model generating a 

beginning of an entity mention (B-tag). Once we are in the 

foreground (B or I) we use the words appearing in the entity to 

decide how likely the next word should also be part of this entity 

(I-tag). Therefore,     
(  |  )  is the probability we exit the 

current entity mention and hence we call it the exit probability. 

Note that the <> state does not generate any word and will 

continue to generate the next entity mention (B-tag) or a 

background tag (O-tag). The history h here is the last k words in 

the current entity name and is generated from 

 (   ) (   )   (   ) (   ). 

By explicitly modeling entity name boundaries with exit 

probabilities, we can correctly segment informal text such as the 

following tweet: 

Figure 1b. Conditional Random Fields (CRF) [left] 

and First-order N-gram Language Markov Model 

(NLMM) [right] 

 

Figure 2. Weighted automata for generating tag    with history    

 

Figure 1a. Hidden Markov Model (HMM) [left] and 

Maximum-Entropy Markov Model (MEMM) [right] 

 

 

  

  

     



if they got Ice Cube Nas Immortal and Jay Z on the same track. 

Because of the missing commas between the first three names, 

NER systems that do not explicitly model entity name boundaries 

and rely on, for example, POS-tagging or capitalization will likely 

treat the first three musician names as a single entity name on the 

incorrect assumption that grammar is regular in informal text. 

To generate the word   , we have the following: 

      (   )     (   ) (   ) 

With    already generated, we select the context and language 

model to generate    . If    = O, we generate   using the 

background language model with last k words as history h. If    = 

B, we generate    using the foreground language model without 

any history. If    = I, we generate    using the foreground 

language model with the last k words in the current entity name. 

The probability of a word sequence given a tag sequence with p 

entities each with length   ,   O-tags and n-gram history    for 

token    is hence: 

 (    |    )  [∏∏    
(  |  )

  

   

 

   

] [∏    
(  |  )

 

   

] 

Given a word sequence at test time, we can then use dynamic 

programming to find the best tag sequence. 

Once we have our entity segmentations resulting from consecutive 

BI-tags, for entity classification, we directly compare the log-

likelihood of each entity   with length     in each entity class 

language model as follows: 

       

                     
(   

) 

            [∏        
(  |  )

  

   

]         
(  |     ) 

As mentioned earlier, in addition to the combined foreground 

language model used for entity segmentation, we also have one 

language model for each entity class we use for entity 

classification. The supervision signals we use to train these 

language models are identical. In the next two sections, we 

formally define the background and foreground language model 

and how to use large-scale weak supervision signals to set the 

parameters of NLMM and build these language models. 

4. BUILDING THE BACKGROUND 

LANGUAGE MODEL 
The background language model is a statistical representation of 

phrases in the corpus of the domain we want NLMM to tag as 

non-entity, i.e. O in the BIO tagging schema. To minimize 

incorrect tagging, this background language model should not 

contain entity names. We have the following: 

                     

Removing entity names from the corpus can generally be done in 

two ways. The first is to hand-label in-domain documents as 

training data. This is the approach being taken by other NER 

systems that we want to avoid. Another approach is to iteratively 

remove named entities that the algorithm is more confident about 

via methods such as class-n-gram language models. However, 

because of the low precision of current state-of-the-art NER 

systems on tweets, as shown in Section 6, it is likely that a naïve 

implementation of such an approach will not suffice and therefore, 

we leave this open to future work. 

Without hand-labeled training data, we instead model the 

background language model as the raw unlabeled corpus which 

includes the entity names we want to identify. In Section 5, we 

present the foreground language model and its more complex 

properties. 

5. BUILDING THE FOREGROUND 

LANGUAGE MODEL  
Instead of using hand-labeled training data, we use large-scale 

weak supervision signals to recognize named entities. This 

representation is called the foreground language model    . We 

model this foreground language model as a mixture model 

interpolated across the different data sources. More formally, with 

   data sources, we define the n-gram foreground language model 

as the following: 

    ∑      

  

   

 

Tuning    is discussed in Section 6.4. As mentioned in Section 3, 

NLMM uses one foreground language model that is the 

combination of all entity classes for entity segmentation. During 

entity type classification, we have one language model for each 

entity type,        . All of the language models in NLMM are 

mixture models interpolated across their respective data sources as 

described in the equation above. 

