
Extensible Pattern Matching Via a Lightweight Language
Extension

Don Syme
Microsoft Research,

Cambridge, U.K.
dsyme@microsoft.com

Gregory Neverov
Faculty of Information Technology,

Queensland University of Technology,
Brisbane, Australia

gregory.neverov@gmail.com

James Margetson
Microsoft Research,

Cambridge, U.K.
jamarg@microsoft.com

Abstract
Pattern matching of algebraic data types (ADTs) is a standard fea-
ture in typed functional programming languages, but it is well
known that it interacts poorly with abstraction. While several par-
tial solutions to this problem have been proposed, few have been
implemented or used. This paper describes an extension to the
.NET language F# called active patterns, which supports pattern
matching over abstract representations of generic heterogeneous
data such as XML and term structures, including where these are
represented via object models in other .NET languages. Our design
is the first to incorporate both ad hoc pattern matching functions
for partial decompositions and “views” for total decompositions,
and yet remains a simple and lightweight extension. We give a de-
scription of the language extension along with numerous motivat-
ing examples. Finally we describe how this feature would interact
with other reasonable and related language extensions: existential
types quantified at data discrimination tags, GADTs, and monadic
generalizations of pattern matching.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Design

Keywords F#, Functional programming, ML, Pattern matching

1. Introduction
Pattern matching in statically-typed functional languages (STFLs)
is a powerful feature that facilitates the concise analysis of data via
a switch-and-bind control construct. However a well-recognized
problem with pattern matching is its inability to operate on abstract
data types. This problem prevents pattern matching from being
used in scenarios where its effectiveness is highly sought after. For
example many strict STFLs include a lazy list data structure but
choose to hide the implementation of the data type by exporting
it as an abstract type. This precludes library users from pattern
matching over the data type, which would be an intuitive thing to
do considering the data is a list. For example, consider a module
that exports functions to construct and analyse lazy lists:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’07 October 1–3, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-815-2/07/0010. . . $5.00

type LazyList<’a>
val nonempty : LazyList<’a> -> bool
val hd : LazyList<’a> -> ’a
val tl : LazyList<’a> -> LazyList<’a>
val consl : ’a -> Lazy<LazyList<’a>> -> LazyList<’a>
val nil : LazyList<’a>

Tasks that were once very simple to code using pattern matching
become obtuse using these analysis functions, e.g., consider code
that sums elements of a list of integers pairwise using pattern
matching1:

let rec pairSum xs =
match xs with
| Cons(x, Cons(y,ys)) ->

consl (x+y) (lazy (pairSum ys))
| Cons(x, Nil()) ->

consl x (lazy nil)
| Nil() ->

nil

becomes

let rec pairSum xs =
if nonempty xs then

let x, ys = hd xs, tl xs
if nonempty ys then

let y, zs = hd ys, tl ys
consl (x+y) (lazy (pairSum zs))

else consl x (lazy nil) )
else nil

Even if LazyList were not an abstract type, pattern matching would
still be problematic because of the need to force evaluation of the
list in the middle of matching. Note that it is nested pattern matches
that causes particular problems in this regard.

While this problem has long been recognized (Wadler 1987;
Okasaki 1998), it becomes more severe when STFLs are placed
in the context of modern object-oriented programming frameworks
(e.g., .NET and Java), which is the idea behind languages such
as F# (Syme and Margetson 2006), Nemerle (Nemerle 2006) and
Scala (Odersky 2006). Object-oriented code heavily employs ab-
stract types to realize encapsulation—a fundamental design prin-
ciple of object-oriented programming—hence programmers of the
languages cited above frequently encounter abstract types but can-
not deal with them in a natural manner because of the limitations
of pattern matching.

This problem also manifests itself to authors of software li-
braries. Revealing algebraic data types in a library design fixes the
usage model of the type to such a degree that their use in the public

1 Throughout this paper we use F# indentation-aware syntax that allows the
OCaml in keyword to be omitted.

29



APIs of framework components is hard to encourage. Indeed, it be-
comes evident that apart from simple cases such as lists, pairs and
options, most algebraic data types are implementations of types,
rather than descriptions of long-term maintainable abstractions. It
is also evident that this is one of the reasons why pattern matching
and algebraic data types have not been successfully transferred to
object-oriented languages such as Java and C# despite proposals in
that direction (Odersky and Wadler 1997).

To summarize, pattern matching on concrete types is problem-
atic because—

• it is not extensible;
• it encourages programmers to break abstraction boundaries;
• it leads to libraries that are difficult to maintain and evolve;
• it leads to a discontinuity in programming: programmers ini-

tially use pattern matching heavily, and are then forced to aban-
don the technique in order to regain control over data represen-
tations.

The authors have witnessed all of these problems in practice in
compiler, theorem prover and library implementations.

This paper considers the problem as it applies to the F# lan-
guage. F# is a pragmatically-oriented dialect of ML based on the
core design of OCaml. It interoperates with other .NET languages
and bridges the gap between the functional and object-oriented
worlds by providing both ML-style functional programming and
type-inferred object-oriented programming. By a minimalistic lan-
guage extension we are able to make pattern matching a powerful
and flexible feature, whether it be used against internal or public, or
functional or object-oriented types. While we have worked by mod-
ifying F#, our results are applicable to any statically typed func-
tional language. Furthermore we believe our design could be used
as a basis for introducing a pattern matching facility in imperative
object-oriented languages such as C# and Java.

In this paper we do the following:

• We introduce the concept of an active pattern in F#. Active pat-
terns can be used in any pattern expression, can be defined to
operate on any type, and can be checked statically for complete-
ness and redundancy of a match. We also give the evaluation
semantics of active patterns by way of a pattern interpreter.

• We present numerous examples of active patterns in action
which demonstrate their success at functionally decomposing
abstract data types.

• We describe how active patterns are implemented in F#.2

• We consider how this feature would interact with three other
reasonable and related language extensions: existential types
quantified at data discrimination tags, GADTs, and monadic
generalizations of pattern matching.

The primary specific contribution of this paper is that it presents
the first design for extensible pattern matching to incorporate both
partial and total decompositions within the context of a regular,
simple and lightweight extension to a language. In addition, this
work is different to many previous attempts at extensible pattern
matching in functional languages because it:

• considers the feature interactions mentioned above, potentially
helping to smooth the path for the adoption of the design in
other languages;

2 Active patterns using the design described here have been a fea-
ture of F# since version 1.9.1. All the examples presented in this pa-
per run on the current release, which is available for download at
research.microsoft.com/fsharp.

• addresses the need for functional languages to interoperate with
object-oriented ones, and

• is implemented and available for use in a mature programming
language system.

The rest of this paper is structured as follows: in §2 we describe
the active pattern mechanism in F#, mostly by example, and in §3
we describe the operational semantics of pattern matching. In §4
we look at further examples, and in §5 we discuss implementation
issues. In §6 we look at interactions with other language features,
and §7 summarizes and discusses related work.

2. Active Patterns in F#
An active pattern is a pattern defined without reference to a dis-
criminated union type declaration. At a basic level an active pattern
is just a regular function, but it is defined using a new syntactic el-
ement called a structured name which gives it special significance
in the language.

2.1 Simple Total Patterns (“Basic Bananas”)
Patterns are used to decompose data into a number of sub-cases.
To begin our exploration of active patterns we will consider the
simplest pattern imaginable: one that decomposes data into only
one sub-case.

