
mPlatform: A Reconfigurable Architecture and Efficient
Data Sharing Mechanism for Modular Sensor Nodes

Dimitrios Lymberopoulos
Yale University

New Haven, CT, 06511
dkl22@pantheon.yale.edu

Nissanka B. Priyantha
Microsoft Research

Redmond, WA, 98052
bodhip@microsoft.com

Feng Zhao
Microsoft Research

Redmond, WA, 98052
zhao@microsoft.com

ABSTRACT
We present mPlatform, a new reconfigurable modular sensornet
platform that enables real-time processing on multiple heteroge-
neous processors. At the heart of the mPlatform is a scalable high-
performance communication bus connecting the different modules
of a node, allowing time-critical data to be shared without delay and
supporting reconfigurability at the hardware level. Furthermore,
the bus allows components of an application to span across differ-
ent processors/modules without incurring much overhead, thus eas-
ing the program development and supporting software reconfigura-
bility. We describe the communication architecture, protocol, and
hardware configuration, and the implementation in a low power,
high speed complex programmable logic device (CPLD). An asyn-
chronous interface decouples the local processor of each module
from the bus, allowing the bus to operate at the maximum desired
speed while letting the processors focus on their real time tasks
such as data collection and processing. Extensive experiments on
the mPlatform prototype have validated the scalability of the com-
munication architecture, and the high speed, reconfigurable inter-
module communication that is achieved at the expense of a small
increase in the power consumption. Finally, we demonstrate a real-
time sound source localization application on the mPlatform, with
four channels of acoustic data acquisition, FFT, and sound classi-
fication, that otherwise would be infeasible using traditional buses
such as I2C.

Categories and Subject Descriptors: C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded systems

General Terms: Design, Performance

Keywords: Modular Architecture, Reconfigurable Sensor Node,
CPLD, High Speed Data Bus.

1. INTRODUCTION
The diverse nature of sensornet applications, ranging from en-

vironmental and industrial monitoring to healthcare, smart homes
and entertainment, requires reconfigurability and extensibility at
the hardware platform level to meet application-specific needs. Tra-
ditionally, this is achieved by adding an application-specific daugh-
ter board with sensors and actuators to a main processing board

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’07, April 25-27, 2007, Cambridge, Massachusetts, USA.
Copyright 2007 ACM 978-1-59593-638-7/07/0004 ...$5.00.

that typically consists of a processor and a radio [12, 3, 13, 1, 9].
This one-application, one-platform approach serves the application
needs well but at the cost of potentially redundant development ef-
fort. The resulting platform is often limited in its ability to accom-
modate the diverse computing needs of different applications with
the same main processor board. This is evident from the sensor
platforms that the research community has built, such as the MK2
sensor node [16] for localization, the ATLAS node [6] for smart
homes, the iBadge node [8] for speech processing and localization,
and the sensor platform from Hitachi [19] for long-term real-time
health monitoring.

Recently, modular sensornet platforms have been proposed to
enable plug-and-play customization of a single platform for several
different application domains [17, 4, 2, 7]. These platforms, in-
stead of aiming for minimal form factor and power consumption,
focus on flexibility, scalability and reconfigurability of resources.
They typically comprise a collection of commonly used hardware
modules that share the same well defined interfaces. These inter-
faces allow the seamless interconnection of these modules in any
order and combination. Each module provides some computation,
storage, sensing, or communication resources. Users can choose
a set of hardware modules that best meet their application/research
needs and quickly create their own custom sensor network platform
without having to build new hardware from scratch.

However, the design of modular sensor network platforms is as
challenging as appealing. Since multiple hardware modules with
different resources are interfaced together to form a sensor node,
the need for sharing every module’s data across the stack automat-
ically comes up. This need tends to be one of the most important
bottlenecks in modular architectures. The reason is that in most
cases traditional serial buses such as I2C and SPI or serial proto-
cols such as RS232 are used to communicate data across the differ-
ent modules in the stack. These serial buses have two main draw-
backs. First, they do not scale well with the speed of commonly
used embedded processors. For instance, the high speed mode of
the often used addressable I2C bus is 400KHz, while the differ-
ent microprocessors used in sensor nodes such as AVR, MSP430
and ARM7 can be clocked up to 4MHz, 8MHz and 60MHz,
respectively. Second, these buses scale poorly with the number of
modules in the stack since only a single pair of modules can use the
bus at any given time.

Current state-of-the-art modular platforms [17] make use of switch-
able serial buses to address this problem. While this approach
works well when the communicating pairs of modules in the stack
are disjoint, it fails when multiple modules have to share data with
the same hardware module in the stack. For instance, this approach
does not work in the case of the Sound Source Localization ap-
plication described in Section 4, where 4 MSP430-based hardware

128

modules have to exchange data with a single ARM-based hardware
module at the same time. In addition, the switchable serial bus ap-
proach requires software to implement task-specific interfaces and
channel configurations, thus hindering the reusability and reconfig-
urability of both hardware and software.

mPlatform addresses this problem by introducing a new flexi-
ble, efficient and reconfigurable communication channel architec-
ture that better fits the needs of modular sensor network platforms.
Our architecture is based on the following key design requirements:
Resource Efficiency: the communication channel should be able
to operate at the maximum possible speed as defined by the com-
municating processors. For instance, the channel should be able
to operate much faster when data is being exchanged between two
ARM7 processors compared to two MSP430s.
Processor Independence: The communication channel should not
be aware of the capabilities of the two communication end points.
In other words, resource efficiency should be achieved automat-
ically without having to explicitly configure the communication
channel parameters according to the communicating processors ca-
pabilities. This allows the communication channel to transparently
support a diverse set of processors that can vary from low-end
CPUs such as AVR and MSP430 to more capable ARM7 and PXA
processors.
Scalability: The end-to-end communication channel delay should
not be significantly affected by the number of modules in the stack.
Fairness: Each module in the stack should use the bus indepen-
dently of the other modules in the sense that it does not have to
stall and wait for another module to complete its data exchange
before it starts sharing its own data.
Reconfigurability: Users should be able to easily adjust or even
completely re-design the communication channel in order to opti-
mize it according to their application needs without having to mod-
ify the hardware.

mPlatform meets these design requirements by abstracting the
communication channel from the communicating processors. The
local processor on each module interacts with a parallel bus through
a bus controller, implemented in a low-power CPLD. This approach
decouples the communication channel from the local processor,
allowing different processors running at different speeds to share
the bus without impacting its throughput. To guarantee fairness
a TDMA-based protocol implemented in the bus controller allows
multiple processors to exchange data almost simultaneously. The
high data rate enabled by the parallel bus combined with the TDMA
protocol create a near real time inter-module communication chan-
nel that scales well with the number of modules in the stack. Pro-
cessor independence and resource efficiency are achieved by en-
forcing an asynchronous interface over a separate parallel bus be-
tween the CPU and the bus controller. This enables the bus con-
troller to be transparently interfaced to a processor running at any
speed. The asynchronous nature of the interface enables the pro-
cessor to transfer data at a speed usually limited by the processor
clock speed because of the relatively high clock speed of the bus
controller.

