
Online Search of Overlapping Communities

Wanyun Cui§ Yanghua Xiao§ Haixun Wang‡ Yiqi Lu§ Wei Wang§

{zhenjiong,luyiqi}@gmail.com {shawyh,weiwang1}@fudan.edu.cn haixunw@microsoft.com
§School of Computer Science, Fudan University, Shanghai, China

‡Microsoft Research Asia, Beijing, China

ABSTRACT
A great deal of research has been conducted on modeling and dis-
covering communities in complex networks. In most real life net-
works, including social networks and bio-chemical networks, an
object often participates in multiple overlapping communities. In
view of this, recent research has focused on mining overlapping
community structures in complex networks. The algorithms essen-
tially materialize a snapshot of the overlapping communities in the
network. This approach has three drawbacks, however. First, the
mining algorithm uses the same global criterion to decide whether
a subgraph qualifies as a community. In other words, the criterion
is fixed and predetermined. But in reality, communities for differ-
ent vertices may have very different characteristics. Second, it is
costly, time consuming, and often unnecessary to find communi-
ties for an entire network. Third, the approach does not support
dynamically evolving networks. In this paper, we focus on online
search of overlapping communities, that is, given a query vertex,
we find meaningful overlapping communities the vertex belongs to
in an online manner. In doing so, each search can use commu-
nity criterion tailored for the vertex in the search. To support this
approach, we introduce a novel model for overlapping communi-
ties, and we provide theoretical guidelines for tuning the model.
We present several algorithms for online overlapping community
search and we conduct comprehensive experiments to demonstrate
the effectiveness of the model and the algorithms. We also suggest
many potential applications of our model and algorithms.

1. INTRODUCTION
Most complex networks in nature and human society contain com-

munity structures that serve as functional building blocks for the
networks. Furthermore, communities often overlap with each other,
that is, a vertex in a network may belong to more than one commu-
nity.

1.1 Overlapping communities
Overlapping community structures can be observed in many real

networks, including social networks, biology networks, and se-
matic networks, and they are vital in revealing the internal struc-
ture of large networks [1]. The ubiquity of overlapping communi-
ties signifies the importance of finding overlapping communities in
graphs.

Communities can be defined in many ways. In general, a commu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Alice

Bob

Dave

Erik

Carol

Frank

Issac

Greg

Harry

Figure 1: A toy social graph

nity refers to a group of vertices that are densely connected to each
other and sparsely connected to other vertices in the graph. The
density of a community usually is measured by its average degree.
In this paper, we define a community as a k-clique [1]. We will
show the rational in Section 3. A k-clique is a complete graph of
k vertices. Given a graph G, we can find all k-cliques in G. We
say two k-cliques are adjacent if they share k − 1 vertices in G.
We can then create a k-clique graph for G. In the k-clique graph,
each vertex is a k-clique and an edge between two vertices means
the two k-cliques they represent are adjacent in G. A community
is defined as a connected component, called a k-clique component,
in the k-clique graph. Clearly, the larger the k value, the denser
the communities. By tuning k, we obtain communities of different
density. Next, we use a toy social network to illustrate overlapping
communities.

EXAMPLE 1 (OVERLAPPING COMMUNITIES). Consider the
toy social graph shown in Figure 1. Suppose we need to find the
communities containing Bob. When k = 3, we get two overlapping
communities: abcde1 and bfghi (for simplicity, we use the first
character of a person’s name to represent the person). When k =
4, we find two communities: abcde and bfhg. bfhg is denser than
bfhgi because Issac, who has fewer connections to the community,
is excluded.

1.2 OCD vs OCS
There are two related problems: overlapping community detec-

tion (OCD), which finds overlapping communities in the entire net-
work, and overlapping community search (OCS), which finds over-
lapping communities that a specific vertex belongs to.

The difference between OCD and OCS is clear. For a given graph,
OCD takes k as input, and finds overlapping communities in the
entire graph, using a batch process. As a result, all detected com-
munities are of the density that is not less than the same threshold.
On the other hand, OCS takes a vertex and a specific k as input,
and finds overlapping communities containing the vertex, using an
online process.

One common operation in community analysis is to retrieve the
communities containing a vertex. To support online query answer-

1In the following text, we use ’abcde’ to denote the clique consist-
ing of vertex set {a, b, c, d, e}

ing by OCD, we need to detect and materialize all communities in
an offline pre-computation stage and then index the communities.
In contrast, with OCS, we just need to specify the vertex of interest
in the query. Using OCD to support this common operation is less
desirable for large graphs due to the following reasons.

• First, it is costly and time consuming to find communities
for the entire graph by OCD. OCD in general is NP-hard,
and many real life graphs are quite large, with millions or
even billions of nodes. For example, the friendship network
of Facebook [2] contains over 800 million nodes and 100
billion links. As a result, OCD is computationally prohibitive
on real large graphs. In contrast, with OCS, we just need
to find communities within the local neighborhoods of the
vertex. In the experimental section, we will show that in most
cases, our OCS solution only needs several milliseconds to
find answers, independent of the entire graph size.

• Second, OCD uses a global criterion for community detec-
tion for all vertices in a network. The semantics of the dis-
covered community in general heavily depends on the pa-
rameters. Example 1 has shown that for the same vertex,
a different k leads to communities of different density and
different semantics. Results on real networks (the details are
presented in the experiment section) further shows that under
a given k, some vertices may have no corresponding valid
communities. In other words, a fixed k is not appropriate for
all vertices. OCD does not support using the most appropri-
ate k for each individual vertex.

• Third, it is difficult for OCD to support dynamically evolving
graphs. Graphs in real life are always evolving over time.
OCD can only be used for offline analysis. Generally, we
cannot afford to run OCD very frequently. As a result, a so-
lution of OCD usually loses its freshness and effectiveness
after a short period of time. In contrast, with OCS, we are
free to issue queries for any vertex, which will not signifi-
cantly hinder system performance.

In summary, OCD plus indexing suffers when the graph is dy-
namically evolving or users want to tune the density parameters
for a better result. Because it is costly to rerun OCD and rebuild
the index. Unfortunately, most real networks, such as Facebook
friendship networks, are evolving and users in these networks usu-
ally expect to freely explore his or her neighborhood community.
This motivates us to study online OCS.

1.3 Challenges
To understand the major challenges of OCS, we compare OCS

with a related and well studied problem: Community Search (CS).
Given a vertex (or a set of vertices), community search finds the
community (instead of a set of overlapping communities) that con-
tains the vertex [3]. In the following analysis, we show that CS and
OCS are fundamentally different, and methods of CS cannot be di-
rectly applied to solve the OCS problem. The challenges of OCS
are summarized as the follows:

• Our first challenge lies in modeling the overlapping commu-
nity search. CS and OCS have different semantics. For OCS,
each community has a “functioning model”. For example, a
person may be part of a “weekend hiking” community and a
“software engineer community” at the same time. If we mix
the two communities, then we incur a loss of semantics. Typ-
ical CS approaches cannot tell the difference. For example,
one approach finds the subgraph that has the largest mini-
mal degree as the community [3]. Clearly, if two subgraphs
satisfy the criterion, then their union also satisfies the crite-
rion. This shows that CS is not a good model for overlapping
community. In comparison, OCS is more semantically aware
in the sense that its goal is more about finding a functioning

module that can better reveal the role of a vertex. Hence, we
need to define the community more carefully and precisely
to reflect this requirement. Specifically, we need to prescribe
when two overlapping groups can be merged into a single
community, and when they are two separate communities.

• Our second challenge is that OCS is computationally harder
than CS. We show that OCS in general is #P-Complete. In-
tuitively, in OCS, all communities need to be enumerated. In
some extreme cases, when there are an exponential number
of valid communities, such enumeration is quite costly. Even
if there is only a small number of valid communities, finding
them among an exponential number of candidates is still a
great challenge. In contrast, in most CS [3], for a given
query vertex, there is at most one community to detect.

• Our third challenge is to adopt approximate approaches so
that we can scale to large graphs with millions of nodes.
Due to its computation intractability, it is difficult to scale
up to million-node real life graphs. Finding the approximate
results without compromising too much the quality of the
solution (particularly the semantics of the community) is a
challenge.

1.4 Contributions
In this paper, we propose a novel model for OCS, the theory based

on the model, and the algorithms that solve OCS. More specifically,
we make the following contributions:

• We introduce a model for OCS that satisfies not only the
traditional community semantics, but also the semantics of
overlapping. Furthermore, the two types of semantics are
consistent in our model.

• We propose several algorithms to solve OCS. These algo-
rithms produce meaningful results, and can handle million-
node graphs.

• We offer the theoretical guidelines for parameter selection.
The guidelines take into consideration the structural proper-
ties of real networks, and ensure the discovery of meaningful
overlapping communities in real life complex networks.

• We conduct extensive experiments on real networks to justify
our algorithms and theories. We also show many applications
of OCS model and algorithms.

1.5 Paper Organization
The rest of the paper is organized as follows. Section 2 discusses

related work. Section 3 focuses on the model and the problem of
overlapping community search. Section 4 describes a naive algo-
rithm and an improved algorithm. We further propose a more ef-
ficient approximate algorithm. Experimental results in Section 5
show the performance and effectiveness of both the exact and the
approximate algorithm. We show some potential applications for
OCS model in Section 6. We conclude in Section 7.

