Programming with Managed Time

Sean McDirmid

Microsoft Research
Beijing China
smcdirm@microsoft.com

Abstract

Most languages expose the computer’s ability to globally
read and write memory at any time. Programmers must then
choreograph control flow so all reads and writes occur in cor-
rect relative orders, which can be difficult particularly when
dealing with initialization, reactivity, and concurrency. Just
as many languages now manage memory to unburden us
from properly freeing memory, they should also manage
time to automatically order memory accesses for us in the
interests of comprehensibility, correctness, and simplicity.
Time management is a general language feature with a large
design space that is largely unexplored; we offer this per-
spective to relate prior work and guide future research.

We introduce Glitch as a form of managed time that re-
plays code for an appearance of simultaneous memory up-
dates, avoiding the need for manual order. The key to such
replay reaching consistent program states is an ability to re-
order and rollback updates as needed, restricting the imper-
ative model while retaining the basic concepts of memory
access and control flow. This approach can also handle code
to enable live programming that incrementally revises pro-
gram executions in an IDE under arbitrary code changes.

1. Introduction

Computers present us with a bleak experience of time: any
memory location can be written at any time, determined only
by global control flow built from jumps and branches. Pro-
grammers must then tediously coordinate state updates by
carefully initializing objects so their fields are not read too
early, reactively repairing views so that they are consistent
with changing models; organizing analyses (e.g. compila-
tion) into multiple passes so updates (e.g. symbol table en-
tries) are visible where needed; locking resources that can be

[Copyright notice will appear here once ’preprint’ option is removed.]

Jonathan Edwards

MIT CSAIL
Cambridge, MA USA

edwards@csail.mit.edu

manipulated concurrently; and so on. Although immutability
is often touted as a solution to these complexities, the ability
to update state directly remains convenient and popular.

We propose that programming languages address state
update order by abstracting away from the computer’s model
of time; i.e. they should manage time. We draw an analogy
with managed memory: we now widely accept that lan-
guages should unburden us from the hard problem of cor-
rectly freeing memory. Languages should likewise correctly
order state updates for us by hiding computer time.

Managed time as a concept relates and contrasts past and
ongoing efforts to provide a useful perspective to assess an
entire design space of possible solutions and suggest future
research. Time is also a fundamental problem for improv-
ing the programming experience via live programming that
provides programmers with continuous feedback about how
code executes [23]]. Managed time enables a “steady frame”
view of program execution to reason about this feedback. It
also aides in incrementally revising execution so live pro-
gramming can be realized beyond select tame examples.

This paper presents Glitch, a new form of managed time
where state updates appear to occur simultaneously through
code replay. Glitch emphasizes programmability by retain-
ing the familiar imperative programming model, restricting
it instead with state updates that are both commutative (or-
der free) and can be rolled back. Despite these restrictions,
complex useful programs from compilers to games are still
expressible. Additionally, Glitch is fully live: it enables live
programming with time travel to past program executions,
which are incrementally repaired in response to code edits.

We introduce Glitch by example in Section [2} Section [3]
describes the techniques needed to realize Glitch while Sec-
tion[]presents our experience with it. Section[5|discusses the
past and present of managed time; in particular, approaches
such as Functional Reactive Programming (FRP) [16]], Con-
current Revisions [5], Bloom [[1]], and LVars [29] tame state
update with various techniques (reactive dataflow signals,
isolation, strict monotonicity), making different tradeoffs.
Section [6] concludes with a future of managed time.

2014/8/22

trait Vertex:
set reach, edges
for v in _edges:
_reach.insert(v)
for win v._reach:
_reach.add(w)
def makeEdge(v):
_edges.insert(v)

Figure 1: The Vertex trait.

2. Glitch by Example

Consider three columns of code written in YinYang [32], a
language based on Glitch with a Python-like [46] syntax:

cellx,y,z y =20 one:

X=y+z z2=22 z=10
All reads and writes to variable-like cells, as well other state
constructs, execute simultaneously, meaning all reads can
see all writes. Before event e fires, reading the x cell any-
where will result in 42 even though x’s assignment lexically
precedes those of y and z. Computations that depend on the
same changing state are updated at the same time; e.g. z be-
comes 10 when e fires, causing x to change from 42 to 30.

State definition and update in Glitch can be encapsulated

in procedures and objects; consider:
trait Temperature:

cell _value

def fahrenheit: return _value

def celsius: return 5 * (value - 32) / 9

def setFahrenheit(v): .value =v

def setCelsius(v): value=9 * (v+32) / 5

Here the Temperature trait (a mixin-like class) maintains a
temperature that can be read or set in either Fahrenheit or
Celsius units. Reads and writes to a temperature object’s
state, consisting of a private ,valueP_-] cell, are simultaneous
as in the last example; consider:

cell x,y y =50

object tem is Temperature tem.setFahrenheit(y)

x = tem.celsius
This code’s execution assigns 10 to x. If y later changes from
50 to 70, x would become 21.11 at the same time.

State and updates can more safely be encapsulated in
modules since simultaneous execution eliminates side ef-
fect ordering problems. Consider the definition of a Vertex
trait in Figure [I] The statements in a trait execute during the
construction of any object that extends the trait. Object con-
struction executes simultaneously with the rest of the code,
not only eliminating initialization orders, but also allowing
them to encode object invariants; e.g. a Vertex object’s con-
structor can observe and react to all state updates performed
by makeEdge method calls on it.

