
Simple and Knowledge-intensive Generative Model for
Named Entity Recognition

Chun-Kai Wang Bo-June (Paul) Hsu Ming-Wei Chang Emre Kıcıman

Microsoft Research

{chunkaiw,paulhsu,minchang,emrek}@microsoft.com

ABSTRACT

Almost all of the existing work on Named Entity Recognition

(NER) consists of the following pipeline stages – part-of-speech

tagging, segmentation, and named entity type classification. The

requirement of hand-labeled training data on these stages makes it

very expensive to extend to different domains and entity classes.

Even with a large amount of hand-labeled data, existing

techniques for NER on informal text, such as social media,

perform poorly due to a lack of reliable capitalization, irregular

sentence structure and a wide range of vocabulary.

In this paper, we address the lack of hand-labeled training data by

taking advantage of weak super vision signals. We present our

approach in two parts. First, we propose a novel generative model

that combines the ideas from Hidden Markov Model (HMM) and

n-gram language models into what we call an N-gram Language

Markov Model (NLMM). Second, we utilize large-scale weak

supervision signals from sources such as Wikipedia titles and the

corresponding click counts to estimate parameters in NLMM. Our

model is simple and can be implemented without the use of

Expectation Maximization or other expensive iterative training

techniques. Even with this simple model, our approach to NER on

informal text outperforms existing systems trained on formal

English and matches state-of-the-art NER systems trained on

hand-labeled Twitter messages. Because our model does not

require hand-labeled data, we can adapt our system to other

domains and named entity classes very easily. We demonstrate the

flexibility of our approach by successfully applying it to the

different domain of extracting food dishes from restaurant reviews

with very little extra work.

Categories and Subject Descriptors

I.2.7 [Artificial Intelligence]: Natural Language Processing –

language models

General Terms

Algorithms, Experimentation, Measurement

Keywords

Entity recognition, Entity segmentation, Language modeling,

Social media, Restaurant reviews

1. INTRODUCTION
In addition to already existing online informal text such as

reviews and forum posts, the advent of microblogging services

such as Twitter, Tumblr, and Facebook, together with the ability

to publish from anywhere via smartphones, has lowered the

barrier to content creation significantly in recent years. Coupled

with the ease of reaching a broad audience via online social

networks, casual or informal content creation has seen an

explosion in popularity.

The microblogging service Twitter alone reports it publishes over

340M tweets per day1. The same factors that encourage prolific

publication also encourage these Twitter messages, or tweets, to

be more informal, noisier and difficult to interpret than previously

studied corpora. For example, Ritter et al. [47], reports over 50

lexical variations for tomorrow. Other factors that confound

interpretation of informal content include capitalization that

signals emotional intensity instead of proper noun status, a higher

frequency of misspellings introduced by limited keyboards on

mobile devices2, and the abbreviations and grammatical errors

introduced to fit messages into the 140-character limit imposed by

services such as Twitter.

Despite the brevity and difficulty of interpreting individual tweets,

in large numbers tweets have already been shown useful for

predicting movie box office revenue [3], political election polls

[45,49], flu trends [1] and even stock market movements [6].

Whether it is movie titles, names of politicians, or company

names, all of these tasks that currently use keyword matching can

benefit from a generalized Named Entity Recognition (NER)

system that can learn different entity classes. Informal content

exists everywhere and will be increasingly important for us to

understand. However, current NER systems such as Stanford NER

that achieve F1 scores of 0.87 on news articles [21], achieve a

significantly lower F1 score of 0.39 on tweets with a precision as

low as 0.35.

Furthermore, there are other services just as popular as Twitter

such as Facebook generating over 400M status updates per day3,

Tumblr with over 40M posts per day 4 , Yelp with over 20M

1 http://blog.twitter.com/2012/03/twitter-turns-six.html

2 http://allthingsd.com/20110927/nearly-half-of-tweets-originate-

from-mobile-says-twitter-engineering-head/

3 http://zonetwork.net/there-are-300-thousand-status-updates-per-

minute-on-facebook

4 http://techcrunch.com/2011/09/26/tumblr-raises-85-million-

round-from-richard-branson-vcs/

restaurant reviews5 and a myriad of other smaller services with

tremendous growth. Facebook, for example, does not impose a

140-character limit on their status updates. This means that it is

important for the research community to develop a generalized

NER system that can not only learn different entity classes to

recognize, such as products and movies, but also adapt to different

domains of informal content, such as Twitter and Facebook.

Many state-of-the-art NER systems have focused on methods that

require hand-labeled training data. However, we would need a

significantly larger corpus of training data to capture the same

amount of representation in large amounts of informal content

such as Twitter. With tweets like the following:

mi luv yuh long time Amazon

It is unlikely that manageable sizes of labeled training data will be

sufficiently representative of the Twitter corpus and corpora from

other domains of informal content. We, therefore, need an

approach that can process large-scale corpora to train models that

are representative of these domains of informal content without

hand-labeled training data.

With this motivation, we present a new model and use large-scale

weak supervision signals to replace the need of hand-labeled

training data. This system matches state-of-the-art NER systems

trained on a large corpus of hand-labeled Twitter data.

In this paper, we present the following contributions:

1. A generative model which we call N-gram Language

Markov Model that explicitly models entity boundaries

and combines ideas from Hidden Markov Model

(HMM) and n-gram language models.

2. Use of Wikipedia titles and page view counts as weak

supervision signals to replace hand-labeled training

data. While many NER systems use Wikipedia as a

resource to learn entity names, to the best of our

knowledge, we are the first to use popularity data

improving F1 score by 78%.

3. A generalized NER system that can not only learn

different entity classes but also adapt to different

domains with very little extra work. We demonstrate

this by adapting the NER system to recognize food

dishes from restaurant reviews.

The rest of this paper will be structured as follows. In Section 2

we present related work. Section 3 presents details of our model.

Section 4 describes the background language model. Section 5

formulates the foreground language model and in Section 6 we

evaluate our NER system against existing baselines. To

demonstrate the flexibility of our model in adapting to other entity

classes and domains, we also evaluate our NER system for food

recognition. We then discuss areas of future work in Section 7 and

finally conclude in Section 8.