Suppose we have a type for complex numbers and wish to write
an addition function. The complex type is not an exported union
type but nevertheless we wish to write our add function by pattern
matching. We can do this using active patterns as follows:3

open Math.Complex
let (|Rect|) (x:complex) = (x.RealPart, x.ImaginaryPart)

let add a b =
match a, b with
| Rect(ar,ai), Rect(br,bi) -> mkRect(ar+br, ai+bi)

The first line defines an active pattern called Rect. The term
(|Rect|) is a structured name, in this case a regular name en-
closed in “banana” brackets. Structured names may appear any-
where where a regular name is used in a binding position. When a
structured name is bound by let it has two effects.

1. The same effect as if it were a regular name: the structured
name will be bound to an expression and added to the term
environment. In this example the name (|Rect|) will be bound
to a value of type complex -> float * float.

2. The regular name will also be added to the environment of pat-
terns, enabling it to be used in patterns where it is in scope. Pre-
viously the only way of adding a new pattern was by defining a
new union type.

The type of the pattern is implied from the type of the function.
In this case the Rect pattern matches complex and yields a residual
of float * float. If a structured name is not bound to a function
value then it is not a valid pattern and a type error will result when
its tags are used.

In the add function, Rect is executed as part of the pattern
matching process. The add function is semantically equivalent to
this code without active patterns:

let add a b =
let ar,ai = Rect a
let br,bi = Rect b
mkRect(ar+br, ai+bi)

Additionally we could define another active pattern that trans-
forms the complex type into polar form.

3 The F# library module Complex contains functions mkRect and mkPolar.

30



let (|Polar|) (x:complex) = (x.Magnitude, x.Phase)

let mul a b =
match a, b with
| Polar(m,p), Polar(n,q) -> mkPolar(m+n, p+q)

Note the concrete representation of complex has not syntactically
dictated the representation used to consume the type in this pro-
gram, as it would if we used pattern matching over the concrete
structure. The concrete representation of complex could change
between rectangular and polar form, or between tuple and record
types without impacting a consumer’s pattern matching code.

The above functions could also have been written

let add (Rect(ar,ai)) (Rect(br,bi)) = mkRect(ar+br,ai+bi)
let mul (Polar(m,p)) (Polar(n,q)) = mkPolar(m+n,p+q)

with the same result.

2.2 Multiple Case Total Patterns (“Banana Splits”)
Decomposing data into one sub-case is not a very general task.
We need active patterns to decompose data into one of many sub-
cases. We allow this by expanding the format of a structured name.
The bananas of a structured name can now enclose multiple names
separated by splits, (|).

Suppose we wish to create an active pattern interface to the
standard F# lazy list type, which is abstract. We can write this in
F# as follows:

let (|Cons|Nil|) l =
if nonempty l then Cons(hd l,tl l)
else Nil

Here the structured name (|Cons|Nil|) defines two regular names
Cons and Nil. These regular names are used on the right of the
let binding to tag different cases of the pattern. The right-side
of the let binding is given an anonymous sum type. Like tuples
(i.e., anonymous product types), the F# language also predefines a
family of anonymous sum types as follows:4

type (’a,’b) choice =
| Choice2_1 of ’a
| Choice2_2 of ’b

type (’a,’b,’c) choice =
| Choice3_1 of ’a
| Choice3_2 of ’b
| Choice3_3 of ’c

(* etc. *)

These types are primarily used to encode the result of multiple case
patterns. Hence in this example the active pattern (|Cons|Nil|)

will have type ’a llist -> (’a * ’a llist, unit) choice. The
compiler translates tags from the structured name to tags of the
choice type in order. However the programmer never needs to use
the choice type directly with active patterns except in signatures.
The names Cons and Nil are put in scope as patterns that match
’a llist and yield ’a * ’a llist and unit residuals respectively.
These names are used in patterns to match lazy lists without knowl-
edge of the underlying choice type.

The example used in the introduction can now be written in a
much more natural way:

let rec pairSum xs =
match xs with
| Cons(x, Cons(y,ys)) ->

consl (x+y) (lazy (pairSum ys))

4 .NET languages permit overloading by arity of generic type constructor.
At the time of writing the F# release only includes choice types up to n = 7.
It is trivial to have the compiler encode choice types of greater n into these.

| Cons(x, Nil()) ->
consl x (lazy nil)

| Nil() ->
nil

The pattern names defined by an active pattern have identity.
This allows the compiler to perform completeness and redundancy
analysis of match blocks, and generate efficient code that does not
recompute patterns that have already been applied. In compiled
code active patterns are matched over their choice type representa-
tion. The pairSum example will compile to code like the following
which does not recompute the active patterns if the first rule fails.

let rec pairSum xs =
match (|Cons|Nil|) xs with
| Choice2_1 (x, ys’) ->

match (|Cons|Nil|) ys’ with
| Choice2_1 (y,ys)) ->

consl (x+y) (lazy (pairSum ys))
| Choice2_2 () ->

consl x (lazy nil)
| Choice2_2 () ->

nil

Already active patterns are powerful enough to provide a robust
pattern interface to an existing object-oriented data type—this is
important for F# because programmers constantly deal with code
in the .NET base class library and from other languages. For ex-
ample, the .NET base class library provides a Type type that repre-
sents reified run-time types and is used throughout the frameworks
reflection and code generation APIs. The Type class is defined as
follows:

type Type with
member IsGenericType : bool
member GetGenericTypeDefinition : unit -> Type
member GetGenericArguments : unit -> Type[]
member HasElementType : bool
member GetElementType : unit -> Type
member IsByRef : bool // an managed pointer
member IsPointer : bool // an unmanaged pointer
member IsGenericParameter : bool
member GenericParameterPosition : int

In essence, this class interface is trying to communicate that a Type

object can be exactly one of the following:

1. A named typed with a name (represented by another Type

object) and list of type parameters.

2. A array type with a rank and element type.

3. A pointer type that could be managed or unmanaged.

4. A type parameter5

However the API is subtle: for example GetGenericTypeDefinition
fails if IsGenericType returns false, when you might expect it to
be the identity function in this case. This is a consistent cause of
irritating bugs when using this API.

We can define an active pattern that hides this complexity and
captures the essential algebraic structure of Type objects:

let (|Named|Array|Ptr|Param|) (typ : System.Type) =
if typ.IsGenericType
then Named(typ.GetGenericTypeDefinition(),

typ.GetGenericArguments())
elif typ.IsGenericParameter
then Param(typ.GenericParameterPosition)
elif not typ.HasElementType
then Named(typ, [| |])

5 There are no binding constructs; type parameters are bound at method and
class definitions.

31



elif typ.IsArray
then Array(typ.GetElementType(),

typ.GetArrayRank())
elif typ.IsByRef
then Ptr(true,typ.GetElementType())
elif typ.IsPointer
then Ptr(false,typ.GetElementType())
else failwith "MSDN says this can’t happen"

We can now write code that consumes this type in a functional
manner to, say, pretty print a Type object:

let rec formatType typ =
match typ with
| Named (con, []) ->

sprintf "%s" con.Name
| Named (con, args) ->

sprintf "%s<%s>" con.Name (formatTypes args)
| Array (arg, rank) ->

sprintf "Array(%d,%s)" rank (formatType arg)
| Ptr(true,arg) ->

sprintf "%s&" (formatType arg)
| Ptr(false,arg) ->

sprintf "%s*" (formatType arg)
| Param(pos) ->

sprintf "!%d" pos

and formatTypes typs =
String.Join(",",Array.map formatType typs)

or to collect the free generic type variables:

let rec freeVarsAcc typ acc =
match typ with
| Array (arg, rank) -> freeVarsAcc arg acc
| Ptr (_,arg) -> freeVarsAcc arg acc
| Param _ -> (typ :: acc)
| Named (con, args) ->