Sets, like cells, are state constructs for expressing collec-
tions. A Vertex object’s _reach set always contains all vertices

! Python’s underscore practice is used to specify private members.

in its vertex edge transitive closure. Computing a transitive
closure in the presences of cycles normally requires explicit
multiple passes because result sets must be read and writ-
ten multiple times, but these passes are hidden from the pro-
grammer in Figure[I] Glitch instead replays the code until an
iterative fixed point is reached; consider:

object a, b, ¢ are Vertex b.makeEdge(c)

b.makeEdge(a) c.makeEdge(b)

Glitch replays the Vertex constructor on object b at least
twice so that its _reach set contains all a, ¢, and itself. Glitch
automatically computes fix points for cyclic dependencies,
which are common and often unavoidable. Much of Glitch’s
technical complexity goes into handling cyclic dependencies
work negation and retracted state updates (see Section[3).
Simultaneous execution prevents the direct encoding of

cyclic updates like [x =x + 1] that diverge since their own
updates cause them to replay! Glitch instead provides accu-
mulators as state constructs (like cells and sets) that support
commutative updates (e.g. sums); consider:

sumx =0 y =X X4+=1

celly X4=2
All += ops on a sum accumulator can be executed in any or-
der. Intermediate x values are not observable so the y cell is
assigned to 3 rather than 0, 1 or 2. Removing any += op will
trigger a -= op to incrementally “rollback” the update. Sec-
tion [3] discusses how both commutativity and rollback play
big roles in all state constructs, not just accumulators.

Tick Tock Goes the Clock

Although Glitch’s simultaneous execution hides computer
time, programmers must still deal with “real” time as defined
by discrete event occurrences; e.g. when a key is pressed, a
timer expires, or a client request is received. Event-handling
code executes differently from non-handler code: it only sees
the state immediately prior to the event, and its updates are
only visible after the event. With these semantics, a handler
can encode a stepped state update like [x = x + y| that would
normally cause divergence. However this update is discrete:
only x and y’s values at the event are read, while x’s new
value is only seen after the event; the update cannot see itself.

Consider Figure[2]'s Particle trait that extends objects with
simple Verlet integrators using two last positions (position
and _last) to compute a _next position with an implied veloc-
ity. Particle constraints are expressed as to positions in relax
method calls that are interpolated from the implicit next po-
sition; the interpolated positions are then accumulated in the
_relaxed sum accumulator and counted by the _count so that
particles can be constrained by multiple relax calls.

Event handlers are encoded using the on statement. Par-
ticle handles global Tick events by assigning the particle’s
position to an average of its _relaxed positions. The particle’s
position at the event must also be saved in the last cell so that
it can be used in successive next computations. The Particle
trait can then be used as follows:

2014/8/22

trait Particle:
cell position = Vec(0, 0), _last = position
sum _relaxed = Vec(0, 0), count=0

def _next: return 2 * position - _last

def relax(to, strength):
_relaxed += __next * (1 - strength) + to * strength
_count +=1
on Tick:
if .count == 0: position = _next
else: position = _relaxed / _count
_last = position # comment: save position for use in next step

Figure 2: The Particle trait.

a.relax(Vec(5, 5), 0.025)
b.relax(Vec(0, 0), 0.025)

This code creates two particles a and b, where a moves to
(5,5) while b both chases a and moves to (0,0). On every Tick
event, position and _last fields are discretely updated, creating
a new result for _next that induces Relax call replays, adjust-
ing the _relaxed values used on the next Tick event.

Many continuous behaviors must execute after an event
occurs; e.g. consider opening a window that exists until
dismissed. Event handlers can specify code that is subject to
simultaneous execution in time following an event; consider:

object a, b are Particle
b.relax(a.position, 0.01)

on widget.mouseDown:
cell pw = widget.position
cell pm = MousePosition

after:
widget.position = pw + (MousePosition - pm)
on widget.mouseUp:
widget.position = widget.position # hold widget position
brea stop the most inner after block

This code implements a typical Ul widget mouse drag
adapter that uses resolution resilient non-accumulated mouse
position deltas. When the mouse button is pushed down on
widget, the cell positions of the widget and mouse are stored
in fresh cells. A continuous future-influenced execution is
then specified as an after block that moves the widget with
the mouse. Finally, when the mouse goes up, a break state-
ment makes the after block stop. However, break causes all
after block behavior to be rolled back, including the widget
position assignment! To avoid reverting widget’s position,
its position is assigned to itself in the handler, holding the
position via Glitch’s discrete update semantics.

3. Making a Time Machine

Glitch’s simultaneous execution is a powerful illusion con-
jured by tracing state dependencies as statements execute,
and replaying them as needed so that all statements are guar-
anteed to see each other’s state updates. A task is Glitch’s
incremental unit of replay; a complete program execution
consists of a tree of tasks whose boundaries are explicitly
specified in code. Pseudocode for task replay is shown in
Figure[8] When a task is replayed (Replay), all of its existing

trait Task:
def Replay():
for u in updates:

u.stale = true # mark all existing updates as stale

Exec() # do custom behavior of task
for u in updates:
if u.stale:
u.Rollback() # Roll back updates that are still stale
for t in u.state.depends:
t.Damage()

updates.Remove(u)

def Update(u): # do state update during Exec

if u.stale:
u.stale = false # update is existing
else: # update is fresh
if u.Install(): # perform the update
updates.Add(u)
for t in u.state.depends:
t.Damage()
else: ... # does not commute, error!

def Read(state): # read state during Exec
state.depends.Add(this) # add as dependency to state
return state.value

Figure 3: Imperative pseudocode for task replay; note this is
standard imperative code rather than YinYang code.

updates are marked as stale. During task execution (Exec),
updates are made through calls to Update, which either un-
stales the update as stale if it pre-exists, or otherwise installs
it. If an update is still stale after Exec finishes, the update
is no longer performed and so is rolled back. Rollback is
update specific: an accumulator operation is reversed; a cell
assignment is undone, and an inserted element is removed
from a set. During Exec, a task is added as a dependency to
any state it reads (state.depends) so it can be damaged when
an update on the state is installed or rolled back. Glitch then
repairs damaged tasks by replaying them, which can cause
damage to more tasks, until a fix point is reached where no
tasks need to be repaired. As an example, consider:

sets object x, y, z
task: # task:i task: # taskj task: # taskk
if 1s.contains(x): s.insert(x) if s.contains(y):
s.insert(y) s.insert(z)

Tasks are defined in task blocks (here they are also named
in comments). A possible execution of this code is shown in
Figure [4] Assuming taski (first-column) is played first, set s
will not contains x and so y will be added to it. Next, task;
(second-column) plays, adding x to s to damage taski, while
task:k (third-column) plays adding z to s because s contains
x. When taski is replayed, s now contains x and s.insert(y)
does not execute, becoming stale to be rolled back as per
Figure[3[s pseudocode. This rollback causes taskk to be dam-
aged, whose replay then causes the addition of z to be re-
moved from s. A more optimal replay order would be to play
taskj first, avoiding replaying task:i and task:k more than once.
Glitch cannot guarantee optimal replay orders as it does not
maintain a centralized dependency graph to sort over.