The advanced functionality of the new communication architec-
ture comes at the expense of a small increase in the power con-
sumption of the platform mainly due to the use of CPLD. However,
the flexibility afforded by the CPLD outweighs the small power
overhead, as we will detail in the evaluation section later. The
mPlatform architecture is a research platform designed to facilitate
rapid prototyping and experimentation. Complex programmable
logic devices provide an abstraction of the hardware layer that dras-
tically simplifies the tinkering at the protocol level requiring little
change to hardware.

The rest of the paper focuses on the design and evaluation of the
proposed inter-module communication mechanism. Section 2 pro-
vides an overview of the mPlatform architecture and its supporting
software infrastructure. In Section 3 the communication channel
architecture is described in detail and in Section 4 the experimental
evaluation of the communication mechanism is presented. Section
5 discusses the related work and concludes the paper.

2. THE MPLATFORM ARCHITECTURE
mPlatform is a modular architecture that focuses on providing

a Lego-like, plug-and-play capability to put together a sensor net-
work platform tailored to specific application/research requirements.
The hardware architecture design was driven by the following baisc
guidelines:
Reconfigurability: The architecture needs to be easily reconfig-
urable to meet specific needs of a particular research project. For
example, a data collection task with a low sampling rate may just
require an 8-bit processor and a slow radio connection to a gate-
way to conserve power, while a physiological monitoring applica-
tion on a body sensor network that alerts a remote physician upon
detecting an abnormal condition will need more processing power
to analyze the signals, enough storage for disconnected operation,
and the ability to connect to multiple wireless networks. To enable
reconfigurability, mPlatform was designed so that a wide range of
processors, from MSP430 class processors up to PXA270 proces-
sors, can coexist on the same platform and efficiently communicate
in any possible configuration.
Real-time event handling: Since a sensor platform is typically
used in applications where it constantly interacts with the environ-
ment, the ability to handle real-time events is crucial. Examples
include detection of an abnormally high temperature indicating a
fire, detection of an abnormal physiological signal, and arrival of a
radio packet.
Fine-grained power management: In many sensing and mobil-
ity applications nodes are powered by battery or salvaged energy
sources. It is desirable to be able to shut down components when
not in use and scale up or down operation voltage and/or frequency
of the components in order to accommodate task needs while con-
serving energy and other resources.

2.1 Architecture Overview
The mPlatform is a collection of stackable hardware modules

that share a well defined common interface. Physically, each mod-
ule consists of a circuit board and connectors that enable other mod-
ules to be plugged on both top and bottom of that module. Some
of the mPlatform modules are general purpose processing boards
while others are special purpose boards such as radio boards for
wireless communication, sensor boards for sensing physical phe-
nomena, and power boards for supplying power to a stack of mod-
ules. Each board, except for the power board, has a local processor.
Having a local processor on each module enables efficient real-time
event handling, one of the major design goals of mPlatform. The
processor-per-module approach also allows a more customizable
aggregation of processing power appropriate for a given applica-
tion. This is in contrast to some embedded system platforms that
use a single processor to manage multiple add-on boards [12, 1,
13].

In addition to the components that implement a particular mod-
ule’s basic functionality, each module has a low power configu-
ration processor that can be used to configure the stack of mod-
ules or even reprogram the main processing components on each
hardware module. The MSP430 microprocessor from Texas In-
struments (MSP430F1611) is used as the main processor in sev-

129

CPU/Radio 3

CPU/Radio 1

CPU/Radio 2

CPU and/or sensors

Power

Multiplexed Serial buses

CPLD

CPU

power

I2C configuration buses
24-bit CPLD parallel bus

8-bit CPLD Daisy Chain

CPU

Figure 1: Overview of the mPlatform architecture.

eral modules. Featuring 10KB of RAM, 48KB of Flash and a
maximum speed of 8MHz, it can provide basic data sensing and
processing functionality at a very low power overhead as demon-
strated in [13]. Because of its extremely low power consumption
in idle and sleep modes, we use it as the configuration processor
embedded on every hardware module.

On the other hand, the OKI ML67Q5003, an ARM7TDMI pro-
cessor, is embedded on a different class of hardware modules that
can be used to support more complex real-time data processing. It
operates at a maximum frequency of 60MHz but an internal soft-
ware controlled clock divider can slow down the processor in pow-
ers of two all the way down to 60/32MHz(1.875MHz) to conserve
energy. Other attractive features of the OKI processor, despite its
relatively high static power consumption [9], include the variety of
power management features of all the peripherals on the chip, the
availability of 7 hardware timers, the option to process external in-
terrupts on all the general purpose IO pins as well as the relatively
rich internal memory of 32KB RAM and 512KB Flash.

Figure 1 shows a high level block diagram of the mPlatform
architecture. Each module connects to multiple buses for inter-
processor communication through a uniform hardware interface that
can be seen in Figure 2(a). The interface makes it possible to stack
together any combination of hardware modules to implement a sen-
sor platform for an application (Figure 2(b)). The centerpieces of
this interface are a 24-bit wide parallel bus and an 8-bit wide daisy
chain bus that are both interfaced to the processor through a high
speed, low power CPLD. To achieve low power operation without
compromising the performance of the communication channel we
opted to use the Xilinx XC2C512 CoolRunner-II CPLD. This fam-
ily of CPLDs can operate at a maximum speed of 200MHz and its
power consumption can vary from approximately a few mW up to
260mW due to the embedded frequency scaling capabilities.

This hardware configuration expands the available data buses
used in other modular sensor node platforms [17, 4, 2, 7, 14] with
a CPLD-based communication channel with the following advan-
tages:
1. The communication channel is abstracted by the CPLD. The
processor only communicates with the CPLD and does not need
to be aware of the bus implementation details. Since the bus is
controlled by the CPLD and not the CPU, local processors on in-
dividual hardware modules can enter a deep sleep mode to reduce
power consumption, while other processors on different hardware
modules can actively communicate data over the bus.

(a)

(b)

Figure 2: (a) A typical MSP430-based hardware module. (b) A
4-module stack. At the lowest level is the power board. Next
is an MSP430/CPLD board and an MSP430/CPLD/CC2420
board. The ARM7/CPLD board is on the top.

