
Automatically Harvesting Katakana-English Term Pairs from Search
Engine Query Logs

Eric Brill, Gary Kacmarcik, Chris Brockett

Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA
{brill,garykac,chrisbkt}@microsoft.com

Abstract

This paper describes a method of
extracting katakana words and phrases,
along with their English counterparts
from non-aligned monolingual web
search engine query logs. The method
employs a trainable edit distance
function to find <katakana, English>
pairs that have a high probability of
being equivalent. These pairs can then
be used to further bootstrap training of
the edit distance function, resulting in
improved back-transliteration from
katakana to English. In addition, this
is an effective method for mining large
numbers of katakana strings to
enhance a bilingual lexicon. The
improved edit distance function and
enhanced lexicon can be used for more
accurate alignment of bitexts, and for
application during runtime MT and
multilingual IR.

1 Introduction

Katakana script is conventionally used to
represent foreign loan words that have been
imported into Japanese. Words written in this
script – proper names in particular – constitute
the single biggest source of Out-Of-Vocabulary
(OOV) words in modern Japanese, and as such
pose a notorious headache for human translators
and a stumbling block for quality machine
translation (MT) and multilingual information
retrieval (IR). While unmodified transfer of a
proper name is appropriate in MT among
languages that use Latin script, monolingual
users of a Japanese-to-English MT system are
unlikely to find a katakana string acceptable in
English output: a form such as ブリトニー・スピ

アーズ must be identifiably reconstructed as the

name Britney Spears, a process that Knight and
Graehl (1998) have called “back-transliteration.”
Likewise in multilingual IR: search engines must
deal with the flood of OOV words generated by
global popular culture. Since the data is far larger
than can be effectively managed through human
intervention, multilingual IR needs tools by
which OOV cognates can be mined auto-
matically, even in the absence of aligned bitexts.

The reader is referred to Knight & Graehl
(1998) for detailed discussion of the issues posed
by reverse transliteration from Japanese into
English, and a partial solution based on
phonological modeling of English words using
the online CMU pronunciation dictionary. The
problems of back-transliteration are not limited
to Japanese, but are relevant to any language not
written in Latin script. Stalls & Knight (1998)
extend the phonological modeling solution to
Arabic technical terms. An alternative tack is
taken by Jeong, et al. (2000), who propose a
minimal edit distance model to handle
back-transliteration from Korean to English.

In this paper, we exploit a novel web-based
resource to attack the back-transliteration
problem. We present a method for automatically
mining katakana strings along with their English
counterparts. In addition to enhancing a
translation dictionary, this data can be used to
train a model to automatically back-transliterate
katakana into English. For corpora, we utilize
non-bitext data from search engine queries, to
address the problem of back transliteration and
the fact that katakana words are likely to be OOV
in both Japanese and English.

Below we first describe the noisy channel
error model used for data harvesting. Then we
present the results of experiments using
monolingual databases of web queries in English
and Japanese. These experiments suggest that
this data can be usefully mined, both to construct

bilingual lexicons for IR and MT and to improve
the model in order to bootstrap further harvesting
of transliterated data.

2 The Noisy Channel Error Model

When a Japanese-to-English MT system
encounters a katakana phrase that appears in its
translation dictionary, it can find the translation
by table look-up, perhaps enhanced with
contextual information in cases of ambiguity.
However, since katakana use is highly
productive, no matter how large our translation
dictionary is, we will always encounter a great
number of katakana not in the dictionary. To
address this problem, we use a trainable
back-transliteration model for katakana not
appearing in our dictionary.

The back-transliteration model employed in
this paper is a version of the noisy-channel error
model explored by Brill & Moore (2000) in the
context of English spelling correction. One could
just as easily utilize any other model of
back-transliteration, for example, that proposed
by Knight & Graehl. The Brill & Moore model
extends Damerau-Levenshtein edit distance
(Damerau, 1964; Levenshtein, 1966) to allow all
edit operations of the form α β, where α and β
are any (possibly null) strings and P(α β) is the
probability that the noisy channel outputs β
where α was emitted by the source. For example,
for English spelling correction, the misspelling of
the word “enough” as the string “enuff” could be
accounted for by a single error of the form
ough uff.

