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Abstract. Online testing is a practical technique where test derivation and test
execution are combined into a single algorithm. In this paper we describe a new
online testing algorithm that optimizes the choice of test actions using Reinforce-
ment Learning (RL) techniques. This provides an advantage in covering system
behaviors in less time than with a purely random choice of test actions. Online
testing with conformance checking is modeled as a1 1

2
-player game, or Markov

Decision Process (MDP), between the tester as one player and the implementa-
tion under test (IUT) as the opponent. Our approach has been implemented in C#,
and benchmark results are presented in the paper. The specifications that generate
the tests are written as model programs in any .NET language such as C# or VB.

1 Introduction

Many software systems are reactive. The behavior of a reactive system, especially when
distributed or multithreaded, can be nondeterministic. For example, systems may pro-
duce spontaneous outputs like asynchronous events. Factors such as thread scheduling
are not entirely under the control of the tester but may still affect the behavior observed.
In these cases, a test suite generated offline may be infeasible, since all of the observ-
able behaviors would have to be encoded a priori as a decision tree, and the size of such
a decision tree can be very large.

Online testing(also called on-the-fly testing) can be more appropriate than offline
tests for reactive systems. The reason is that with online testing the tests may be dy-
namically adapted at runtime, effectively pruning the search space to include only
those behaviors actually observed instead of all possible behaviors. The interaction be-
tween tester and implementation under test (IUT) is seen as a game [1] where the tester
chooses moves based on the observed behavior of the implementation under test. Only
the tester is assumed to have a goal; the other player (the IUT) is unaware that it is
playing. This kind of game is known in the literature as a1 1

2 -player game [6].
Online testing is a form ofmodel-based testing (MBT), where the tester uses a spec-

ification (ormodel) of the system’s behavior to guide the testing and to detect the dis-
crepancies between the IUT and the model. It is an established technique, supported in
tools like TorX [18] and Spec Explorer [20]. For the purposes of this paper, we express
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the model as a set of guarded update rules that operate on an abstract state. This formu-
lation is called amodel program. Both the IUT and the model are viewed asinterface
automata [8] in order to establish a a formal conformance relation between them.

We distinguish between moves of the tester and moves of the IUT. The actions
available to the tester are calledcontrollableactions. The IUT’s responses areobserv-
ableactions. Aconformance failureoccurs when the IUT rejects a controllable action
produced by the model or when the model rejects an observable action produced by the
IUT.

A principal concern of online testing is thestrategyused to choose test actions. A
poor strategy may fail to provoke behaviors of interest or may take an infeasible amount
to time to achieve good coverage. One can think of strategy in economic terms. The cost
of testing increases with the number of test runs and the number of steps per run. We
want to minimize the number of steps taken to achieve a given level of coverage for
the possible behaviors. Exhaustive coverage is often infeasible. Instead, we strive for
the best coverage possible within fixed resource constraints. The main challenge is to
choose actions that minimize backtracking, since resetting the IUT to its initial state
can be an expensive operation.

A purely random strategy for selecting test actions can be wasteful in this regard,
since the tester may repeat actions that have already been tested or fail to systematically
explore the reachable model states. A random strategy cannot benefit from remembering
actions chosen in previous runs.

In this paper we propose an algorithm for online testing, using the ideas fromRe-
inforcement Learning (RL)[16, 12]. RL techniques address some of the drawbacks of
random action selection. Our algorithm is related to the anti-ant algorithm introduced
in [13], which avoids the generation of redundant test cases from UML diagrams.

RL refers to a collection of techniques in which anagentmakes moves (called
actions) with respect to thestateof an environment. Actions are associated withrewards
or costsin each state. The agent’s goal is to choose a sequence of actions to maximize
expected reward or, equivalently, to minimize expected cost.

The history needed to compute the strategy is encoded in a data structure called a
“Test-Trace Graph (TTG)”. We compare several such strategies below. The results show
that a greedy strategy (LeastCost) has a suboptimal solution. The probability of reaching
a failure state does not change with a purely randomized strategy (Random), though the
probability reduces monotonically in a randomized greedy strategy (RandomizedLeast-
Cost). This is because the probability in the latter case is negatively reinforced by the
number of times a failure state has been visited, whereas it remains same in the former
case.