2. RELATED WORKS
Our work is closely related to work on several topics, including

overlapping community detection, dense subgraph discovery, and
clique finding. We describe their similarity and differences in this
section.

Overlapping community detection. Palla et al. [1] first no-
ticed that most real networks have overlapping community struc-
tures and proposed a percolation based method to detect overlap-
ping communities in real networks. They also defined a community
as a k-clique component. But they did not generalize it to allow
relaxation. They developed a software called CFinder [4] based

on the method to detect overlapping communities on biology net-
works. Their work was further extended with the EAGLE [5] algo-
rithm that merges two cliques into one community if their Jaccard-
similarity score is large enough. Gregory et al. [6] transformed
the problem of overlapping community detection (OCD) on graph
G into an equivalent non-overlapping community detection prob-
lem on another graph G′, which is produced by duplicating certain
vertices or edges in G. They used betweenness as the heuristic
to select the vertex or edge to be duplicated. They further im-
proved its performance by using local betweenness in a way that
can be quickly computed to approximate the betweenness [7]. Ahn
et al. [8] reinvented a community as groups of links instead of
vertices so that they can always produce a hierarchical dendro-
gram on vertex-overlapped networks. Baumes et al. [9] proposed a
greedy solution to grow overlapping communities. The algorithm
first ranks all nodes according to some criterion, such as PageRank.
Then, each node is added in turn into existing communities whose
densities will increase after the acceptance of the new node as a
member. Xu et al. [10] found that some vertices can not be clas-
sified into any communities. These vertices, called hubs, usually
bridge different communities. So they proposed a linear algorithm,
called SCAN, to find hubs and communities. Recently some effi-
cient overlapping community detection algorithms were proposed,
including SLPA [11], GCE [12] and OSLOM [13]. SLPA sim-
ulates the human communication behavior and realizes it into a
speaker-listener label propagation algorithm. GCE identifies dis-
tinct cliques as seeds and expands these seeds by greedily optimiz-
ing a local fitness function. OSLOM finds overlapping communi-
ties by local optimization of a fitness function expressing the statis-
tical significance of clusters with respect to random fluctuations.

Compared to OCD, OCS is more of a light-weight problem, and
it is for online query answering. By definition, OCD inherently
implies intractable computation complexity. For example, CFinder
needs to enumerate all k-cliques in a graph and then combine them
in terms of overlap between cliques. Both clique enumeration and
pairwise computation of clique similarity are costly. In contrast,
in OCS, most resulting communities tend to occur around the local
neighborhoods of the query vertex, allowing finding the answers by
only exploring a part of the graph instead of processing the entire
graph.

Dense subgraph discovery. In many graphs whose dense sub-
graphs have clear boundaries and can be separated from each other,
communities are dense subgraphs. In this sense, our work is closely
related to dense subgraph discovery. The problem of finding the
densest subgraph is NP-hard, where the density of a graph G(V,E)

is usually measured by 2|E|
|V |(|V |−1)

. Doron et al. [14] gave an ap-
proximate algorithm for finding the dense k-vertex subgraphs of
a given graph, with approximation ratio O(nδ) for some δ < 1

3
.

For practical use, Gibson et al. [15] used recursive shingling to find
dense subgraphs on massive graphs. Their algorithms are scalable
to web-scale graph with 50M hosts and 11B edges but without guar-
antees for the density of the result. To handle Internet-sized graph
data in the form of stream, Bahman et al. [16] proposed a greedy
solution for graph streams, which takes O(log1+ϵn) passes for any
ϵ ≥ 0 yielding approximation factor of 2(1+ ϵ). Some other meth-
ods propose different definitions of dense subgraphs. For example,
DN-graph is proposed in [17] and accompanied with a triangle-
counting based solution. Although dense subgraph discovery is re-
lated to community discovery, they are essentially different from
each other. A community is far beyond a dense subgraph. As a
community, the density within the subgraph is expected to be sig-
nificantly larger than the outside world of the subgraph. Further-
more, our problem is a typical search problem, in which a query
vertex needs to be specified.

Clique finding. k-cliques underlie our community definition.
There is already many k-clique related research. Most of it con-

cerns clique finding, i.e., finding a maximal clique or finding cliques
with a size constraint. In general, the decision version of clique
finding is NP-Complete [18]. Derényi [19] gave the threshold of
edge-linking probability for the emergence of a giant k-clique com-
ponent in an Erdos Renyi(ER) [20] random graph. To solve the
problem practically, local search [21] is widely employed in many
efficient solutions [22, 23, 24]. Along this direction, reactive local
search (RLS) [22], dynamic local search (DLS) [23] and an im-
proved DLS [24] have been proposed in turn. For disk-resident
massive graphs, Cheng et al. [25] proposed an external-memory
algorithm ExtMCE to reduce memory usage. They built a sum-
mary of small-sized graph, called H*-graph, to precisely encode
the neighborhood information in the original graph. We only use
k-clique to define community. In our problems, we not only need
to find cliques around the query vertex, we also need to take care
of clique adjacency. The second issue is not addressed in these
clique-related works.

3. OVERLAPPING COMMUNITY
In the following, we first define the model as well as the problem

(Section 3.1). Then, we justify the model by highlighting some
of its important properties (Section 3.2). Finally, we discuss how
to tune the parameters in the model to produce meaningful results
(Section 3.3).

3.1 Model and Problem Definition
We start with the definition of OCS problem. Then, we generalize

it into the (α, γ)-OCS problem.

3.1.1 OCS
Network communities are usually modeled by k-cliques [1]. Given

an original network G, we derive a k-clique graph from G. In the
k-clique graph, each node represents a k-clique in G, and an edge
between two nodes means that the k-cliques the two nodes repre-
sent are adjacent in G, where adjacency is defined as follows:

DEFINITION 1 (CLIQUE ADJACENCY). Two k-cliques are ad-
jacent if they share k − 1 vertices.

We define OCS based on the concept of k-clique components.

DEFINITION 2 (k-CLIQUE COMPONENT). Let C be a connected
component in the k-clique graph. A k-clique component is the
union of all k-cliques represented by nodes in C.

Intuitively, given a vertex v0, there may be multiple communi-
ties that contain v0. All these communities naturally constitute
the overlapping communities that contain v0. Thus, the problem
is finding all such communities.

PROBLEM 1 (OVERLAPPING COMMUNITY SEARCH (OCS)).
Given a graph G(V,E), a query vertex v0 and a positive integer k,
we need to find all k-clique components containing v0.

bfgh
abcd

abce

(a) The clique graph
for (3, 1)-OCS

bfghi
abcd

e

(b) The clique graph
for (4, .8)-OCS

Figure 2: Clique graphs are sensitive to the parameters of OCS.

EXAMPLE 2 (OCS). Consider the graph shown in Figure 1.
Assume we want to find overlapping communities that contain node
b (i.e., v0 = b). Let k = 4. We have three k-cliques containing b:
C1 = abcd, C2 = abce and C3 = bfhg. The clique graph is

shown in Figure 2(a). Hence, C1 ∪C2 and C3 are returned as two
overlapping communities containing the query vertex.

3.1.2 (α, γ)-OCS
The definition of overlapping community given above is too re-

strictive: First, every pair of nodes in each k-clique by definition
must be connected. Second, two k-cliques are considered adja-
cent iff they share as many as k − 1 nodes. In this section, we
define a more general problem, (α, γ)-OCS, by relaxing the two
constraints.

First, we relax the adjacency requirement. In (α, γ)-OCS, two
k-cliques are considered adjacent if they share α ≤ k− 1 vertices.
This leads to the definition of α-adjacency.

DEFINITION 3 (α-ADJACENCY). Two subgraphs G1 and G2

of graph G(V,E) are α-adjacent if they share at least α vertices.

Second, we relax the requirement of cliqueness. A k-clique is
the densest graph among all k-node graphs. We generalize it to
γ-quasi-clique by exposing parameter γ to tune the density of the
subgraph.

DEFINITION 4 (γ-QUASI-k-CLIQUE [26]). A γ-quasi-k-clique
of graph G is a k-node subgraph of G with at least ⌊γ k(k−1)

2
⌋

edges (where 0 ≤ γ ≤ 1).

We now give a generalized version of overlapping community
search: (α, γ)-OCS. Similar to the basic version, we also intend
to find all overlapping communities containing a query vertex. But
each community here is a γ-quasi-k-clique component and the clique
adjacency is defined by α adjacency. Clearly, Problem 1 is simply
(k − 1, 1)-OCS.

PROBLEM 2 ((α, γ)-OCS). For a graph G, a query vertex v0
and a positive integer k, the (α, γ)-OCS problem finds all γ-quasi-
k-clique components containing v0.

EXAMPLE 3 ((α, γ)-OCS). To continue with the previous ex-
ample, consider (4, 0.8)-OCS and k = 5 and v0 = b. abcde and
bghif are two resulting communities. This can be directly obtained
from the clique graph shown in Figure 2(b).

3.1.3 Complexity
We next analyze the complexity of overlapping community search.

THEOREM 1. The (α, γ)-OCS problem, as well as its special
case (k − 1, 1)-OCS, are #P-Complete, if k is part of the input.