In building     , we need two pieces of information as weak 

supervision signals – entity mentions and entity popularity counts. 

In the next two Sections 5.1 and 5.2, we talk about these two weak 

supervision signals. Finally, a common question regarding 

language models is their ability to recognize out-of-vocabulary 

(OOV) words. We discuss this in Section 5.3. 

5.1 Entity Mentions 
The first step is to create a gazetteer, or dictionary of entity 

mentions (i.e. surface forms), with which to train our foreground 

language model. Prior art in this area describe how to best utilize 

Wikipedia categories to build gazetteers [30, 48] quite well, 

therefore, in this section we focus on presenting the abstract 

formulation of this process. 

Traditional gazetteers only have canonical entity names without 

alternate entity mentions that refer to the same entity. While this 

may be sufficient in the news domain, informal content contains 

more lexical variants we need to capture by including all entity 

mentions. A typical example is LOTR7 for The Lord of the Rings. 

Therefore, given a seed list of canonical entity names or entity 

mentions, we need to collect all entity mentions for a particular 

entity class. Although using Wikipedia allows us to collect 

alternate entity references more easily, we can still build our list 

of entity mentions from other sources such as search queries or 

from pre-curated lists. 

Consider an undirected graph with   vertices, 

                 , where vertices represent entity 

mentions and edge weights     represent the confidence or 

                                                                 

7 http://en.wikipedia.org/wiki/LOTR 



probability two vertices        belong to the same entity class. 

Entity mentions with   different meanings are represented as   

independent vertices and share a non-zero edge weight if and only 

if they have a possibility of sharing the same entity class. The goal 

here is to iteratively propagate the edge weights to reach as many 

entity mentions for a given entity class. 

In Section 6.4, we outline how we initialized the graph vertices 

and edges using Wikipedia as the data source. In the next section, 

we describe how to use entity popularity to bias entity mentions. 

5.2 Entity Popularity 
The ideal source of popularity data is the counts of entities 

mentioned in the domain corpus itself. Unfortunately, this data 

does not exist so we estimate it with popularity data from other 

sources, i.e. Wikipedia page view counts, in the same way we 

estimate entity mentions with Wikipedia article titles and redirects 

as weak supervision signals for entity mentions on Twitter. 

To improve the precision of our model, we normalize the 

popularity data by discounting entity mentions which have more 

alternate meanings. We call this the ambiguity factor. Because 

language model probabilities sum to one, the ambiguity factor 

allows us to more aggressively identify entity names that we are 

more confident by discounting ambiguous entity mentions. More 

formally, given an entity with popularity count (   ) and n 

meanings of the same phrase we normalize    with the following: 

                     
  

∑   
 
 

 

For unambiguous terms such as Microsoft, n = 1 leaving 

popularity count unchanged. As shown in Section 6, empirically 

we find that this normalization factor increases precision by 18% 

for ORGANIZATION and 12% overall. 

5.3 Out-Of-Vocabulary 
Out-of-vocabulary (OOV) refers to a class of problems where 

entity mentions will never be identified, no matter how strong the 

context, because they do not exist in the foreground language 

model vocabulary. Assuming we have already used all data 

sources at our disposal, NLMM alleviates OOV by training both 

the foreground and background language model with the same 

joint vocabulary. We also assign a very small non-zero probability 

to tokens that are in neither the foreground or background 

vocabulary; this allows NLMM to look at the surrounding context. 

In Section 7, we identify a class-n-gram background language 

model as future work to further address this issue. 

6. EVALUATION 
The motivation of our paper is to create a generalized NER 

system that can relatively easily learn new entity classes and adapt 

to recognize entities in different domains. Finding another NER 

system that does not require hand-labeled training data is 

challenging because recent work in NER has focused on using 

discriminative models to outperform baselines in formal text.  