2. The performance of the bus depends on CPLD’s operating fre-
quency and not on the operating frequency of the processor. This
enables different hardware modules with different processors run-
ning at various clock speeds to share the same data bus without
affecting its maximum speed.
3. The communication channel does not have to serialize/deserialize
the data before/after transmission since parallel lines of up to 64-
bits width can be used for data exchange.
4. The communication channel is easily reconfigurable since it
is solely controlled by the CPLD. Programming the CPLD with
a high level hardware description language such as Verilog HDL or
VHDL facilitates the process of designing and using a new com-
munication protocol without having to modify the actual hardware
design. This approach significantly expands the flexibility of the
existing state-of-the-art stack-based architectures by enabling pro-
grammers to optimize their communication channel according to
the specific application requirements while using general purpose
hardware modules.

For maximum flexibility, a set of switchable serial buses enables
dynamic pair-wise communication between processors using stan-
dard serial protocols such as RS232 and SPI. A multi-master I2C
bus is used to configure and manage the stack of modules. A sepa-
rate multi-master I2C bus is used for the secondary processors that
are responsible for configuring and managing the stack of modules.

2.2 Software Support
Enabled by this flexible and scalable inter-module communica-

tion mechanism, we have developed a light weight, priority based
operating system to provide scheduling and run-time support for
applications running on the mPlatform. To facilitate the applica-
tion development on the multi-processor architecture, mPlatform
supports a data-flow style programming abstraction for the applica-
tions [5]. In this abstraction, an application is specified as a collec-
tion of communicating tasks, and mPlatform provides the support
for task naming, synchronization, and communication. Since tasks
of a single application may span a number of processors in different
modules, a uniform messaging interface, enabled by the underlying
inter-module communication bus, enables tasks to communicate
through message passing either locally within the module or across

130

the modules via the bus, all in a way transparent to the user. The
interface also simplifies task migration from module to module, as
the need to load balance or mitigate failures arises [5]. Again, this
simple and effective abstraction to the inter-module communica-
tion is made possible because of the performance and flexibility of
the communication bus.

One important feature of the multi-processor mPlatform soft-
ware support is the ability to allocate and schedule the different
tasks to available modules. Our task allocation algorithm does
this by constraining the task assignment with power and deadline
requirements [10]. This is accomplished by modeling resources
such as power usage of processors and CPLDs as well as latency
in processing and communication. The scheduling problem then
becomes a constrained optimization. The development of the SSL
application, to be discussed in Section 4, makes heavy use of the
data-flow specification, message passing, and scheduling features
of the mPlatform software infrastructure.

3. HIGH-SPEED INTER-MODULE
COMMUNICATION CHANNEL DESIGN

Designing a communication protocol on top of the hardware
architecture of mPlatform that meets the design requirements de-
scribed earlier involves (1) defining how CPLDs on different mod-
ules are wired together, (2) specifying the protocol for sharing data
among the CPLDs on different modules, and (3) defining the CPU
interface through which the CPU reads/writes data from/to the CPLD
on every module. We present the design choices and tradeoffs in
each of these steps.

3.1 Hardware Configuration
We use a shared parallel bus architecture to connect the CPLDs

on different modules together. In this configuration, all the CPLDs
on different modules share a 24-bit data bus and several control
signals. This approach has the major advantage of enabling di-
rect communication between any pair of modules on the bus. This
makes the communication delay between any pair of modules small
and constant regardless of the module location in the stack. How-
ever, a common shared bus requires mechanisms for efficiently
sharing the bus and for avoiding collisions due to multiple simul-
taneous transmissions. We use several control signals, including
common reset and clock signals, to implement a Time Division
Multiple Access (TDMA) based bus protocol that enables efficient
sharing of the common bus.

Serial and daisy chain bus configurations are two common al-
ternatives to the parallel shared bus. Apart from the reduction in
the number of wires used for communication, a major advantage of
the serial bus is the absence of data and clock skew (the offset of
the data and clock signals on different wires) which is inherent in
high speed parallel bus designs. However, one major drawback of
the serial bus configuration is the need for a higher clock speed to
achieve the same throughput as a parallel bus, since a parallel bus
allows multiple bits to be sent within one clock cycle. Since this
increased clock speed results in increased power consumption, and
we did not notice any significant clock skew at the maximum oper-
ating frequency of the mPlatform bus, we decided not to use a serial
bus configuration. In addition, the number of wires required for in-
terfacing the CPLDs at the different modules in the stack is not a
problem because of the large number of available general purpose
I/O pins on the CPLD chip.

On the other hand, in a daisy chain configuration the CPLDs are
connected sequentially, where each CPLD can directly communi-
cate only with its immediate neighbors. Any non-adjacent commu-

nication has to involve a sequence of pair-wise communications.
The local communication between CPLDs simplifies the commu-
nication interface and makes it lightweight. At the hardware level,
the daisy chain limits (1) the load on the transmitter logic since
there is only one receiver per transmitter, and (2) the data and clock
skew since the length of wiring between modules is short. How-
ever, daisy chain configuration has performance and scalability is-
sues. The communication between non-adjacent modules involves
buffering and forwarding of data at intermediate modules. Conse-
quently, the end-to-end communication delay and power consump-
tion increase with the number of modules.

3.2 CPLD-Based Communication Protocol
The communication protocol for sharing the CPLD parallel bus

is designed to (1) prevent collisions when multiple modules in the
stack attempt to use the bus at the same time, and (2) multiplex
the access to the communication channel so that every module can
send its data almost immediately without blocking other modules
in the stack. Note, that the problem of shared resource access, in
particular to communication buses, is one of the most widely stud-
ied optimization problems [15]. We did not focus on implementing
the optimum protocol. Instead, we focused on designing a proto-
col that takes advantage of the underlying efficient architecture and
that is simple and generic enough to be used in a variety of different
applications. However, any application specific optimized protocol
can be implemented and run on top of the proposed bus architecture
without modifying the hardware.

To eliminate collisions and enable fair sharing of the communi-
cation channel among modules we decided to use a TDMA proto-
col. The time is divided into identical slots and every module in
the stack is assigned a single unique slot. The CPLD on each mod-
ule is allowed to send data only during its assigned time slot; all
the other modules that do not transmit during a given slot listen to
the channel for valid data. This approach enforces fairness among
the different modules since the communication channel access is
equally divided across all the modules.

The duration of each slot is equal to the time required to suc-
cessfully transmit and receive a single data packet over the CPLD
bus. The bus is 24-bit wide, and hence the packet size. Of these
24 bits, the most significant byte contaaddressing information, and
the remaining two bytes are the data payload. Each module in the
stack is assigned a unique 4-bit address. The 4 most significant
bits of the addressing byte specify the destination while the rest the
source. A special broadcast address enables broadcasting over the
bus. Therefore, independently of the addressing mode used, uni-
cast or broadcasting, for every data packet 3 bytes are sent over the
parallel bus: 1 address byte and 2 data bytes.