PROOF. We show that (k − 1, 1)-OCS is #P-Complete. Then,
as a more general problem, (α, γ)-OCS is at least #P-Complete.
Given a query vertex v0, the decision version of (k − 1, 1)-OCS is
to decide whether there are any k-cliques that contain v0. Since k
is not a constant, this decision problem is NP-complete, which can
be reduced from the k-clique problem.

3.2 The Rationale
Is the model proposed in Section 3.1 meaningful? In this section,

we justify it from the following three aspects: community density,
overlapping-awareness and consistency.

3.2.1 Community Density
To qualify as a community, a subgraph obviously needs to have

enough density. In (α, γ)-OCS, the parameters α and γ together
control the closeness among the members of a community. In this
subsection, we establish a lower bound (Theorem 2) of the average
degree for communities found by (α, γ)-OCS. Theorem 2 is based
on Lemma 1. As an example of Theorem 2, the average degree of
a community of (k − 1, 1)-OCS is at least k − 1.

LEMMA 1. For a γ-quasi-k-clique, the number of edges inci-
dent to an arbitrary set of x vertices is at least max{0, γ

(
k
2

)
−(

k−x
2

)
}.

PROOF. The total number of edges of this clique is at least γ
(
k
2

)
.

The subgraph induced by the rest k− x vertices has at most
(
k−x
2

)
edges, which are not incident to the selected vertices. Therefore,
the lemma holds.

THEOREM 2 (LOWER BOUND ON AVERAGE DEGREE). The av-
erage degree of each community found by (α, γ)-OCS has a lower
bound

2max{0,min{f(1), f(α)}}

where f(x) =
γ(k2)−(

k−x
2)

x
.

PROOF. First, we show that for x ∈ {1, 2, ..., α}, it holds that
f(x) ≥ min{f(1), f(α)}. We have f ′(x) = − 1

2
+ (1−γ)k(k−1)

2x2 ,
which satisfies the following inequalities:{

f ′(x) ≥ 0, 0 < x ≤
√

(1− γ)k(k − 1)

f ′(x) < 0, x >
√

(1− γ)k(k − 1)

Thus, f(x) takes its minimum value either at x = 1 or x = α,
which means f(x) ≥ min{f(1), f(α)}.

Now, suppose C is a community found by (α, γ)-OCS, and C
consists of t different cliques C1, C2, ..., Ct. Let Vi =

∪
1≤j≤i Cj .

Let vi = |Vi − Vi−1|, we have |C| =
∑

1≤i≤t vi. Let ei be the
number of edges in E[Vi] − E[Vi−1], where E[Vi] is the edges
induced by Vi. The average degree of C is 2|E(C)|

|V (C)| , which equals∑
1≤i≤t 2ei

|C| = 2
|C|
∑

1≤i≤t,vi ̸=0 vi ×
ei
vi

. Using the minimal value
of ei

vi
to replace each ei

vi
, we get

2|E(C)|
|V (C)| ≥

2
∑

1≤i≤t,vi ̸=0 vi

|C| min
1≤i≤t,vi ̸=0

{ ei
vi
} = 2 min

1≤i≤t,vi ̸=0
{ ei
vi
}

According to Lemma 1 and the fact that f(x) ≥ min{f(1), f(α)},
we find that the average degree of a community found by (α, γ)-
OCS has a lower bound 2max{0,min{f(1), f(α)}}.

3.2.2 Overlapping Awareness
The model should be able to reveal the overlapping relationships

of multiple communities. Note that this is not a trivial task. When
two subgraphs overlap, it is hard to tell whether they are two com-
ponents of a single community or two overlapping communities.
In OCS, given two subgraphs H1, H2 that contain the query ver-
tex, we have two choices: return H1 ∪ H2 as a single community
or return H1, H2 as two overlapping communities.

Previous models of communities were overlapping-unaware, and
even overlapping-unfriendly. A widely adopted model [3] consid-
ers a subgraph whose minimal degree is larger than a given thresh-
old as a valid community. Thus, the union of two communities is
also a valid community. Hence, two communities can always be
merged, even if they have very little overlap.

In (α, γ)-OCS, we use α to decide whether two components have
enough overlapping to be considered and merged as a single com-
munity. Specifically, if two γ-quasi-k-cliques share fewer than α
vertices and they are not reachable in any clique component, they
are considered as two overlapping communities instead of a single
community.

3.2.3 Consistency
Community search must be consistent, that is, if a community C

is considered a community for a query vertex v0, then if we use
any other vertex in C as a query vertex, we should also obtain C
as its community. We establish the consistency of (α, γ)-OCS in
Theorem 3, which can be easily derived according to the fact that
clique adjacency is an equivalence relationship.

THEOREM 3 (CONSISTENCY). In (α, γ)-OCS , if C is a com-
munity that contains query vertex v0, then for any other vertex
v ∈ C as the query vertex, C is also returned as its community.

3.3 Parameter Selection
The model for overlapping community contains 3 parameters:

k, α, γ. The selection of these parameters is crucial to produc-
ing meaningful results. In this section, we will give the theoretic
guideline for selecting appropriate parameters in real networks.

3.3.1 Selection of γ and k

Parameter γ controls the density of the community. The selection
of k and γ is related, in the sense that the larger the k, the more
difficult it is to find communities with the high density. Hence, in
order to generate meaningful results, γ should vary with k. Next,
we will reveal the relationship between γ and k. We first give a sim-
ple relationship established to avoid a trivial case. Then, we estab-
lish a more complicated relationship between them on ER random
graphs.

A simple relationship. In general, as a meaningful commu-
nity, the quasi clique needs to be connected. For k vertices, even
when there are k(k−1)

2
−(k−1) edges among them, it is still possi-

ble that they are disconnected. It happens when the k-vertex graph
consists of an isolated vertex and a (k− 1)-vertex clique. To avoid
the disconnected case, γ should be big enough. Hence, we need to
ensure that:

⌊γ k(k − 1)

2
⌋ > k(k − 1)

2
− k + 1,

By transformation, we have

γ ≥ k − 2

k
+

2

k(k − 1)
(1)

Relationship on ER random graphs. Given a graph with N
nodes and M edges, the density of the graph is given by 2M

N(N−1)
.

Next, we use the ER random graph model [20] as an example to
reveal the relationship between γ and k. The ER random graph is
used to simulate real graphs, such as road networks. Consider an
ER random graph G ∈ G(n, p) that has n vertices and each pair of
vertices is linked with probability p, independent of other vertices
and edges. Suppose we randomly pick k vertices from G. Let X
be the random variable that represents the number of edges among
the selected vertices. Then, the probability that X = i is

Pr(X = i) =

(
m

i

)
pi(1− p)m−i (2)

where m = k(k − 1)/2. Let Y be the random variable that repre-
sents the density of the subgraph induced by the randomly selected
k vertices. Clearly, we have Y = X/m. Then, the probability that
k selected vertices have density γ is a function of k and γ, that is:

Pr(Y = γ) =

(
k(k−1)

2

⌊ γk(k−1)
2

⌋

)
p⌊

γk(k−1)
2

⌋(1−p)
k(k−1)

2
−⌊ γk(k−1)

2
⌋

(3)
We give the simulation of Pr(Y = γ) in Figure 3(a) for p =

0.3. We can clearly see that when γ is fixed, Pr(Y = γ) is a
monotonically decreasing function of k. This suggests that we can
find communities for small k with high probability. We justify this
in the experimental section by showing that for most real networks
communities exist mostly for 4 ≤ k ≤ 10.

When k is fixed, Pr(Y = γ) reaches its maximum when γ is
close to the average density. To show this more clearly, we give
Pr(Y = γ) as a function of γ for two fixed k in Figure 3(b).
The simulation results imply that there are many subgraphs of av-
erage density in the networks. In general, a meaningful community
should have a much larger density than the average density. Hence,
we should select a large enough density to disfavor those trivial
communities with average density.

 2 4 6 8 10 12 14 16

 0
 0.2

 0.4
 0.6

 0

 0.2

 0.4

 0.6

Pr

k

γ

Pr

(a) Probability w.r.t k and γ

 0

 0.05

 0.1

 0.15

 0.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
r

γ

k = 8
k = 16

(b) Probability for k = 8, 16

Figure 3: Simulation of density. This simulation shows the cor-
relation between k and γ.

More formally, once k is given, we may use a confidence value
such as c = 0.05 to construct an inequality Pr(Y ≥ γ) ≤ c which
is equivalent to ∑

i≤j≤m

(
m

j

)
pj(1− p)m−j ≤ c

, since Pr(X ≥ i) = Pr(Y ≥ γ) when i = γm. By solving
above inequation, we find the appropriate i value and correspond-
ing γ. By tuning c, we can control γ. A smaller c generally leads
to larger γ.

3.3.2 Selection of α
Parameter α, as we mentioned before, controls how strictly we

consider two communities to be one community or components of
the same community. Our major goal in selecting a meaningful α
is to avoid two trivial cases.