In this section, we compare our NLMM-based NER system with 

two state-of-the-art CRF-based systems. First, we evaluate the 

Stanford NER8 on Twitter using the models that came with the 

package without hand-labeling new Twitter messages to retrain 

the model. This is a fair baseline because no new hand-labeled 

training data is being used for NLMM and we therefore evaluate 

                                                                 

8 http://nlp.stanford.edu/software/CRF-NER.shtml 

the domain adaptability of the state-of-the-art NER systems. We 

expect our NLMM-based NER system to outperform Stanford 

NER due to the poor domain adaptability of discriminative 

models. We also compare our system with a CRF-based NER that 

is trained on Twitter messages, Ritter et al.’s NER9. This is not an 

entirely fair comparison because of the difference in amount of 

hand-labeled training data used so we expect Ritter et al.’s system 

to outperform our system. 

6.1 Data Utilization 
In labeling our evaluation set, we follow the CoNLL 2003 

annotation guidelines for PERSON, LOCATION and 

ORGANIZATION to hand-label 1300 randomly sampled English 

tweets across a few weeks with two-fold verification. Given the 

discrepancies we have seen in reported F1 scores, we contacted 

Ritter et al., and found that the sampling method makes a 

noticeable difference in NER performance. 

We normalize all tweets to remove retweets (RT), @usernames 

and #hashtags as these are tokens that may easily confuse any of 

the NER systems but can also be easily recognized by simple 

regular expressions. 

To train the foreground language model we use publicly available 

Wikipedia monthly dumps10  (34GBs) to get page titles (11M), 

redirects (5M) and category information (661K unique 

categories). Aside from the freshness and accessibility of 

Wikipedia dumps, we use category metadata to filter entity classes 

and redirects to alleviate lexical variation and alternate entity 

mentions. We also have access to 300GBs of Wikipedia page 

view counts11 , representing one month’s worth of page views 

information we use as popularity data. To train the background 

language model, we use 2 million tweets randomly sampled from 

one day 12 . We normalize language models by removing all 

capitalization and punctuation then build a trigram language 

model with Good-Turing smoothing with a shared vocabulary. 

Both foreground and background language models should be built 

and normalized the same way to maintain consistency. 

6.2 Comparison to Stanford NER 
We compare our NER system with two current state-of-the-art 

CRF-based systems trained on large amounts of hand-labeled 

data, Stanford NER and Ritter et al. NER, both of which are 

publicly available. Both systems return entity types in addition to 

the above three annotated categories so we discard these labels 

without hurting precision or recall. We measure precision, recall 

and F1 score, which are widely used in evaluating NER systems. 

Tables 1-4 show results of our NLMM based NER in comparison 

with Stanford NER trained on both CoNLL and MUC. We 

evaluate NLMM with only entity names as weak supervision 

signals (NLMM Title), with entity names and page view 

popularity (NLMM Title + PV) as well as with normalizing with 

the ambiguity factor (NLMM Title + PV + Norm). 

We expected both CoNLL and MUC to have high precision and 

low recall because these corpora are news articles with formal 

capitalization and grammar causing the POS-tagger and noun-

phrase chunking features to trigger when tokens are capitalized. 

                                                                 

9 https://github.com/aritter/twitter_nlp 

10 http://dumps.wikimedia.org/enwiki/ 

11 http://dammit.lt/wikistats 

12 On Oct. 17, 2011, Twitter reported 250 million tweets per day 



This explains why precision for MUC is a lot higher than recall 

but we are unsure why the same is not true for CoNLL. In both 

Stanford NER models, ORGANIZATION has extremely low 

precision and recall. The reason this happens is because in news 

articles, when a capitalized noun phrase is detected but not found 

in the gazetteer used to train the model, this often means that the 

noun phrase is a new ORGANIZATION since new PERSON and 

LOCATION names are much less common. Hence, all the harder 

cases for which the discriminative model is not confident about 

are defaulting to the ORGANIZATION entity class making the 

other two entity classes score higher than they would otherwise. 