3.3 CPU Interface
An asynchronous interface over an 8-bit wide data bus is im-

plemented for the communication between the processor and the
CPLD. The main design considerations behind choosing an asyn-
chronous interface over a synchronous one were the following:
A synchronous interface requires the processor and the CPLD to
share a common clock. However, the maximum clock rate that can
be used depends on the capability of the processor used at each
module. Low-end processors (e.g. MSP430) can sustain on lower
clock rates than high-end processors (e.g. ARM7). Therefore, in
order to efficiently utilize the local processor’s resources the CPLD
design must be aware of the characteristics of processor at which
it is interfaced to. This reduces the flexibility and ease of use of
the CPLD bus by requiring different versions of the CPLD data bus
design running on different modules.

131

invalid data

read/write

ack_cpld

cpu_data valid datainvalid data
2

1

4 7

6

6

strobe
3 5

Figure 3: Asynchronous interface for writing a single byte to
the CPLD.

An asynchronous interface, on the other hand, allows both of the
communication end points to operate at their maximum speed with-
out sharing any clock information. In addition, an asynchronous
interface is simpler since less amount of state information has to
be recorded and handled. This is very important when using small
CPLDs like the Xilinx XC2C512 where the available design re-
sources are limited. For instance, the implementation of an SPI
interface on the XC2C512 CPLD would require almost 50% of the
available resources. An asynchronous interface would minimizes
the use of CPLD resources, leaving the rest for implementing other
advanced features of the data bus, such as larger memory or support
for multiple slots per module.

Figure 3 shows the timing diagram of the CPU interface for writ-
ing a single byte to the CPLD. The CPU first waits for the ack cpld
signal to become low. Next, it raises the read/write and then out-
puts the data byte on the data bus. It then raises the strobe signal to
indicate that data is ready to be read by CPLD. The CPLD acquires
the data on the 8-bit data bus and it raises the ack cpld signal to
indicate that it has read the data. After detecting the rising edge
of the ack cpld signal, the CPU lowers the strobe signal and then
lowers the read/write signal. After detecting the falling edge of the
strobe signal, the CPLD lowers the ack cpld signal. The process of
reading a byte from the CPLD is similar. The only difference now
is that the read/write signal is kept low by the CPU and the data bus
is controlled by the CPLD and not the CPU.

The fact that every packet sent over the CPLD bus is 24-bit wide
while the bus shared between the CPU and the CPLD is only 8-bit
wide requires the CPU to perform three consecutive byte read/writes
in order to read/write a single data packet. The first byte written to
the CPLD contains the destination address. When the value of the
address byte is between 0x00h and 0x0Fh, the data is transmitted
as a unicast packet. If the address byte is equal to 0x0Fh the data
packet is broadcast on the CPLD data bus. In both cases, the next
two bytes represent the data payload to be sent over the bus. All the
bytes written to the CPLD are first processed by the CPU interface
module to include source address information, before they are writ-
ten to the transmission FIFO. The CPU interface module modifies
the address byte (first byte written) such that the 4 most significant
bits correspond to the destination address and the least 4 significant
bits correspond to the source address.

Besides unicast and broadcast transmission of data packets, the
CPU interface allows the CPU to configure several parameters of
the communication protocol. In particular, the CPU can set the
address of the CPLD, the slot used by the CPLD as well as the
total number of slots used. The slot assigned to the CPLD is set
by setting the address byte to 0xA0h. In this case the second byte
defines the slot assigned to the CPLD and the third byte defines the
total number of slots. The address of the CPLD can be set by setting

CPLD

C
P
U

I
n
t
e
r
f
a
c
e

8-bit

clk
reset

read/write
strobe

ack_cpld

tx_full
rx_empty
rx_full

Circular TX FIFO
24-bit

24-bit

24-bit
TDMA TX

24-bit

24-bit

Asynchronous
Interface

Memory
Status

Data Bus

CPU

Data Bus

Time Slot: 4 bits

Total Number of Slots: 4-bits

CPLD Address: 4 bits

Run Time Parameters

4-bit

4-bit
4-bit

24-bit

Circular RX FIFO TDMA RX

Figure 4: Overview of the inter-module communication chan-
nel architecture.

the address byte to 0xB0h. In this case, the second byte defines the
address assigned to the CPLD and the third byte is ignored. When
setting the address and slot number information no data packets are
transmitted over the parallel data bus.

3.4 Implementation
The architecture of the CPLD-based communication channel is

shown in Figure 4. The CPU interface component is responsible
for the communication between the CPLD and the local processor
on each module. It allows the CPU to read/write packets from/to
the CPLD and set the address, the slot and the total number of
slots. Each data packet the processor sends to the CPLD is writ-
ten to the transmission FIFO. The TDMA transmitter continuously
checks the transmission FIFO; when the FIFO is not empty the
transmitter reads the first available packet, waits for the assigned
slot, and transmits the packet on to the bus. When its slot is deac-
tivated, the transmitter surrenders the control of the data bus. The
TDMA receiver module, running in parallel, is sniffing the data bus
at the beginning of every slot. If a valid packet is on the bus and
the address decoding is successful then the packet is written to the
reception FIFO.

Every time a packet is written or read in any of the two memories
the memory status signals directly connected to the processor and
the other modules in the CPLD design are updated. In that way, the
CPU as well as both the TDMA transmitter and receiver are always
aware of the memory status (full or empty) and they can proceed
reading packets when they are available. Both of the two memory
modules are implemented as a circular FIFO that supports simul-
taneous read and write operations for maximum performance. The
transmission FIFO is always written by the CPU interface module
and it is always read by the TDMA transmitter module. Similarly,
the reception FIFO is always written by the TDMA receiver and it is
always read by the CPU interface module. Note that all the internal
buses between the individual modules are 24-bit wide to minimize
the number of clock cycles required for transferring a packet from
the input to the output of the CPLD data bus. In that way, only 2.5
CPLD clock cycles are required to transfer a data packet from the
CPU interface module to the TDMA transmitter and vice versa.