2014/8/22

task:i read s[x]
write s[y]

:

write s[x] +‘ damage task:i ‘

—+
Q
wn
=~

j

task:k read s[y]
write s[z]

task:i read s[x]
writesfy} [+ damage task:k

task:k read s[y]

B e

£l 8l e

read a.edges

read b. edges ¢
read c. edges ¢

read-d

write b.edges[c] .
write c.edges[b] |,

read a.edges
read b.edges
wrtha-braachiad
write b._reach[c]
read a._reach
read c._reach |,
read c.edges

write c._reach[b] |
3 read b._reach
st sl

write c._reach[c]

read b.edges
read c._reach
write c._reach[b]

Figure 4: An illustration of how Glitch executes a program; struck
through writes are rolled back.

For simultaneous execution to work, all state updates
must be commutative so that they can be replayed in ar-
bitrary orders without altering final results. Commutativity
is very restrictive: while adding to a set or operating on an
accumulator is commutative, cell assignment is not in the
general case. Glitch restricts multiple simultaneous assign-
ments to a cell to have equal values. Unequal assignments
are flagged as run time errors; consider:

cellx,y,z y=20 z=10

X=y+2z z=22 re-assign error
Reassignment of z to 10 is presented as an error to the
programmer in the editor in the above code. Some re-
assignments can be resolved gracefully without error; e.g.
an event-based discrete state update will have priority over
a state update that pre-existed the event, or a default cell
assignment in a trait can be subsumed in an extending trait.

The decomposition of a program into tasks does not affect
program behavior, only performance. More numerous but
smaller tasks can improve incremental performance at the
expense of batch performance; e.g. for a compiler, executing
the parsing and type checking of all AST nodes in their
own tasks leads to a more responsive editing experience
as replay is limited to nodes affected by the edit, but it
can also lead to slower initial code buffer loads that rely
on batch performance. Better incremental performance can
be realized if code that likely depends on the same state
is clustered into the same task, since such code is likely
to be replayed together on a change. For this reason, task
decomposition is left to programmers.

State updates, object allocations, and sub-task executions
must persist update logs and so are keyed with stable unique
locations that are reproducible across task replays. A lo-
cation in YinYang, our language built on top of Glitch, is
formed via the memoized lexical token of the expression be-
ing executed, changed into a unique path that includes the
call stack and loop iterations that the expression is embed-
ded in. These locations are constant across replays even in

Figure 5: An illustration of how Glitch executes a program with
phases (numbered); arrows point to backward dependencies that
require a phase increase to read; struck out statements are rolled
back after d becomes false.

the presence of adjacent AST deletions and insertions, which
is crucial for live execution during code editing.

Taming Cycles with Phases

Dealing with cyclic state dependencies is tricky; consider:
LO: object a, b, c are Vertex L2: b.makeEdge(c)
L1:if d: b.makeEdge(a) L3: c.makeEdge(b)

This example is modified from the Vertex client code in
Section 2] to only make a an edge of b if d is true. Suppose
that this code initially executes where d is true; a is then in
the _reach sets of b and c. Now suppose d somehow becomes
false: according to the Task pseudocode in Figure [3] the
b.makeEdge(a) call is rolled back, so it is also removed from
b. reach; however, a will be re-added as reachable from b on
replay of L2 since a is still reachable from c!

This problem is analogous to garbage collecting refer-
ences that are “stuck” in cycles, which Glitch solves by per-
forming task replay in multiple phases. Phases tame cycles
by delaying certain state updates to later phases so that tasks
do not inadvertently depend on themselves. When an update
requires a task to be replayed its phase is set to zero. Ex-
ecution can only see state updates that occur at or before
the current phase; default values are substituted for updates
that cannot be seen. State updates made from a statement at
a later location than a statement observing that state could
indicate a cycle, and so are delayed to a subsequent phase.

Figure [3] illustrates the phased execution assuming in
phase 1 that d is true, a and c are added to b’s edges set, and
b is added to ¢’s edges set (top left of Figure 5. The Vertex
constructors that populate vertex reach sets all execute at
LO for a, b, and ¢, in that order, so they must wait until
phase 2 to add connected members to _reach sets (top right
of Figure |§[) Since b is constructed before ¢, ¢’s constructor
can see in phase 2 the addition of a and ¢ to b’s _reach set.
The inclusion of b in ¢’s reach set is not seen by object b’s
Vertex constructor until phase 3.

2014/8/22

€ € €3 €4 &s >
| X | 0 1 2 3 4 5
[I
l task:j ‘ [[0 [} o] A? tl?
{ v
| y| 0 1
| taskek | o 3
[2] 1 3

Figure 6: An illustration of how Glitch executes a program over
time; arrows point from read to written data; open circles represent
task replays.

Now, consider d becoming false, which is illustrated in
Figure [5] with struck out reads and writes. Phase 1 replays,
removinh a from b’s edges set. Phase 2 then replays, remov-
ing a from b’s _reach set and not re-adding it through a traver-
sal of ¢’s _reach set, which cannot see a there until phase 3 by
which time that insertion has been rolled back. Multi-phase
replay thus preserves programmability at the expense of re-
playing tasks for a number of extra phases.