As shown in the same tables, our NLMM based NER system 

outperforms both of Stanford NER’s F1 scores by 23% and 12% 

for CoNLL and MUC respectively. In the ORGANIZATION 

entity class, we outperform F1 scores by a wide margin of 86% 

and 70% for CoNLL and MUC respectively. As we expected, 

without newly hand-labeled training data, existing NER systems 

using discriminative models adapt poorly to other domains. 

 

Table 1. NER on tweets results for PERSON 

 Precision Recall F1 score 

Stanford NER (CoNLL) 0.58 0.54 0.56 

Stanford NER (MUC) 0.78 0.42 0.54 

Ritter et al. NER 0.48 0.52 0.50 

NLMM Title 0.40 0.34 0.37 

NLMM Title + PV 0.55 0.56 0.55 

NLMM Title + PV + Norm 0.59 0.57 0.58 

 

Table 2. NER on tweets results for LOCATION 

 Precision Recall F1 score 

Stanford NER (CoNLL) 0.45 0.47 0.46 

Stanford NER (MUC) 0.68 0.45 0.55 

Ritter et al. NER 0.63 0.40 0.49 

NLMM Title 0.29 0.17 0.21 

NLMM Title + PV 0.53 0.43 0.47 

NLMM Title + PV + Norm 0.59 0.39 0.47 

 

Table 3. NER on tweets results for ORGANIZATION 

 Precision Recall F1 score 

Stanford NER (CoNLL) 0.17 0.28 0.21 

Stanford NER (MUC) 0.27 0.20 0.23 

Ritter et al. NER 0.60 0.34 0.43 

NLMM Title 0.21 0.22 0.22 

NLMM Title + PV 0.33 0.39 0.36 

NLMM Title + PV + Norm 0.39 0.39 0.39 

 

Table 4. Overall NER on tweets results 

 Precision Recall F1 score 

Stanford NER (CoNLL) 0.35 0.43 0.39 

Stanford NER (MUC) 0.54 0.35 0.43 

Ritter et al. NER 0.62 0.42 0.50 

NLMM Title 0.30 0.25 0.27 

NLMM Title + PV 0.46 0.46 0.46 

NLMM Title + PV + Norm 0.51 0.45 0.48 

 

6.3 Comparison to Ritter et al. NER 
Ritter et al. [47] use over 350k tokens of labeled news and Twitter 

data representing thousands of hand-labeled tweets to rebuild all 

the components of a pipeline NER system including a part-of-

speech (POS) tagger, noun-phrase chunking, capitalization 

classifier and named entity segmentation. Tables 1-4 also show 

results of Ritter et al.’s NER system in comparison to ours. 

Similar to Stanford NER, we expect to see a higher precision than 

recall and in fact, this is what we observed.  

Ritter et al.’s NER performs worse than Stanford NER for both 

PERSON and LOCATION entity classes, however, does very 

well in ORGANIZATION. This is likely because the hand-labeled 

Twitter data is helping the discriminative model identify what 

organizations entities are as opposed to default assigning the 

ORGANIZATION class for unknown noun phrases based on 

capitalization and POS-tagging. This therefore, means that some 

of the more difficult terms in tweets are also assigned to PERSON 

and LOCATION, hence we see a performance degrade for both 

these categories compared to the Stanford NER. 

Even with all the additional hand-labeled tweets, Ritter et al.’s 

NER system outperforms our system only by a slight margin. 

Another surprise is that Ritter et al.’s system took significantly 

longer to analyze 1300 tweets from the test set. Our NLMM-based 

NER system takes less than two minutes to analyze the same 

messages. The F1 score we measure, 0.50, is lower than Ritter et 

al.’s reported score of 0.59. We contacted Ritter and found that 

they sampled the Twitter API with temporal keywords13 and used 

this corpus for their training and test set. We suspect that these 

correctly spelled temporal keywords may have biased the data 

towards more formal and regular text. 