The contributions of this paper are the following:

– We transform the online testing problem into a special case of reinforcement learn-
ing where the frequencies of various abstract behaviors are recorded. This allows
us to better choose controllable actions.

– We show with benchmarks that an RL-based approach can significantly outperform
random action selection.

The rest of the paper is organized as follows. In Section 2 we provide definitions for
model programs, interface automata and a conformance relation. In Section 3 we give a



detailed description of the algorithm. In Section 4 we give the experimental results from
our benchmarks. We discuss related work in Section 5 and open problems and future
work in Section 6.

2 Testing Theory

In model-based testing a tester uses a specification for two purposes. One isconfor-
mance checking: to decide if the IUT behaves as expected or specified. The other is
scenario control: which actions should be taken in which order and pattern. Model-
based testing is currently a growing practice in industry. In many respects the second
purpose is the main use of models to drive tests and relates closely to test scenarios
is traditional testing. However, with a growing complexity and need for protocol level
testing and interaction testing, the first purpose is gaining importance.

Formally, model programs are mapped (unwound) to interface automata in order to
do conformance checking. The conformance relation that is used can be defined as a
form of alternating refinement. This form of testing is provided by the Spec Explorer
tool, see e.g. [20].

2.1 Model programs as Specifications

States arememoriesthat are finite mappings from (memory) locations to a fixed uni-
verse of values. By an update rule we mean here a finite representation of a function
that given a memory (state) produces an updated memory (state). An update rulep may
be parameterized with respect to a sequence offormal input parameters̄x, denoted by
p[x̄]. The instantiation ofp[x̄] with input valuesv̄ of appropriate type, is denoted by
p[v̄]. In general, an update rule may benondeterministic, in which case it may yield
several states from a given state and given inputs. Thus, anupdate rulep[x1, . . . , xn]
denotes a relation[[p]] ⊆ States×Valuesn×States. Whenp is deterministic, we consider
[[p]] as a function[[p]] : States× Valuesn → Statesand we say that theinvocation(or
execution) of p[v̄] from states yields the state[[p]](s, v̄).

A guard ϕ is a state dependent formula that may contain free logic variablesx̄ =
x1, . . . , xn, denoted byϕ[x̄]; ϕ is closedif it contains no free variables. Given values
v̄ = v1 . . . , vn we writeϕ[v̄] for the replacement ofxi in ϕ by vi for 1 ≤ i ≤ n. A
closed formulaϕ has the standard truth interpretations |= ϕ in a states. A guarded
update ruleis a pair(ϕ, p) containing a guardϕ[x̄] and an update rulep[x̄]; intuitively
(ϕ, p) limits the execution ofp to those states and argumentsv̄ whereϕ[v̄] holds.

Definition 1. A model programP has the following components.

– A state spaceStates.
– A value spaceValues.
– An initial states0 ∈ States,
– A finite vocabularyΣ of action symbolspartitioned into two disjoint sets

• Σc of controllableaction symbols, and
• Σo of observableaction symbols.

– A resetaction symbolReset∈ Σc.



– A family (ϕf , pf )f∈Σ of guarded update rules.
• Thearity of f is the number of input parameters ofpf .
• The arity ofResetis 0 and[[pReset]](s) = s0 for all s |= ϕReset.

P is deterministicif, for all action symbolsf ∈ Σ, pf is deterministic.

An n-ary action symbol has logically the term interpretation, i.e. two ground terms
whose function symbols are action symbols are equal if and only if the action sym-
bols are identical and their corresponding arguments are equal. Anactionhas the form
f(v1, . . . , vn) wheref is ann-ary action symbol and eachvi is a value that matches the
required type of the corresponding input parameter ofpf . We say that an actionf(v̄)
is enabledin a states if s |= ϕ(v̄). Notice the two special cases regarding reset: one
when reset is always disabled (ϕReset= false), in which case the definition ofpResetis
irrelevant, and the other one when reset is always enabled (ϕReset= true), in which case
pResetmust be able to reestablish the initial state from any other program state.

We sometimes useactionto mean an action symbol, when this is clear from the con-
text or when the action symbol is nullary in which case there is no distinction between
the two.