Array.fold_right freeVarsAcc args acc

let freeVars typ = freeVarsAcc typ []

The pattern effectively allows us to view Type objects as if they had
been defined using the following union type:

type Type =
| Named of Type * Type[]
| Array of int * Type
| Ptr of bool * Type
| Param of int

2.3 Partial Patterns (“Banana Slices”)
Our examples so far have been of active patterns that decompose
types into a complete set of sub-cases. However this is not the only
useful way to decompose data. Heterogeneous data types such as
term structures, XML and strings can be analysed in many different
ways, most of which are incomplete and application-dependent. For
example, say we have heterogeneous data stored as a string and we
want to pattern match over the string to extract structured data. We
would like to write code as follows.

match str with
| ParseInt i -> IntVal i
| ParseFloat f -> FloatVal f
| ParseDate d -> DateVal d
| ParseColour c -> ColourVal c
| _ -> failwith "unrecognized data"

These four “parse” active patterns do not form a complete de-
composition of strings. Moreover they overlap because ParseInt

and ParseFloat would both match the string "0". Furthermore
these patterns need not be defined together, indeed should not be
defined together so that new parse patterns can be added in the fu-

ture. For these reasons these active patterns are partial and can be
defined like so.

let (|ParseInt|_|) s =
let i = ref 0
if Int32.TryParse(s, i) then Some !i
else None

val colors : (string * colour) list

let (|ParseColour|_|) s = try_assoc s colours

A partial active pattern is defined using a structured name with
a trailing underscore to indicate the incompleteness of a match. A
partial pattern either succeeds and yields residual data or it fails.
A failure indicates that other patterns in the match block should be
tried.

Structured names with an underscore are given an option

type. Hence, (|ParseInt| |) has type string -> int option and
ParseInt may be used as a pattern that matches string and yields
int.

For completeness our specification includes structured names
with multiple cases, e.g, (|ParseInt|ParseFloat| |). However
we have yet to detect any practical benefit in doing so. One ad-
vantage of multiple case patterns in the previous section was that it
enabled the compiler to perform completeness analysis on a match
block. However this is lost here because of the inherent incomplete-
ness of the pattern. The other advantage of multiple case patterns
is that it can give more efficient match evaluation. However this is
only effective if different cases share a significant part of the ac-
tive pattern implementation. In practice we have found this seldom
occurs—it is too easy to reuse separate existing parse int and float

functions than to write your own code that simultaneously parses
an int and a float. For these reasons, partial active patterns with
multiple cases are not implemented in the current release of F#.

Partial patterns have different evaluation semantics to total pat-
terns. Consider the function—

let f s =
match s with
| ParseInt 0 -> Zero
| ParseFloat f -> NonZero f
| _ -> failwith "not a number"

If ParseInt and ParseFloat were part of the same total active
pattern then the expression f "1" would evaluate to the failwith

clause. This is because "1" would be successfully parsed as an in-
teger but fail matching the integer 1 against 0. Then the second
clause would be skipped because, by virtue of being in a total pat-
tern, ParseInt and ParseFloat are known to be mutually exclusive.
Hence if one succeeds the other must automatically fail, and so the
third clause is hit. However this does not happen when the patterns
are defined as partial. The success (or failure) of a partial pattern
gives no information about how other partial patterns may succeed
or fail.

2.4 Parameterized Patterns (“Scrap Your Banana Plate”)
When using active patterns—particularly partial ones—it quickly
becomes necessary to parameterize them to express queries such
as “Match an attribute A on an XML Node” or “Match any term
in an abstract syntax tree involving a call to function M”. Say we
wanted a pattern that matches strings against a regular expression.
To do this the active pattern must be parameterized on the regular
expression. We can do this like so6:

let (|ParseRegex|_|) re s =

6 This code uses the standard regular expression library of the .NET frame-
work.

32



let m = Regex(re).Match(s)
if m.Success
then Some [ for x in m.Groups -> x.Value ]
else None

This active pattern has the expected type string -> string ->

(string list) option—it returns a list of matched groups from
the regular expression. The type of ParseRegex as a pattern is
more complicated. At one level it could be viewed as single-case
total pattern that matches string and yields string -> (string

list) option, but that is not particularly useful. So instead initial
arguments of an active pattern can be applied at its usage site. So
we could write a function that swaps the parts of a hyphenated word
like so:

let swap s =
match s with
| ParseRegex "(\w+)-(\w+)" [l;r] -> r ^ "-" ^ l
| _ -> s

Parameterizing an active pattern results in the loss of its identity,
hence the compiler cannot perform redundancy or completeness
analysis and a parameterized pattern will be re-evaluated every time
it appears in a match block, even if it has syntactically the same
arguments, an issue we return to in §5.1.2.

2.5 First-Class Pattern Values (“First-Class Bananas”)
Since active patterns are simply functions they are first-class values
in the language and hence can be lambda abstracted. This is useful
for writing higher-order active patterns—i.e., a pattern parameter-
ized on other patterns. For example, consider an unfold combinator
that applies a partial function, q, zero or more times (here q has type
’t -> (’a * ’t) option and the input inp has type ’t):

let qZeroOrMore q inp =
let rec queryAcc rvs e =

match q e with
| Some(v,body) -> queryAcc (v::rvs) body
| None -> (List.rev rvs,e) in

queryAcc [] inp

Consider a partial active pattern to match Lambda nodes in an
expression tree:

type expr =
| Lam of string * expr
| App of expr * expr
| Var of string

let (|Lambda|_|) = function Lam(a,b) -> Some(a,b)
| _ -> None

A total pattern can now be defined using this as a first-class value:

let (|Lambdas|) e = qZeroOrMore (|Lambda|_|) e

Furthermore, qZeroOrMore could even have been written using a
variable with a structured name as a parameter:

let qZeroOrMore (|Q|_|) inp =
let rec queryAcc rvs e =

match e with
| Q(v,body) -> queryAcc (v::rvs) body
| _ -> (List.rev rvs,e) in

queryAcc [] inp

This shows that active patterns really are just values with structured
names.

2.6 “Both” Patterns (“Have Your Banana and Eat It Too”)
Many STFLs such as F#, OCaml and SML ’97 include “either”
patterns pat | pat , which succeed if either the left or right pat-
terns match (the patterns must bind identical variables at identical

Structured Name Kind Expected Return
Type

(|A|) Single-case total a

(|A1|...|An|) Multi-case total (a1,...,an)

choice

(|A| |) Single-case partial a option

(|A1|...|An| |) Multi-case partial (a1,...,an)

choice option

Table 1. Kinds of active recognizers and their structured names

types). As has been noted by Rossberg (2007a), the natural dual
to “either” patterns is “both” patterns pat & pat that only suc-
ceed if both the left and right patterns match. “Both” patterns are
not particularly useful in traditional STFLs since most uses can be
combined into a single pattern. However, that changes when the set
of matching constructs is extensible. For this reason we extend F#
matching with “both” patterns. We will see realistic examples of
these in §4.2.