The first trivial case occurs when the density of a γ-quasi-k-
clique is contributed mainly by its α-size subset. As a result, any
other k − α vertices outside of the clique combined with the sub-
set will be a valid adjacent clique. This trivial case obviously
leads to meaningless communities. To avoid this case, we need(
α
2

)
< γ

(
k
2

)
. By simple transformation, we have

α ≤ ⌈
√

1/4 + k(k − 1)γ − 1/2⌉ (4)

The second trivial case occurs when two γ-quasi-k-cliques inter-
sect at a α-size subset that is quite sparse. In real networks, if the
common part of two subgraphs are too sparse, they can rarely be
regarded as a single closely-connected community. If the common
part of two subgraphs is too sparse, the two subgraphs can rarely
be regarded as a single closely-connected community. This case
happens if all edges are located among the rest k − α vertices. To
avoid this, we set γ

(
k
2

)
>
(
k−α
2

)
so that the common part has at

least one shared edge. By transformation, we have

α ≥ ⌊k + 1/2−
√

γk2 − γk + 1/4⌋ (5)

Combining the two cases, given k and γ, we chose α to be an
integer between the lower and upper bounds. As an example, when
γ = 1, we have 1 ≤ α ≤ ⌈

√
1/4 + k(k − 1) − 1/2⌉. Further-

more, when k = 4, we have 1 ≤ α ≤ 3. Hence, usually we use
α = 3.

3.3.3 Practical selection of parameters
Based on the above analysis, we show that α = k − 1, γ = 1

(or values close to 1) are typical settings of (α, γ)-OCS. By simple
transformation of Eq. 1, we have

γ ≥ 1− 2

k

k − 2

k − 1
= f(k)

. When k > 3, f(k) converges to 1. It can be observed from the
simulation of f(k) in Figure 4. Hence, γ = 1 (or values close to

1) is a typical setting. Next, we show that α = k − 1 is also a
typical setting because only α = k − 1 lies between the lower and
upper bound of α for any k and k−2

k
+ 2

k(k−1)
≤ γ ≤ 1 (shown in

Theorem 4).

 0.6

 0.7

 0.8

 0.9

 1

1 5 10 15 20 25 30

f(
k

)

k

Figure 4: Simulation of f(k).

THEOREM 4. Let α = k −∆ and ∆ be a positive integer less
than k. Only when ∆ = 1, α satisfies Eq. 4 and Eq. 5 for any
k ≥ 2 and k−2

k
+ 2

k(k−1)
≤ γ ≤ 1.

PROOF. First, consider k = 2. Since 0 < α = k −∆ < k, we
have 2−∆ > 0. Hence, only ∆ = 1 satisfies this inequality. Next,
for any k and k−2

k
+ 2

k(k−1)
≤ γ ≤ 1, we have

⌈
√

1/4 + k(k − 1)γ−1/2⌉ ≥ ⌈
√

9/4 + (k − 1)(k − 2)−1/2⌉

, which is no less than k − 1; and

⌊k+1/2−
√

γk2 − γk + 1/4⌋ ≤ ⌊k+1/2−
√

(k − 1)(k − 2) + 9/4⌋

, which is no larger than k − 1. Thus only α = k − 1, i.e., ∆ = 1,
satisfies the constraints.

4. ALGORITHMS
In this section, we will first propose two exact algorithms to solve

OCS. The first is a straightforward solution. The second is a more
efficient exact solution. To further improve the performance, we
also propose a more efficient approximate algorithm.

4.1 Exact algorithm
4.1.1 Naive Algorithm
We give a naive algorithm according to the definition of OCS.

The direct solution for OCS consists of three major steps, which
are shown in Algorithm 1. In the first step, we find the γ-quasi-
k-clique that contains v0. Then for each newly discovered vertex,
we find all γ-quasi-k-cliques that contain the vertex. We repeat the
above finding procedure until no new vertex can be discovered. In
the second step, we calculate the clique adjacency for all cliques
found in the first step. Finally, we return all clique components as
the resulting communities.

Algorithm 1 Naive OCS
Input: G(V,E), v0 α, γ, k;
Output: The overlapping communities containing v0

//Stage 1. Find all the candidate cliques
1: Vc ← {v0}
2: for all unvisited vertex v ∈ VC do
3: find_clique(v); ◃ find all cliques that contain v
4: Add all vertices of these cliques into VC ;
5: end for

//Stage 2. Calculate clique component
6: Calculate the adjacency matrix of candidate cliques;

//Stage 3. Return all clique components as communities

4.1.2 New algorithm framework
The naive algorithm is not smart yet. As illustrated in Example 4,

many cliques enumerated in the naive algorithm will not belong
to a valid community. Hence, enumerating these invalid cliques

is wasteful. This can be avoided if we check the adjacency when
a clique is enumerated. Following this idea, we proposed an im-
proved algorithm, shown in Algorithm 2. The algorithm runs itera-
tively. In each iteration, we find an unvisited clique containing the
query vertex by next_clique(). If such a clique exists, we find the
clique component that the clique belongs to by expand().

EXAMPLE 4 (WASTEFUL ENUMERATION). Consider (3, 1)-
OCS with k = 4 and v0 = d on the graph shown in Figure 2(a),
{a, b, c, d, e} is the unique resulting community. By the naive al-
gorithm, bfgh will also be enumerated and participate in the suc-
ceeding computation, which is wasteful.

Algorithm 2 Improved OCS
Input: G(V,E), v0 α, γ, k;
Output: The overlapping communities containing v0
1: R← ∅;
2: while C ← next_clique(v0), C ̸= ∅ do
3: C← expand(C); ◃ Find the clique component of C
4: R← R∪ {C};
5: end while
6: ReturnR;

Note that for any two adjacent cliques, their clique components
are identical. To avoid redundant enumeration, we record the visit
status of each clique in both next_clique() and expand(), and
only enumerate unvisited cliques. We illustrate this in Example 5.
The new algorithm framework also allows us to further optimize it.
We will present such optimizations in the following sections

EXAMPLE 5 (IMPROVED ALGORITHM). Continue with the pre-
vious example but change v0 to b. next_clique() may first return
bfgh. By calling expand() on this clique, we find the first com-
munity {b, f, g, h}. The next call of next_clique() may return
abce. By calling expand() on this clique, we find abcd. Thus,
{a, b, c, d, e} is the second community. Then, any call of next_clique()
will return nothing and the algorithm will terminate since all cliques
have been visited either in next_clique() or expand().

4.1.3 Implementation of next_clique()
next_clique(v0) is responsible for enumerating each unvisited

γ-quasi-k-clique containing vertex v0. Finding all cliques is clearly
#P-complete. A naive solution needs to exhaustively enumerate
all subsets with size k containing v0, and check whether it is a
valid clique. The solution costs O(|V |kk2) time. Because there
are O(|V |k) k-size subsets and checking whether the subset is a
valid clique needs O(k2) time.

Clique enumeration is a well-known computationally hard prob-
lem. Even allowing approximation, clique finding is hard to ap-
proximate. Hence, brute-force enumeration seems to be inevitable
to produce exact results. The major procedure is a depth-first search
with backtracking. The procedure is shown in Algorithm 3. The
search starts from U = {v0}. Then, the procedure iteratively adds
a new vertex into U until a new valid clique is found (line 5,6). The
procedure will stop until all γ-quasi-k-cliques containing the query
vertex are found.

The backtracking search can be improved from two aspects. First,
we just need to select a new vertex from the neighbors of the cur-
rent vertex (line 13). This is because as a valid parameter, γ needs
to satisfy Eq. 1, which ensures the result is a connected subgraph.
Second, we speedup the search by pruning the impossible enumer-
ation (line 11). Let |E(U)| be the number of edges in the subgraph
induced by U . Thus the maximal number of edges that the resulting
clique has is |E(U)| + (k − |U |)|U | + (k−|U|)(k−|U|−1)

2
, which

equals |E(U)|+ (k−|U|)(k+|U|−1)
2

. When the maximal number of
edges is less than γ k(k−1)

2
, that is

g(U) = |E(U)|+ (k − |U |)(k + |U | − 1)

2
< γ

k(k − 1)

2
(6)

, we can certainly prune the current U . The left side of the inequal-
ity is a function of U . We use g(U) to denote it.

Algorithm 3 DFS procedure of next_clique(v0)
1: U ← {v0};
2: DFS(U, v0);
3: procedure DFS(U ,u)
4: if |U | = k then
5: if U is a γ-quasi-k-clique And U is unvisited then
6: Return U ;
7: else
8: Return;
9: end if

10: end if
11: if g(U) < γ

k(k−1)
2

then Return;
12: end if
13: for all (u, v) ∈ E, v ̸∈ U do
14: DFS(U ∪ {v}, v);
15: end for
16: end procedure

4.1.4 Implementation of expand()
Function expand(C) is used for finding the clique component

containing C. By any graph traverse on the clique graph, we can
certainly find the connected component. But the traverse orders are
influential on the performance. Here, we use DFS order.

The procedure of expand(C) is shown in Algorithm 4. The ma-
jor framework is a DFS traverse on the clique graph. In the algo-
rithm, A is a global variable storing the currently found vertices in
the clique component. The key operation in the traverse is finding a
subset S2 from C’s neighborhoods to replace one of C’s subset S1

so that the new combination C′ is a valid clique. To keep the size
of the clique as k, we enforce |S1| = |S2| (line 8). We can also
use Eq. 6 to terminate the search that will not lead to a valid clique
(line 6).