In comparison, our model is able to tag these messages correctly 

where CRF-based hand-labeled NER systems such as both the 

Stanford NER and Ritter et al.’s NER have difficulty: 

you youngins' just can't define it with gucci mane and souja boy! 

Via Waiting in line for Sharon jones, broken bells and spoon. 

if they got Ice Cube Nas Immortal and Jay Z on the same track. 

Even with a significant effort of hand-labeled training data, it is 

unclear that the current state-of-the-art CRF-based NER systems 

can consistently outperform our NLMM-based NER system. More 

important is the difficulty in hand-labeling new training data for 

each new domain and entity class therefore, making it difficult to 

adapt. On the other hand, Twitter is only one of the many domains 

                                                                 

13 Such as today, yesterday, January, Sunday… 



of informal content our NLMM-based NER system can be easily 

trained for. It is also easy for NLMM to recognize entities at a 

more granular level such as politicians, artists, musicians all of 

which would require hand-labeled training data in CRF-based 

NER systems to be re-labeled. In Section 6.6, we demonstrate the 

flexibility of our NLMM-based NER system by adapting our NER 

system to recognize food dishes from restaurant reviews. 

6.4 Details of the Foreground Language 

Model  
In Section 3, we present the first-order NLMM which uses bigram 

language models to simplify the formulation. Experimentally, we 

use and evaluate the second-order NLMM with trigram 

foreground and background language models. In general, higher 

order NLMMs will result in sparsity and will likely only benefit 

systems with larger training corpus. 

For weak supervision signals, we obtain entity mentions from 

Wikipedia by starting off with a bag of words for each entity 

type14 generated from the CONLL annotation guidelines. We then 

find all categories in Wikipedia where the category name contains 

one or more of these words. Once we have this seed list of 

categories, we initialize the undirected graph, as outlined in 

Section 5.1, with Wikipedia page titles as vertices and set the edge 

weight between vertices to 1 if the two vertices share one or more 

seed categories and 0 otherwise. We also set edge weights 

between vertices for Wikipedia page redirects if the destination 

page contains at least one seed category. To improve accuracy and 

coverage, we can use advanced graph propagation and 

regularization techniques such as ones used to analyze search 

query-click behaviors [25,28,36]. However, not all data sources 

have this structure that allows for an iterative propagation and 

therefore, we chose to evaluate our model at iteration zero to serve 

as a baseline. Finally, we apply Wikipedia page view counts as 

weak supervision signal for popularity as described in Section 5.2. 

As presented in Section 5, the foreground language model is a 

linear interpolation of all data sources with interpolation 

parameters    . We recommend tuning these parameters with a 

small set of hand-labeled data, 10 tweets for example, via standard 

algorithms such as gradient descent especially when using 

multiple data sources. There are also more advanced techniques of 

representing this mixture of language models [26, 31]. However, 

because we primarily only use Wikipedia as the data source and 

wanted to simplify our presentation, we tried a few values {1, 10, 

100, 1000} for     and eyeballed the results on 10 tweets. 

The most important parameter and one that we do tune is the 

transition probability   as described in Section 3. We use 10 

hand-labeled tweets to run NLMM with                  and 

chose the best performing parameter. In Section 7, we talk about 

using Expectation Maximization (EM) to tune transition 

probabilities conditioned on the n-gram history context via class-

n-gram language models. 

6.5 Varying Background Language Model  
The most important aspect in training the background language 

model is the corpus size. This corpus needs to be large enough to 

                                                                 

14 PERSON = {alumni, people, births, artists},  

LOCATION = {countries, landmarks, capitals, states, cities}, 

ORGANIZATION = {companies, organizations, universities, 

bands, groups, magazines, institutions, teams, newspapers} 

be statistically representative of messages in the domain we want 

to analyze but beyond that yields diminishing returns. Exact 

corpus size should vary with domain but in Figure 3 we show the 

impact on F1 score for corpus size (# tweets) of 1k, 3k, 10k, 30k, 

100k, 300k, 1M and 2M. Notice that we start seeing diminished 

returns after 100k tweets and after 1M the gain is no longer 

statistically significant. It would be interesting to measure whether 

perplexity of the background language model is indicative of the 

marginal gain in increasing the corpus size. However, training 

language models efficiently is a well-understood problem 

[7,19,27,44] and a corpus of 2M tweets (24M tokens) and 2M 

restaurant reviews (28M tokens) take only 15 minutes on a single 

machine with little optimization so we leave investigations to 

future work. 