2.7 Summary
In this section we have presented the basic design of active patterns
in F#. Active patterns are predicated on structured names. Struc-
tured names introduce new pattern names into the environment of
patterns hence making pattern matching extensible. The abstract
syntax of a structured name is (|id|...|id|{ |}?). Table 1 shows
the different classes of structured names.

Active patterns are simply functions and as such may take pa-
rameters and be parameters themselves. An active pattern function
has type

τ1 → ...→ τN → τinp → τ

for some N ≥ 0, where the N initial arguments are the parameters
to the pattern and the last argument is the input to be matched. The
return type must conform to the shape indicated in Table 1 based on
the form of the structured name, if not a type error will result on use.
The input argument of type τinp can be any type including abstract
types, primitive types, union types and object types. Moreover a
type can have any number of active patterns defined over it.

3. Operational Semantics
In this section we give a model operational semantics for pattern
match evaluation. We do this in two steps:

1. We give a naive semantics via an interpreter that evaluates
patterns rule-by-rule;

2. We informally outline the changes required to give an Okasaki-
style semantics (Okasaki 1998) that ensures that invocations of
active patterns are cached, i.e., only executed once for a given
input.

3.1 A Naive Dynamic Semantics
Since a naive semantics is not difficult, we avoid the traditional
approach of using inference rules. Instead we present a simple
interpreter for pattern matching, originally as an OCaml/F# pro-
gram and here presented in programmatic notation using only well-
founded recursion, pure lambda calculus constructs and simple data
types.7 We only give the relevant pattern matching portion of the
dynamic semantics.

7 An inference rule presentation is easy to derive from the one we give,
should it be deemed necessary. However inference rules are harder to type
check, debug and maintain than a simple interpreter.

33



type env
type expr
type exprs = expr list
type state
type tag = string

type pat =
| PPair of pat * pat Tuple patterns
| PTag of tag * pat A data pattern
| PActive of tag * exprs * pat An active pattern
| PEither of pat * pat ’or’ patterns
| PBoth of pat * pat ’and’ patterns
| PWild patterns
| PId of string Variable patterns
| PConst of int Constant patterns

type value =
| VPair of value * value Pair values
| VTag of string * value Tagged values
| VConst of int Constants

type rule = pat × expr
type rules = rule list

Figure 1. Input terms and values for the operational semantics

The input syntax terms are shown in Figure 1. As shown in
Figure 2 we assume the existence of a type of environments, a type
of expressions, a function applyExpr to evaluate/apply expressions,
and a function resolveActiveTag that resolves an active pattern label
to an expression and further information indicating the kind of the
pattern (partial or total), the number of tags in the tag set of the
pattern and the position of the tag in the tag set.

In Figure 3 we give the definitions of functions matchPat and
matchRules that match a single pattern and a set of rules respec-
tively. We pass an explicit state since evaluating F# expressions
may change a global state. The interesting points of the semantics
are:

• Active patterns are first resolved to an expression, the expres-
sion is applied (perhaps to some additional active parameter ar-
guments), and a further pattern match executed for a pattern
built using Some, None, Choice1 1, Choice2 1, etc. pattern con-
structions. That is, the active pattern must resolve to a function
expression which returns appropriate Choice-tagged data.

• The environment is only extended after pattern matching: iden-
tifiers bound by the pattern may not be used in the pattern.
This is different to some other proposals for extensible pattern
matching (Rossberg 2007b). We think this helps make patterns
more readable and understandable.

3.2 Applying the Okasaki Condition
Okasaki has argued convincingly that the only sensible semantics
to apply to pattern match execution in a language with side effects
is to require that active discrimination functions be run at most once
against any given input within the context of a given collection of
pattern rules (Okasaki 1998). It is easy to extend our semantics to
cover this case.8

• Within a single invocation of matchRules the state s is aug-
mented with a lookup table keyed by paths. Paths are lists of

8 At the time of writing the F# compiler does not implement the Okasaki
semantics, but does run the pattern compilation algorithm we describe
in §5. This means it may run active patterns more than once against the
same input. It thus effectively assumes that active patterns do not have side
effects, or if they do then they are benign.

applyExpr :
env × state × expr × exprs × value → state × value

resolveActiveTag: env × string → expr × bool × int × int

type bind = string * value
type binds = bind list

Operator to build a Choice tag for the use of an active pattern identifier:
tagName m n = sprintf "Choice%d_%d" m n

Operators to combine pattern evaluations conjunctively and disjunctively:

f1
∧

f2 =
λ(s,binds).

s’,matchRes = f1 (s,binds)
match matchRes with
| None → s’,None
| Some(binds) → f2 (s’,binds)

f1
∨

f2 =
λ(s,binds).

s’,matchRes = f1 (s,binds)
match matchRes with
| None → f2 (s’,binds)
| Some(binds) → (s’,Some(binds))

Figure 2. Assumptions and preliminary definitions

matchPat : env × pat × value
→ state × binds → state × binds option

matchPat (env,pat,v) (s,binds) =
match pat,v with
| PPair(p1,p2), VPair(v1,v2) →

(matchPat(env,p1,v1)
∧

matchPat(env,p2,v2)) (s,binds)
| PBoth(p1,p2) ,_ →

(matchPat(env,p1,v)
∧

matchPat(env,p2,v)) (s,binds)
| PEither(p1,p2),_ →

(matchPat(env,p1,v)
∨

matchPat(env,p2,v)) (s,binds)
| PTag(s1,p’), VTag(s2,v’) when s1 = s2 →

matchPat (env,p’,v’) (s,binds)
| PConst(c1), VConst(c2) when c1 = c2 → (s,Some binds)
| PWild,_ → (s,Some binds)
| PId(nm),v → (s,Some ((nm,v)::binds))
| PActive(nm,args,p0), _ →

f,total,numCh,n = resolveActiveTag(env,nm)
s’,v’ = applyExpr(env,s,f,args,v)
p1 =

if numCh = 1 then p0
else PTag(tagName numCh n,p0)

p2 = if total then p1 else PTag("Some",p1)
matchPat(env,p2,v’) (s’,binds)

| _ → (s,None)

matchRules: env × rules × value
→ state → state × binds option

matchRules(env,rules,v) s =
match rules with
| [] → (s,None)
| (pat,expr) :: rules’ →

s’,matchRes = matchPat (env,pat,v) (s,[])
match matchRes with
| None -> matchRules (env,rules’,v) s’
| Some(binds) → (s’,Some(binds,expr))

Figure 3. Pattern Matching: Naive Operational Semantics

34



identifiers. We assume functions lookup and record exist to
read and write this table.

• At each initial call to matchPat the path is empty. In the
recursive calls to matchPat the path is extended in different
cases as follows:

for PPair it is extended by L/R on the left/right respectively;

for PTag it is extended by the data tag;

for PActive patterns with no arguments it is extended by the
pattern tag;

for PActive patterns with arguments it is extended by a
freshly generated identifier, for reasons covered in §5.1.2;

for other cases the path is not extended.

The lookup table is consulted at PActive patterns by replacing the
application of applyExpr with:

| PActive (nm,args,p’), _ →
s,v’ =

match lookup s path with
| None →

s’,v’ = applyExpr(env,s,f,args,v)
s’’ = record s path v’
s’’,v’

| Some v’ → s,v’
...

These changes are together sufficient to ensure that we only invoke
an unparameterized active pattern on the “same” input at most once
while matching a value against a set of rules, where paths are used
to determine if two inputs are the same.

