
Living it up with a Live Programming Language

Sean McDirmid
École Polytechnique Fédérale de Lausanne (EPFL)

1015 Lausanne, Switzerland
sean.mcdirmid@epfl.ch

Abstract
A dynamic language promotes ease of use through flexible
typing, a focus on high-level programming, and by stream-
lining the edit-compile-debug cycle. Live languages go be-
yond dynamic languages with more ease of use features. A
live language supports live programming that provides pro-
grammers with responsive and continuous feedback about
how their edits affect program execution. A live language
is also based on high-level constructs such as declarative
rules so that programmers can write less code. A live lan-
guage could also provide programmers with responsive se-
mantic feedback to enable time-saving services such as code
completion. This paper describes the design of a textual live
language that is based on reactive data-flow values known
as signals and dynamic inheritance. Our language, Super-
Glue, supports live programming with responsive semantic
feedback, which we demonstrate with a working prototype.

Categories and Subject Descriptors D.2.6 [Programming
Environments]: Interactive Environments—live program-
ming; D.3.2 [Programming Languages]: Data-flow, Very
High-level, and Object-oriented Languages; D.3.3 [Lan-
guage Constructs and Features]: Inheritance—dynamic.

General Terms Human Factors and Languages

1. Introduction
Dynamic programming languages support rapid develop-
ment by reducing verbosity in both source code and the de-
velopment process. Although labeled as “dynamic” because
they often rely on dynamic typing, dynamic languages are
best characterized by their emphasis of flexibility, concise-
ness, and ease of development over performance and gen-
erality. Dynamic typing promotes flexibility by enforcing
fewer restrictions on type compatibility and conciseness by

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

eliminating verbose type annotations. Dynamic languages
also emphasize high-level programming models, often based
on higher-order functions or objects, that reduce the amount
of code needed to express a program. Together, flexible typ-
ing and high-level programming models support component
programming so that programmers can create feature-rich
programs with little code by reusing existing components.
Finally, dynamic language environments streamline the edit-
compile-debug cycle by either eliminating or hiding compi-
lation and by allowing code to be changed while a program
is running. For example, many Lisp [25], Smalltalk [12], and
Erlang [1] environments support hot swapping where a pro-
gram’s code can be updated without restarting.

Can we design languages that are easier to use than ex-
isting dynamic languages? For inspiration, look at visual
languages such as Fabrik [15], LabVIEW [21], and spread-
sheet languages such as Excel and Forms/3 [3], which are
designed to be used by casual programmers, novices, and
even end users. Visual languages are based on simple, of-
ten declarative, programming models that heavily empha-
size component reuse. For example, Apple’s Quartz Com-
poser [17] supports the assembly of animation components
through reactive data-flow connections that encapsulate
change-propagation details. The simple programming mod-
els of visual languages also enable live programming, which
provides programmers with immediate and continuous feed-
back about how their edits affect program execution. For
example, editing a connection graph in Quartz Composer
immediately changes the composed animation. Compared to
live programming, the hot swapping supported by dynamic
languages is mushy: the effect of edited code on program
behavior is not apparent until the code is re-executed. For
example, editing the Smalltalk statement “w fill: red” to
“w fill: blue” will not immediately re-color blue all wid-
gets that have been bound to w.

In spite of their benefits, visual languages do not replace
textual dynamic languages. For one thing, text can be writ-
ten more quickly [23]. More significantly, visual languages
must deal with a scaling-up problem [4]: the ability to build
large programs is hindered by concrete visual notation that
does not easily support abstraction. Modern visual languages
solve the scaling up problem in a variety of ways; e.g.,

623

Forms/3 [3] allow for name-based cell referencing and data
abstraction through generic forms. Still, text’s natural sup-
port for naming makes it more suitable for many abstraction-
heavy programming tasks. Also, the simple programming
models that enable live programming in visual languages can
also be applied to textual languages. A live language is then
a textual or visual language that supports live programming
through a simple programming model.

Support for textual naming in a live language is problem-
atic: how are programmers provided with responsive seman-
tic feedback about what names are valid? Semantic feedback
speeds up the programming process by detecting typos early
on and enabling services such as code completion, which al-
lows programmers to browse available resources. Program-
mers are often deprived of responsive semantic feedback in
dynamically-typed languages because names are difficult to
resolve before run-time. Static typing that typically enables
semantic feedback is too verbose and inflexible to be used
in a live language. Implicit typing would work better in a
live language where inference provides responsive semantic
feedback without type annotations.

This paper explores the design of a textual live language
that reuses ideas from dynamic and visual languages along
with a few new ideas. The language, SuperGlue, is based
on a simple reactive data-flow programming model that is
suited to building interactive programs out of existing com-
ponents. Components in SuperGlue are connected together
through signals into a data-flow graph. Being reactive, the
values that flow across signal connections can change over
time, which eases the expression of interactive programs.
For scaling purposes, signals extend classes through dy-
namic inheritance, where what classes a signal extends can
change at run time. Signals and dynamic inheritance seam-
lessly support live programming by masquerading edits as
programmatic changes in the program’s mutable execution
state. Unlike Self [29] and like Cecil [6], dynamic inheri-
tance in SuperGlue is based on declarative predicates [7],
which is very compatible with a reactive data-flow model.
Because class extensions are declarative, type inference can
provide programmers with responsive semantic feedback.
Dependent typing improves type inference so that type an-
notations are unnecessary.