2. RELATED WORK
Thanks to popular conferences such as MUC, ACE, CoNLL and

their easily accessible training sets, NER on formal text such as

news articles has been a widely studied task in the past two

decades [43]. Earlier techniques include rule-based approaches

[32] and Hidden Markov Models (HMM) [4,42,52] while later

5 http://officialblog.yelp.com/2011/07/four-score-and-20-million-

reviews-ago.html

approaches have favored Conditional Random Fields (CRF)

proposed by Lafferty et al. [33] enabling state-of-the-art systems

such as the Stanford NER to achieve F1 scores of 0.87 [21] and

over 0.90 from Ratinov and Roth [46].

Although NER on news articles have achieved near-human

results, NER on other domains have been much less studied.

Recent approaches have proposed domain adaptation [17] to

alleviate the need of additional labeled data in the new domain for

supervised learning systems [2,5,11,13,22,24,29,50]. However,

even for seemingly identical domains such as Reuters and Wall

Street Journal, Ciaramita and Altun [12] reported a significant

degrade in F1 score from 0.91 to 0.64 making transfer learning

from the news domain to social media such as tweets rather hard.

Finin et al. [20] uses both Amazon Mechanical Turk and

CrowdFlower to collect named entity annotations for Twitter. Liu

et al. [37] present a semi-supervised approach for NER on Twitter

combining CRF trained from human labeled tweets with k-nearest

neighbor. Ritter et al. [47] use over 350k tokens of labeled news

and Twitter data to rebuild all the components of a CRF-based

NER system including a part-of-speech (POS) tagger, noun-

phrase chunking, capitalization classifier and named entity

segmentation while using LabeledLDA and Freebase dictionaries

for distant supervision.

The motivation of this paper is to create a generalized NER

system that can not only easily learn different entity classes but

also easily adapt to different domains by replacing hand-labeled

training data with weak supervision signals. In contrast to prior

art, we present a novel generative model combining the ideas

from HMM and n-gram language models that uses weak

supervision signals and does not rely on capitalization or POS

tagging. Because our statistical approach does not use domain

specific features or significant amounts of labeled data, we are

able to easily adapt the same learning across domains, and in this

paper, demonstrate this by adapting the same system to recognize

food dishes in restaurant reviews. In Section 3, we present this

knowledge-intensive generative model called N-gram Language

Markov Model (NLMM).

3. N-GRAM LANGUAGE MARKOV

MODEL
In this section, we propose a generative model for recognizing

named entities that combines ideas from HMM and n-gram

language models into a novel N-gram Language Markov Model

(NLMM). For convenience and clarity, we use the task of

recognizing three types of named entities: PERSON,

LOCATION, and ORGANIZATION to explain our framework.

At test time, we use NLMM to find and segment entity mention

boundaries. During this stage, we do not separate PERSON,

LOCATION and ORGANIZATION. All entity types are tagged

as foreground, and all other words are tagged as background.

After finding the entity mentions, we then use three models, one

for each type, to classify the entity mentions into their categories.

In training time, however, we do not use any hand-labeled data.

One main contribution of our framework is that we replace the

large amounts of hand-labeled training data for POS tagging, noun

phrase chunking, segmentation and type classification with large-

scale weak supervision signals to estimate the parameters in

NLMM. While not all parameters of NLMM can be estimated

precisely given that we do not use labeled data, the scale of the

weak supervision signals still makes our model very competitive

as shown in Section 6.

3.1 Motivation
Our motivation is to create a generalized NER system that 1) is

expressive enough to model and predict entity mentions

accurately, and 2) allows use of weak supervision to estimate the

model parameters so that the model can easily learn new entity

classes and adapt to different domains. Before presenting our

model, we first analyze several machine learning models for

sequential tagging including HMM (Figure 1a, left), MEMM

(Figure 1a, right) and CRF (Figure 1b, left).

We first consider discriminative models such as MEMM and

CRF. Typically discriminative models need a large amount of

labeled data to estimate a model. While there is prior art for using

weak supervision signals to reduce the amount of hand-labeled

training data, Li et al. show that performance may degrade

significantly [35]. Even the smallest 500 label set used by Li et al.

will not scale as we increase the number of domains and entity

types our generalized NER system needs to handle. Therefore,

discriminative models such as MEMM and CRF are not a good fit

for building a generalized NER system.

Finally, we consider the HMM. Given a word sequence W1…n = w1

w2 … wn, the goal is to find the stochastic optimal tag sequence

T1…n = t1 t2 … tn with the standard BIO tagging schema

(Beginning, Inside and Outside of an entity). By applying Bayes’

rule we have the following generative model for HMM:

 (|)
 ()

 ()

 ()

HMM then models the above joint probability as follows:

 () () (|)

However, we argue that HMM does not have enough expressivity

for named entity recognition. Consider the generative process for

a first-order HMM:

Where the tag only depends on the previous tag and the

word is generated from . This model does not capture enough

context information. Consider the following phrase:

listening to am

In HMM, will cause am to almost never be labeled as an

entity where in fact, am6 is a name of a musician. However, if we

observe the count of the bigram to am, which is rare, we can then

learn that am is likely an entity.

3.2 Generative Story
In NLMM, we bring in the idea of using a language model here –

the generation of the current word does not only depend on the

current tag, but also on the n-gram history h. The definition of h is

context dependent; we will give a precise definition later.

Intuitively, if a word belongs to the background, or the O-tag, this

word should be generated using the background language model.

On the other hand, if a word belongs to the foreground, B-tag or I-

tag, this word should be generated using the foreground language

model we build from named entities. Moreover, we also want to

explicitly model the boundaries of entity mentions. For example,

to switch from an I-tag to an O-tag, we want to consider how

6 http://en.wikipedia.org/wiki/AM_(musician)

likely the previous word appears at the end of an entity name.

Hence, the generation of the current tag also depends on the

previous word as shown in Figure 1. This is one of the key

differences between NLMM and HMM.