6.6 Learning a new Entity Class and Domain 
Because our approach has not used any domain specific features, 

a natural question is to ask whether we can apply the same method 

to other domains. The ability to easily adapt to another domain 

and learn a new entity class is the main advantage of our NLMM-

based NER system. In this section, we train different foreground 

and background language models while using the same NLMM as 

we did with NER on twitter to not only a completely different 

domain, restaurant reviews, (domain adaptation [17]) but also an 

entirely different entity class recognition task, FOOD, (multi-task 

learning [9]). 

For recognizing food dishes in restaurant reviews we define the 

FOOD entity class broadly as including food, drinks and other 

edible things. To evaluate our food dishes NER we hand-label 200 

reviews from the Yelp and Citysearch review corpus. We use 2M 

unlabeled restaurant reviews to build our background language 

mode. For the foreground language model, we provide insight into 

how different data sources perform for this recognition task.  

Table 5 shows precision, recall, and F1 score for NLMM when 

trained to recognize food dishes in restaurant reviews. The goal 

here is to show that domain adaptation and learning new entity 

classes is effortless compared to CRF-based or other methods that 

require a large amount of hand-labeled data. To provide insight 

into how different data sources perform for a given recognition 

task, we try three data sources: menu items crawled from 

Figure 3. Effect of varying corpus size of background LM on F1 

score 

 

 



restaurant web sites (MI) with numbers designating cut-off 

frequency, query-URL-click logs from Bing (Query), and 

Wikipedia article titles from the same way we extract article titles 

for NER on tweets except with food categories (Wiki). For 

popularity data we use Wikipedia page view counts, query click 

counts, and menu item counts each with      . Tables 1-4 

already evaluate the effects of entity popularity (page view counts, 

PV) and normalizing ambiguity factor so in Table 5 we focus on 

presenting effects of different data sources. All NLMM 

performances in Table 5 use entity name, entity popularity and 

normalization (Title + PV + Norm). 

Table 5. Food dishes recognition on Yelp & Citysearch 

reviews 

 Precision Recall F1 score 

Lookup (MI-10)15 0.00 0.02 0.01 

Lookup (MI-100) 0.27 0.27 0.27 

Lookup (MI-1000) 0.25 0.07 0.11 

Lookup (Wiki + MI-100) 0.10 0.37 0.16 

NLMM (Query + MI-100) 0.41 0.26 0.32 

NLMM (Wiki) 0.58 0.48 0.53 

NLMM (Wiki + MI-100) 0.58 0.64 0.61 

 

As baselines, we present four dictionary lookups each with a 

different list of food dishes. The entire menu items dataset has 

980k unique menu items. Lookup (MI-10) represents items in this 

menu item corpus that have at least 10 occurrences (39k items) 

while Lookup (MI-1000) represents items in this menu item 

corpus that have at least 1000 occurrences (295 items). As shown 

from the Lookup baselines, the menu item dataset is extremely 

low quality. 

We also try generating food dish names from queries issued to 

Bing resulting in a 19% improvement in F1 score over the 

baseline. Our best performing model combines Wikipedia data 

with menu items improving F1 score by 126% over the best 

dictionary lookup baseline. To verify that we did not just create a 

high quality gazetteer, we take the same corpus used to train our 

best performing foreground language model and use that in a 

dictionary lookup, Lookup (Wiki + MI-100). We find that this 

gazetteer is actually very dirty with a precision as low as 0.10 

further reinforcing that our NLMM is working as intended. 

In this section, we show that NLMM can easily adapt to learn a 

new entity class, FOOD, and adapt to another domain, restaurant 

reviews, with no hand-labeled training data. This level of 

adaptability in an NER system is a novel contribution that even 

state-of-the-art systems such as Stanford NER and Ritter et al.’s 

NER system cannot match.    