The TDMA-based communication protocol has been implemented
in Verilog HDL and has been mapped to the XC2C512 CPLD
from Xilinx. Our design makes use of approximately 60% of the re-
sources when using a 2-packet transmission FIFO and an 8-packet
reception FIFO and it can be clocked up to 68MHz. In our im-
plementation, each time slot of the TDMA scheme corresponds to
two CPLD clock cycles which is equal to the time that it takes to

132

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

18

Number of data bytes

D
el

ay
(m

s)

I2C
MS P430
AR M7

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Number of Bytes

Pe
rc

en
ta

ge
 o

f E
nd

-to
-E

nd
 D

el
ay

 Im
pr

ov
em

en
t

MS P430
AR M7

(a) (b)

Figure 5: (a) Measured end-to-end communication delay comparison for different number of communicating bytes between a pair
of both ARM7 and MSP430 processors. (b) Percentage of end-to-end communication delay reduction of the CPLD bus over the I2C
bus for both the MSP430 and the ARM7 processors.

transmit/receive a 24-bit data packet. Since CPLD bus takes two
68MHz clock cycles to transfer a packet with a 2 byte data pay-
load, the maximum throughput of the bus is 68×8 = 544Mbits/s;
compared to the 400Kbits/s maximum throughput of the I2C
bus, this is a 3 orders of magnitude improvement.

3.5 Design Considerations
The TDMA mechanism presented in Section 3.2 assigns time

slots to all the modules in the stack. Note that some modules
might not always send data during their time slots. As a result,
CPLDs at different modules might have to stall waiting for their
slots to become active, even though the communication channel is
not used by anyone. This could introduce delays in the commu-
nication channel that could possibly violate some of our basic de-
sign goals. However, the operating frequency of 68MHz that we
have achieved using the Xilinx CoolRunner-II CPLDs minimizes
the effect of data bus sharing on the communication delay. The
reason is that the CPLD communication protocol is implemented
in hardware that can operate at a much higher speed (68MHz)
compared to the effective clock rates of the most commonly used
microprocessors such as AVR (< 16MHz), MSP430 (< 8MHz)
and ARM7 (< 60MHz). In practice, this means that the time it
takes for the microprocessors to write a data packet to the CPLD is
much higher than the time that corresponds to a time slot (2 CPLD
clock cycles). For instance, as it will be shown in detail in Section
4, the time to write a packet to the CPLD (21µs) is approximately
715 times higher than the duration of a time slot (0.029µs). This
allows the CPLD to transparently multiplex the data bus without
hurting the performance of the communication channel.

4. EVALUATION
In this section we evaluate the mPlatform architecture. First, we

experimentally characterize the performance of the CPLD-based
communication channel. We examine the scalability of the TDMA
protocol with respect to the number of modules in the stack, and
compare the results with the I2C bus. We also examine the power
consumption of the CPLD bus implementation. Second, we demon-
strate the functionality enabled by the mPlatform architecture us-
ing a case study: the Sound Source Localization (SSL) application
[20].

4.1 Performance Evaluation

4.1.1 End-to-End Communication Delay
In Section 3 we showed that the maximum throughput of the

CPLD bus is 3 orders of magnitudes larger than the maximum
throughput of the I2C bus. In this experiment we measured the
end-to-end communication delay–defined as the time between the
start of the transmission of the first byte and the end of the recep-
tion of the last byte for different number of bytes and for both the
CPLD and the I2C buses. For the CPLD bus, we measured the de-
lays for a pair of MSP430F1611 processors running at 6MHz, and
a pair of OKI MLQ57003 processors running at 60MHz. In both
configurations, the CPLD was clocked at 32MHz and the number
of slots was set to 2. A simple application was used to generate a
random sequence of data bytes with predefined length varying from
2 to 800. These sequences of bytes were sent over both the I2C
and the CPLD buses and the end-to-end communication delay was
recorded using an oscilloscope. To guarantee the maximum uti-
lization of the I2C bus, we implemented an interrupt driven I2C
driver and verified that the I2C bus was operating at the maximum
speed of 400KHz.

Figure 5(a) shows the results of these experiments. It is clear that
in all cases the end-to-end delay is a linear function of the number
of bytes transmitted. After applying a best linear fit to the data
points shown in Figure 5(a) we derived the communication delay
for all configurations as a function of the number of transmitted
bytes N :

TI2C(ms) = 0.021 ∗N + 0.066 (1)

T MSP430
CPLD (ms) = 0.013 ∗N + 0.024 (2)

T ARM7
CPLD (ms) = 0.0025 ∗N + 0.0043 (3)

According to (1), (2) and (3), the CPLD bus is always faster than
the I2C bus. For instance, using (1) and (2) we can compute the es-
timated end-to-end communication delay for both buses when 2048
bytes have to be exchanged between the two modules. The I2C bus
would require approximately 43ms, while the CPLD bus would re-
quire 26.6ms (MSP430-based modules) and 5.12ms(ARM-based
modules), a reduction of 16.4ms and 37.88ms respectively. As it
will be shown later, such a reduction in the communication delay
could be critical in the case of real time applications.

133

0 2 4 6 8 10 12 14 16 18 20 22

5

10

15

20

25

30

35

CPLD Clock Frequency

D
el

ay
(m

s)

MS P 430
AR M7

0 5 10 15 20
0

2

4

6

8

10

12

CPLD Clock (MHz)

Po
w

er
 (m

W
)

C P L D C ore: T X
C P L D C ore: R X
C P L D I/O: T X
C P L D I/O: R X

(a) (b)

Figure 6: (a) The measured end-to-end communication delay for 1000 packets (2000 data bytes) as a function of the CPLD clock
frequency. (b) Measured power consumption of the Xilinx XC2C512 CPLD on the ARM7 module in full transmit and receive
modes.

Note, that this significant reduction in the end-to-end communi-
cation delay is due to the replacement of the 400KHz I2C serial
bus by an asynchronous 8-bit parallel bus between the processor
and the CPLD that operates at the processor’s maximum clock fre-
quency. In that way, we are able to shift the bottleneck in the end-
to-end communication delay from the I2C low frequency clock to
the actual processor’s high speed clock.

Figure 5(a) also verifies that the CPLD-based communication
channel fulfils two of the most basic design goals: resource effi-
ciency and processor independence. Note that the end-to-end de-
lay of ARM modules is approximately 5 times smaller than that
of MSP430 modules; although, we used the same CPLD design in
both cases. This is due to the asynchronous interface between the
CPU and the CPLD. This interface allows the CPLD to communi-
cate data over the bus as fast as the processor can deliver it without
requiring to be aware of the exact processor that it is interfaced to.

Figure 5(b) provides more insight into the experimental results.
When a small number of bytes (e.g. 2 or 4) is transmitted, the
CPLD bus can be up to 52% (MSP430 modules) or 92% (ARM
modules) faster than the I2C. However, as the number of bytes
transmitted increases the performance gap between the two buses
narrows and eventually becomes stable after 160 bytes (MSP430
modules) or 80 bytes (ARM modules). When sending a large num-
ber of bytes, the CPLD bus is approximately 42% (MSP430 mod-
ules) or 88% (ARM modules) faster than the I2C bus. This vari-
ation in the performance gap is due to the high overhead of the
I2C bus caused by the 8-bit destination address and the START
and STOP conditions sent over the bus. When the number of trans-
mitted data bytes is small, this overhead is relatively high leading
to a larger performance gap between the I2C and the CPLD buses.
However, when the number of bytes increases, the impact of this
overhead is minimized.