In NLMM, the probability of generating the next tag depends on

both previous tags and words. More formally, for tag and a k-th

order NLMM model, we have the following:

 () () () ()

The parameter specification for generating tag is shown in

Figure 2. In addition to the BIO tags, we have a symbol <> we

call the boundary token. We explicitly model the boundary of an

entity mention with the boundary token. A prior is included

every time we enter the foreground language model generating a

beginning of an entity mention (B-tag). Once we are in the

foreground (B or I) we use the words appearing in the entity to

decide how likely the next word should also be part of this entity

(I-tag). Therefore,
(|) is the probability we exit the

current entity mention and hence we call it the exit probability.

Note that the <> state does not generate any word and will

continue to generate the next entity mention (B-tag) or a

background tag (O-tag). The history h here is the last k words in

the current entity name and is generated from

 () () () ().

By explicitly modeling entity name boundaries with exit

probabilities, we can correctly segment informal text such as the

following tweet:

Figure 1b. Conditional Random Fields (CRF) [left]

and First-order N-gram Language Markov Model

(NLMM) [right]

Figure 2. Weighted automata for generating tag with history

Figure 1a. Hidden Markov Model (HMM) [left] and

Maximum-Entropy Markov Model (MEMM) [right]

if they got Ice Cube Nas Immortal and Jay Z on the same track.

Because of the missing commas between the first three names,

NER systems that do not explicitly model entity name boundaries

and rely on, for example, POS-tagging or capitalization will likely

treat the first three musician names as a single entity name on the

incorrect assumption that grammar is regular in informal text.

To generate the word , we have the following:

 () () ()

With already generated, we select the context and language

model to generate . If = O, we generate using the

background language model with last k words as history h. If =

B, we generate using the foreground language model without

any history. If = I, we generate using the foreground

language model with the last k words in the current entity name.

The probability of a word sequence given a tag sequence with p

entities each with length , O-tags and n-gram history for

token is hence:

 (|) [∏∏
(|)

] [∏
(|)

]

Given a word sequence at test time, we can then use dynamic

programming to find the best tag sequence.

Once we have our entity segmentations resulting from consecutive

BI-tags, for entity classification, we directly compare the log-

likelihood of each entity with length in each entity class

language model as follows:

(

)

 [∏
(|)

]
(|)

As mentioned earlier, in addition to the combined foreground

language model used for entity segmentation, we also have one

language model for each entity class we use for entity

classification. The supervision signals we use to train these

language models are identical. In the next two sections, we

formally define the background and foreground language model

and how to use large-scale weak supervision signals to set the

parameters of NLMM and build these language models.

4. BUILDING THE BACKGROUND

LANGUAGE MODEL
The background language model is a statistical representation of

phrases in the corpus of the domain we want NLMM to tag as

non-entity, i.e. O in the BIO tagging schema. To minimize

incorrect tagging, this background language model should not

contain entity names. We have the following:

Removing entity names from the corpus can generally be done in

two ways. The first is to hand-label in-domain documents as

training data. This is the approach being taken by other NER

systems that we want to avoid. Another approach is to iteratively

remove named entities that the algorithm is more confident about

via methods such as class-n-gram language models. However,

because of the low precision of current state-of-the-art NER

systems on tweets, as shown in Section 6, it is likely that a naïve

implementation of such an approach will not suffice and therefore,

we leave this open to future work.

Without hand-labeled training data, we instead model the

background language model as the raw unlabeled corpus which

includes the entity names we want to identify. In Section 5, we

present the foreground language model and its more complex

properties.

5. BUILDING THE FOREGROUND

LANGUAGE MODEL
Instead of using hand-labeled training data, we use large-scale

weak supervision signals to recognize named entities. This

representation is called the foreground language model . We

model this foreground language model as a mixture model

interpolated across the different data sources. More formally, with

 data sources, we define the n-gram foreground language model

as the following:

 ∑

Tuning is discussed in Section 6.4. As mentioned in Section 3,

NLMM uses one foreground language model that is the

combination of all entity classes for entity segmentation. During

entity type classification, we have one language model for each

entity type, . All of the language models in NLMM are

mixture models interpolated across their respective data sources as

described in the equation above.

In building , we need two pieces of information as weak

supervision signals – entity mentions and entity popularity counts.

In the next two Sections 5.1 and 5.2, we talk about these two weak

supervision signals. Finally, a common question regarding

language models is their ability to recognize out-of-vocabulary

(OOV) words. We discuss this in Section 5.3.

5.1 Entity Mentions
The first step is to create a gazetteer, or dictionary of entity

mentions (i.e. surface forms), with which to train our foreground

language model. Prior art in this area describe how to best utilize

Wikipedia categories to build gazetteers [30, 48] quite well,

therefore, in this section we focus on presenting the abstract

formulation of this process.

Traditional gazetteers only have canonical entity names without

alternate entity mentions that refer to the same entity. While this

may be sufficient in the news domain, informal content contains

more lexical variants we need to capture by including all entity

mentions. A typical example is LOTR7 for The Lord of the Rings.

Therefore, given a seed list of canonical entity names or entity

mentions, we need to collect all entity mentions for a particular

entity class. Although using Wikipedia allows us to collect

alternate entity references more easily, we can still build our list

of entity mentions from other sources such as search queries or

from pre-curated lists.

Consider an undirected graph with vertices,

 , where vertices represent entity

mentions and edge weights represent the confidence or

7 http://en.wikipedia.org/wiki/LOTR

probability two vertices belong to the same entity class.

Entity mentions with different meanings are represented as

independent vertices and share a non-zero edge weight if and only

if they have a possibility of sharing the same entity class. The goal

here is to iteratively propagate the edge weights to reach as many

entity mentions for a given entity class.

In Section 6.4, we outline how we initialized the graph vertices

and edges using Wikipedia as the data source. In the next section,

we describe how to use entity popularity to bias entity mentions.