The function Candidate(C − S1) is used for finding a subset
S2 with the same size as |S1| from the local neighborhoods of
C − S1. Note that we do not need to enumerate S2 from the en-
tire V . Because under the constraint of Eq. 1, the induced graph of
(C−S1)∪S2 is always connected. Hence, in the worst case, we just
need to explore the |S1|-hop-neighborhood of C − S1, which con-
tains all vertices that are at most |S1| hops away from any vertex in
C−S1. When k is small, the exploration of |S1|-hop-neighborhood
will be effective.

Algorithm 4 expand(C)

Input: A γ-quasi-k-clique C;
Output: The clique component of C
1: A← C;
2: Expand_clique(C);
3: return A;

4: procedure EXPAND_CLIQUE(C)
5: for all S1 ⊂ C, |S1| ≤ k − α do
6: if g(C − S1) < γ

k(k−1)
2

then Continue
7: end if
8: for all S2 ∈ Candidate(C − S1), |S1| = |S2| do
9: C′ ← (C − S1) ∪ S2;

10: if C′ is unvisited And C′ is a γ-quasi-k-clique then
11: A← A ∪ S2;
12: Expand_Clique(C′);
13: end if
14: end for
15: end for
16: end procedure

4.1.5 Duplication detection
In both next_clique() and expand() functions, we may meet

the same clique from different paths. For example, for the clique

abc. We may meet it by a − b − c or a − c − b. Hence, we need
to tell whether a clique has ever been visited. For this purpose, we
use a hash table to store visited cliques, allowing in constant time
to query a visited clique. We use the following hash function:

h(C) = (
∑
vi∈C

id(vi)× aid(vi)) mod b (7)

, where a, b are two large primes and id(vi) is the id of vi. Hash-
ing each k-size clique takes O(k) time. By DFS, such complex-
ity can be further reduced to O(1). In DFS, two successively vis-
ited cliques have only two different vertices. Thus, we can cal-
culate the hash value in an incremental way. Suppose, Ci+1 =
(Ci − {v}) ∪ {u}, we have

h(Ci+1) = (h(Ci)− (id(v)×a)id(v)+ id(u)×aid(u)) mod b
(8)

4.1.6 Optimization on (k − 1, 1)-OCS
In the exact solutions for the general OCS problem, we can only

detect duplication after the enumeration of a clique. For a k-size
subset, we may enumerate it O((k−1)!) times. Next we show that
on (k−1, 1)-OCS, we can avoid such redundant enumerations. We
only discuss it for next_clique(v0). Expand() can be optimized
with the same technique. When we search for a γ-quasi (γ < 1)
clique containing v0, we need to search along a path (line 13-15 in
Algorithm 3) to ensure that we find a connected subgraph. How-
ever, on (k − 1, 1)-OCS, we are searching for a standard clique (a
complete subgraph). It is order independent to find such cliques.
That is, for these cliques we can use any DFS order to enumerate
the same clique. As a result, on (k − 1, 1)-OCS, we can pose an
arbitrary linear order on V . Then, we search for a clique accord-
ing to the linear order. That is only adding a vertex with a superior
order into the partial solution. In this way, redundant enumerations
of a k-clique can be avoided.

4.2 Approximate Algorithm
Next, we propose an efficient approximate algorithm for (α, γ)-

OCS. The algorithm shares the same framework as Algorithm 2
with next_clique() and expand() further approximated.

4.2.1 Approximation in next_clique()
The next_clique() function may enumerate an exponential num-

ber of γ-quasi-k-cliques. To reduce the enumeration space, we only
enumerate an unvisited clique which contains at least one new ver-
tex that does not belong to any communities already found. This
heuristic can be achieved by a slight change of the DFS procedure
(Algorithm 3). Let v0, v1, .., vk be the vertex sequence (staring
from the root v0) in the DFS tree. We require that the second ver-
tex v1 is a new vertex. In this way, we ensure that the new clique
contains at least a new vertex. Note that we enforce that the vertex
sequence contains a new vertex as early as possible and v1 is the
earliest vertex added into the sequence. Hence, v1 is required to be
a new vertex.

4.2.2 Approximation in expand()

We first study the traverse orders in expand() function. We show
in Example 6 that to meet all vertices in a community, the best case
only requires a linear number cliques to be visited, while in the
worst case, an exponential number may be visited.

EXAMPLE 6 (INFLUENCE OF TRAVERSE ORDERS). Consider
a complete graph with 100 vertices and k = 4. For (k−1, 1)-OCS
on any query vertex, the graph itself is the unique answer. To find
the exact result, we need to visit

(
100
4

)
, approximately millions of

k-cliques. Alternatively, if we always select a clique that is adja-
cent to previously visited cliques and contains at least one unvisited
vertex, after visiting 97 cliques, all vertices in the result are met.

The above example implies that we may find a community quite
early before we exhaustively enumerate all γ-quasi-k-cliques in the

community. Let C be a community of (α, γ)-OCS on graph G, in
general we expect to find a shortest clique sequence C1, C2, ...Cm

such that each Ci is adjacent to at least one of its preceding cliques,
and ∪1≤i≤mCi = C. However, in general, there exists an expo-
nential number of possible sequences, it is hard to select the short-
est sequence to visit.

Here, we will present a heuristic to find a short clique sequence.
We still use DFS order. Consider expand(C1). Let Ci, Ci+1 be
two successively visited cliques; we always select Ci+1 such that

Ci+1 −
∪
j≤i

Cj ̸= ∅ (9)

. In other words, Ci+1 is the clique containing at least one unvis-
ited vertex. The traverse stops at Cm, to which no other unvisited
cliques satisfying Equation 9 are adjacent. In this way, the com-
plete clique sequence C1, ...Cm is found. We return the union of
them as the result of expand(C1). This heuristic can be imple-
mented by simply adding a condition, S1 − A ̸= ∅, in line 10 of
Algorithm 4.

4.2.3 Analysis
Consider a k-clique component C. Compared to the exact algo-

rithm, which explores O(
(|C|

k

)
) cliques, the approximate expand()

algorithm only explores exactly O(|C|) cliques. Because the heuris-
tic defined in Eq. 9 ensures finding a new vertex each time a clique
is visited. O(|C|) cliques will be visited and many wasteful enu-
merations are avoided. In this way, we reduce the exponential com-
plexity to linear complexity. However, this heuristic may produce
inexact results, which are illustrated in Example 7. We will show
in the experimental section that this heuristic works quite well on
real graphs, producing accurate results.

EXAMPLE 7 (BAD CASE). Consider the (2, 1)-OCS on the graph
shown in Figure 1 with k = 3 and v0 = f . The right community
is bfghi. If cliques bfh, bgh were first visited, the search will stop
since no new clique can be visited. As a result, i will be missed. If
we first visit bfh and bfg, fgi is qualified to be visited and then
we can find the right community.

Due to the NP-hardness to approximate of clique finding, it is
hard to give a theoretic guarantee of the approximation quality.
However, we find that the approximate communities obtained by
the approximation of next_clique() and expand() are finer than
the exact ones. More formally, overlapping communities can be
considered as a collection of subsets P = {C1, C2, ...Ck}. Then,
for each community Ci in the approximate result, ∃C′ such that
Ci ⊆ C′ and C′ is an exact community of v0. It clearly holds since
the two approximations are equivalent to strengthen the constraint
of a subgraph as a community. Since the community is finer, its size
is smaller than or equal to the exact one. We have mentioned that
the approximate algorithm only explores O(|C|) cliques. There-
fore, this property implies that the approximate algorithm is more
efficient.

5. EXPERIMENTS
In this section, we present the experimental study and show the

effectiveness and efficiency of our models and algorithms.

5.1 Experiment Setup
We ran all experiments on a PC with Intel Core2 at 2.13GHz,

4G memory running 64-bit Windows 7. We implemented all algo-
rithms in C++. We compared the improved exact algorithm and the
approximate algorithm. We also compared the OCS model and the
OCD model.

We used four real networks to test our solution. The basic statis-
tics of these networks are shown in Table 1. DBLP is a scien-
tific collaboration network extracted from a recent snapshot of the

DBLP dataset 2. Each vertex in the graph represents an author and
each edge indicates a coauthoring relationship. Livejournal 3 is the
friendship network of Livejournal, a social networking and blog-
ging site. Google represents the web graph that was released in
2002 by Google. In the graph, nodes represent web pages and di-
rected edges represent hyperlinks between them. We ignore the
direction of the edges. WordNet is a semantic network in which
each vertex represent a specific sense in language and each edge
represents a certain semantic relationship between senses. Word-
Net has been widely used in a variety of real applications, such as
word sense disambiguation, automatic text classification and auto-
matic text summarization.