In the case of katakana-English back-
transliteration, we adopt the fiction that the
Japanese writer intended to type an English word,
but that the word passed through a noisy channel
and the original form of the word must now be
recovered via the model. The model learns a set
of string-to-string mapping parameters and
probabilities. For any katakana word or phrase
we wish to translate into English, then, the task is
to find:

argmaxEnglish P(English |Katakana)

To train the α β edit probabilities, we first
align all of our <source, target> training samples
using standard unweighted Levenshtein distance,
augmented with doubling (a aa) and halving
(aa a). For instance, given the training pair <コ

ンテキスト, context>, this can be aligned, after
initial conversion of the katakana form to Latin
script1, as:

k o n t e k i s u t o

| | | | | | /

c o n t e x t

The alignment here consists of the atomic edit
operations Substitute/k/c Match/o/o Match/n/n
Match/t/t Match/e/e Substitute/k/x Insert/i
Insert/s Insert/u Match/t/t Insert/o. Atomic edits
are then conflated into larger edit strings, with
each string being given a fractional count. If we
allow |α|,|β| <= 4, the above alignment results in
the following English romanized-katakana
non-match edits:

c k
co ko
con kon
cont kont
tex tek
tex teki
ex ek
ex eki
ex ekis
x k
x ki
x kis
x kisu
NULL i
NULL is
NULL isu
t isut
t suto
t uto
t to
NULL o

The basic idea behind this training procedure
is that real edits will accumulate partial counts
over many training instances, whereas other edits
will not. For English spelling correction, Brill
and Moore (2000) showed that this model gives

1 To obviate the need to modify code in existing
tools, katakana words were transliterated into Latin
script using a variant of the Hepburn romanization
scheme that guaranteed that complex katakana
sequences were uniquely mapped to Latin-script
sequences for subsequent recovery; however, nothing
in principle precludes training directly off katakana
strings themselves.

significantly higher accuracy than standard
weighted Damerau-Levenshtein distance.

Below we show some high probability edits
learned to map English to romanized katakana:

mble -> nburu (ンブル)
foot -> futto (フット)
-up -> appu (アップ)
eezer -> iizaa ((-i)イザア)
phen -> fen (フェン)
eport -> epoot ((-e)ポー(t-))

Because of the romanization of the katakana
string before processing, some of these mappings
match partial katakana characters. For example,
the final “t” in the eport -> epoot mapping does
not correspond to a single katakana character but
rather to any of タ(ta), ツ(tsu), テ(te) or ト(to).
This allows this mapping to handle both “report”
(レポート = repooto) and “reporting” (レポー

ティング = repooting).

Once the model is trained, we apply it taking a
katakana string as input. The string is romanized
and then we use the error model to find the
English string most likely to have been the source
of the katakana input. These experiments are
described later in the paper.

3 Harvesting Training Data

Obtaining <katakana, English> string pairs is
useful both to enhance a bilingual lexicon and as
training data for the noisy channel error model
described in the previous section. With the vast
amount of on-line text currently available, we set
out to determine whether we can utilize this data
to extract such string pairs.

We first considered harvesting data from
parallel on-line encyclopedias. This idea had a
number of problems. First, the number of unique
katakana strings in the encyclopedia is relatively
small and is not growing over time. Second,
encyclopedias are relatively static, and do not
contain new names and phrases that are
constantly being introduced into the population.
Additionally, stylistic constraints are imposed in
an encyclopedia, resulting in a set of katakana
with much less variation than one encounters in
colloquial writing. We are also faced with the
problem of finding potential English candidates
in the text. If we limit the possibilities to single

words, this is not particularly difficult. However,
if we allow proper names and phrases this
becomes difficult.

We also considered using the web as a means
for mining <katakana, English> pairs.
Obviously, the web is vast and topical, therefore
being great potential resource for finding data. If
we wish to avoid the need for crawling the web to
collect a large corpus, we could use a search
engine as a key into the data. We explored
different methods for doing this. While this does
appear to hold promise as a means for mining
these string pairs, we found a resource that
proved much more effective.