5.2 Entity Popularity
The ideal source of popularity data is the counts of entities

mentioned in the domain corpus itself. Unfortunately, this data

does not exist so we estimate it with popularity data from other

sources, i.e. Wikipedia page view counts, in the same way we

estimate entity mentions with Wikipedia article titles and redirects

as weak supervision signals for entity mentions on Twitter.

To improve the precision of our model, we normalize the

popularity data by discounting entity mentions which have more

alternate meanings. We call this the ambiguity factor. Because

language model probabilities sum to one, the ambiguity factor

allows us to more aggressively identify entity names that we are

more confident by discounting ambiguous entity mentions. More

formally, given an entity with popularity count () and n

meanings of the same phrase we normalize with the following:

∑

For unambiguous terms such as Microsoft, n = 1 leaving

popularity count unchanged. As shown in Section 6, empirically

we find that this normalization factor increases precision by 18%

for ORGANIZATION and 12% overall.

5.3 Out-Of-Vocabulary
Out-of-vocabulary (OOV) refers to a class of problems where

entity mentions will never be identified, no matter how strong the

context, because they do not exist in the foreground language

model vocabulary. Assuming we have already used all data

sources at our disposal, NLMM alleviates OOV by training both

the foreground and background language model with the same

joint vocabulary. We also assign a very small non-zero probability

to tokens that are in neither the foreground or background

vocabulary; this allows NLMM to look at the surrounding context.

In Section 7, we identify a class-n-gram background language

model as future work to further address this issue.

6. EVALUATION
The motivation of our paper is to create a generalized NER

system that can relatively easily learn new entity classes and adapt

to recognize entities in different domains. Finding another NER

system that does not require hand-labeled training data is

challenging because recent work in NER has focused on using

discriminative models to outperform baselines in formal text.

In this section, we compare our NLMM-based NER system with

two state-of-the-art CRF-based systems. First, we evaluate the

Stanford NER8 on Twitter using the models that came with the

package without hand-labeling new Twitter messages to retrain

the model. This is a fair baseline because no new hand-labeled

training data is being used for NLMM and we therefore evaluate

8 http://nlp.stanford.edu/software/CRF-NER.shtml

the domain adaptability of the state-of-the-art NER systems. We

expect our NLMM-based NER system to outperform Stanford

NER due to the poor domain adaptability of discriminative

models. We also compare our system with a CRF-based NER that

is trained on Twitter messages, Ritter et al.’s NER9. This is not an

entirely fair comparison because of the difference in amount of

hand-labeled training data used so we expect Ritter et al.’s system

to outperform our system.

6.1 Data Utilization
In labeling our evaluation set, we follow the CoNLL 2003

annotation guidelines for PERSON, LOCATION and

ORGANIZATION to hand-label 1300 randomly sampled English

tweets across a few weeks with two-fold verification. Given the

discrepancies we have seen in reported F1 scores, we contacted

Ritter et al., and found that the sampling method makes a

noticeable difference in NER performance.

We normalize all tweets to remove retweets (RT), @usernames

and #hashtags as these are tokens that may easily confuse any of

the NER systems but can also be easily recognized by simple

regular expressions.

To train the foreground language model we use publicly available

Wikipedia monthly dumps10 (34GBs) to get page titles (11M),

redirects (5M) and category information (661K unique

categories). Aside from the freshness and accessibility of

Wikipedia dumps, we use category metadata to filter entity classes

and redirects to alleviate lexical variation and alternate entity

mentions. We also have access to 300GBs of Wikipedia page

view counts11 , representing one month’s worth of page views

information we use as popularity data. To train the background

language model, we use 2 million tweets randomly sampled from

one day 12 . We normalize language models by removing all

capitalization and punctuation then build a trigram language

model with Good-Turing smoothing with a shared vocabulary.

Both foreground and background language models should be built

and normalized the same way to maintain consistency.

6.2 Comparison to Stanford NER
We compare our NER system with two current state-of-the-art

CRF-based systems trained on large amounts of hand-labeled

data, Stanford NER and Ritter et al. NER, both of which are

publicly available. Both systems return entity types in addition to

the above three annotated categories so we discard these labels

without hurting precision or recall. We measure precision, recall

and F1 score, which are widely used in evaluating NER systems.

Tables 1-4 show results of our NLMM based NER in comparison

with Stanford NER trained on both CoNLL and MUC. We

evaluate NLMM with only entity names as weak supervision

signals (NLMM Title), with entity names and page view

popularity (NLMM Title + PV) as well as with normalizing with

the ambiguity factor (NLMM Title + PV + Norm).

We expected both CoNLL and MUC to have high precision and

low recall because these corpora are news articles with formal

capitalization and grammar causing the POS-tagger and noun-

phrase chunking features to trigger when tokens are capitalized.

9 https://github.com/aritter/twitter_nlp

10 http://dumps.wikimedia.org/enwiki/

11 http://dammit.lt/wikistats

12 On Oct. 17, 2011, Twitter reported 250 million tweets per day

This explains why precision for MUC is a lot higher than recall

but we are unsure why the same is not true for CoNLL. In both

Stanford NER models, ORGANIZATION has extremely low

precision and recall. The reason this happens is because in news

articles, when a capitalized noun phrase is detected but not found

in the gazetteer used to train the model, this often means that the

noun phrase is a new ORGANIZATION since new PERSON and

LOCATION names are much less common. Hence, all the harder

cases for which the discriminative model is not confident about

are defaulting to the ORGANIZATION entity class making the

other two entity classes score higher than they would otherwise.

As shown in the same tables, our NLMM based NER system

outperforms both of Stanford NER’s F1 scores by 23% and 12%

for CoNLL and MUC respectively. In the ORGANIZATION

entity class, we outperform F1 scores by a wide margin of 86%

and 70% for CoNLL and MUC respectively. As we expected,

without newly hand-labeled training data, existing NER systems

using discriminative models adapt poorly to other domains.