3.3 Static semantics
We do not give a corresponding static semantics, as it follows
the normal type-checking rules for patterns. However we note the
following:

• As expected, an additional case for active patterns is required
and it follows the form of the corresponding case for the dy-
namic semantics with a constraint that the return type of the
active pattern has the shape expected as specified in Table 1.

• Different total and partial patterns may be used in the same pat-
tern to match against the same inputs. However, this may impair
the compiler’s ability to analyse redundancy and incomplete-
ness.

• The static semantics stay simple only if we do not attempt to
specify redundancy and incompleteness checking. These do not
normally form part of the specification of pattern matching in
ML-family languages and are instead seen as compiler-specific
features added to enhance programmer productivity. 9

4. Further Examples of Active Patterns
In this section we look at three additional examples of the use of
active patterns.

4.1 Join Lists
Join lists are a classic example of the use of view-like mechanisms
in functional languages. They are also an example of recursive pat-
tern definitions. Here is the standard polymorphic join list example
in F# code:

9 Recently Maranget (2007) has proved the correctness of some pattern
matching algorithms with respect to these properties, and we believe these
techniques may be helpful for active patterns as well.

type ’a jlist =
| Empty
| Single of ’a
| Join of ’a jlist * ’a jlist

let rec (|Cons|Nil|) = function
| Single x -> Cons(x, Empty)
| Join(Cons(x,xs), ys) -> Cons(x, Join(xs, ys))
| Join(Nil(), Cons(y,ys)) -> Cons(y, Join(ys, Empty))
| Empty
| Join(Nil(), Nil()) -> Nil()

let jhead js =
match js with
| Cons(x,_) -> x
| Nil -> failwith "empty list"

let rec jmap f xs =
match xs with
| Cons(y,ys) -> Join(Single(f y), jmap f ys)
| Nil() -> Empty

The definition of the (|Cons|Nil|) total pattern is syntactically
very close to the corresponding view definition as proposed in
(Wadler 1987). This is pleasing: the pattern being defined can be
used within its own definition, and type inference works effectively
for these definitions.

4.2 XML Matching
XML is perhaps the most important structured heterogeneous data
type in use today. In this section we present an initial version of
defining compositional patterns for XML fragments. We focus on
patterns that traverse the immediate structure of XML trees, rather
than query operators. The talented programmer is free to define
suitable new patterns, perhaps based on advanced query tools that
may be implemented by existing XML libraries such as XLinq
(Meijer and Beckman 2006).

Our example uses the System.Xml API of the .NET libraries.
For our purposes this simply makes XML available as an untyped
expression tree accessed via the following types and dot-notation
members:

type XmlNode with
member Item : string -> XmlNode
member Name : string
member Attributes: XmlAttributeCollection
member ChildNodes: XmlNode[]

type XmlAttributeCollection with
member GetNamedItem: string -> string

type XmlAttribute with
member Value: string

In this example our aim is to map XML representing a scene graph
of 3D shapes into an algebraic datatype, e.g. consider the following
input:

<Scene>
<Intersect>

<Sphere r=’2’ x=’1’ y=’0’ z=’0’/>
<Intersect>

<Sphere r=’2’ x=’4’ y=’0’ z=’0’/>
<Sphere r=’2’ x=’-3’ y=’0’ z=’0’/>

</Intersect>
<Sphere r=’2’ x=’-2’ y=’1’ z=’0’/>

</Intersect>
</Scene>"

A suitable F# type to represent this data in a strongly-typed fashion
is:

type scene =

35



| Sphere of float * float * float * float
| Intersect of scene list

We first define some general-purpose and simple active patterns
that we can reuse for many XML samples. The partial pattern
(|Elem| |) checks an element has a given name:10

let (|Elem|_|) name (inp: #XmlNode) =
if inp.Name = name then Some(inp)
else None

We next define patterns (|Attributes|) to extract the attributes
from a node, and (|Attr|) to look for an attribute of a particular
name and extracts is value:

let (|Attributes|) (inp: #XmlNode) = inp.Attributes

let (|Attr|_|) attr (inp: XmlAttributeCollection) =
match inp.GetNamedItem(attr) with
| null -> None
| node -> Some(node.Value)

Our final general-purpose pattern converts a string to a float:

let (|Float|_|) s =
try Some(Float.of_string s) with _ -> None

We can now write a derived pattern to match a collection of at-
tributes that represent a vector, e.g. x=’-3’ y=’0’ z=’0’. Note this
pattern cannot fail except by raising an exception:

let (|Vector|_|) inp =
match inp with
| (Attr "x" (Float x) &

Attr "y" (Float y) &
Attr "z" (Float z)) -> Some(x,y,z)

| _ -> None

We can now write recursive functions to map XML nodes named
Sphere or Intersect into the datatype:11

let rec (|ShapeElem|_|) inp =
match inp with
| Elem "Sphere"

(Attributes (Attr "r" (Float r) &
Vector (x,y,z)))

-> Some (Sphere (r,x,y,z))
| Elem "Intersect" (ShapeElems(objs))

-> Some (Intersect objs)
| _ -> None

and (|ShapeElems|) inp =
[ for (ShapeElem y) in inp.ChildNodes -> y ]

Finally we can wrap this up in a parse function that checks the top
node is a Scene node and extracts the shapes from its child nodes:

let parse inp =
match inp with
| Elem "Scene" (ShapeElems elems) -> elems
| _ -> failwith "not a scene graph"

let inp = "... the XML above ..."
let doc = new XmlDocument()
let res = doc.LoadXml(inp)

We have now successfully mapped an untyped XML document into
the following strongly typed data:

res : scene
= Intersect

[ Sphere((2.0,1.0,0.0,0.0);

10 As in OCaml the notation #ty means “a type variable constrained to be
any subtype of ty”.
11 The definition of ShapeElems uses F# list comprehension notation.

Intersect
[ Sphere(2.0,4.0,0.0,0.0);

Sphere(2.0,-3.0,0.0,0.0) ];
Sphere(2.0,-2.0,1.0.0.0) ]

4.3 Quotations
F# allows a form of meta-programming where F# code can be
reified as values at run-time and manipulated (Syme 2006b). Quasi-
quotation provides a convenient means of constructing code values;
however there is no convenient solution for deconstructing code
values. Traditional pattern matching cannot be used because code
is represented by an abstract type. Even if it could, it is useful to
have multiple different decompositions to view code at the right
level of abstraction for the analysis being performed, e.g., in terms
of low-level lambda abstractions or in terms of high-level control
structures.

Matching on quotations was a major consideration for the de-
sign of active patterns, initially sparked by quotation matching
in ForteFL (Grundy et al. 2006), and code patterns in MetaML
(Taha and Sheard 1997). For example, quotation literals, writ-
ten <@@ ... @@>, can be passed as parameters to active patterns
which use the literals to help drive the matching process:

open Quotations
open Quotations.Raw

// interp : Quotations.Raw.Expr -> float
let rec interp inp =

match inp with
| TopDefnApp <@@ sin @@> [x] -> sin (interp x)
| TopDefnApp <@@ cos @@> [x] -> cos (interp x)
| Double(x) -> x
| _ -> failwith "unrecognized"

printf "res1 = %g" (interp <@@ sin(cos(1.0)) @@>)

In this example, the active pattern TopDefnApp from the F# library
matches quotation terms that represent applications of a specific
function indicated by its parameter, in this case the F# functions
sin and cos.