3.1 Query Logs

Our next idea was to use search engine query
logs for mining <katakana, English> pairs. We
extracted a database of English and Japanese
queries from the MSN Search query logs and
discovered that the Japanese query logs have a
very high concentration of katakana.

Whereas an electronic encyclopedia with
461,567 sentences yielded only 60,127 unique
katakana strings, we were able to process nearly
100,000,000 queries to extract over 750,000
unique katakana strings from query logs over a 1
month period. Even at the end of this 1 month
period we were still acquiring 10,000 new
katakana strings each day. See the graph below
in Figure 12.

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32

Figure 1:
of New Katakana Strings (in 1000s)

vs. # of Days Spent Collecting

2 The minimum that occurs every 7 days
corresponds to Saturday.

Given the nature of on-line search, query logs
contain topical terms, and in particular just those
terms that a static translation lexicon is unlikely
to cover. In addition, when people type queries
they typically type noun phrases. As such, we do
not have to worry about any linguistic processing
of the string. We can treat every query as an
atomic string and learn mappings between
katakana queries found in the Japanese query
logs with English queries found in the English
query logs.

Query logs seem to be a particularly good
source for <katakana, English> pairs given:

(1) the high concentration of katakana in
Japanese query logs (~60% of the
queries contain katakana strings),

(2) the fact that many of the katakana terms
are likely to be topical words or phrases
that will also occur in English query
logs,

(3) query logs are a vast, always growing
and highly topical resource.

Many of these katakana strings harvested will
represent typos or other user errors, so we
cleaned up the data by filtering out those entries
that occurred less than a given threshold number
of times. Using a threshold of 50, we still end up
with over 60,000 unique katakana strings during
the one-month harvesting period.

Below we present experiments we ran to
harvest <katakana, English> string pairs from
query logs and to use these pairs to improve
automatic back-transliteration.

3.2 Harvesting from Non-Aligned
Query Databases

Given a katakana string from the Japanese
query logs, we attempt to find an English string
in the English query logs that is likely to be an
equivalent string. This is done as follows. We
begin with a seed training set of 1000 <katakana,
English> pairs that had been hand-checked for
accuracy, and a dictionary consisting of queries
found in the English query logs, in addition to
112,000 English words3. We trained our noisy

3 In practice, the English lexicon would also
expand each day as new query data is added. In our
experiments, we held the English lexicon constant so

channel error model using these pairs. We then
iteratively did the following:

EXTRACTION ALGORITHM

(1) For a set of N katakana strings

(a) For each k ε N

(i) For each string d in the English
Dictionary compute
Distance(k,d)

(ii)If we find an English string d’
that is sufficiently close to k,
then output <k, d’> as a
matching pair.

(2)Place all matching pairs into an
auxiliary training set file.

(3)Retrain noisy channel error model
using the original base pairs combined
with the newly created training set file.

4 Growing a Bilingual Lexicon

We first tested how well the algorithm
presented in the last section performed at mining
novel <katakana, English> string pairs for a
bilingual lexicon. A bilingual lexicon created in
this fashion promises to be very dynamic and
topical resource, with a large number of new
katakana strings appearing every day.

We set the various thresholds of the model to
give us a 10% yield (in other words, we reject
90% of the katakana strings encountered). We
then hand checked a randomly chosen sample of
1500 unique <katakana, English> pairs that we
automatically extracted from the query logs. Of
these, 97.5% were correct matches.

Of the errors in the mined pairs, many of them
were reasonable suggestions: “shingle” (vs. the
correct “single”) for シングル (= shinguru),
“fiver” (vs. “fiber”) for ファイバー (= faibaa),
and “packman” (vs. “pac-man”) for パックマン
(= pakkuman). Some other errors exposed
faux-amis between English and Japanese, like: マ
イム (= maimu) returning “maim” instead of
“mime”, ライニング (= rainingu) returning

that we could more reasonably compare the model
from one iteration to the next.

“raining” instead of “lining”, and プリズム (=
purizumu) matching “purism” instead of the
correct “prism”. The final category of errors
encountered were the basic modeling errors that
passed through our filter: “past” (vs. “post”) for
ポスト (= posuto), “retrace” (vs. “lettuce”) for
レ タ ス (= retasu), and “kangaroo” (vs.
“bungalow”) for バンガロー (= bangaroo).