Combining simultaneous execution with cyclic depen-
dency and non-monotonic change permits the encoding of
paradoxes that will always diverge; consider:

set k if Ik.contains(x): if k.contains(y):

object x, y k.insert(y) k.insert(x):
The not-contains x condition creates a paradox as it guards
adding an element that causes itself to become false. Glitch
cannot detect paradoxes statically or dynamically and will
just replay this code forever in a futile attempt to reach con-
sistency. Paradoxes, like infinite loops, cannot be prevented
or detected and so must be debugged manually.

Ripples in the Pond

New state does not just replace old state as a Glitch program
changes over time. Program execution and state structures
are instead versioned so past execution can be replayed and
revised, which is useful in two ways. First, Glitch can specu-
latively execute while previous executions are still unsettled;
e.g. because of uneven workloads, communication delays,
or pending 1O operations. Second, code can be treated as
mutable state to provide better feedback on how edits affect
execution; this capability necessarily involves “revising the
past,” which we discuss later.

State structures maintain time-indexed past histories
that can be modified like temporal retroactive data struc-
tures [12]. A cell maintains a list of values denoting start
and stop times for its assignments along with versioned trees
of its readers. Tasks are also split into multiple traces, each
with their own logs, when there behavior changes over time;

updates are coalesced across adjacent traces if they are not
rolled back; consider:

cellx=0,y,z

one: task: # task; task: # taskk

X=X+1 y = (x / 3).floor z=y*2+1
As illustrated in Figure [6] task; splits and is replayed when-
ever event e occurs, which causes x to be incremented by 1.
However, y is assigned in taskj in a way that does not change
as often, so task:k only splits on every third occurrence of e.

Figure [6] illustrates how Glitch avoids replaying execu-
tion if dependencies do not change. Glitch performs best on
programs that are femporally coherent [21]], meaning change
either does not occur often and/or is quite small; e.g. game
entities tend to be stationary or steadily moving—they do
not just teleport around! Temporal coherence is high in sim-
ulations, games, and most interactive programs.

Glitch can offer better incremental performance by co-
alescing unchanging state updates and only splitting tasks
when they are affected by changes. But this is not enough
to offset the cost of replay bookkeeping overhead. All reads
and writes must be logged for replay and rollback, extra re-
play phases are added to handle cycles, dynamic type checks
must be performed, and method dispatches resolved. These
overheads all impact Glitch performance.

There is no way around replaying a task when its depen-
dencies change. However, observe that bookkeeping work
really does not need to be redone on a replay whose exe-
cution just pushes around slightly different values, which is
common in highly temporally coherent programs. Because
objects have state with their own dependency queues, as-
signments to different objects are big changes that require
redoing bookkeeping work on replay; other big changes in-
clude set membership and branching behavior changes. A
small change is a change in non-object (stateless) values of
the same type; e.g. x goes from 3 to 4. Unlike a big change,
small change replays can safely reuse previously performed
bookkeeping: just the core computation needs to be redone.

As a trace is replayed after a big change, a fast path is
computed that can execute more quickly on small changes:
all reads and writes are pre-logged and assumed not to
change, type errors are pre-accounted for, and dispatches
are de-virtualized and inlined. On a small change, this fast
path is re-executed quickly, checking only a few invariants
such as whether branching behavior remains the same, vio-
lations of which trigger a big change. For example in Fig-
ure [6] changes to x always cause small changes since it is
just changing from one number to another; as a result task;
and task:k are replayed much more quickly after the construc-
tion of single traces. Fast paths do however add their own
overhead for computation and storage.

A time becomes consistent when all executions up to it
have played and no pending changes can affect them. Glitch
can then “forget” state and trace history relevant before this
time so programs to run for unbounded periods of time.

2014/8/22

Live Time Travel

Those who cannot change the past are condemned to start over.

Given Glitch’s ability to handle arbitrary changes to a task’s
behavior, it can incrementally handle code changes while
the program is running. As a trace is replayed, the code
it executes is traced as a dependency just like the state it
reads, allowing for replay when code is edited. Such replay
includes traces that executed in the past (if not forgotten)
so that an entire program execution can be reactively and
incrementally repaired according to how code changes.

The ability to change code in an executing program is
an essential part of live programming, which, as introduced
by Hancock [23]], provides programmers continuous feed-
back on how their code executes as they edit it. Hancock
observed that continuous feedback needs a steady frame to
be useful, meaning (i) relevant variables can be manipulated
at locations within the scene (the framing part), and (ii) that
variables are constantly present and meaningful (the steady
part). While previous work [32] dealt with framing, Glitch
addresses the “steady” aspect: given simultaneous execution,
each variable has only one observable value between any two
events—no stepping context needs to be considered when
examining a variable’s value.

Glitch can further provide the programming environment
with access to the program’s history, supporting novel de-
bugging experiences based on time travel, as envisioned by
Bret Victor’s Learnable Programming essay [48]] and his
earlier Inventing on Principle talk [47]. A programmer can
scrub through a program execution, allowing them to inspect
its state at different times. For example, a programmer can
inspect the trajectory of a bouncing ball by using a slider
to visualize the ball at various points in time. A program-
mer can also visualize multiple times of program execution
simultaneously using a film strip of frames [26], or can sam-
ple times using strobing; e.g. various positions of a bouncing
ball can be viewed in the same visualization, giving the pro-
grammer a more comprehensive view of how the ball moves
over time. Glitch aims to enable these richer programmer
experiences in the general case.