Table 1. NER on tweets results for PERSON

 Precision Recall F1 score

Stanford NER (CoNLL) 0.58 0.54 0.56

Stanford NER (MUC) 0.78 0.42 0.54

Ritter et al. NER 0.48 0.52 0.50

NLMM Title 0.40 0.34 0.37

NLMM Title + PV 0.55 0.56 0.55

NLMM Title + PV + Norm 0.59 0.57 0.58

Table 2. NER on tweets results for LOCATION

 Precision Recall F1 score

Stanford NER (CoNLL) 0.45 0.47 0.46

Stanford NER (MUC) 0.68 0.45 0.55

Ritter et al. NER 0.63 0.40 0.49

NLMM Title 0.29 0.17 0.21

NLMM Title + PV 0.53 0.43 0.47

NLMM Title + PV + Norm 0.59 0.39 0.47

Table 3. NER on tweets results for ORGANIZATION

 Precision Recall F1 score

Stanford NER (CoNLL) 0.17 0.28 0.21

Stanford NER (MUC) 0.27 0.20 0.23

Ritter et al. NER 0.60 0.34 0.43

NLMM Title 0.21 0.22 0.22

NLMM Title + PV 0.33 0.39 0.36

NLMM Title + PV + Norm 0.39 0.39 0.39

Table 4. Overall NER on tweets results

 Precision Recall F1 score

Stanford NER (CoNLL) 0.35 0.43 0.39

Stanford NER (MUC) 0.54 0.35 0.43

Ritter et al. NER 0.62 0.42 0.50

NLMM Title 0.30 0.25 0.27

NLMM Title + PV 0.46 0.46 0.46

NLMM Title + PV + Norm 0.51 0.45 0.48

6.3 Comparison to Ritter et al. NER
Ritter et al. [47] use over 350k tokens of labeled news and Twitter

data representing thousands of hand-labeled tweets to rebuild all

the components of a pipeline NER system including a part-of-

speech (POS) tagger, noun-phrase chunking, capitalization

classifier and named entity segmentation. Tables 1-4 also show

results of Ritter et al.’s NER system in comparison to ours.

Similar to Stanford NER, we expect to see a higher precision than

recall and in fact, this is what we observed.

Ritter et al.’s NER performs worse than Stanford NER for both

PERSON and LOCATION entity classes, however, does very

well in ORGANIZATION. This is likely because the hand-labeled

Twitter data is helping the discriminative model identify what

organizations entities are as opposed to default assigning the

ORGANIZATION class for unknown noun phrases based on

capitalization and POS-tagging. This therefore, means that some

of the more difficult terms in tweets are also assigned to PERSON

and LOCATION, hence we see a performance degrade for both

these categories compared to the Stanford NER.

Even with all the additional hand-labeled tweets, Ritter et al.’s

NER system outperforms our system only by a slight margin.

Another surprise is that Ritter et al.’s system took significantly

longer to analyze 1300 tweets from the test set. Our NLMM-based

NER system takes less than two minutes to analyze the same

messages. The F1 score we measure, 0.50, is lower than Ritter et

al.’s reported score of 0.59. We contacted Ritter and found that

they sampled the Twitter API with temporal keywords13 and used

this corpus for their training and test set. We suspect that these

correctly spelled temporal keywords may have biased the data

towards more formal and regular text.

In comparison, our model is able to tag these messages correctly

where CRF-based hand-labeled NER systems such as both the

Stanford NER and Ritter et al.’s NER have difficulty:

you youngins' just can't define it with gucci mane and souja boy!

Via Waiting in line for Sharon jones, broken bells and spoon.

if they got Ice Cube Nas Immortal and Jay Z on the same track.

Even with a significant effort of hand-labeled training data, it is

unclear that the current state-of-the-art CRF-based NER systems

can consistently outperform our NLMM-based NER system. More

important is the difficulty in hand-labeling new training data for

each new domain and entity class therefore, making it difficult to

adapt. On the other hand, Twitter is only one of the many domains

13 Such as today, yesterday, January, Sunday…

of informal content our NLMM-based NER system can be easily

trained for. It is also easy for NLMM to recognize entities at a

more granular level such as politicians, artists, musicians all of

which would require hand-labeled training data in CRF-based

NER systems to be re-labeled. In Section 6.6, we demonstrate the

flexibility of our NLMM-based NER system by adapting our NER

system to recognize food dishes from restaurant reviews.

6.4 Details of the Foreground Language

Model
In Section 3, we present the first-order NLMM which uses bigram

language models to simplify the formulation. Experimentally, we

use and evaluate the second-order NLMM with trigram

foreground and background language models. In general, higher

order NLMMs will result in sparsity and will likely only benefit

systems with larger training corpus.

For weak supervision signals, we obtain entity mentions from

Wikipedia by starting off with a bag of words for each entity

type14 generated from the CONLL annotation guidelines. We then

find all categories in Wikipedia where the category name contains

one or more of these words. Once we have this seed list of

categories, we initialize the undirected graph, as outlined in

Section 5.1, with Wikipedia page titles as vertices and set the edge

weight between vertices to 1 if the two vertices share one or more

seed categories and 0 otherwise. We also set edge weights

between vertices for Wikipedia page redirects if the destination

page contains at least one seed category. To improve accuracy and

coverage, we can use advanced graph propagation and

regularization techniques such as ones used to analyze search

query-click behaviors [25,28,36]. However, not all data sources

have this structure that allows for an iterative propagation and

therefore, we chose to evaluate our model at iteration zero to serve

as a baseline. Finally, we apply Wikipedia page view counts as

weak supervision signal for popularity as described in Section 5.2.

As presented in Section 5, the foreground language model is a

linear interpolation of all data sources with interpolation

parameters . We recommend tuning these parameters with a

small set of hand-labeled data, 10 tweets for example, via standard

algorithms such as gradient descent especially when using

multiple data sources. There are also more advanced techniques of

representing this mixture of language models [26, 31]. However,

because we primarily only use Wikipedia as the data source and

wanted to simplify our presentation, we tried a few values {1, 10,

100, 1000} for and eyeballed the results on 10 tweets.

The most important parameter and one that we do tune is the

transition probability as described in Section 3. We use 10

hand-labeled tweets to run NLMM with and

chose the best performing parameter. In Section 7, we talk about

using Expectation Maximization (EM) to tune transition

probabilities conditioned on the n-gram history context via class-

n-gram language models.