5. Implementation
In this section we look at two aspects related to the implementation
of the mechanism described in this paper: pattern match compila-
tion and the representation of return results.

5.1 Pattern Match Compilation
For pattern match compilation F# uses the generalized pattern com-
pilation algorithm of Scott and Ramsey (2000) with a left-to-right
heuristic. Modifying this algorithm to implement a valid interpre-
tation of active patterns was fairly straight-forward.

The algorithm of Scott and Ramsey (2000) works as follows.
At each step, a heuristic chooses a point of investigation for a
collection of frontiers. Frontiers represent partially investigated
pattern match rules. A point of investigation corresponds to a single
decision point (e.g. a switch on an integer tag). Each point of
investigation is represented by a sequence of integers called a path,
and, in the absence of active patterns, represents a path to a sub-
term of the input term. Given the point of investigation, the frontiers
are divided into those edges that are relevant, i.e. where information
from the investigation may result in the success/failure of the rule,
and those that are tips, i.e. irrelevant. A decision tree node is
then constructed that has subtrees corresponding to projecting the
success/failure of the investigation through the relevant edges. A
default case is added for the tips. The process is then repeated until
all frontiers are exhausted. Match incompleteness warnings can be
given if a final “dummy” rule is ever exercised.

36



5.1.1 Modification 1: Choosing the Edge Set
In the absence of active patterns, the algorithm of Scott and Ram-
sey (2000) ensures that all irrelevant frontiers have a trivial (i.e.
wildcard or variable) patterns at the point of investigation. With ac-
tive patterns this assumption is no longer valid, because it might
take several different investigations to run several different active
patterns against a given input. We thus modified the algorithm as
follows:

• When partitioning edges, choose a prefix of relevant edges
based on the point of investigation, where all the edges are
related to the same pattern. If the pattern has no identity, i.e., is
a parameterized active pattern, then only the first relevant edge
is chosen.

5.1.2 Modification 2: Pattern Identity and Path Identifiers
A second modification to the algorithm of Scott and Ramsey
(2000) is necessary to ensure a distinction between “sub-terms”
and “paths”. Paths describe potential points of investigation in the
pattern structure. In the presence of active patterns, paths must
record which active patterns have led us to a particular nested pat-
tern. Consider the following:

let (|Bit|) n =
let mask = 1ul <<< n in
fun inp -> ((inp &&& mask) <> 0ul)

match 0b0001000100ul with
| Bit 3 true -> printfn "No!"
| Bit 2 false -> printfn "No No!"
| Bit 2 true & Bit 3 false -> printfn "Yes indeed!"
| _ -> failwith ""

If the Bit 3 pattern succeeds, but its true sub-pattern fails, then
no information is gained about the success or failure of the false

sub-pattern of Bit 2 false. This is because the parameter to the
pattern is different in each case, or, more specifically, because we
don’t consider parameterized patterns to have any kind of identity.
In a naive extension of the original algorithm these would be given
identical path locations, which would be incorrect.

For this reason, we extended the notion of path so that different
instances of parameterized patterns encountered through pattern
match compilation are allocated fresh, unique integers and these
integers are used within paths.

5.1.3 Modification 3: Rule Chunking
The extensive use of active patterns (particularly partial patterns)
can quickly lead to significant (even exponential) blow up in the
size of generated decision trees (Okasaki 1998). This is partly
due to the fact that failing sub-patterns can lead to duplications
of the large frontier sets that are used to investigate multiple rules
simultaneously.

For this reason, we additionally modified the algorithm of Scott
and Ramsey (2000) to abandon the use of large frontier sets when-
ever partial patterns are used. That is, when compiling N rules, we
have a choice as to whether we compile all rules simultaneously,
or one-by-one, or in chunks. We choose a prefix of rules up to the
first that uses any kind of partial pattern. This may result in active
patterns being called more times than may be expected, but reduces
code size substantially on some real-world examples.

5.2 Performance and the Representation of Return Results
Performance is not the primary focus of this paper, for the following
reasons:

• We believe that even a naive implementation of the constructs
described here would increase expressive power sufficiently to
justify their inclusion in a language.

• The inclusion of multi-way total patterns in the design inher-
ently gives us a foundation for significantly better performance
than the proposed extensions for ad hoc matching. Multi-way
total patterns allow multiple rules to be explored with a sin-
gle discrimination, as with regular matching on discriminated
unions.

• Important cases such as “conversion patterns” (i.e., patterns
such as (|Complex|)) do not occur any overhead: they are just
function calls that can be inlined and optimized as usual.

In addition, we know of several techniques that should, in theory,
substantially improve the performance of patterns but which we
have not yet implemented. In particular, one performance consid-
eration is the representation used for return results of patterns. The
current F# implementation uses:

• null for a failing partial pattern (i.e. None is represented as
null);

• a boxed value for a succeeding partial pattern (i.e. Some(1)

results in a boxed integer);
• a simple unboxed value for single-tag total patterns like Complex;
• a boxed tagged value such as Choice3 1(1) for multi-tag total

patterns .

Tuples in return values also currently require an extra allocation.
This means the current implementation does perform allocations
on many pattern calls.

However, an easy technique that will eliminate nearly all allo-
cations is available to us: .NET supports type-safe structs, i.e. types
whose representation is not a heap-allocated GC pointer but rather
an inline collection of values, generally immutable and copied as
needed. While the F# compiler doesn’t yet use structs for options,
choices and tuples, it is clear that these are excellent candidates to
do so. This may also bring other performance benefits to F# code.12

However such a change must be thoroughly performance tested as
it has ramifications well beyond the scope of this paper.

6. Feature Interactions and Future Work
In this section we look at how active patterns interact with some
related language features. These features do not currently exist in
F#, though some are likely to be added in due course. However, this
paper aims to make a contribution relevant to languages other than
F#, and hence we consider it essential to think through potential
feature interactions in OCaml, Haskell and other statically typed
functional languages.

6.1 Types for Recognizers
The types we have given for patterns use an encoding of anonymous
unlabeled sum-types tagged by the name choice:

val (|Cons|Nil|): ’a llist -> (’a * ’a llist,unit) choice

However, unlabeled sum types are not a particularly useful
extension to functional languages. It is evident that OCaml-style
polymorphic variant types would be useful here:

val (|Cons|Nil|) :
: ’a llist -> [ ‘Cons of (’a * ’a llist) | ‘Nil ]

This raises the question: could an active pattern mechanism be built
entirely in terms of the tag information in a labeled sum type? This
appears difficult without some kind of syntactic extension, but is
an open question and is an interesting, especially for the OCaml
community.

12 The designers of Nemerle (Nemerle 2006) have reported corresponding
performance improvements for tuples in private correspondence.

37



6.2 Tag-Bound Existentials and GADTs
Existentials are a natural extension to pattern matching in lan-
guages with enriched datatypes (Läufer and Odersky 1992) or sub-
typing and runtime types. For example, the following is the likely
syntax for a proposed extension to F# where type variables can be
existentially quantified at pattern matches involving type tests:13

match obj with
| <’a> :? List<’a> as l -> ...
| <’a> :? ’a[] as arr -> ...
| <’k,’v> :? Dictionary<’key,’value> -> ...

This extension is not yet implemented in F#, but is implementable,
by using some of the reflection machinery of the .NET Common
Language Runtime, and there are many known examples where it
would be useful.