4. Experience

Glitch is implemented in C# and can be used as either a li-
brary for C# code or can underlay a language like YinYang.
Glitch is used as a library in the C# implementation of
YinYang’s compiler and editor. Code editor lines and blocks
are implemented as tasks whose execution determines sub-
task contents hierarchically. Language AST nodes are also
implemented as tasks, providing incremental parsing and se-
mantic analysis “for free” with what otherwise appears as a
typical batch-compiler implementation. Glitch’s iterative ex-
ecution allows parsing and semantic analysis to be encoded
without explicit multiple passes; e.g. forward symbols refer-

ences are resolved automatically by replaying code so previ-
ously undefined references see symbols when defined.

Our use of Glitch as a library is limited in two ways.
First, as explained in Section [3] locations must be provided
by C# code in an ad hoc way for use in preserving identity
and resolving conflicts. Second, given limitations in the UI
framework, all execution is limited to a single time driven by
unrecorded inputs that are changed outside of Glitch.

A predecessor to Glitch was conceived to support an in-
teractive Eclipse-based Scala IDE [39]]. In this case, one of
the authors was able to adapt Martin Odersky’s Scala com-
piler (scalac) in a few months to support managed time by
rolling back its non-functional operations, such as symbol ta-
ble updates that are already commutative. Changes to scalac
needed to support managed time were minimal: much of the
effort was spent ensuring that values had stable reproducible
identities so that non-changes could be recognized as AST
nodes were replayed. However some Scala language features
were difficult to deal with; e.g. case class constructors are
either created explicitly by the programmer or lazily when
needed, which was quite difficult to commute. This early ex-
periment with managed time eventually failed for logistical
reasons and the current Scala IDE uses laziness instead [38]].

Walking the Walk

Embedding Glitch within a procedural language as described
above is low-risk: whenever necessary we can escape the
confines of managed time back to the chaos of computer
time. However such embeddings fail to fully test the limita-
tions of managed time, nor fully reap the benefits of simpler
semantics. YinYang, used for the examples in Section[2] is a
“pure managed time” language without escape hatches.

YinYang can be used to implement user interfaces, games,
and even a compiler, but it is not clear how to express simple
things like an in-place bubble sort! Many classic algorithms
depend upon re-assignment in one time step and thus do not
naturally transliterate well into Glitch; similar limitations
occur in single-assignment languages.

Simultaneous execution has significant implications for
program and language design that we are still discovering.
YinYang avoids many of the conundrums of object construc-
tors, such as when exactly they execute relative to construc-
tors in other classes. Trait constructors can build cyclic struc-
tures, and execute along with extending constructors, so they
are a great place to maintain or check object invariants. Since
trait extension can be rolled back, YinYang can even support
dynamic inheritance as in Self [43]].

For 10, YinYang can replace convoluted callbacks with
simple explicit non-blocking control flow; consider:

val data = file.read()
if data.exists: ... # will be true eventually

This code would typically block until the data is available, so
a callback or asynchronous future are often used instead. In
contrast, a YinYang read call can return a value that means

2014/8/22

“not yet” where the calling task is replayed when the data
becomes available in a future time; as with the blocking
version, the directness of control flow is maintained. Unlike
implicit asynchronous constructs (futures), completion order
need not be considered to avoid race conditions.

Performance

Our current work with Glitch focuses on programmability
rather than performance: dependency tracing, recording his-
tory, state update logging, multi-phase replays, and dynamic
code change all have significant performance costs. Initial
experience with our prototype suggests that the fine tuning
allowed when Glitch is used as a library can scale well; e.g.
there are no noticeable problems in the C# implementation
of YinYang’s programming environment.

We initially found YinYang itself to be very slow: small
examples would execute and update quickly, but just a hun-
dred frames of simulating one particle would bring the sys-
tem to its knees. As mentioned in Section[3] this problem is
solvable by compiling traces and replaying them quickly for
small changes. Beyond reducing Glitch’s overhead, such an
approach can improve on dynamic language performance as
a form of specialization that is aware of type information. On
the other hand, the approach basically compiles everything
that is executed for future replays that might not ever come!
A comprehensive evaluation of this optimization as well as
an exploration of other optimizations is future work.

We take heart from the history of managed memory:
garbage collection performance was long a grave concern—
it was only when the benefits of managed memory became
more widely appreciated that large investments in perfor-
mance optimization were made, with highly successful re-
sults. We claim only that there are many avenues to explore
for optimizing the performance of Glitch, and that the bene-
fits of managed time make it worthwhile to do so.

Demos

Short companion demos have been prepared to better de-
scribe the live programming experience that Glitch enables;
please visit http://bit.ly/10euWtB|to see them.

5. The Past and Present of Managed Time

It all began with transactions: first in databases [20] and
later in programming languages [27]. Transactions isolate
asynchronous processes from seeing each other’s changes to
shared state, preventing them from interfering. Each trans-
action has it’s own time interval in which it has exclusive
access to shared state: other transactions are observed occur-
ring either entirely before or entirely afterward. The price
for this guarantee is the non-deterministic ordering of trans-
action execution and the need to sometimes abort and retry
transactions. Transactions are proven for isolating indepen-
dent asynchronous processes, but do not address ordering
changes made inside a transaction, nor coordinating multiple
causally connected transactions into larger-scale processes.

In Concurrent Revisions [3]], state is explicitly shared be-
tween tasks that then execute concurrently by “forking” and
“joining” revisions. As with transactions, revisions are “iso-
lated:” tasks manipulate their own private copies of shared
state that are merged with conflicts being resolved determin-
istically. Work in [6] puts forth the insight that concurrency,
parallelism, and incremental computation share similar task
and state decompositions. Cumulative types use commuta-
tivity to reduce task conflicts, which are extended in [7]] to
support distributed computing with eventual consistency.

LVars [29] enforce deterministic concurrency by only al-
lowing monotonically increasing updates to shared state,
which are naturally commutative. Interestingly, shared state
LVar reads are tamed via thresholds that encapsulate ob-
servers from final values that might not have been computed
yet. As a result, computations can proceed before final val-
ues are available, whereas Glitch must replay computations
that read intermediate state values. Bloom [1] likewise re-
lies on enforced monotonicity to achieve “CALM” (consis-
tency as logical monotonicity) where analysis detects non-
monotonic program parts that require coordination.