4.1.2 Scalability Study
One of the main design goals of the CPLD communication chan-

nel was to be able to scale well with the number of modules in the
stack. In other words, the end-to-end delay performance of the
TDMA-based scheme should not deteriorate significantly when the
total number of slots increases.

In the experimental results shown in Figure 5 the minimum pos-
sible number of slots (i.e, 2) was used. When increasing the number

Number of data packets (Number of data bytes)
Number CPLD CLOCK: 32MHz
of slots MSP430(6MHz) ARM7(60MHz)

40(80) 100(200) 400(800) 40(80) 100(200) 400(800)

3 0.0059% 0.0024% 0.0006% 0.0306% 0.0124% 0.0031%
4 0.0117% 0.0048% 0.0012% 0.0612% 0.0248% 0.0062%
5 0.0176% 0.0071% 0.0018% 0.0918% 0.0372% 0.0094%
6 0.1235% 0.0095% 0.0024% 0.1224% 0.0496% 0.0125%
7 0.0294% 0.0119% 0.0030% 0.1530% 0.0620% 0.0156%
8 0.0352% 0.0143% 0.0036% 0.1836% 0.0744% 0.0187%
9 0.0411% 0.0167% 0.0042% 0.2141% 0.0868% 0.0218%
10 0.0470% 0.0191% 0.0048% 0.2447% 0.0991% 0.0249%

Table 1: Worst case end-to-end delay overhead for different
number of packets transmitted while varying the total number
of slots in the system for both the MSP430 and the ARM7 pro-
cessors.

of slots each data packet transmission might be delayed for an ad-
ditional number of slots. Since the communication channel clock
is the CPLD clock and each slot consists of 2 CPLD clock cycles
we can compute the worst case overhead of end-to-end delay when
the number of slots increases.

Assume that the total number of slots increases from 2 to M .
Then the worst case overhead on the end-to-end delay of transmit-
ting a single packet over the CPLD bus (with respect to the delay
measured when 2 slots are used) will be equal to:

Toverhead(µs) = (M − 2) ∗ 2 ∗ CPLD CLK, M ≥ 3 (4)

where CPLD CLK is the period of the CPLD clock expressed in
µs. Equation (4) implies that every time we add a slot to the initial
number of 2 slots the worst case end-to-end communication delay
for a single data packet (2 data bytes) will increase by the duration
of a single slot which is equal to 2 CPLD clock periods. Using this
information it is possible to compute the overhead caused by the
increased number of slots in the system for any arbitrary number
of communicated data packets. Table 1 shows the percentage of in-
crease in the end-to-end communication delay for different number
of data packets when increasing the total number of slots from 2
up to 10. It is clear that the effect on the end-to-end delay com-
munication delay is negligible as the number of slots increases and
as the number of bytes sent also increases. This is because the
CPLD can always operate at a higher clock speed than the proces-
sors it is interfaced to (in this case MSP430 and ARM7). As a
result, the bottleneck in the end-to-end communication is the pro-
cessor and not the CPLD. This provides enough time for the CPLD

134

to transparently time-share the data bus while communicating with
the processor at a lower speed. Of course, when processors faster
than the CPLD are used, the overhead of multiplexing the data bus
becomes higher. However, the relatively high speed of the CPLD
along with the inherent hardware parallelism and the inefficiency of
general purpose processors (number of instructions per clock cycle
etc.) ensure that the end-to-end delay performance will not be sig-
nificantly affected by the number of time slots in the system even
when high-end processors like the PXA CPU from Intel running
from 100MHz to 200MHz are used.

Figure 6(a) sheds more light on the effect of CPLD’s clock fre-
quency on the performance of the data bus. The end-to-end de-
lay for 1000 packets (2000 data bytes) as a function of the CPLD
clock frequency is shown for both the MSP430 and the ARM7 pro-
cessors (the total number of slots set to 2). It is clear that after a
certain CPLD clock rate the end-to-end delay remains unchanged.
This shows that the bottleneck becomes the CPU interface and the
time required for the processor to read/write a packet to the CPLD.
According to Figure 6(a), the minimum clock rate that allows the
CPLD to transparently multiplex the data bus without increasing
the end-to-end communication delay is 5MHz for the MSP430
processor, and 16MHz for the ARM7 processor.

Note, however, that even when the processor used is much faster
than the CPLD (e.g., in the case of an Intel PXA processor running
at 400MHz), the advantage of using the CPLD communication
channel instead of traditional buses such as I2C is still significant.
The reason is that the bottleneck in the case of the CPLD bus would
be the CPLD’s speed which is equal to 68MHz while in the case
of the I2C bus the bottleneck is the actual I2C clock which is
400KHz, orders of magnitude less than the actual CPLD clock.

4.1.3 Power Consumption
The ability to transparently multiplex the communication chan-

nel across all the modules in the stack comes at the expense of
increased power consumption. Figure 6(b) shows the core and
IO power consumption of the Xilinx XC2C512 CPLD when it is
driven by an ARM7 processor running at 60MHz. It is clear that
the power consumption of the CPLD is a linear function of its clock
frequency. At 16MHz, the minimum CPLD clock frequency when
the ARM7-to-ARM7 communication is needed, the overall power
consumption is approximately 13mW. This corresponds to less than
10% of the power consumption of the ARM7 processor [9]. At
5MHz, the minimum CPLD clock frequency when MSP430-to-
MSP430 communication is needed, the overall power consumption
is reduced down to 5mW. This is slightly larger than the power
consumption of the MSP430 processor at full speed [13]. When
the CPLD-based bus is not used by a board in the stack, the CPLD
can be put into sleep mode consuming approximately 8.25µW .

This shows that the CPLD communication channel achieves the
performance and flexibility at a reasonable cost of power consump-
tion. Besides, the mPlatform is designed to support rapid research
prototyping of sensornet applications, rather than aiming for the
absolute possible minimal power usage. Once debugged on the
mPlatform, one can always re-implement the same communication
architecture as the one shown in Figure 4 in a custom VLSI chip
using say ASIC technology in order to minimize the power con-
sumption.

4.2 Case Study
In this section we demonstrate how the mPlatform architecture

can enable general purpose modular architectures to meet the real
time processing requirements in real sensor network applications.
We use sound source localization (SSL) as an example of a typical

real time application. In the SSL application, an array of care-
fully spaced microphones is used to record sound. By measuring
the time differences of arrival of the sound at the different micro-
phones, SSL uses a combination of FFT, sound classification, and
hypothesis testing and aggregation to determines the location of the
sound source [20].