5 Improving the Noisy Channel
Error Model

We next explored whether training on these
mined pairs improved the accuracy of our noisy
channel error model for back-transliteration of
katakana to English, compared to our baseline
system trained on the initial clean 1000
<katakana, English> pairs.

For our test data set, we extracted
Katakana-English word pairs culled from several
sources: the Kenkyusha New College Japanese-
English Dictionary, terms extracted from in
house localization databases, and word pairs
extracted from etymological information con-
tained in the Iwanami Kokugojiten pocket
dictionary. These data consist of a rather general
collection of technical and non-technical terms
and proper names, mostly geographical names.
The lists were hand-vetted by an independent

contractor to ensure that the Japanese forms
constituted valid transliterations (not trans-
lations) of the English, that there was no
morphological variation that might be a source of
noise (e.g., “Icelandic,” as opposed to “Iceland”).
English forms were normalized to lower case,
and multiple word tokens in both languages had
white spaces replaced with underscores. Our test
set consists of 4500 word pairs.

For testing, we used the English lexicon
described earlier. To ensure that the “truth” was
always available in the dictionary, any English
words in the test set that were not the reference
lexicon were added to the lexicon.

In Figure 2, we show the accuracy of our error
model on the test set as a function of the number
of automatically mined <katakana, English>
training pairs. In this graph, three plots are given:
the baseline plot uses a fairly conservative filter
to determine which pairs are used for the next
training iteration whereas the other 2 use
progressively more aggressive filters (which
allow more “noisy” data through).

While the model initially seems to be able to
handle the noisy data, at some point the feedback
from the noise overwhelms the model and results
in a significant decrease in model accuracy.

2980

3000

3020

3040

3060

3080

3100

3120

3140

1000 10000 100000

100 Threshold 50 Threshold

10 Threshold

Figure 3:
Correct vs. # of Training Pairs

for different katakana lexicon thresholds

We found similar results when we modified
the threshold frequency for inclusion in our

2980

3000

3020

3040

3060

3080

3100

3120

1000 10000 100000

Baseline Aggressive More Aggressive

Figure 2:
Correct vs. # of Training Pairs

for different levels of katakana pair harvesting

katakana lexicon. Our baseline model required
that the katakana string occur at least 100 times
in the query data. When we lowered this
threshold to 50 we got better results from the
additional data, but lowering it further to 10
allowed too much noise into the system, which
eventually caused the model performance to
degrade.

6 Residual Issues

The treatment of katakana in this paper has
been deliberately naïve. Not all katakana terms
are in fact transliterations of English words:
examination of a random sample of 2500
katakana queries suggests that as many as 13.1%
of the terms may not have transliteration
equivalents. Native names of animals and plants
are commonly written in katakana especially in
scientific contexts (ネコ neko “cat”); these
accounted for approximately 9.8% of terms
without transliteration equivalents this sample.
Likewise, katakana may be used for emphasis (
ダメ dame “no good”), or to indicate special or
technical uses of native or Sino-Japanese words
(e.g., イジメ ijime “bullying” in educational
contexts). Approximately 7.7% of the terms from
the group of untransliteratable items were
identified as falling into this latter class.

Additionally, many katakana words, although
originally loan words, are not transliterations
from English (ペンチ penchi “pliers”; イギリス
igirisu “England”). Further classes of
problematic word types are presented by
abbreviations (パソコン pasokon “personal
computer”) and truncations (コンビニ konbini
“convenience store”). Noise may be further
introduced into the model by katakana words that
may incorrectly match with valid English forms,
sometimes with inappropriate results: エッチ
etchi “libidinous”, for example, may falsely
match with “etch”, in contrast with エッチング
etchingu which correctly matches with “etching”.
Instances such as these generally need to be
identified and lexicalized or normalized to other
scripts in order to reduce the potential for noise.
However, inasmuch as the presence of false
positive matches in the harvested training data
does not impede performance of the model, we
believe that degradation is likely to be minimal.