Finally, one of the author’s previous work introduces co-
herent reaction [14] where state changes trigger reactions
that in turn change other states. Like Glitch, a “coherent exe-
cution” order where reactions execute before others affected
by their changes is then discovered by detecting incoheren-
cies as they occur and rolling back their updates. Much of
the power of imperative programming is also maintained.

We suggest that Concurrent Revisions, LVars, Bloom,
Coherence, and Glitch are forms of managed time whose
contrasts shed light on the managed-time design space:

- Concurrent revisions “isolate” tasks from each other and
merge their effects afterward deterministically;

- LVars enforces strict monotonic updates while providing
threshold-based reads;

- Bloom’s “CALM consistency” verifies monotonicity to
detect where coordination is necessary;

- Coherence’s coherent execution that iteratively discovers a
coherent statement execution order; and

- Glitch’s simultaneous execution that maintains an illusion
of order-free execution through replay.

Reactive Programming

Synchronous Reactive Programming (SRP) [12} 9] is inspired
by digital circuits whose network of gates apparently execute
simultaneously within each clock cycle. Hardware clock cy-
cles are discrete “ticks” of time where interdependent oper-
ation results are buffered and fed into the next cycle. SRP
originally focused on compilation into formally verified dig-
ital circuits, but has been adapted for more general program-
ming [3} 43| 144]. SRP languages tend to restrict the compu-
tation within a tick to an acyclic dataflow graph, providing
expressions to buffer and control multi-tick computations.

2014/822

http://bit.ly/1oeuWtB

Trellis [13] is a Python library for automatic callback
management that reactively re-computes specific values.
Trellis’s abstractions are similar to databinding in production
frameworks like Microsoft’s WPF [36]] and Facebook’s Re-
act [17]] that can encode one-way data flow constraints. Con-
straint languages like Kaleidoscope [[18] are more general
performing continuous constraint solving of inequalities. In
contrast to these systems, continuous binding is Glitch’s de-
fault; in fact, special provisions must rather be made using
event handlers to prevent continuous replay from occurring.

Functional Reactive Programming (FRP) [16} 24] com-
bines reactive event processing and continuous binding by
abstracting time into stream-like signal data structures. FRP
makes time explicit in the programming model: computa-
tions can access the past and time-aware logic like integra-
tion can be expressed naively; Glitch programs must remem-
ber the past explicitly in event handlers. FRP offers an el-
egant unification whereby data-processing list comprehen-
sions (i.e. queries) can react to changes via signals; consider:

mouseVelBecky u = move offset becky
where offset = atRate vel u

vel = mouseMotion u

This code (taken from [15]]) causes the pic “Becky” to move
with the mouse. Given this dataflow style, all signals must
be plumbed centrally; e.g. all movement on Becky must be
composed into a single “move” operation. This is also true
with Glitch since a position cell could only be assigned once.
However, Glitch also supports accumulator and set state
constructs, providing more flexibility in how update logic
can be diffused in the program. Consider the Particle trait
in Figure 2} accumulators sum and count relax call results,
which are then used to assign position on each time step. In
contrast, since FRP’s pureness forgoes the ability to operate
on aliases, all relax operations must be composed centrally.
Likewise, FRP collections are specified as the output of
functions [37] whereas in Glitch they can be built from insert
calls on set references (as in Figure [T)).

The FRP paradigm focuses on dataflow: rather than
“handle” events with additional control flow, one instead
composes behavior and event signals. Rx [33] focuses on
composing similar event streams in otherwise imperative
languages, and there are also many visual languages like
VVVYV [34]] based on reactive dataflow as well. Dataflow is
not a clear win: while some composition tasks can become
easier, the hidden control flow leads to a very different de-
bugging experience! Glitch’s focus on direct control flow is
both familiar and very debuggable but lacks composability
of event logic, relying on control flow instead.

Push-based FRP systems like FrTime [10]], Flapjax [35],
and Frappé [[11] implement change propagation via a depen-
dency graph that is updated in a topological order to avoid
“glitches” where one node update can view state that is up-
dated by a later node update; the node then has to be updated
again to account for this inconsistency. Glitch does not try to

avoid intermediate glitches, which are in fact unavoidable
given cyclic dependencies that are not expressible in FRP.
However, Glitch will replay computations until all glitches
are flushed out assuming divergence does not occur.

FRP does not support cyclic dependencies because pure
functional code is naturally acyclic. In contrast, it is easy
to create cyclic dependencies in Glitch since it is based on
imperative programming: aliasing references can be mixed
up in an imperative operation like cell assignment or set
insertion. As an advantage, cycles must be dealt with so
Glitch automatically performs iterative processing as part of
its semantics, easing iterative tasks such as computing graph
vertex reachability (Figure [I). However, expensive multi-
phase logic is required to handle non-monotonic changes,
while programmers can easily encode paradoxes ([x = Ix])
directly or indirectly, causing divergence.

Virtual Time

The analogy between managed memory and time is not en-
tirely new; it was made in Flapjax [35] as “consistency as
analogous to garbage collection.” Grossman [22] explains
how transactional memory is to shared-memory concurrency
as garbage collection is to memory management; €.g. man-
ual approaches in both are not just hard, but unmodular.

But in fact, Jefferson proposed virtual time [25] back
in 1985 as an analogue to virtual memory with respect to
causally-connected distributed time in order to coordinate
distributed processes in discrete event simulation. Virtual
time is implemented with an optimistic Time Warp mech-
anism that processes messages as soon as possible, indepen-
dent of any message that might arrive in the future. Rollback
is used to recover from inconsistency that arises as messages
arrive out-of-order, where anti-messages are used to undo
messages that were done by the roll backed computation.