Zhenmin
Li

Ding
Yuan

Jiawei
HanHong

Cheng

Yuanyuan
Zhou

Kyuhyung
Lee

Xiao
Ma

Gopal
Krishna

Deyi
Li

Wei
Wang

Yongjian
Fu

Osmar
R.
Zaiane

Amynmohamed
Rajan

Wan
Gong

Krzysztof
Koperski

Yijun
Lu

Nebojsa
Stefanovic

Betty
Xia

Jenny
Chiang

Xiaolei
Li

Yizhou
Sun

Xiaoxin
Yin

Zhijun
Yin

Tianyi
Wu

Ke
Wang

Wei
Wang
0009

Jian
Pei

Ada
Wai-Chee
Fu

Philip
S.
Yu

Xifeng
Yan

Chen
Wang

Haixun
Wang

Baile
Shi

Yongtai
Zhu

Dong
Kun
Noh

Yong
Yang

Hieu
Khac
Le

Mohammad
Maifi
Hasan
Khan

Paria
Moinzadeh

Xin
Jin

Tarek
F.
Abdelzaher

Lili
Wang

Carl
A.
Gunter

Michael
LeMay

Guoming
He

Yintao
Yu

Rahul
Malik

Klara
Nahrstedt

Sangkyum
Kim

Indranil
Gupta

Chandrasekar
Ramachandran

Cuiping
Li

Micheline
Kamber

Gang
Liu

Sonny
Han
Seng
Chee

Jianping
Chen

Qing
Chen

Shan
Cheng

Lara
Winstone

Shuhua
Zhang

Hua
Zhu

Feida
Zhu

Chen
Chen

Shiqiang
Yang

Lu
Liu

Wei
Fan

Olivier
Verscheure

Kun
Zhang

Qiang
Yang

Jing
Gao

Xuemin
Lin

Jeffrey
Xu
Yu

Le
Song

Alexander
J.
Smola

Marisa
Thoma

Karsten
M.
Borgwardt

Hans-Peter
Kriegel

Arthur
Gretton

Qiming
Chen

Meichun
Hsu

Umeshwar
Dayal

Behzad
Mortazavi-Asl

Helen
Pinto

Peixiang
Zhao

C1

C2

C3

(a) k = 6

Deyi
Li

Wei
Wang

Yongjian
Fu

Jiawei
Han

Osmar
R.
Zaiane

Amynmohamed
Rajan

Wan
Gong

Krzysztof
Koperski

Yijun
Lu

Nebojsa
Stefanovic

Betty
Xia

Jenny
Chiang

Dong
Kun
Noh

Yong
Yang

Hieu
Khac
Le

Mohammad
Maifi
Hasan
Khan

Paria
MoinzadehXin

Jin

Tarek
F.
Abdelzaher

Lili
Wang

Carl
A.
Gunter

Michael
LeMay

Micheline
Kamber

Gang
Liu

Sonny
Han
Seng
Chee

Jianping
Chen Qing

Chen

Shan
Cheng

Lara
Winstone

Shuhua
Zhang

Hua
Zhu

Le
Song

Philip
S.
Yu

Xifeng
Yan

Alexander
J.
Smola

Marisa
Thoma

Hong
Cheng

Karsten
M.
Borgwardt

Hans-Peter
Kriegel

Arthur
Gretton

C1

C2

(b) k=9

Figure 5: Case study on DBLP. OCS can find communities with
different research topics. By tuning k, OCS can find communi-
ties with different closeness. This case study justifies the effec-
tiveness of the OCS model.

5.2 Case Study
We justify the model we use by two case studies: the scientific

collaboration network and WordNet.

5.2.1 Scientific collaboration network
We run both the improved exact algorithm and the approximate

algorithm on the scientific collaboration network extracted from
DBLP. The two algorithms produce almost the same results for
most query vertices. Here, we use ‘Jiawei Han’ as the query ver-
tex. Jiawei Han is a renowned computer scientist specializing in
data mining and database. When k = 6, the exact result and the
approximate result only differ in one community, where only two
authors are missing in the approximate result. This justifies the ef-
fectiveness of the approximate algorithm. Hence, in the following
evaluation, we will only use results produced by the approximate
solution.

2Available at http://dblp.uni-trier.de/xml/
3This and Google are available at http://snap.stanford.edu/data.

Basic information Performance of OCD and OCS
Dataset #Vertices #Edges average degree LA Amortized LA OSLOM2 Amortized OSLOM2 OCS

WordNet 82670 133445 3.23 51s 0.61ms 1913s 23.1ms 0.15ms (k=3)
DBLP 560851 1816613 6.48 6183s 11ms 6993s 12.5ms 6.24ms (k=4)
Google 916427 4322051 9.43 22873s 25ms 84725s 92.5ms 31ms (k=6)

Livejournal 4847571 42851237 17.7 >= 24h N/A N/A N/A 64ms (k=9)

Table 1: Datasets, performance of OCD and OCS

We show in Figure 5(a) part of the overlapping communities that
Jiawei Han resides in. It only takes 18ms for the approximate solu-
tion to get the results, which justifies the efficiency of the approxi-
mate solution. Next, we focus on the effectiveness of the approach.
We find that our overlapping community search model is meaning-
ful in many aspects.

• First, it successfully unveils multiple research interests of an
author. For example, in Jiawei Han’s case, the community
C1 represents the topic of multimedia data mining and the
communityC2 is about stream data mining. Each commu-
nity has a clear boundary to be distinguished from others.
We also can see that those authors with multiple research in-
terests occur in different communities. For example, Jian Pei
simultaneously occurs in C2 and C3, reflecting his research
interest in both stream data mining and information network
mining.

• Second, our model is flexible. By tuning parameter k, our
model can discover communities with different closeness.
For example, when k = 9, we discover more closely-connected
communities of ‘Jiawei Han’ as shown in Figure 5(b). From
the result, we can see that community C1 of k = 6 is broken
up into two more-closely connected overlapping communi-
ties C1, C2 of k = 9. The two communities respectively
reflect Jiawei’s more specific research interest. O ne is about
multimedia data mining and the other is about association
rule mining on large relational databases. When k becomes
larger, many periphery members of communities who have
relatively fewer collaborations with members in the commu-
nity will be excluded from the community. For example, we
find that 59 authors in the result when k = 6 are excluded
from the result when k = 9.

5.2.2 WordNet
In WordNet, we use the word ‘vessel’ as the query vertex and

we set k = 3. The result in Figure 6 shows that ’vessel’ occurs
in multiple communities, and each community represent a certain
sense of ’vessel’. The community that contains ’bowl’, ’dish’ cor-
responds to tablewares. The community consisting of ’barrel’ and
’tube’ represents the meaning of bucket. Another two communi-
ties represent the meaning of ships. The difference between these
two communities is that the one consisting of ’ship’ and ’galley’
is generally used for describing ships with large tonnage and the
other community are usually used for describing small boats. This
example shows that our OCS model is helpful for finding different
senses of a word, which is a fundamental task in natural language
understanding.

vessel

barrel

tube

boat

dish

bowl

contain

contain-
er

galley
platepotship

yacht

C1

C2

C3 C4

Figure 6: Case study on Wordnet. OCS can find different
senses of a word.

5.3 Performance
We first compare the performance of the exact algorithm and

the approximate algorithm. Then, we compare the performance
of OCS and OCD.

OCS: exact vs approximate methods. We tested the perfor-
mance for both exact algorithms and approximate algorithms. For
each k, we randomly selected 100 valid query vertices (with degree
at least k − 1). We counted the average query answering time as
well as the variance for these vertices under different k. Note that
the exact solution has exponential enumeration cost. Hence, when
the running time exceeds 60s, we terminated the exact algorithm
and recorded the entire query response time as 60s. Clearly, this
favors exact solutions. However, approximate solution still shows
significant advantage over exact solutions as the following results
indicate.

The results on three real networks are given in Figure 7. We can
see that in general approximate algorithm is more than two orders
of magnitudes faster than the exact one. Note that the performance
priority of the approximation algorithm over the exact one is more
striking than observed since we limit the running time of the ex-
act algorithm to 60s. For Livejournal and Google, significant per-
formance difference can be consistently observed over different k.
When k = 4, most valid query vertices have non-trivial result and
the approximate algorithm shows a much clearer advantage over
the exact algorithm. On DBLP, an increase in speed by three orders
of magnitudes is achieved for k = 4. For all the tested networks,
the approximate solution’s performance is quite stable compared to
the exact solution, especially on DBLP. Even for the biggest two
datasets, Livejournal and Google, both with approximately a mil-
lion nodes and tens of millions edges, the approximation algorithm
returns results within less than 100ms for almost all k. This suffi-
ciently shows that the approximate solution can be used as online
service for large real graphs.

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

4 5 6 7 8 9

T
im

e
 (

m
s)

k

exact algorithm
appro. algorithm

(a) DBLP

10
1

10
2

10
3

10
4

10
5

7 8 9 10 11 12

T
im

e
 (

m
s)

k

exact algorithm
appro. algorithm

(b) Livejournal

10
1

10
2

10
3

10
4

10
5

4 5 6 7 8 9 10

T
im

e
 (

m
s)

k

exact algorithm
appro. algorithm

(c) Google

Figure 7: Performance. The performance of the approximate
solution is significantly better than that of the exact solution.

OCS vs OCD. For comparisons, we also give the running time
of the state-of-the-art OCD algorithmss LA [9] and OSLOM2 [13]
in Table 1. We use the −fast option to get the fastest results for
OSLOM2. The time of OSLOM2 on Livejournal is not available,
because the program hung up unexpectedly on this graph. We find
that even on the smallest graph WordNet, two OCD algorithms still
need 51s or 1913s, respectively. For a fair comparison, we also give
the amortized running time of OCD, that is running time of OCD

|V | . Even
considering the amortized running time, OCS is more efficient than

OCD. From the comparison, we can clearly see that OCD is com-
putationally prohibitive on large networks. In contrast, OCS is a
lightweight solution to help us find overlapping communities.