2.2 Example:Recycling Robot

We show a model program of a collection ofrecycling robotswritten in C# in Figure 1.
A robot is a movable recycle-bin, it can either

1. move andsearchfor a can if its power level (measured in percentage) is above the
given threshold 30%, or

2. remain stationary andwait for people to dispose of a can if its power level is below
the given threshold 50%.

Notice that both cases are possible when the power level is between 30% and 50%. A
robot gets a reward by collecting cans. The reward is bigger when searching than while
waiting, but each search reduces the power level of the robot by 30%. A robot can be
rechargedwhen it is not fully charged, i.e when the power level is less than 100%. New
robots can bestarteddynamically provided that the total number of robots does not
exceed a limit (if such a limit is given).

Actions In this example, the action symbols areStart , Search , Wait andRecharge ,
where the first three symbols are classified as being controllable and the last one is
classified as being observable. All of the symbols are unary (i.e., they take one input).
All actions have the formf(i) wheref is one of the four action symbols andi is a
non-negative integer representing the id of a robot. The reset action is in this example
implicit, and is assumed to be enabled in all states.

States The state signature has three state variables, a mapRobot.Instances from
object ids (natural numbers) to robots (objects of typeRobot ), and two field value maps
power and reward that map robots to their corresponding power and reward values.
The initial state is the state where all those maps are empty.



class Robot : EnumeratedInstance // The base class keeps track of created robot instances
{

int power = 0;
int reward = 0;

}

class RobotModel
{

static int maxNoOfRobots = ...;

[Action]
static void Start(int robotId)
{

Assume.IsTrue(Robot.Instances.Count < maxNoOfRobots &&
¬ Robot.Instances.Count == robotId));

new Robot(robotId);
}

[Action]
static void Search(int robotId)
{

Assume.IsTrue(robotId ∈ Robot.Instances);
Robot robot = Robot.Instances[robotId];
Assume.IsTrue(robot.power > 30);

robot.power = robot.power - 30;
robot.reward = robot.reward + 2;

}

[Action]
static void Wait(int robotId)
{

Assume.IsTrue(robotId ∈ Robot.Instances);
Robot robot = Robot.Instances[robotId];
Assume.IsTrue(robot.power <= 50);

robot.reward = robot.reward + 1;
}

[Action(Kind = Observable)]
static void Recharge(int robotId)
{

Assume.IsTrue(robotId ∈ Robot.Instances);
Robot robot = Robot.Instances[robotId];
Assume.IsTrue(robot.power < 100);

robot.power = 100;
}

}

Fig. 1. Model Program of theRecycling Robotexample.

Guarded update rulesFor each of the four actionsf the guarded update rule(ϕf , pf ) is
defined by the corresponding static methodf of theRobotModel class. Given a robot
id i and a states, the guardϕf (i) is true ins, if all the Assume.IsTrue statements
evaluate totrue in s. Execution ofpf [i] corresponds to the method invocation off(i).
For example, in the initial state, says0, of the robot model, the single enabled action
is Start(0) . In the resulting state[[pStart ]](s0, 0) a new robot with id0 has been
created whose reward and power are0.

2.3 Deterministic model programs as interface automata

We use the notion of interface automata [8, 7] following the exposition in [7]. The view
of a model program as an interface automaton is important for formalizing the confor-
mance relation. To be consistent with the rest of the paper, we use the terms “control-
lable” and “observable” here instead of the terms “input” and “output” used in [7].



Definition 2. An interface automatonM has the following components:

– A setS of states.
– A nonempty subsetS init of S called theinitial states.
– Mutually disjoint sets ofcontrollable actionsAc andobservable actionsAo.
– Enabling functionsΓ c andΓ o from S to subsets ofAc andAo, respectively.
– A transition functionδ that maps a source state and an action enabled in the source

state to a target state.

In order to identify a component of an interface automatonM , we index that compo-
nent byM , unlessM is clear from the context. LetP be a deterministic model pro-
gram(States, Values, s0, Σ, Σc, Σo, Reset, (ϕf , pf )f∈Σ). P has the following straight-
forward denotation[[P ]] as an interface automaton:

S[[P ]] = States

S init
[[P ]] = {s0}

Ac
[[P ]] = {f(v̄) | f ∈ Σc, v̄ ⊆ Values}

Ao
[[P ]] = {f(v̄) | f ∈ Σo, v̄ ⊆ Values}

Γ c
[[P ]](s) = {f(v̄) ∈ Ac

[[P ]] | s |= ϕf (v̄)}
Γ o

[[P ]](s) = {f(v̄) ∈ Ao
[[P ]] | s |= ϕf (v̄)}

δ[[P ]](s, f(v̄)) = [[Pf ]](s, v̄) (for f ∈ Σ, s ∈ States, s |= ϕf (v̄))

Note thatδ[[P ]] is well-defined, sinceP is deterministic. In light of the above definition
we occasionally drop the distinction betweenP and the interface automaton[[P ]] it
denotes.