Glitch is heavily inspired by the Time Warp mechanism:
tasks are executed as soon as possible without regard to
missed future state updates, and rollback recovers from in-
consistency. Unlike Time Warp, Glitch does not rollback
computations when inconsistency is detected: instead, up-
dates are rolled back only after they are no longer done after
replay. Glitch’s time-versioned state structures are also in-
spired by Fujimoto’s space-time memory that allows Time
Warp to leverage shared memory [19].

Live Programming

Live programming presents a rich programming experience
that enhances the feedback between the programmer and ex-
ecuting program [23]]. Previous work by one of the author’s
observed that support for consistent change in an FRP-like
programming language is very useful in supporting live pro-
gramming experiences [31]], although dataflow limited its
expressiveness, partially inspiring this work. Work in [8] ac-
complishes live programming for a system where state is ex-
ternalized as inspired by stateless immediate-mode renders
used in high performance graphics; only the present Ul state

2014/8/22

is kept consistent in response to a code edit, while the model
state of the program is not repairable.

To fully realize live programming, we must solve the
problem of time. Indeed the current examples of live pro-
gramming are all cases with a narrow time gap: today we
know how to do live programming with pure functions
on primitive values as in spreadsheets [42, |50], through
dataflow [31}134], or at the top level of domain-specific pro-
grams like games and graphics [8} 23]].

Time-travel features have been added to conventional lan-
guage runtimes [4} 28} |41]]. Omniscient debugging [40] relies
on vast computing resources to trace and record entire pro-
gram executions, which is too expensive for casual use. Fo-
cusing on object histories alone [30] reduces resource usage,
but does not allow for complete time travel. Such facilities
are incrementally useful but do not go far enough to support
comprehensively live programming. We propose managed
time as a fundamental change to programming language se-
mantics that enables fully live programming.

6. The Future of Managed Time

There is still much to be done in the following areas:

- Usability. Current managed-time systems often have com-
plex semantics and ask for much programmer discipline.
For managed time to succeed, systems must be easy for
programmers to understand and use.

Expressiveness. Programmers must be able to write the
programs they want to write without hackery; e.g. how
would one write a code editor with FRP? Glitch moves
in this direction by supporting imperative operations, but
is still not fully expressive; e.g. it cannot express reassign-
ment without time to encode algorithms like bubblesort.

Performance. Early garbage collectors were too slow for
many, but eventually became viable as technology im-
proved. Likewise, the performance gap between managed
and unmanaged time systems will be reduced if adopted.
Our attempts in optimizing Glitch are quite early.

There are many tradeoffs to be made; e.g. Concurrent Revi-
sions [3] delivers good performance but requires program-
mers to adapt to its design constraints, while Glitch trades
performance for programmability.

Given their ability to automatically coordinate state up-
dates, managed time systems such as LVars [29] are naturally
parallel; Glitch is no exception but we have yet to explore
this aspect in depth. In particular, programs in Glitch could
be executed in an optimistically parallel manner where un-
founded optimism is dealt with through replay and roll back.
The ability to work with eventual consistency also aides in
efficient distributed computing where network delays make
atomicity expensive, as shown by Concurrent Revisions [7]],
Bloom [[1]], and Virtual Time [25]]. Glitch could also replay
tasks on multiple nodes, propagating state updates between
nodes so that consistency is achieved eventually.

Glitch treats time as linear, which is perhaps too limited.
Conversational programming [42] presents ideas on how
debugging can provide programmers with feedback on the
program they ‘“could” write will execute, rather than the
just the program they wrote already. Similarly, Warth et al’s
worlds construct [49] allows programmers to control the
scope of side effects, allowing them to evaluated multiple
possible worlds, throwing away ones found unwanted. To
support such systems, managed time systems like Glitch can
go beyond time travel to include branching speculative time,
allowing programmers to explore multiple possible realities
for their programs at once.

Concluding Remarks

The moral of our story is that time is of the essence in a large
set of difficult programming issues. Many approaches have
been explored in the past and new ones continue to emerge,
yet there is still no clear winner. We offer our perspective as
a map of the explored regions of alternative models of time,
pointing us toward the even larger unexplored regions where
new and better solutions may be found. We propose Glitch
as a case in point, and look forward to hearing reports from
others exploring this frontier.

References

[1] P. Alvaro, N. Conway, J. Hellerstein, and W. R. Marczak.
Consistency analysis in bloom: a calm and collected approach.
In CIDR, pages 249-260, 2011.

[2] G. Berry and L. Cosserat. The ESTEREL synchronous pro-
gramming language and its mathematical semantics. In CMU
Seminar on Concurrency, pages 389-448, 1985.

[3] G. Berry and M. Serrano. Hop and hiphop: Multitier web
orchestration. In Proc. of ICDCIT, pages 1-13, 2014.

[4] S. P. Booth and S. B. Jones. Walk backwards to happiness -
debugging by time travel. In Proc. of Automated and Algo-
rithmic Debugging, pages 171-183, 1997.

[5] S. Burckhardt, A. Baldassin, and D. Leijen. Concurrent pro-

gramming with revisions and isolation types. In Proc. of
OOPSLA, pages 691-707, 2010.

[6] S. Burckhardt, D. Leijen, C. Sadowski, J. Yi, and T. Ball. Two
for the price of one: A model for parallel and incremental
computation. In Proc. of OOPSLA, pages 427-444, 2011.

[7] S. Burckhardt, M. Fihndrich, D. Leijen, and B. P. Wood.
Cloud types for eventual consistency. In Proc. of ECOOP,
pages 283-307, 2012.

[8] S. Burckhardt, M. Fahndrich, P. de Halleux, J. Kato, S. Mc-
Dirmid, M. Moskal, and N. Tillmann. It’s alive! Continuous
feedback in UI programming. In Proc. of PLDI, 2013.

[9] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A
declarative language for programming synchronous systems.
In Proc. of POPL, pages 178—188, 1987.