5.4 Quality
In this subsection, we show the quality of the solution provided

by the approximate algorithm. Overlapping communities express a
certain equivalence relationship on V . Any two vertices in Ci are
equivalent to each other under this equivalence relationship. Thus,
we may use the overlapping ratio of the equivalence relationship
to quantify the similarities between exact and inexact results. Let
P1 = {C1, C2, ...Ck} be the approximate result, and let C′

i be the
exact community that includes Ci as a subset. Such C′

i certainly
exists and is unique since P1 is finer than the exact communities
P2. Then, we define the similarity between P1 and P2 as

sim(P1, P2) = max
1≤i≤k

√
|Ci|(|Ci| − 1)

|C′
i|(|C′

i| − 1)
(10)

. Clearly, we have 0 ≤ sim(P1, P2) ≤ 1.

 0.8

 0.85

 0.9

 0.95

 1

4 5 6 7 8 9

ac
cu

ra
cy

k

(a) DBLP

 0.6

 0.7

 0.8

 0.9

7 8 9 10 11 12

ac
cu

ra
cy

k

(b) Livejournal

 0.8

 0.85

 0.9

 0.95

 1

4 5 6 7 8 9 10

ac
cu

ra
cy

k

(c) Google

Figure 8: Accuracy of approximate algorithm. Communities
produced by approximate solutions are quite close to that pro-
duced by exact solutions.

We ran the approximate algorithm with 100 randomly selected
valid query vertex on each network under different k. For each
query vertex, we calculated the similarity value defined in Equa-
tion 10. We summarized the average and variance of the similarity
value for 100 random query vertices. The results are shown in Fig-
ure 8. It is clear that for each tested network and each k, more than
70% accuracy can be achieved. In some special cases, for example,
on DBLP and Google, almost 90% accuracy can be achieved.

We give the detailed accuracy results of DBLP in Table 2. In
the table, for each k, 100 randomly selected valid vertices were
queried. #has community denotes the number of vertices among
them that have valid communities. #equivalent is the number of
vertices for which the approximate algorithm produces the exact
results. And ratio = #equivalent

#has community
. We can see that for any k,

more than 79% of query vertices have the exact results. When k
increases, the accuracy increases. In many real applications where
community has vague meanings, the accuracy of the community
is not a strict requirement and our approximate algorithm is quite
suitable for these applications.

k 4 5 6 7 8 9
#equivalent 66 69 58 43 37 29

#has community 84 83 65 49 40 30
ratio 79% 83% 89% 88% 93% 97%

Table 2: Accuracy on DBLP. For most query vertices, the ap-
proximate solution produces exact results.

5.5 Effectiveness
To show the effectiveness of the OCS model, we computed the

proportion of valid query vertices that have communities. Let r de-
note the number of valid query vertices. We ran the approximate

algorithm on 100 randomly selected valid query vertices. Let x de-
note the the number of vertices with communities. Then, rx% is
an estimation of the proportion of vertices that have valid commu-
nities in the entire graph. The results are shown in Figure 9.

 0

 0.2

 0.4

 0.6

 0.8

4 5 6 7 8 9

ra
ti

o

k

deg ≥ k-1
has community

(a) DBLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

7 8 9 10 11 12

ra
ti

o

k

deg ≥ k-1
has community

(b) Livejournal

 0.2

 0.4

 0.6

 0.8

4 5 6 7 8 9 10

ra
ti

o

k

deg ≥ k-1
has community

(c) Google

Figure 9: Effectiveness of OCS. For most vertices, OCS model
can find non-trivial results.

From both figures, we can see that for each tested real network,
our OCS model can recover meaningful communities for a signifi-
cant number of vertices. On both DBLP and Google, when k = 4,
among valid query vertices more than 90% of them have commu-
nities. For all the tested networks, the ratios of valid vertices and
those with communities decrease as k increases. This can be nat-
urally explained, since the constraint on the community is more
restricted for larger k.

5.6 Influence of k

The value k is the most important parameter of OCS. In this sub-
section, we investigate the influence of k on the result of commu-
nities. We are interested in the number of communities as well as
the size of communities.

We first give our analysis about the influence of k on commu-
nity size and community number. In general, it is expected that
the community size monotonically decreases with k. When k is
small, the constraint for a group of vertices forming a community
is weak. Consequently, it is easy to find large communities. When
k grows, the community will become smaller. The influence of k
on community number is a little complicated. In general, there are
two consequences caused by the growth of k:

• (1)The constraint on the closeness of a community becomes
stronger. As a result, many communities found under a small
k will not be a valid community any more. Consequently, the
number of communities will reduce when k grows.

• (2)The condition for two communities merged into one sin-
gle community becomes stronger. As a result,large commu-
nities will be broken into small communities. Consequently,
the number of communities will increase with k.

Hence, it is quite possible that there is a critical point on which
two forces are balanced and maximal number of communities can
be achieved. To verify this conjecture, we studied communities of
‘Jiawei Han’ in DBLP. We summarized the community number and
community size of ‘Jiawei Han’ as the function of k.

The results are shown in Figure 10 and they verify our conjec-
ture. From Figure 10(a), we can clearly see that the community
size monotonically decreases with k. When k = 5 and larger, the
community size is almost stable. These communities in general
are core-coauthoring team members of ‘Jiawei Han’. From Fig-
ure 10(b), we can clearly see that k = 5 is the critical point on
which maximal number of communities are found. Before this,
most communities are broken into small communities. After this,
valid communities quickly vanish due to the strong constraint on
the closeness of a community.

5.7 Influence of α and γ

In this subsection, we study the influence of α and γ. We show
our results on WordNet. Similar results can be obtained on other

 1

 10

 100

 1000

 10000

 100000

 3 4 5 6 7 8 9av
er

ag
e

co
m

m
u
n

it
y

si
ze

k
(a) Community size

 0

 15

 30

 45

 3 4 5 6 7 8 9

#
co

m
m

u
n

it
y

k
(b) Community number

Figure 10: Influence of k. Community size is monotonically
decreasing with k.

Table 3: Performance on WordNet
k 3 4
α 2 2 2 2 3 3 3
γ 1 0.8 0.9 1 0.8 0.9 1

Time (ms) 2298 36044 18022 6000 17882 17801 3395

networks. Since the graph is sparse, we only tested our approach
on k = 3 and k = 4. According to Eq. 1, we have γ ≥ 2

3
for

k = 3, 4. So we chose some representative γ satisfying these con-
straints. Note that for k = 3, only γ = 1 is meaningful. Hence, we
only show the result for γ = 1 when k = 3. If k = 4, when
2
3

≤ γ < 5
6

, the quasi-4-clique has at least four edges; when
5
6
≤ γ < 1, the quasi-4-clique has at least five edges. We used

γ = 0.8 and γ = 0.9 as two representative values of these two
ranges, respectively. For each selected k and γ, we randomly se-
lected 10 vertices as v0 and recorded their average run time in Ta-
ble 3. When the query time of a vertex exceeds 60s, we considered
it as 60s.

From the results, we found that, for the same k and α, generally
a smaller γ costs more run time. This is because higher γ means
more strict constraint, which reduces the search space. For the same
k and γ, the run time increases monotonically with the growth of
α. The reason is similar: a smaller α leads to a bigger search space.

6. APPLICATIONS
In this section, we propose two typical applications of OCS: di-

versity based social network analysis and name disambiguation in
social networks. Our model and solution enable us to measure the
diversity of social ties for a person, which is critical for the diversity
based analysis in a quantitative manner. The OCS model and our
solution also provide new insights to solve name disambiguation in
social networks, which is well-known as a hard problem.

6.1 Diversity-based Social Network Analysis
In social networks, an individual’s social ties are diverse if he

or she maintains connections to different communities or groups.
Individuals with diverse social ties are more competitive than oth-
ers [27, 28], because they serve as an intermediary with a posi-
tion bridging different groups in a social network, and consequently
own more opportunities than others in the network. Diversity lead-
ing to competition advantage has been widely acknowledged in real
life, but has been rarely verified in a quantified manner. Computing
overlapping communities is obviously a critical step to quantify the
diversity of an individual. Due to the computational hardness of
overlapping community detection, previous diversity measures use
attributes to derive overlapping communities. For example, Shi et
al [29] uses the conferences at which an author has ever published
a paper to obtain overlapping communities for DBLP scientific col-
laboration network.

Now, we can directly use our solution under the OCS model to
calculate the diversity of an individual. Intuitively, the diversity of
a person can be measured by the number of overlapping communi-
ties found by our approach. Next, we show some diversity related

analysis on DBLP with diversity calculated by our OCS solution.

Diversity distribution. The first class of fundamental ques-
tions are: what is the distribution of diversity? Can we find people
with really large diversity? To answer these questions, we sum-
marize the diversity distributions for k = 3, 4, 5. The results are
shown in Figure 11. We find that most persons have diversity 1, in-
dicating that they tend to coauthor with authors in a local research
community. These authors are mostly fresh hands in an area. How-
ever, there are some authors with large diversity. Some authors
have diversity at about 20. These authors are mostly distinguished
scientists in computer science. There also some ambiguous names
shared by more than one author. We will discuss this problem in
the next application.