7 Conclusions

First, given an appropriate learning model,
large non-aligned data sets such as monolingual
queries can be a viable source for learning
bilingual OOV terms in cases where borrowing
involves multiple scripts. We have seen that use
of queries has the potential of permitting the
harvesting of as many as 10,000 new terms a day,
even after a month of data collection, with little
human intervention required. Over time, it is
expected that filtering for typographical errors
and other noise reduction techniques might
permit the extraction of additional data at lower
thresholds.

Second, the noisy-channel error model that
provides the alignments of non-aligned query
data appears to be of robust utility in acquiring
<katakana, English> pairs, thereby permitting
rapid development of large-scale bilingual
cognate word lexicons for IR and MT. Since the
generic error model employed in our experiments
does not rely on any intrinsic aspects of Japanese
orthography, it is portable to other languages that
use non-Latin scripts. The model, moreover, is
robust against (although not completely immune
to) noise introduced by sporadic mining of
incorrect matches.

8 Future Work

Reviewing cases where the model failed to
come up with a reasonable suggestion revealed
that additional support for compounds could
have a significant impact. For example, アスペ

ンホテル (= asupenhoteru “Aspen Hotel”) is not
found because the English form is not in our
lexicon. In this case, we recognize both “aspen”
and “hotel” individually, so compounding
support would improve the performance of the
system.

To address the situation where a single
katakana string can reasonably match more than
one English phrase, we also plan to investigate
applying contextual information to help
disambiguate similar sounding alternatives. We
plan to investigate unigram probabilities derived
from query logs and n-gram language models to
assist in this disambiguation process.

Brill and Moore (2000) also mention
experiments they ran in using their error model

for English spelling correction where they iterate
the training, in a method akin to the E-M
algorithm. They state that they did not see any
accuracy improvements in doing so. Given that
the alignment between romanized katakana and
English is much noisier than between misspelled
and correctly spelled English, we believe that for
our problem accuracy would benefit from
retraining. The noisy alignments will lead to
many more spurious edit types, a problem that
could be cured by iterative training. We plan to
investigate this to see how it affects our model, in
addition to exploring the efficacy of other
models.

Acknowledgements

We are grateful to a number of people who
assisted us in this project. We would like to
thank Bill Bliss, Raman Chandrasekar and the
entire MSN Search team for assembling the
query data and making it available to us, Robert
Rounthwaite for his help in providing an English
lexicon, and Hisami Suzuki for her comments on
drafts of this paper. Yumi Takeuchi, Kazuko
Robertshaw, Monica Corston-Oliver, and Jeff
Stevenson helped with checking the data used in
seed and test data sets. We remain solely
responsible for the content of this paper.

References

Brill, Eric, and Robert. C. Moore. 2000. An
improved error model for noisy channel spelling
correction. ACL2000, 286-293.

Damerau, F. 1964. A technique for computer
detection and correction of spelling errors.
Communications of the ACM. 7(3): 659-664.

Fujii, Atsushi, and Tetsuya Ishikawa. 1999.
Cross-Language Information Retrieval for Tech-
nical Documents. Proceedings of the Joint ACL
SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large
Corpora. 29-37.

Jeong, Kil Soon, Sung Hyun Myaeng, Jae
Sung Lee and Key-Sun Choi. 1999. Automatic
Identification and Back-Transliteration of
Foreign Words for Information Retrieval. Infor-
mation Processing and Management. 35(4)
523-540.

Kang, Byung-Ju and Key-Sun Chol. 2000.
Automatic Transliteration and Back-Trans-

literation by Decision-Tree Learning. Proceed-
ings of the 2nd International Conference on
Language Resources and Evaluation (LREC
2000). 1135-1141.

Knight, Kevin, and Jonathan Graehl. 1998.
Machine Transliteration. Computational Linguis-
tic. 24(4) 599-612.

Levenshtein, V. 1966. Binary codes capable
of correcting deletions, insertions, and reversals.
Soviet Physice—Doklady. 10:707-710.

Stalls, Bonnie Glover, and Kevin Knight.
1998. Translating Names and Technical Terms
in Arabic Text. Proceedings of the COLING/ACL
Workshop on Computational Approaches to
Semitic Languages.