6.5 Varying Background Language Model
The most important aspect in training the background language

model is the corpus size. This corpus needs to be large enough to

14 PERSON = {alumni, people, births, artists},

LOCATION = {countries, landmarks, capitals, states, cities},

ORGANIZATION = {companies, organizations, universities,

bands, groups, magazines, institutions, teams, newspapers}

be statistically representative of messages in the domain we want

to analyze but beyond that yields diminishing returns. Exact

corpus size should vary with domain but in Figure 3 we show the

impact on F1 score for corpus size (# tweets) of 1k, 3k, 10k, 30k,

100k, 300k, 1M and 2M. Notice that we start seeing diminished

returns after 100k tweets and after 1M the gain is no longer

statistically significant. It would be interesting to measure whether

perplexity of the background language model is indicative of the

marginal gain in increasing the corpus size. However, training

language models efficiently is a well-understood problem

[7,19,27,44] and a corpus of 2M tweets (24M tokens) and 2M

restaurant reviews (28M tokens) take only 15 minutes on a single

machine with little optimization so we leave investigations to

future work.

6.6 Learning a new Entity Class and Domain
Because our approach has not used any domain specific features,

a natural question is to ask whether we can apply the same method

to other domains. The ability to easily adapt to another domain

and learn a new entity class is the main advantage of our NLMM-

based NER system. In this section, we train different foreground

and background language models while using the same NLMM as

we did with NER on twitter to not only a completely different

domain, restaurant reviews, (domain adaptation [17]) but also an

entirely different entity class recognition task, FOOD, (multi-task

learning [9]).

For recognizing food dishes in restaurant reviews we define the

FOOD entity class broadly as including food, drinks and other

edible things. To evaluate our food dishes NER we hand-label 200

reviews from the Yelp and Citysearch review corpus. We use 2M

unlabeled restaurant reviews to build our background language

mode. For the foreground language model, we provide insight into

how different data sources perform for this recognition task.

Table 5 shows precision, recall, and F1 score for NLMM when

trained to recognize food dishes in restaurant reviews. The goal

here is to show that domain adaptation and learning new entity

classes is effortless compared to CRF-based or other methods that

require a large amount of hand-labeled data. To provide insight

into how different data sources perform for a given recognition

task, we try three data sources: menu items crawled from

Figure 3. Effect of varying corpus size of background LM on F1

score

restaurant web sites (MI) with numbers designating cut-off

frequency, query-URL-click logs from Bing (Query), and

Wikipedia article titles from the same way we extract article titles

for NER on tweets except with food categories (Wiki). For

popularity data we use Wikipedia page view counts, query click

counts, and menu item counts each with . Tables 1-4

already evaluate the effects of entity popularity (page view counts,

PV) and normalizing ambiguity factor so in Table 5 we focus on

presenting effects of different data sources. All NLMM

performances in Table 5 use entity name, entity popularity and

normalization (Title + PV + Norm).

Table 5. Food dishes recognition on Yelp & Citysearch

reviews

 Precision Recall F1 score

Lookup (MI-10)15 0.00 0.02 0.01

Lookup (MI-100) 0.27 0.27 0.27

Lookup (MI-1000) 0.25 0.07 0.11

Lookup (Wiki + MI-100) 0.10 0.37 0.16

NLMM (Query + MI-100) 0.41 0.26 0.32

NLMM (Wiki) 0.58 0.48 0.53

NLMM (Wiki + MI-100) 0.58 0.64 0.61

As baselines, we present four dictionary lookups each with a

different list of food dishes. The entire menu items dataset has

980k unique menu items. Lookup (MI-10) represents items in this

menu item corpus that have at least 10 occurrences (39k items)

while Lookup (MI-1000) represents items in this menu item

corpus that have at least 1000 occurrences (295 items). As shown

from the Lookup baselines, the menu item dataset is extremely

low quality.

We also try generating food dish names from queries issued to

Bing resulting in a 19% improvement in F1 score over the

baseline. Our best performing model combines Wikipedia data

with menu items improving F1 score by 126% over the best

dictionary lookup baseline. To verify that we did not just create a

high quality gazetteer, we take the same corpus used to train our

best performing foreground language model and use that in a

dictionary lookup, Lookup (Wiki + MI-100). We find that this

gazetteer is actually very dirty with a precision as low as 0.10

further reinforcing that our NLMM is working as intended.

In this section, we show that NLMM can easily adapt to learn a

new entity class, FOOD, and adapt to another domain, restaurant

reviews, with no hand-labeled training data. This level of

adaptability in an NER system is a novel contribution that even

state-of-the-art systems such as Stanford NER and Ritter et al.’s

NER system cannot match.

7. FUTURE WORK
Echoed by many others working on NER and even more so for

tweets [37,38,47], due to the wide range of entity types, entity

mentions, and lexical variations, having a high-quality large

dataset is extremely important as observed by Ratinov and Roth

[46] and others [14,30,48]. Aspects of Wikipedia we have not yet

15 Menu items crawled from the web with at least 10 occurrences

taken full advantage of include disambiguation pages, link text as

alternate surface forms [15], category hierarchies, lists and tables.

In addition to Wikipedia, Freebase [47], Wordnet [39, 48], and

other domain-specific data sources such as IMDB16 for movies

and CrunchBase 17 for startups are all interesting datasets to

consider. Once there are more data sources, learning the

interpolation parameters for the mixture model will also need to

be considered.

Even without improving our gazetteers there are a lot of

improvements we can explore in how we train our language

models. In the current method, we use a single probability to

model the transition likelihood from the background language

model to an entity mention, or foreground language model. This is

clearly an over-simplification because the transition likelihood

should depend on the context. The likelihood of game referring to

the rapper in listening to [game] should be much higher than

playing a [game]. We can model this context dependent transition

probability further by using a class-based n-gram model [8] for

the background language model. Furthermore, in light of recent

work to efficiently train complex language models such as

maximum entropy language models (MELM) and neural network

language models (NNLM) [41,51], an interesting area of future

work would be to evaluate whether MELM, NNLM or

combinations of such will yield a better performance [40] with our

NLMM.