2.4 Implementing a model program as an interface automaton

A model programP exposes itself as an interface automaton through astepperthat
provides a particular “walk” through the interface automaton one transition at a time. A
stepper ofP is implemented through theIStepper interface defined below. A stepper
has an implicitcurrent statethat is initially the initial state ofP . In the current states
of a stepper, the enabled actions are given byΓ[[P ]](s). Doing a step in the current state
s of the stepper according to a given actiona corresponds to setting the current state of
the stepper toδ[[P ]](s, a). TheResetaction is handled separately and is not included in
the set of currently enabled actionsEnabledControllables .

interface IStepper
{

Sequence<Action> EnabledControllables { get ; }
Sequence<Action> EnabledObservables { get ; }
void DoStep(Action action);

void Reset();
bool ResetEnabled { get ; }

}



For conformance testing, an implementation is also assumed to be an interface au-
tomaton that is exposed through a stepper. If both the model and the IUT are interface
automata with a common action signature, we test the conformance of the two automata
using the refinement relation between interface automata as defined in [7].

3 Online testing algorithm

In this section we describe an algorithm that uses reinforcement learning to choose con-
trollable actions during conformance testing of an implementationI against a model
(specification)M . Both M and I are assumed to be given as model programs that
expose anIStepper interface to the algorithm. In addition, the model exposes an in-
terface that provides an abstract value of the current state of the model and an abstract
value of any action enabled in a given state. It is convenient to view this interface as an
extensionIModelStepper of the IStepper interface:

interface IModelStepper : IStepper
{

IComparable GetAbstractState(Action action);
IComparable GetAbstractAction(Action action);

}

The main motivation for these functions is to divide the state space and the action
space into equivalence classes that reflect “interesting” groups of states and actions for
the purposes of coverage.

Example 1.Consider the Robot model. We could define the abstract states and abstract
actions to be the concrete states and the concrete actions as follows. In other words,
there is no grouping of either states or actions in this case.

class RobotModel : IModelStepper
{

Sequence<Pair<int,int>> GetAbstractState(Action action)
{

return [(r.power, r.reward) | r in Robot.Instances]
}
Action GetAbstractAction(Action action);
{

return action;
}

}

Example 2.A more interesting case is if we abstract away the id of the robot and project
the state to the state of the robot doing the action, or a default value if the robot has not
been started yet. This is reasonable because the robots do not interact with each other.

class RobotModel : IModelStepper
{

Pair<int,int> GetAbstractState(Action action)
{

if (action.Name == "Start") return (-1, -1);
Robot r = Robot.Instances[action.Argument(0)];
return (r.power, r.reward);

}
string GetAbstractAction(Action action);
{

return action.Name;
}

}



We use pseudo code that is similar to the original implementation code written in
C# to describe the algorithm. We consider two controllable action selectionstrategies
Lct andRlc that are explained below, in addition to a memoryless purely randomized
strategyRnd.

enum Strategy {Rnd, Lct, Rlc}

The algorithm uses also an “oracle” to ask advice about whether to observe an
observable action from the implementation, to call a controllable action, or to end a
particular test run, during a single step of the algorithm. The oracle makes a random
choice between controlling an observing when an observable action is enabled in the
implementation at the same time as a controllable action is enabled in the model. If there
are no observable actions enabled in the implementation and no controllable actions
enabled in the model then the only meaningful advice the oracle can give is to end the
current test run.

enum Advice {Control, Observe, End}

class Oracle
{

IStepper M;
IStepper I;

Advice Advise()
{

bool noCtlrs = M.EnabledControllables.IsEmpty;
bool noObs = I.EnabledObservables.IsEmpty;

if (noCtlrs ∧ noObs) return Advice.End;
if (noCtlrs) return Advice.Observe;
if (noObs) return Advice.Control;
return new Choose(Advice.Control, Advice.Observe);