But what of active patterns? For example, it would be reason-
able to expect to be able to write recognizers that abstract one or
more of these patterns:

match obj with
| <’a> AnyListOrArray(l : ’a list) -> ...
| ...

However what is the type of AnyListOrArrray? One natural encod-
ing is to permit anonymous existentials as part of the return type of
patterns:

val (|AnyListOrArray|_|) : obj -?> (∃’a. ’a list)

let (|AnyListOrArray|_|) (obj) : (∃’a. ’a list) =
match obj with
| <’a> :? List<’a> as l -> Some(l)
| <’a> :? ’a[] as arr -> Some(Array.to_list arr)
| _ -> None

Here we have assumed an extension to the type algebra of the form
∃α. τ , and τ1 -?> τ2 is used as a shorthand for τ1 -> τ2 option.
We have also assumed an implicit “pack” operation on each branch
of the result of the implementation of the active pattern.

Generalized Algebraic Data Types (GADTs) generalize exis-
tentials by allowing data construction tags to existentially quan-
tify constraints as well as variables (Xi et al. 2003). Here a natural
encoding is again to enrich the type system to ensure that simple
function types are rich enough to encompass these constraints. For
example, consider the following possible signature for a partial ac-
tive pattern to match “lambda” nodes in a strongly typed abstract
term structure, one of the canonical examples of GADTs:

type Expr<’a> // an abstract type
val (|Lambda|_|)

: Expr<’a>
-?> (∃’b ’c. (’a = ’b -> ’c) => Var<’b> * Expr<’c>)

Here we have assumed an extension to the type algebra of the
form ∃α. C => τ , where C expresses equational type constraints,
which are sufficient to capture those that correspond to GADT
declarations.

While the above approach to existentials and GADTs is plausi-
ble, it is also an intrusive addition to a STFL, especially (but not
only) with regard to type inference. For this reason it may instead
be reasonable to explore non-type-based extensions that only per-
mit the use of existentials as part of the return type of patterns.
This is indeed in the spirit of GADTs themselves which draw much
of their expressive power by being a limited locale for existential

13 The F# pattern “:? ty as id” is a type-test pattern, and if it succeeds it
binds id to the input value at the stronger type. In the current F# design no
patterns may bind type variables. In the proposed extension the existentials
would be witnessed by solving the type tests w.r.t. the runtime type of the
input object.

Match expressions:

[[matchm < M > e with rules]] = let t=e in [[rules]]M,t

Rules:

[[p->e|rules]](M,t) = plus [[p]]M,t,e [[rules]]M,t

[[∅]](M,t) = zero

Patterns:

[[C p]]M ;t;e = bind (C t) (fun t′ − > [[p]]M ;t′;e)

[[x]]M ;t;e = let x=t in return e

where each t is a fresh variable.

Figure 4. Monadic desugaring of simple patterns

quantification. The logical conclusion of this design is that patterns
have a more special status in the language than they currently do in
the design we have described.

6.3 Monadic and Transactional Pattern Matching
So far we have observed that partial patterns are functions of type
’a -> ’b option. The choice of the option is arbitrary and many
other types could be used. In particular, it is possible to generalize
the return type of a pattern matching function to anything that
implements Haskell’s MonadPlus type class (Tullsen 2000).

In future work we expect to extend F# with support for con-
strained higher-kinded type parameters. In this case the return type
of structured names (|A| |) could feasibly be generalized to a ’M

when ’M :> MonadPlus. 14

Regular pattern matching cannot be immediately adapted to be-
come monadic matching: for example, a monadic matching con-
struct should not necessarily run the monadic value produced.
Instead we consider a monadic match expression of the form
matchm<ty >, where the monad being used is explicitly specified.
A matchm expression can then be translated into a regular monadic
expression using rules such as those in Figure 4. The translation as-
sumes the monad of interest stays fixed throughout the pattern, i.e.,
that nested patterns match in the same monad as the outer pattern.

Useful instances of MonadPlus include lazy lists for back-
tracking evaluation and the software transactional memory (STM)
monad for transactional evaluation (Harris et al. 2005). Different
choices of matching monad produce remarkably different seman-
tics for the match block.

For lazy lists the plus operation is concatenation. This means
that the results of multiple rules are aggregated, which is quite
different to the first-rule-succeeds interpretation of simple (option
monad) pattern matching.

More interestingly, for STM monads the zero operation causes
a transaction to re-execute (and potentially block) and the plus
operation rolls back the effects of the first transaction if it fails
and then executes the second. Hence a transaction monad can be
used to control the use of side-effects in a pattern by rolling back
effects when a pattern fails. Thus at most one rule succeeds. For
example, we can use an active pattern to read from two concurrent
MVar values in a transaction:

val (|ReadMVar|_|) : ’a MVar -> ’a STM
let f mv1 mv2 =

atomically

14 The higher-kinded type parameter generalizes the occurrence of option.
The constraint ’M :> MonadPlus dictates that ’M is an instance of
MonadPlus. We assume the MonadPlus type defines the standard mem-
bers return, bind, zero and plus.

38



(matchm<STM> mv1, mv2 with
| ReadMVar x, ReadMVar 0 -> x
| _, ReadMVar y -> y)

Reading from an MVar is a destructive, side-effecting operation.
Using the STM monad, if the first match case fails the effect of
reading mv1 and mv2 is rolled-back before the second match case
is evaluated. The monadic interpretation of this code would be
semantically equivalent to this Haskell code:

f mv1 mv2 = atomically $
do { x <- readMVar mv1; y <- readMVar mv2;

guard (y==0); return x } ‘mplus‘
do { y <- readMVar mv2; return y }

7. Assessment and Related Work
This paper has presented the first design for extensible pattern
matching to incorporate both partial and total decompositions
within the context of a regular, simple and lightweight extension.
We have given a description of the language extension along with
numerous motivating examples. Finally we have looked at how
this feature interacts with other reasonable and related language
extensions.

Since this work first began in mid-2006 there has been a
mini-explosion in discussions, designs and prototypes of view-
like mechanisms in programming languages (Syme 2006a; Emir
and Odersky 2007; Rossberg 2007b; Peyton Jones 2007; Jambon
2007). We believe our design achieves the best overall functionality
for a simple extension to the core of a statically-typed functional
programming language.

Peyton Jones et al. have started a lengthy and useful design
note on a possible extensible pattern-matching design for Haskell
(Peyton Jones 2007). In this discussion they highlight five features
that a view-like mechanism may have in Haskell: the value input
feature, implicit maybes, transparent ordinary patterns, nesting and
integration with type classes, the last of which can be seen as a
Haskell equivalent of views as first-class values. In the context of
F#, the design described in this paper effectively has all five of these
features, which correspond as follows:

Peyton Jones Classification Our Terminology
Value input feature Parameterized patterns
Implicit maybes Partial patterns
Transparent ordinary patterns Total patterns
Nesting Nesting of active patterns
Integration with type classes Patterns as first-class values

To our knowledge no other proposed design in this area achieves
this combination of features with a single, simple and consistent
extension to the language.

Many of the existing proposals for extensible pattern matching
in other languages focus only on partial matching and leave total
matching unaddressed (Erwig 1997; Emir and Odersky 2007).