The configuration of the mPlatform architecture for supporting
the SSL application, as shown in Figure 7(a), comprises 4 MSP430
based hardware modules and a single ARM7 based module. On
each MSP430 module a microphone is interfaced to an embed-
ded analog to digital converter (ADC) of the local CPU. The direct
memory access (DMA) controller continuously captures blocks of
512 samples (each sample is a 16-bit value) allowing CPU clock
cycles to be used for data processing simultaneously with data sam-
pling. Every block of 512 audio samples is processed by a Fast
Fourier Transform (FFT) software routine implemented on the lo-
cal MSP430 microcontroller. The output of the FFT for every
MSP430-based module has to be sent to the ARM7 module which
is responsible for running the actual SSL algorithm. Note that 2048
bytes have to be communicated over the communication channel
for every MSP430-based module. This is because the output of the
FFT software routine has two parts: a real and an imaginary part.
Each of these parts consists of 512 16-bit points that leads to a total
number of 2048 bytes.

SSL requires that the mPlatform samples the sound data at a min-
imum of 4KHz. In addition, the blocks of 512 samples provided
by the MSP430-based boards to the ARM7 board have to corre-
spond to exactly the same time period, otherwise the result of the
SSL algorithm will be wrong.

To be able to verify if the mPlatform architecture would be able
to support the SSL application we had to measure the execution
time of the FFT software routine for different input sizes. Figure
7(b) shows the results of our measurements for both the MSP430
(6MHz) and the OKI ML67Q5003 (60MHz) CPUs. It turns out
that the OKI processor is about 15 times faster than the MSP430.
The execution time of the FFT software routine on the MSP430 for
an input size of 512 points takes 99.2ms compared to the 6.32ms
execution time on the OKI processor.

Having profiled the most important execution and communica-
tion components of the SSL application we can sketch its real exe-
cution sequence on the mPlatform architecture by using data from
Figures 5 and 7. Figure 8 shows these execution sequences when
two different communication channels are used: the I2C bus (Fig-
ure 8(a)) and our CPLD-based data bus (Figure 8(b)). In both
cases since we have to sample audio data at a frequency of at least
4KHz, it takes 128ms to acquire 512 samples. Note, that data
sampling and data processing can overlap since the sampling is
handled automatically by the embedded DMA controller on the
MSP430 processor.

As soon as the collection of 512 samples is completed, the FFT
software routine has to be executed and 2048 bytes have to be sent
over the communication channel. The FFT execution time, inde-
pendent of the communication bus used, is 99.2ms. In the case
of the I2C bus, however, it takes 43ms to send 2048 bytes ac-
cording to eq. (1). Note that the total time of executing the FFT
and communicating over the I2C bus exceeds the data sampling
time 128ms. What is even worse is that in the case of the I2C
bus only one MSP430 board at a time can use the communica-
tion channel. As a result of this the total time for processing and
sending the audio data on all four MSP430 boards is equal to:
99.2ms+4∗43ms = 271.2ms, as shown in Figure 8(a), which is
more than twice the audio data sampling time of 128ms. In prac-
tice, this means that either the sampled data has to be buffered, re-

135

MSP430

FFT

MSP430

FFT

MSP430

FFT

MSP430

FFT

ARM7

SSL

512

512

512

512
0 200 400 600 800 1000 1200

0

50

100

150

200

250

Input Size

Ti
m

e
(m

s)

FFT Execution Time

MSP430 (6MHz)
ARM7 (60MHz)

(a) (b)

Figure 7: (a) High Level Description of the Sound Source Localization (SSL) application. (b) Measured FFT execution time for
different input sizes on both the MSP430 and the OKI MLQ675003 processors.

128ms 128ms 128ms 128ms

99.2ms
43ms

MSP430 1

MSP430 2128ms 128ms 128ms 128ms

99.2ms

MSP430 3128ms 128ms 128ms 128ms

99.2ms

MSP430 4128ms 128ms 128ms 128ms

99.2ms

43ms 43ms

43ms 43ms 43ms

43ms 43ms 43ms 43ms 26.6ms

26.6ms

26.6ms

26.6ms

128ms 128ms 128ms 128ms

99.2ms

MSP430 1

MSP430 2128ms 128ms 128ms 128ms

99.2ms

MSP430 3128ms 128ms 128ms 128ms

99.2ms

MSP430 4128ms 128ms 128ms 128ms

99.2ms

(a) (b)

Figure 8: Execution delay sequences for the sound source localization application when (a) the I2C bus and (b) the CPLD bus is used

sulting in none real time SSL, or two blocks of data have to skipped
for every block of data sampled, resulting in decreased SSL accu-
racy.

On the other hand, when the proposed CPLD-based data bus is
used, the gain is twofold:
1. The communication delay for sending 2048 bytes is reduced
from 43ms to 26.6ms according to eq. (2).
2. The data bus can now be shared due to the TDMA protocol
implementation on the CPLD. This means that all four MSP430
processors deliver their 2048 bytes to the CPLDs that they are in-
terfaced to at the same time. The TDMA protocol running on the
CPLDs time-multiplex the data from all four processors at the ex-
pense of a negligible delay overhead according to Table 1.

As a result, as Figure 8(b) shows, the total time for processing
and sending the audio data on all four MSP430 boards is now equal
to 99.2ms+26.6 = 125.8ms. Note that this time is now less than
the data sampling time of 128ms, enabling mPlatform to meet the
minimum real time requirements of the SSL application.

5. DISCUSSIONS
As our experiments have demonstrated, the implemented com-

munication channel architecture provides up to 3 orders of mag-
nitude higher throughput on the bus and up to 42% or 92% less
end-to-end communication delay for MSP430 and ARM7 respec-
tively, compared to the traditional I2C bus approach. The asyn-

chronous interface between the bus controller and the local CPUs
allows the communication channel to work with a range of proces-
sors at their peak performance. The TDMA protocol enables the ef-
ficient sharing of the bus with negligible delay overhead in the end-
to-end communication, even when up to 10 time slots are used. The
performance and flexibility of the communication architecture are
obtained at a small increase in the overall power consumption by
using low power Complex Programmable Logic Devices (CPLD).

5.1 Limitations and Future Work
The current CPLD bus implementation uses a continuous clock,

so the TDMA protocol runs continuously even when there are no
messages to be sent over the bus. This results in wasted energy,
since, according to Figure 6(b), the TDMA protocol power con-
sumption is almost independent of the bus activity. We can reduce
the time when the TDMA protocol is active, hence the energy con-
sumption, by running the TDMA protocol only when at least one
CPLD has data to be transmitted. This on demand TDMA imple-
mentation will require modifications such as a clock that can be
turned on and off instantaneously and an asynchronous FIFO im-
plementation inside the CPLD.