}
}

3.1 Top level loop

The top level loop of the algorithm is described by the following pseudo code.

class OnlineTesting
{

IModelStepper M;
IStepper I;
int maxRun;
int maxStep;
Strategy h;
Oracle oracle;

bool ResetEnabled { get return M.ResetEnabled ∧ I.ResetEnabled;}

void Run()
{

int run = 0;
while (run < maxRun)
{

RunTestCase(); // The core algorithm
if ( ¬ResetEnabled) return ; // Cannot continue, must abort
Reset();
run += 1;

}
}

}

The inputs to the algorithm are a model programMthat provides theIModelStepper

interface and is the specification, a model programI that provides theIStepper inter-
face an is the implementation under test, an upper boundmaxRun on the total number



of runs, an upper boundmaxStep on the total number of steps (state transitions) per
one run, a strategyh, and an oracleoracle as explained above.

3.2 The core algorithm

The algorithm keeps track of theweightsof abstract transitionsthat have occurred dur-
ing the test runs. An abstract transition is a pair(s, a) wheres is an abstract state anda
is an abstract action. The weight of an abstract transition is total number of times it has
occurred plus one, since the algorithm was started. The abstract state and action val-
ues are calculated using theIModelStepper interface introduced above. This weight
information is stored in atest trace graphthat is updated dynamically and is initially
empty.

class TestTraceGraph
{

Map<AbstractTransition, int> F = ∅; // Frequencies of explored abstract transitions
IModelStepper M;

int W(Action a) // Weights are positive
{

AbstractState s = M.GetAbstractState(a);
AbstractAction b = M.GetAbstractAction(a);
if ((s,b) ∈ F) return F[(s,b)]; else return 1;

}

void Update(Action a, int w)
{

AbstractState s = M.GetAbstractState(a);
AbstractAction b = M.GetAbstractAction(a);
F[(s,b)] = W(a) + w;

}
}

The next controllable action is chosen by the algorithm from a nonempty set of
controllable actions that are currently enabled, using the given strategy.

class TestTraceGraph
{

Action ChooseAction(Sequence<Action> acts, Strategy h)
{

switch (h)
{

case Strategy.Lct:
Action a = acts.Head;
Pair<Set<Action>,int> lct =

acts.Tail.Reduce( Reducer ,( {acts.Head },W(acts.Head)));
return lct.First.Choose();

case Strategy.Rlc:
Sequence<int> costs = [W(a) | a ∈ acts];
int prod = ...; // Compute an approximate common multiple ofcosts
Sequence<int> occurs = [prod/x | x ∈ costs];
Bag<Action> bg = {{(acts[i], occurs[i]) | i < acts.Count }};
return bg.Choose();

default :
return acts.Choose();

}
}

Pair<Set<Action>,int> Reducer (Action a, Pair<Set<Action>,int> lct)
{

if (W(a) < lct.Second) return ( {a}, w);
else if (W(a) == lct.Second) return (lct.First ∪ {a}, w);
else return lct;

}
}



Lct : Choose an action that has the “least cost”. Herecostof an actiona is measured
as the current weight of the abstract transition(s, b), wheres is the abstract state
computed in the current model state with respect toa, andb is the abstract action
corresponding toa, computed in the current model state. If several actions have the
same least cost, one is chosen randomly from among those.

Rlc : Choose an action with a likelihood that is inversely proportional to its current
cost, with cost having the same meaning as above. Intuitively this means that the
least frequent actions are the most favored ones. In other words, if the candidate ac-
tions are(ai)i<k for somek, having costs(ci)i<k, then the probability of selecting
the actionai is c−1

i /
∑

j 6=i c−1
j . The implementation uses a built-in bag construct

to make such a choice.

Rnd: Make a random choice.