7. FUTURE WORK 
Echoed by many others working on NER and even more so for 

tweets [37,38,47], due to the wide range of entity types, entity 

mentions, and lexical variations, having a high-quality large 

dataset is extremely important as observed by Ratinov and Roth 

[46] and others [14,30,48]. Aspects of Wikipedia we have not yet 

                                                                 

15 Menu items crawled from the web with at least 10 occurrences 

taken full advantage of include disambiguation pages, link text as 

alternate surface forms [15], category hierarchies, lists and tables. 

In addition to Wikipedia, Freebase [47], Wordnet [39, 48], and 

other domain-specific data sources such as IMDB16 for movies 

and CrunchBase 17  for startups are all interesting datasets to 

consider. Once there are more data sources, learning the 

interpolation parameters for the mixture model will also need to 

be considered. 

Even without improving our gazetteers there are a lot of 

improvements we can explore in how we train our language 

models. In the current method, we use a single probability to 

model the transition likelihood from the background language 

model to an entity mention, or foreground language model. This is 

clearly an over-simplification because the transition likelihood 

should depend on the context. The likelihood of game referring to 

the rapper in listening to [game] should be much higher than 

playing a [game]. We can model this context dependent transition 

probability further by using a class-based n-gram model [8] for 

the background language model. Furthermore, in light of recent 

work to efficiently train complex language models such as 

maximum entropy language models (MELM) and neural network 

language models (NNLM) [41,51], an interesting area of future 

work would be to evaluate whether MELM, NNLM or 

combinations of such will yield a better performance [40] with our 

NLMM. 

As we move away from formal text and consider informal 

content, normalization of lexical variations, whether misspelled or 

not, becomes increasingly important especially as users move 

towards using smartphones to author their content18. We can adapt 

language modeling techniques from well-studied domains such as 

query spelling correction [10,16,18,23,34], to help NLMM 

recognize entities such as jstin beeberz which are missing from 

current gazetteers.  

Training our NER system to recognize more entity types such as 

products, movies and songs will not only increase the overall 

utility of this system, but also increase the quality of results in 

existing entity types. Although segmentation algorithms that 

consider punctuation and capitalization may help in the I Love 

You Phillip Morris example, a foreground language model for 

movies would also help the system understand that this is actually 

a movie and therefore, not label Philip Morris as a person. 

Last but not the least, we would like to explore non-local 

dependencies not currently captured by NLMM. Cucerzan [15] 

uses Wikipedia links and disambiguation pages to disambiguate 

entities. In social media due to the brevity of messages, we would 

need to consider non-entity tokens as well to help in classification 

and disambiguation of identified entities.  

8. CONCLUSION 
Our motivation to build a generalized NER for any domain and 

entity class is showing promising results. In this paper, we 

propose a novel generative model that combines ideas from HMM 

and n-gram language models we call N-gram Language Markov 

Model (NLMM). NLMM allows us to explicitly model entity 

name boundaries and use weak supervision signals to replace 

                                                                 

16 http://www.imdb.com/interfaces 

17 http://www.crunchbase.com/help/api 

18 http://allthingsd.com/20110927/nearly-half-of-tweets-originate-

from-mobile-says-twitter-engineering-head/ 



hand-labeled training data. We outperform domain adaptability of 

Stanford NER trained on news data and match Ritter et al.’s NER 

system trained on a large amount of hand-labeled tweets. We also 

demonstrate that our NLMM-based NER system can easily adapt 

from recognizing person, location, and organization in tweets to 

identifying food dishes in restaurant reviews.  

We hope that this paper will inspire the NER research community 

to consider taking steps towards building a generalized NER 

without using hand-labeled training data. Demonstrating the use 

of existing non-domain-specific data sources and minimal 

amounts of hand-labeled data to build NER for arbitrary domains 

has opened the door to a new avenue of research into generalized 

NER that promises to have significant practical impact on 

information extraction and web search for informal content. 
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