The TDMA protocol implementation currently assigns a single
time slot to each module. However, this can lead to inefficient
use of resources if several high speed processors and slow proces-
sors share the same stack, since the current design allocates the bus
equally across all the modules. We can mitigate this by extending

136

the current protocol to support multiple slot assignments per mod-
ule. With this extension, we can allocate time slots among different
modules based on their communication needs.

Even though the performance of our CPLD design allows the
transparent multiplexing of the data bus, the CPU interface could be
enhanced so that applications can further optimize the performance
of the data bus. When, some of the modules in the stack do not need
to use the communication channel, they could surrender their time
slots. In practice, this would result in reducing the total number of
slots used in the stack. The smaller the number of slots in the stack
the less time a module has to wait for its slot to be activated.

The communication protocol that is currently used to transfer
data across the CPLDs at different hardware modules uses 24-bit
wide data packets where the first byte is always dedicated to ad-
dressing information. This creates a constant overhead of 33% for
every communicated data packet. By changing the protocol spec-
ification to support start and stop packets, in the same sense that
the start and stop conditions are used in the I2C bus would allow
us to transmit the addressing information only once for every burst
of data. This would require a slightly more complex state machine
implementation in the CPLD.

5.2 Related Work
A number of sensor node architectures have been developed over

the last six years. The design goals behind each of these architec-
tures are different. The Berkeley and Telos motes [12, 13], a widely
used family of platforms, target small size and low power consump-
tion. They are built around an 8-bit AVR or 16-bit MSP430 proces-
sor and have been extensively used in several different types of en-
vironmental monitoring applications. BTNodes [3] share the same
design principles as the Berkeley motes while enabling Bluetooth
based communication. Other platforms, such as imote2 [1] and
XYZ [9], aim to provide ample processing and memory resources
to facilitate prototyping and experimentation at the expense of in-
creased power consumption. In another design paradigm, CPUs
with different processing and power characteristics are co-located
on the same sensor node [11, 18]. This architecture allows the de-
sign of sophisticated power management schemes that enable the
execution of processing hungry applications on power limited de-
vices.

As a modular platform, the mPlatform architecture is similar to
the PASTA nodes [17], the MASS architecture [4], the sensor node
stacks developed at MIT [2, 7] and the modular platform from Uni-
versidad Politecnica de Madrid [14]. The main differences of the
mPlatform over the existing stack-based sensor nodes are twofold.
First, mPlatform enables real-time event processing by incorporat-
ing a low power processor at each layer in the stack. Because of
this, the sensors at different layers in the stack do not have to com-
pete with all the other layers for the resources of a central processor.
Second, an efficient, reconfigurable CPLD-based communication
channel allows the different processors in the stack to share data
almost simultaneously and at a significantly higher speed than the
traditional communication channels already used.

6. REFERENCES
[1] R. Adler, M. Flanigan, J. Huang, R. Kling, N. Kushalnagar,

L. Nachman, C. Y. Wan, and M. Yarvis. Intel mote 2: an
advanced platform for demanding sensor network
applications. In SenSys 2005, pages 298–298, New York,
NY, USA, 2005. ACM Press.

[2] A. Y. Benbasat and J. Paradiso. A compact modular wireless
sensor platform. In IPSN, SPOTS track, 2005.

[3] J. Beutel, O. Kasten, F. Mattern, K. Romer, F. Siegemund,
and L. Thiele. Prototyping wireless sensor network
applications with btnodes, 2004.

[4] N. Edmonds, D. Stark, and J. Davis. Mass: modular
architecture for sensor systems. In IPSN 2005, page 53,
Piscataway, NJ, USA, 2005. IEEE Press.

[5] C. Han, M. Goraczko, J. Helander, J. Liu, B. Priyantha, and
F. Zhao. CoMOS: An Operating System for Heterogeneous
Multi-Processor Sensor Devices. In MSR-TR-2006-117,
2006.

[6] J. King, R. Bose, S. Pickles, A. Hetal, S. Vanderploeg, and
J. Russo. Atlas a service-oriented sensor platform. In
Proceedings of SenseApp, 2006.

[7] M. Laibowitz and J. A. Paradiso. Parasitic mobility for
pervasive sensor networks. In Pervasive, pages 255–278,
2005.

[8] I. Locher, S. Park, and A. S. M. B. Srivastava. System design
of ibadge for smart kindergarten. In Design Automation
Conference(DAC), 2002.

[9] D. Lymberopoulos and A. Savvides. XYZ: A
motion-enabled, power aware sensor node platform for
distributed sensor network applications. In IPSN, SPOTS
track, 2005.

[10] S. Matic, M. Goraczko, J. Liu, D. Lymberopoulos,
B. Priyantha, and F. Zhao. Resource modeling and
scheduling for extensible embedded platforms. In
MSR-TR-2006-176, 2006.

[11] D. McIntire, K. Ho, B. Yip, A. Singh, W. Wu, and W. J.
Kaiser. The low power energy aware processing
(leap)embedded networked sensor system. In IPSN 2006,
pages 449–457, New York, NY, USA, 2006. ACM Press.

[12] MICAZ. Wireless sensor node platfrom.
http://www.xbow.com.

[13] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling
ultra-low power wireless research. In IPSN, SPOTS track,
2005.

[14] J. Portilla, A. de Castro, E. de la Torre, and T. Riesgo. A
modular architecture for nodes in wireless sensor networks,
in journal of universal computer science, vol. 12, no. 3, 2006.

[15] K. Ryu, E. Shin, and V. Mooney. A comparison of five
different multiprocessor soc bus architectures. In
EUROMICRO Symposium on Digital Systems Design, pp.
202-209., September 2001.

[16] A. Savvides and M. B. Srivastava. A distributed computation
platform for wireless embedded sensing. In ICCD, Germany,
2002.

[17] B. Schott, M. Bajura, J. Czarnaski, J. Flidr, T. Tho, and
L. Wang. A modular power-aware microsensor with
> 1000x dynamic power range. In IPSN, SPOTS track,
2005.

[18] Stargate. Wireless single board computer.
http://www.xbow.com/products/xscale.htm.

[19] S. Yamashita, S. Takanori, K. Aiki, K. Ara, Y. Ogata,
I. Simokawa, T. Tanaka, K. Shimada, and H. Kuriyama. A
15x15mm, 1ua, reliable sensor-net module: Enabling
application-specific nodes. In IPSN, SPOTS track, 2006.

[20] C. Zhang, Z. Zhang, and D. Florncio. Maximum likelihood
sound source localization for multiple directional
microphones. In ICASSP, 2007.

137