The algorithm runs one test case until, either a conformance failure occurs (in form
of a violation of the refinement relation between[[M]] and[[I ]]), or until the given maxi-
mum number of steps has been reached.

class OnlineTesting
{

TestTraceGraph ttg = new TestTraceGraph(M);

bool RunTestCase()
{

int step = 0;
while (step < maxStep)
{

Advice advice = oracle.Advise();

if (advice == Advice.Control)
{

Sequence<Action> cs = M.EnabledControllables;
Action c = ttg.ChooseAction(cs, h);
ttg.Update(c, 1); // Increase the weight by 1
M.DoStep(c); // Do the step inM

if (c ∈ I.EnabledControllables)
I.DoStep(c); // Do the corresponding step inI

else
return false ; // Conformance failure occurred

}
else if (advice == Advice.Observe)
{

Sequence<Action> os = I.EnabledObservables;
// This is an abstract view of the execution of the implementation, in reality
// the implementation performs the choice itself and notifies the test harness
Action o = os.Choose();
I.DoStep(o);

if (o ∈ M.EnabledObservables)
{

ttg.Update(o, 1); // Increase the weight by 1
M.DoStep(o); // Do the corresponding step inM

}
else

return false ; // Conformance failure occurred

#endregion
}
else

return true ; // No more steps can be performed
step += 1;

}
return true ; // The test case succeeds

}
}



The Lct strategy is a greedy approach; it is very simple and relatively cheap to
compute. However, it favors actions that have been used less frequently, and thus may
systematically avoid long sequences of the same action, as is illustrated next.

Example 3.Consider a bounded stack of sizen. The stack has two controllable actions,
top andpush, enabled in every state. The greedy strategy will alternate between these
two actions until the stack is full. If we want to test the behavior ofpushwhen the
stack is full, we need to continue testing for at least2n steps (so thatpushis executed
n times).

In the given algorithm, the weight increase is always 1. This value can be made domain
specific and can vary depending both on the action and the current state, for example by
extending theIModelStepper interface with a function that provides the wait increase
for the given action in the current state and using that function instead of 1.

By using Rlc , the probability of selecting an action is inversely proportional to
its frequency. Thus, the more an action has been selected the less likely it is that it
will be selected again. So the potential problem shown in Example 3 is still there but
ameliorated, since no enabled action is excluded from the choice.

4 Experiments

We used the Robot model to conduct a few experiments with the algorithm in order to
evaluate and compare the different strategies. The main purpose was to see if the two
proposed strategiesLct or Rlc are useful by providing better or at least as good cov-
erage of the state space as the purely random approach. Since we are interested in state
and transition coverage only, we ran the algorithm against a correct implementation.
We ran the algorithm with a different maximum number of robots, different abstraction
functions introduced in the examples above, and different limits on the total number of
runs and the total number of steps per run. The experiments are summarized in Tables 1
and 2. We ran each case independently 50 times, the entries in the tables are shown on
the formm±σ wherem is the mean of the obtained results andσ is the standard devia-
tion. The absolute running times are shown only for comparison, the concrete machine
was a 3GHz Pentium 4.

If states and actions are not grouped at all, by assuming the definitions given in
Example 1, the majority of abstract transitions will occur only a single time and the
strategies perform more or less as the random case, which is shown in Table 1. One can
see thatLct performs marginally better thanRnd when the number of robots and the
number of runs increases.

When the states and the actions are mapped to abstract values, as defined in Ex-
ample 2, thenLct starts finding many more abstract states thanRnd as the number of
robots grows. The robot id is ignored by the abstraction and thus concrete transitions
of different robots that differ only by the id are mapped to the same abstract transition.
Overall this will have the effect that theLct approach will favor actions that transition
to new abstract states. The same is true for theRlc case but the increase in coverage is
smaller.



Table 1.Execution of the online algorithm on the Robot model without grouping.

Parameters Lct Rlc Rnd
Robots Runs Steps #States t(ms) #States t(ms) #States t(ms)

1 1 100 100± 0 3 100± 0 1 100± 0 1
1 10 100 420± 11 20 415± 8 19 414± 9 15
1 100 100 503± 3 275 503± 3 241 502± 2 172
1 100 500 2485± 5 1303 2485± 5 1292 2485± 6 968
2 1 100 100± 0 3 100± 0 1 100± 0 2
2 10 100 951± 8 24 941± 10 22 938± 12 14
2 100 100 7449± 83 286 7085± 110 284 7055± 114 201
2 100 500 44119± 225 1548 42437± 339 1479 42364± 289 1040
5 1 100 100± 0 5 100± 0 3 100± 0 1
5 10 100 972± 3 42 971± 3 37 969± 4 18
5 100 100 9368± 17 516 9328± 22 468 9322± 24 297
5 100 500 49364± 19 2794 49330± 25 2541 49320± 19 1587

Table 2. Execution of the online algorithm on the Robot model with state grouping and action
grouping.