As we move away from formal text and consider informal

content, normalization of lexical variations, whether misspelled or

not, becomes increasingly important especially as users move

towards using smartphones to author their content18. We can adapt

language modeling techniques from well-studied domains such as

query spelling correction [10,16,18,23,34], to help NLMM

recognize entities such as jstin beeberz which are missing from

current gazetteers.

Training our NER system to recognize more entity types such as

products, movies and songs will not only increase the overall

utility of this system, but also increase the quality of results in

existing entity types. Although segmentation algorithms that

consider punctuation and capitalization may help in the I Love

You Phillip Morris example, a foreground language model for

movies would also help the system understand that this is actually

a movie and therefore, not label Philip Morris as a person.

Last but not the least, we would like to explore non-local

dependencies not currently captured by NLMM. Cucerzan [15]

uses Wikipedia links and disambiguation pages to disambiguate

entities. In social media due to the brevity of messages, we would

need to consider non-entity tokens as well to help in classification

and disambiguation of identified entities.

8. CONCLUSION
Our motivation to build a generalized NER for any domain and

entity class is showing promising results. In this paper, we

propose a novel generative model that combines ideas from HMM

and n-gram language models we call N-gram Language Markov

Model (NLMM). NLMM allows us to explicitly model entity

name boundaries and use weak supervision signals to replace

16 http://www.imdb.com/interfaces

17 http://www.crunchbase.com/help/api

18 http://allthingsd.com/20110927/nearly-half-of-tweets-originate-

from-mobile-says-twitter-engineering-head/

hand-labeled training data. We outperform domain adaptability of

Stanford NER trained on news data and match Ritter et al.’s NER

system trained on a large amount of hand-labeled tweets. We also

demonstrate that our NLMM-based NER system can easily adapt

from recognizing person, location, and organization in tweets to

identifying food dishes in restaurant reviews.

We hope that this paper will inspire the NER research community

to consider taking steps towards building a generalized NER

without using hand-labeled training data. Demonstrating the use

of existing non-domain-specific data sources and minimal

amounts of hand-labeled data to build NER for arbitrary domains

has opened the door to a new avenue of research into generalized

NER that promises to have significant practical impact on

information extraction and web search for informal content.

9. REFERENCES
[1] Harshavardhan Achrekar, Avinash Gandhe, Ross Lazarus,

Ssu-Hsin Yu, and Benyuan Liu. 2011. Predicting flu trends

using Twitter data. In CCW IEEE, pages 702-707.

[2] Andrew Arnold, Ramesh Nallapati, and William W. Cohen.

2008. Exploiting feature hierarchy for transfer learning in

named entity recognition. In ACL, pages 245-253.

[3] Sitaram Asur and Bernardo A. Huberman. 2010.Predicting

the future with social media. In WIIAT, pages 492-499.

[4] Daniel M. Bikel, Richard Schwartz and Ralph M.

Weischedel. 1999. An algorithm that learns what's in a name.

Machine Learning Journal Special Issue on Natural

Language Learning.

[5] John Blitzer, Ryan Mcdonald, and Fernando Pereira. 2006.

Domain adaptation with structural correspondence learning.

In EMNLP, pages 120-128.

[6] Johan Bollen, Huina Mao, and Xiao-Jun Zeng. 2011. Twitter

mood predicts the stock market. In Journal of Computational

Science 2(1), pages 1-8.

[7] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och,

and Jeffrey Dean. 2007. Large language models in machine

translation. In EMNLP, pages 858-867.

[8] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent

J. Della Pietra, and Jenifer C. Lai. 1992. Class-based n-gram

models of natural language. In ACL.

[9] Rich Caruana. 1997. Multitask learning. In Machine

Learning Vol. 28 No. 1, pages 41–75.

[10] Qing Chen, Mu Li, and Ming Zho. 2007. Improving query

spelling correction using web search results. In EMNLP,

pages 181-189.

[11] Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li,

Frederick Reiss, and Shivakumar Vaithyanathan. 2010.

Domain adaptation of rule-based annotators for named-entity

recognition tasks. In EMNLP, pages 1002–1012.

[12] Massimiliano Ciaramita and Yasemin Altun. 2005. Named-

entity recognition in novel domains with external lexical

knowledge. In Advances in Structured Learning for Text and

Speech Processing Workshop.

[13] Massimiliano Ciaramit and Olivier Chapelle. 2010. Adaptive

parameters for entity recognition with perceptron HMMs. In

DANLP, pages 1-7.

[14] William W. Cohen and Sunita Sarawagi. 2004. Exploiting

dictionaries in named entity extraction: Combining semi-

markov extraction processes and data integration methods. In

KDD.

[15] Silviu Cucerzan. 2007. Large-scale named entity

disambiguation based on Wikipedia data. In EMNLP, pages

708-716.

[16] Silviu Cucerzan and Eric Brill. 2004. Spelling correction as

an iterative process that exploits the collective knowledge of

web users. In EMNLP, pages 293-300.

[17] Hal Daume III and Daniel Marcu. 2006. Domain adaptation

for statistical classifiers. In Journal of Artificial Intelligence

Research 26, pages 101-126.

[18] Huizhong Duan and Bo-June (Paul) Hsu. 2011. Online

Spelling Correction for Query Completion. In WWW, pages

117-126.

[19] Marcello Federico and Mauro Cettolo. 2007. Efficient

handling of n-gram language models for statistical machine

translation. In Workshop on Statistical Machine Translation,

pages 88-95.

[20] Tim Finin, Will Murnane, Anand Karandikar, Nicholas

Keller, Justin Martineau, and Mark Dredze. 2010.

Annotating named entities in Twitter data with

crowdsourcing. In Proceedings of the NAACL Workshop on

Creating Speech and Text Language Data With Amazon’s

Mechanical Turk. Association for Computational Linguistics,

June.