[10] G. H. Cooper and S. Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In Proc. of ESOP, pages
294-308, 2006.

2014/8/22

[11] A. Courtney. Frappé: Functional reactive programming in
Java. In PADL, pages 29-44, 2001.

[12] E. D. Demaine, J. Iacono, and S. Langerman. Retroactive data
structures. ACM TALG, May 2007.

[13] P.J. Eby. Trellis. http:/pypi.python.org/pypi/Trellis, 2009.

[14] J. Edwards. Coherent reaction. In Proc. of Onward!, pages
925-932, 2009.

[15] C. Elliott. Composing reactive animations. |ttp:/conal.net/fran/
tutorial.htm, 1998.

[16] C. Elliott and P. Hudak. Functional reactive animation. In
Proc. of ICFP, pages 263-273, 1997.

[17] Facebook. React: A javascript library for building user inter-
faces. http:/facebook.github.io/react, 2014.

[18] B. N. Freeman-Benson. Kaleidoscope: mixing objects, con-
straints, and imperative programming. In Proc. of OOP-
SLA/ECOOP, pages 77-88, 1990.

[19] R. M. Fujimoto. The virtual time machine. In Proc. of SPAA,
pages 199-208, 1989.

[20] J. Gray. The transaction concept: Virtues and limitations
(invited paper). In VLDB, pages 144—154, 1981.

[21] E. Groller and W. Purgathofer. Coherence in computer graph-
ics. Technical report, Vienna University of Technology, 1992.

[22] D. Grossman. The transactional memory / garbage collection
analogy. In Proc. of OOPSLA, pages 695-706, 2007.

[23] C. M. Hancock. Real-time programming and the big ideas of
computational literacy. PhD thesis, MIT, 2003.

[24] P. Hudak. Principles of functional reactive programming.
ACM SIGSOFT Software Engineering Notes, 25(1), 2000.

[25] D. R. Jefferson. Virtual time. ACM TOPLAS, 7(3):404-425,
July 1985.

[26] J. Kato, S. McDirmid, and X. Cao. Dejavu: integrated support
for developing interactive camera-based programs. In Proc. of
UIST, pages 189-196, 2012.

[27] T. Knight. An architecture for mostly functional languages. In
Proc. of ACM Conference on LISP and Functional Program-
ming, pages 105-112, 1986.

[28] M. Kolling, B. Quig, A. Patterson, and J. Rosenberg. The
BluelJ system and its pedagogy. Journal of Computer Science
Education, 13(4), Dec. 2003.

[29] L. Kuper and R. R. Newton. LVars: lattice-based data struc-
tures for deterministic parallelism. In Proc. of FHPC, 2013.

[30] A. Lienhard, T. Girba, and O. Nierstrasz. Practical object-
oriented back-in-time debugging. In Proc. of ECOOP, pages
592-615, 2008.

[31] S. McDirmid. Living it up with a live programming language.
In Proc. of OOPSLA Onward!, pages 623-638, October 2007.

[32] S. McDirmid. Usable live programming. In Proc. of SPLASH
Onward!, Oct. 2013.

[33] E. Meijer. Your mouse is your database. ACM Queue, 10(3),
2012.

[34] Meso group. VVVV - a multipurpose toolKkit. http:/www.vvvv.org,

2009.
[35] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,

M. Greenberg, A. Bromfield, and S. Krishnamurthi. Flapjax:
a programming language for Ajax applications. In Proc. of
OOPSLA, pages 1-20, 2009.

[36] A. Nathan. Windows Presentation Foundation Unleashed
(WPF) (Unleashed). Sams, 2006.

[37] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive
programming, continued. In Proc. of Haskell, pages 51-64,
Oct. 2002.

[38] M. Odersky. personal communication, 2011.

[39] M. Odersky and M. Zenger. Scalable component abstractions.
In Proc. of OOPSLA, pages 41-57, 2005.

[40] G. Pothier, E. Tanter, and J. Piquer. Scalable omniscient
debugging. In Proc. of OOPSLA, pages 535-552, 2007.

[41] S. P. Reiss. Graphical program development with pecan pro-
gram development systems. In Proc. of PSDE, pages 30-41,
1984.

[42] A. Repenning. Conversational programming: Exploring inter-
active program analysis. In Proc. of Onward!, pages 63-74,
2013.

[43] F. Sant’Anna and R. lerusalimschy. LuaGravity, a reactive
language based on implicit invocation. In Proc. of SBLP,
pages 89-102, 2009.

[44] F. Sant’Anna et al. Safe system-level concurrency on
resource-constrained nodes. In Proc. of SenSys, 2013.

[45] D. Ungar and R. B. Smith. Self: the power of simplicity. In
Proc. of OOPSLA, pages 227-242, December 1987.

[46] G. van Rossum. The Python programming language manual.
http://www.python.org, 1990-2013.

[47] B. Victor. Inventing on principle. Invited talk at CUSEC, Jan.
2012.

[48] B. Victor. Learnable programming.
LearnableProgramming, Sept. 2012.

[49] A. Warth, Y. Ohshima, T. Kaehler, and A. C. Kay. Worlds:
Controlling the scope of side effects. In Proc. of ECOOP,
pages 179-203, 2011.

[50] E. M. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz, and
C. R. Cook. Does continuous visual feedback aid debugging
in direct-manipulation programming systems? In Proc. of
CHI, pages 258-265, 1997.

http://worrydream.com/

2014/8/22

http://pypi.python.org/pypi/Trellis
http://conal.net/fran/tutorial.htm
http://conal.net/fran/tutorial.htm
http://facebook.github.io/react
http://www.vvvv.org
http://www.python.org
http://worrydream.com/LearnableProgramming
http://worrydream.com/LearnableProgramming

	Introduction
	Glitch by Example
	Making a Time Machine
	Experience
	The Past and Present of Managed Time
	The Future of Managed Time