Two recent designs for languages close in spirit to F# are Ross-
berg’s views and ad hoc patterns for HamletS (Rossberg 2007b),
and Emir and Odersky’s “unapply” or “extractor” methods for
Scala (Emir and Odersky 2007). Ignoring differences between
object-oriented and functional syntax, the Scala proposal essen-
tially matches the F# design for partial pattern matching, though the
potential to combine the mechanism with the rich object constraint
and composition system of Scala opens interesting possibilities.

Rossberg’s work introduces views as a new type-like definition
construct, as in Wadler’s initial proposal for views, and partial
patterns via a separate extension to pattern matching. In some ways
the proposal is richer (e.g., views are named and view aliases are
supported), in other ways it appears less satisfactory (e.g., partial
patterns and views are distinct mechanisms).

Peyton Jones (2007) and Emir and Odersky (2007) give a good
review of related work in this area. Many previous proposals to
tackle the problem of pattern matching and abstraction have con-
centrated primarily on the supporting the definition of either views
(Wadler 1987; Burton and Cameron 1993), Okasaki’s proposal for
Standard ML (Okasaki 1998) or partial patterns (Gostanza et al.
1996; Erwig 1997; Erwig and Jones 2000).

Le Fessant and Maranget (2001); Maranget (2007) have proved
the correctness of algorithms for optimizing pattern matching and
for pattern incompleteness and redundancy checking : it is very
interesting to consider how to extend their techniques to active
patterns. Fähndrich and Boyland (1997) have looked at permitting
only “statically checked” definitions of patterns in terms of existing
patterns (as opposed to defining recognizers by arbitrary functions).
Using extensible patterns as first-class values was first proposed by
Tullsen (2000), where he also observed the monadic generalization
we consider in 6.3, though not its potential application to trans-
actions. Sophisticated forms of XML-specific language constructs
and matching have been studied by a range of authors: Hosoya and
Pierce (2001); Benzaken et al. (2003).

Acknowledgments
We owe thanks to Simon Peyton Jones, Martin Odersky, Andreas
Rossberg, Phil Wadler and Burak Emir for discussions on this topic.
We also thank Cedric Fournet, Claudio Russo, Georges Gonthier
and Ralf Herbrich for helping with informal assessments of the
design and its implementation.

References
V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric general-

purpose language. In Proceedings of 2003 ACM SIGPLAN International
Conference on Functional Programming. ACM Press, 2003., 2003.

F. Warren Burton and Robert D. Cameron. Pattern matching with abstract
data types. Journal of Functional Programming, 3(2):171–190, 1993.

Burak Emir and Martin Odersky. Matching Objects with Patterns. In
ECOOP ’07, 2007. To appear.

Martin Erwig. Active patterns. In Implementation of Functional Languages.
Springer, 1997.

Martin Erwig and Simon Peyton Jones. Pattern Guards and Transforma-
tional Patterns. In Haskell Workshop, 2000.

Manuel Fähndrich and John Boyland. Statically checkable pattern abstrac-
tions. In International Conference on Functional Programming. ACM,
1997.

Pedro Palao Gostanza, Ricardo Pena, and Manuel Nunez. A new look at
pattern matching in abstract data types. In ICFP ’96: Proceedings of the
first ACM SIGPLAN international conference on Functional program-
ming, pages 110–121, New York, NY, USA, 1996. ACM Press.

Jim Grundy, Tom Melham, and John O’Leary. A reflective functional lan-
guage for hardware design and theorem proving. Journal of Functional
Programming, 16(2):157–196, 2006.

Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy.
Composable memory transactions. In Principles and Practice of Parallel
Programming. ACM, 2005.

Haruo Hosoya and Benjamin Pierce. Regular expression pattern matching
for XML. ACM SIGPLAN Notices, 36(3):67–80, 2001.

Martin Jambon. Micmatch. martin.jambon.free.fr/micmatch.html,
2007.

Konstantin Läufer and Martin Odersky. An extension of ML with first-class
abstract types. In ACM SIGPLAN Workshop on ML and its Applications,
San Francisco, California, pages 78–91, June 1992.

Fabrice Le Fessant and Luc Maranget. Optimizing pattern-matching. In
Proceedings of the 2001 International Conference on Functional Pro-
gramming. ACM Press, 2001.

39



Luc Maranget. Warnings for pattern matching. Journal of Functional
Programming, 17(3):647–656, 2007.

Erik Meijer and Brian Beckman. XLinq: XML Programming Refactored.
research.microsoft.com/~emeijer, 2006.

Nemerle. Nemerle website. nemerle.org, 2006.

Martin Odersky. Scala website. scala.epfl.ch, 2006.

Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into
practice. In Principles of Programming Languages. ACM, 1997.

Chris Okasaki. Views for Standard ML. In SIGPLAN Workshop on ML,
Baltimore, Maryland, USA, pages 14–23, September 1998.

Simon Peyton Jones. View patterns: lightweight views for Haskell (wiki
entry). hackage.haskell.org/trac/ghc/wiki/ViewPatterns,
2007.

Andreas Rossberg. Generalizing layered patterns to conjunctive patterns.
successor-ml.org, 2007a. Search for “Generalizing Layered Pat-
terns”.

Andreas Rossberg. Hamlet S: To Become or Not To Become Succes-
sor ML. www.ps.uni-sb.de/hamlet/hamlet-succ-1.3.0S4.pdf,
2007b. Appendix B.17 and B.19.

Kevin Scott and Norman Ramsey. When Do Match-compilation Heuristics
Matter? Technical Report CS-2000-13, University of Virginia, 2000.

Don Syme. Active patterns in F#. blogs.msdn.com/dsyme, 2006a.

Don Syme. Leveraging .NET meta-programming components from F#:
Integrated queries and interoperable heterogeneous execution. In Pro-
ceedings of the ACM SIGPLAN Workshop on ML and its Applications,
2006b.

Don Syme and James Margetson. F# website.
research.microsoft.com/fsharp, 2006.

Walid Taha and Tim Sheard. Multi-stage programming with explicit anno-
tations. In Partial Evaluation and Semantics-Based Program Manipula-
tion. ACM, 1997.

Mark Tullsen. First class patterns. In Practical Aspects of Declarative
Languages. Springer, 2000.

Philip Wadler. Views: A way for pattern matching to cohabit with data
abstraction. In Principles of Programming Languages. ACM, 1987.

Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype
constructors. In Proceedings of the 30th ACM SIGPLAN-SIGACT sym-
posium on Principles of Programming Languages, pages 224–235, New
York, NY, USA, 2003. ACM Press.

A. An Example Without Active Patterns
Below is the example from §2.2 without active patterns:

open System
let rec formatType (typ : Type) =

if typ.IsGenericParameter then
sprintf "!%d" typ.GenericParameterPosition

elif typ.IsGenericType ||
not typ.HasElementType then

let args = if typ.IsGenericType
then typ.GetGenericArguments()
else [| |]

let con = typ.GetGenericTypeDefinition()
if args.Length = 0
then sprintf "%s" con.Name
else sprintf "%s<%s>" con.Name (formatTypes args)

elif typ.IsArray then
sprintf "Array(%d,%s)"

(typ.GetArrayRank())
(formatType (typ.GetElementType()))

elif typ.IsByRef then
sprintf "%s&"

(formatType (typ.GetElementType()))
elif typ.IsPointer then

sprintf "%s*"
(formatType (typ.GetElementType()))

else failwith "MSDN says this can’t happen"

and formatTypes typs =
String.Join(",",Array.map formatType typs)

40