[21] Jenny Rose Finkel, Trond Grenager, and Christopher

Manning. 2005. Incorporating non-local information into

information extraction systems by Gibbs sampling. In ACL,

pages 363-370.

[22] Radu Florian, Hany Hassan, Abraham Ittycheriah, Hongyan

Jing, Nanda Kambhatla, Xiaoqiang Luo, Nicolas Nicolov,

and Salim Roukos. 2004. A statistical model for multilingual

entity detection and tracking. In NAACL-HLT, pages 1-8.

[23] Jianfeng Gao, Xiaolong Li, Daniel Micol, Chris Quirk, and

Xu Sun. 2010. A large scale ranker-based system for search

query spelling correction. In COLING, pages 358-366.

[24] Honglei Guo, Huijia Zhu, Zhili Guo, Xiaoxun Zhang, Xian

Wu and Zhong Su. 2009. Domain Adaptation with Latent

Semantic Association for Named Entity Recognition. In

NAACL-HLT, pages 281-289.

[25] Xiaofei He and Pradhuman Jhala. Regularized query

classification using search click information. Pattern

Recognition, 41(7):2283–2288, 2008.

[26] Bo-June (Paul) Hsu. 2007. Generalized linear interpolation

of language models. In ASRU.

[27] Bo-June (Paul) Hsu and James Glass. 2008. Iterative

language model estimation: Efficient data structure &

algorithms. In Proc. Interspeech.

[28] Ming Ji, Jun Yan, Siyu Gu, Jiawei Han, Xiaofei He, Wei

Vivian Zhang, and Zheng Chen. Learning search tasks in

queries and web pages via graph regularization. In SIGIR,

pages 55–64, 2011.

[29] Jing Jiang and ChengXiang Zhai. 2006. Exploiting domain

structure for named entity recognition. In NAACL-HLT,

pages 74-81.

[30] Jun’ichi Kazama and Kentaro Torisawa. 2007. Exploiting

Wikipedia as external knowledge for named entity

recognition. In EMNLP, pages 698-707.

[31] Dietrich Klakow. 1998. Log-linear interpolation of language

models. In ICSLP.

[32] George R. Krupka and Kevin Hausman. 2001. IsoQuest, Inc.:

Description of the NetOwlTM extractor system as used for

MUC-7. In MUC-7.

[33] John D. Lafferty, Andrew McCallum, and Fernando C. N.

Pereira. 2001. Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. In ICML,

pages 282-289.

[34] Mu Li, Muhua Zhu, Yang Zhang, and Ming Zhou. 2006.

Exploring distributional similarity based models for query

spelling correction. In ACL, 1025-1032.

[35] Xiao Li, Ye-Yi Wang, and Alex Acero. 2009. Extracting

Structured Information from User Queries with Semi-

Supervised Conditional Random Fields. In SIGIR, pages

572–579.

[36] Xiao Li, Ye-Yi Wang, and Alex Acero. 2008. Learning

query intent from regularized click graphs. In SIGIR, pages

339–346.

[37] Xiaohua Liu, Shaodian Zhang, Furu Wei, and Ming Zhou.

2011. Recognizing named entities in tweets. In ACL, pages

359-367.

[38] Brian Locke and James Martin. 2009. Named entity

recognition: Adapting to microblogging. In Senior Thesis,

University of Colorado.

[39] Bernardo Magnini, Matteo Negri, Roberto Prevete, and

Hristo Tanev. 2002. A wordnet-based approach to named

entities recognition. In SemaNet, pages 38–44.

[40] Tomas Mikolov, Anoop Deoras, Stefan Kombrink, Lukas

Burget, and Jan “Honza” Cernocky. 2011. Empirical

evaluation and combination of advanced language modeling

techniques. In Interspeech, pages 605-608.

[41] Tomas Mikolov, Anoop Deoras, Daniel Povey, Lukas

Burget, Jan “Honza” Cernocky. 2011. Strategies for training

large scale neural network language models. In ASRU.

[42] Scott Miller, Michael Crystal, Heidi Fox, Lance Ramshaw,

Richard Schwartz, Rebecca Stone, Ralph Weischedel, and

the Annotation Group. 1998. BBN: Description of the SIFT

system as used for MUC-7. In MUC-7.

[43] David Nadeau and Satoshi Sekine. 2007. A survey of named

entity recognition and classification. Linguisticae

Investigationes, 30:3-26.

[44] Patrick Nguyen, Jianfeng Gao, and Milind Mahajan. 2007.

MSRLM: A scalable language modeling toolkit. In MSR-

TR-2007-144.

[45] Brendan O’Connor, Ramnath Balasubramanyan, Bryan R.

Routledge, and Noah A. Smith. 2010. From tweets to polls:

Linking text sentiment to public opinion time series. In

ICWSM.

[46] Lev Ratinov and Dan Roth. 2009. Design challenges and

misconceptions in named entity recognition. In Proceedings

CoNLL-2009, pages 147-155.

[47] Alan Ritter, Sam Clark, Mausam and Oren Etzioni. 2011.

Named Entity Recognition in Tweets: An Experimental

Study. In EMNLP, pages 1524-1534.

[48] Antonio Toral and Rafael Munoz. 2006. A proposal to

automatically build and maintain gazetteers for named entity

recognition by using Wikipedia. In EACL 2006.

[49] Andranik Tumasjan, Timm O. Sprenger, Philipp G. Sandner,

and Isabell M. Welpe. 2010. Predicting elections with

Twitter: What 140 characters reveal about political

sentiment. In ICWSM.

[50] Dan Wu, Wee Sun Lee, Nan Ye, and Hai Leong Chieu. 2009.

Domain adaptive bootstrapping for named entity recognition.

In EMNLP, pages 1523-1532.

[51] Puyang Xu, Asela Gunawardana, Sanjeev Khudanpur. 2011.

Efficient subsampling for training complex language models.

In EMNLP, pages 1128-1136.

[52] GuoDong Zhou and Jian Su. 2002. Named entity recognition

using an HMM-based chunk tagger. In ACL, pages 473-480.