Parameters Lct Rlc Rnd
Robots Runs Steps #States t(ms) #States t(ms) #States t(ms)

1 1 100 100± 0 3 100± 0 <1 100± 0 <1
1 10 100 417± 9 9 413± 8 7 416± 8 4
1 100 100 502± 2 100 503± 3 88 502± 2 44
1 100 500 2486± 5 508 2486± 6 417 2484± 6 234
2 1 100 100± 0 1 90± 3 <1 93± 5 <1
2 10 100 419± 7 10 284± 21 9 237± 8 4
2 100 100 502± 3 106 437± 12 96 293± 6 46
2 100 500 2485± 5 561 1602± 33 506 1324± 15 241
5 1 100 100± 0 <1 66± 4 1 61± 2 <1
5 10 100 418± 10 10 279± 30 11 117± 5 5
5 100 100 503± 3 115 472± 7 116 155± 7 50
5 100 500 2484± 5 561 1696± 96 657 582± 10 247
5 100 1000 4949± 8 1200 2467± 95 1388 1088± 13 540
10 10 100 418± 9 10 293± 25 12 91± 6 5
10 100 100 502± 3 103 473± 6 137 128± 6 59
10 100 1000 4951± 11 1131 3541± 198 1718 602± 10 578
10 1000 1000 4985± 8 12521 4352± 66 18043 654± 9 5953

The Robot case study is representative for models that deal with multiple agents
at the same time, which is a typical case in testing of multi-threaded software [20].
Often the threads are mostly independent, an abstraction technique that can be used
in this context is to look at the part of the state that belongs to the agent doing the
action. This is an instance of so-called multiple state-grouping approach that is also
used as an exploration technique for FSM generation [4]. This is exactly what is done
in Example 2. It seems thatLct is a promising heuristic for online testing of these kinds
of models. One can note that, the coverage provided by the random approach degrades
almost by half as the number of robots is doubled (for example from 5 to 10).

5 Related work

The basic idea of online testing has been introduced in the context of labeled transition
systems using ioco theory [3, 17, 19] and implemented in the TorX tool [18]. TGV [11]
is another tool frequently used for online or on-the-fly test generation that uses ioco.



Ioco theory is a formal testing theory based on labeled transition systems with input
actions and output actions. Interface automata [7] are suitable for the game view [5]
of online testing and provide the foundation for the conformance relation that we use.
Online testing with model programs in the SpecExplorer tool is discussed in in [20].
The algorithm in [20] does not use learning, and as far as we know learning algorithms
have not been considered in the context of model based testing. The relation between
ioco and refinement of interface automata is briefly discussed in [20]. Specifications
given by a guarded command language are used also in [15].

In Black-box testing, some work [14] has been done which uses supervised learning
procedures. As far as we know, no previous work has addressed online testing with
learning in the context of Model Based Testing. The main intuition behind our algorithm
is similar to an anti-ant approach [13] used for test case generation form UML diagrams.
From the game point of view, the online testing problem is a1 1

2 -player game. It is
known that1 1

2 -player games are Markov Decision Processes [6]. The view of finite
explorations of model programs for offline test case generation as negative total reward
Markov decision problems with infinite horizon are studied in [2].

6 Open problems and future work

One of the interesting areas that is also practically very relevant is to gain better un-
derstating of approaches for online testing that learn from model-coverage that uses
abstractions. The experiments reported in Section 4 exploited that idea to a certain ex-
tent by using state and action abstraction through theIModelStepper interface, but
the general technique and theory need to be developed further. Such abstraction func-
tions can either be user-provided [9, 4] or automatically generated from program text
similar to iterative refinement [15].

Currently we have an implementation of the presented algorithm using a modeling
library developed in C#. As a short-term goal, we are working on a more detailed report
where we are considering larger case studies.

The algorithm can also be adapted to run without a model, just as a semi-random
(stress) testing tool of implementations. In that case the history of used actions is kept
solely based on the test runs of the implementation. In this case, erroneous behaviors
would for example manifest themselves through unexpected exceptions thrown by the
implementation, rather than trough conformance violations.
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