 1

 10

 100

 1000

 0 3 6 9 12 15 18 21

#
v

e
rt

ic
e
s

#communities

(a) k = 3

 1

 10

 100

 1000

 0 3 6 9 12 15 18 21

#
v

e
rt

ic
e
s

#communities

(b) k = 4

 1

 10

 100

 1000

 0 3 6 9 12 15 18 21

#
v

e
rt

ic
e
s

#communities

(c) k = 5

Figure 11: Distribution of diversity

Diversity leading to competitive advantage. Given the
OCS model and the solution, we now have a chance to verify the
widely-established conjecture: diversity of social ties leads to com-
petitive advantage in a social network. In a social network, a per-
son’s competitive power in general is positively correlated to his
degree. Hence, to verify this conjecture, we summarize the correla-
tion between degree and diversity. The result is shown in Figure 12.
We find positive correlations between degree and diversity, which
verifies the conjecture. This finding strongly suggests that diversity
is one of the important driving forces for an author to become an
academic star. This implication opens opportunity for some other
interesting real applications, such as predicting rising stars.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7

d
eg

re
e

#community

Figure 12: Correlation between diversity and degree (with k =
4). Diversity is correlated to degree.

6.2 Name Disambiguation
Name disambiguation is a typical problem in social network data

management [30, 31]. For example, in DBLP there are at least 40
authors with the same name ‘Wei Wang’. In general, name disam-
biguation is a challenging problem when person identity informa-
tion is missing in the data set. The OCS model and its solution
provide new insight to solve this problem. They are at least help-
ful in two aspects: First, they can be used to identify ambiguous
names. Second, the overlapping communities themselves are can-
didate entities with the same name.

Table 4 presents the ambiguous names that have significant num-
ber of entities in the DBLP dataset. We found that most of these

Ambiguous names Renowned authors with large diversity
Name degree # communities Name degree # communities
Wei Li 589 113 Jennifer Widom 106 11
Xin Li 399 67 Alon Halevy 62 7

Ming Li 399 72 Hector Garcia-Molina 182 26
Li Zhang 486 95 David Dewitt 142 20

Ying Zhang 282 59 Michael Stonebraker 171 22
Hui Zhang 281 58 Jeffrey D. Ullman 97 11

Table 4: Ambiguous names, renowned authors in DBLP. Ambiguous names have a significantly large number of communities.

names have a large number of communities. Their community
numbers in general can be considered as exceptions when com-
pared to the community number distribution observed in Figure 11.
For comparisons, we also give the community number of renowned
scientists in the database community. It is clear that for a real
person, even as famous scientists with many papers and abundant
coauthoring relationships, their community numbers are smaller
than the community number of ambiguous names. These facts
strongly suggest that the large number of overlapping communities
is a good indicator of ambiguous names referring to multiple enti-
ties. Besides name disambiguation in social networks, OCS is also
helpful for sense disambiguation in semantic networks, as shown
in the case study on WordNet.

7. CONCLUSION
Most real networks have overlapping community structures. In

this paper we propose a novel overlappingness-aware community
search problem: overlapping community search. Compared to over-
lapping community detection, our model is much lightweight and
supports online query answering. We reveal the rationale behind
the model and provide theoretical guidelines for tuning the model.
We devise several exact algorithms and an efficient approximate al-
gorithm to find meaningful overlapping communities. We conduct
extensive experiments to show that both the exact algorithms and
approximate algorithms are effective to discover meaningful over-
lapping communities in real networks, and the approximate solu-
tion is quite efficient, supporting online (within several ms) query
answering on million-node graphs.

8. REFERENCES
[1] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the

overlapping community structure of complex networks in nature and
society.” Nature, vol. 435, no. 7043, pp. 814–818, Jun. 2005.

[2] http://www.facebook.com/press/info.php?statistics.
[3] M. Sozio and A. Gionis, “The community-search problem and how

to plan a successful cocktail party,” in KDD, 2010, pp. 939–948.
[4] B. Adamcsek, G. Palla, I. J. Farkas, I. Derĺęnyi, and T. Vicsek,

“Cfinder: locating cliques and overlapping modules in biological
networks,” Bioinformatics, vol. 22, no. 8, pp. 1021–1023, 2006.

[5] H. Shen, X. Cheng, K. Cai, and M.-B. Hu, “Detect overlapping and
hierarchical community structure in networks,” Physica A: Statistical
Mechanics and its Applications, vol. 388, no. 8, pp. 1706 – 1712,
2009.

[6] S. Gregory, “An algorithm to find overlapping community structure
in networks,” in Knowledge Discovery in Databases: PKDD 2007,
ser. Lecture Notes in Computer Science, 2007, vol. 4702, pp. 91–102.

[7] ——, “A fast algorithm to find overlapping communities in
networks,” in Machine Learning and Knowledge Discovery in
Databases, ser. Lecture Notes in Computer Science, 2008, vol. 5211,
pp. 408–423.

[8] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal
multiscale complexity in networks,” Nature, vol. 466, pp. 761–764,
Jun. 2010.

[9] J. Baumes, M. Goldberg, and M. Magdon-ismail, “Efficient
identification of overlapping communities,” in In IEEE International
Conference on Intelligence and Security Informatics (ISI, 2005, pp.
27–36.

[10] X. Xu, N. Yuruk, Z. Feng, and T. A. Schweiger, “Scan: a structural
clustering algorithm for networks,” in Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2007, pp. 824–833.

[11] J. Xie, B. K. Szymanski, and X. Liu, “Slpa: Uncovering overlapping
communities in social networks via a speaker-listener interaction
dynamic process,” in Data Mining Workshops (ICDMW), 2011 IEEE
11th International Conference on, 2011, pp. 344–349.

[12] C. Lee, F. Reid, A. McDaid, and N. Hurley, “Detecting highly
overlapping community structure by greedy clique expansion,” arXiv
preprint arXiv:1002.1827, 2010.

[13] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato,
“Finding statistically significant communities in networks,” PloS one,
vol. 6, no. 4, p. e18961, 2011.

[14] D. Goldstein and M. Langberg, “The dense k subgraph problem,”
CoRR, vol. abs/0912.5327, 2009.

[15] D. Gibson, R. Kumar, and A. Tomkins, “Discovering large dense
subgraphs in massive graphs,” in VLDB ’05: Proceedings of the 31st
international conference on Very large data bases, 2005, pp.
721–732.

[16] S. V. Bahman Bahmani, Ravi Kumar, “Densest Subgraph in
Streaming and MapReduce,” in VLDB ’12: Proceedings of the 38st
international conference on Very large data bases, 2012.

[17] N. Wang, J. Zhang, K.-L. Tan, and A. K. H. Tung, “On
triangulation-based dense neighborhood graphs discovery,” PVLDB,
vol. 4, no. 2, pp. 58–68, 2010.

[18] R. M. Karp, “Reducibility Among Combinatorial Problems,” in
Complexity of Computer Computations, 1972, pp. 85–103.

[19] I. Derényi, G. Palla, and T. Vicsek, “Clique Percolation in Random
Networks,” Physical Review Letters, vol. 94, no. 16, pp. 160 202+,
Apr. 2005.

[20] P. Erdos and A. Rényi, “On the evolution of random graphs,” in
Publication of the Mathematical Institue of the Hungaria Academy of
Sciences, 1960, pp. 17–61.

[21] E. Aarts and J. K. Lenstra, Eds., Local Search in Combinatorial
Optimization, 1997.

[22] R. Battiti and M. Protasi, “Reactive local search for the maximum
clique problem,” Algorithmica, vol. 29, no. 4, pp. 610–637, 2001.

[23] W. Pullan and H. H. Hoos, “Dynamic local search for the maximum
clique problem,” J. Artif. Int. Res., vol. 25, pp. 159–185, February
2006.

[24] A. Grosso, M. Locatelli, and W. Pullan, “Simple ingredients leading
to very efficient heuristics for the maximum clique problem,” Journal
of Heuristics, vol. 14, pp. 587–612, December 2008.

[25] J. Cheng, A. W.-c. Fu, and J. X. Yu, “Finding maximal cliques in
massive networks by h *-graph,” SIGMOD, pp. 447–458, 2010.

[26] M. Brunato, H. Hoos, and R. Battiti, “On effectively finding maximal
quasi-cliques in graphs,” Learning and Intelligent Optimization, pp.
41–55, 2008.

[27] N. Eagle, M. Macy, and R. Claxton, “Network Diversity and
Economic Development,” Science, vol. 328, no. 5981, pp.
1029–1031, 2010.

[28] R. S. Burt, Structural holes: The social structure of competition.
Harvard University Press, 1992.

[29] Q. Shi, B. Xu, X. Xu, Y. Xiao, W. Wang, and H. Wang, “Diversity of
social ties in scientific collaboration networks,” Physica A: Statistical
Mechanics and its Applications, vol. 390, no. 23?4, pp. 4627 – 4635,
2011.

[30] H. Han, H. Zha, and C. L. Giles, “Name disambiguation in author
citations using a k-way spectral clustering method,” in International
Conference on Digital Libraries. ACM, 2005, pp. 334–343.

[31] H. Han, L. Giles, H. Zha, C. Li, and K. Tsioutsiouliklis, “Two
supervised learning approaches for name disambiguation in author
citations,” in In JCDL ’04: Proceedings of the 4th ACM/IEEE joint
conference on Digital libraries, 2004, pp. 296–305.