Previous work [20] introduces SuperGlue’s support for
object-oriented signals, and shows how this support eases
the construction of interactive programs. This paper expands
on this work by augmenting SuperGlue with dynamic inher-
itance, which significantly simplifies the language, and live
programming. Figure 1 shows how live programming occurs
in a working Eclipse-based prototype. In this paper, we use
a PacMan-like game as a running example. A program is
edited freely as text in the upper half of the programming
environment while the execution is shown in the lower half.
As soon as a key press leads to valid code, the effect of the
edit is incorporated into the executing program. So that live

programming remains responsive, SuperGlue supports error
recovery where syntax, semantic, and execution errors are
noted in the background while execution continues. The live
programming experience that is shown as a frame-expanded
movie1 in Figure 1 is narrated as follows:

(a) The programmer types “port pacMan . Figure” to de-
fine a pacMan signal that extends the game’s Figure class
so pacMan is drawn on the game’s canvas. Because a
shape for pacMan has not been specified, it is drawn by
default as a rectangle.

(b) The programmer types the extension “pacMan . Pie,”
which causes pacMan to extend the Pie class and be
drawn as a circle. The shape of pacMan is updated on
screen as soon as the programmer types the “e” in Pie.

(c) The programmer types the connection “pacMan.fill =

yellow,” causing this circle to be immediately colored
yellow. Through type inference, code completion can
complete typing for .fill in pacMan.

(d) The programmer types “pacMan.extent = 330.” As the
programmer types each character in “330,” pacMan’s ap-
pears respectively as a 357, 327, and finally a 30 de-
gree slice. The programmer than finishes this line with
“+ (time % 30),” which causes pacMan’s mouth to close
continuously in a 30 degree motion.

The rest of this paper is organized as follows. Section 2
lists live language design problems and how these problems
are solved in SuperGlue. Section 3 describes how SuperGlue
supports live programming. Section 4 describes preliminary
experience on SuperGlue’s use in developing a simple game.
Section 5 presents related work and Section 6 concludes.

2. Language Design
SuperGlue is based on the data-flow programming model
that was originally introduced by Karp and Miller [16] to
deal with concurrency through a graph program represen-
tation. Even without considering concurrency, the data-flow
model is appealing to live languages because all computa-
tional dependencies are encoded explicitly. The data-flow
model by itself does not scale: non-trivial programs involve a
large or unbounded number of data-flow connections that are
tedious or impossible to express individually. For this rea-
son, SuperGlue augments its data-flow model with object-
oriented constructs. As a brief overview, SuperGlue consists
of the following constructs:

– Signals, which are data-flow values that facilitate inter-
component communication. Signals are objects that ex-
tend classes, are connected to other signals, and contain
signals defined in their extended classes. Signals are de-
fined as class members using the port keyword.

1 Movies are frame expanded in this document. A preferred electronic
document with inlined movies is available on the author’s website.

624

(a) (b)

(c) (d)

Figure 1: An example of the SuperGlue programming environment being used in a live programming session; the editor is in the top half of
each sub-figure while the running program is shown in the lower half.

– Classes, which are types that encapsulate behavior. Classes
are not values and they can only be extended by signals.
Classes are defined at the top-level of a program or as
members in other classes using the class keyword.

– Connections, which relate signals to other signals so that
their values are equivalent. Connections are rules that are
similar to simple uni-directional constraints. Connections
are expressed with the = operator.

– Extensions, which cause signals to extend classes. Exten-
sions are rules that can target signals outside of their defi-
nitions. Extensions are expressed with the .2 operator.

– Conditions, which guard when connection and extension
rules can be applied. Conditions query existing connec-
tion and extension relationships through the same = and
. operators that are used to create these relationships in
rules. Conditions are expressed in if clauses that surround
guarded connection and extension rules.

As an opening example, consider the following Super-
Glue code that defines the Ghost class, three ghost signals,
and connects the fill color of all ghost signals:

1 class Ghost { port fill . Color; }
2 port (blinky, clyde, bashful) . Ghost;

3 Ghost.fill = blue;

The first line of this code defines a Ghost class with a mem-
ber fill signal that extends the Color class. The second line

2 The user types :, which is then rendered in the editor as ..

defines three signals, blinky, clyde, and bashful, which ex-
tend the Ghost class. The third line is a rule that connects
the fill signal of all ghosts, including blinky, clyde, and
bashful, to the color blue. When used in expressions, class
identifiers are variable that quantify over all signals that ex-
tend the identified class; e.g., Ghost in Ghost.fill is a vari-
able that quantifies over all signals that extend the Ghost

class. Unlike imperative assignments, connection rules have
declarative meaning that is unrelated to statement execution
order; e.g., on line three, blue is continuously connected to
rather than discretely assigned to the ghost’s fill color.

The nature of the values that flow across data-flow con-
nections determines what programs can be concisely ex-
pressed in a data-flow language. In SuperGlue as well as
many existing textual and visual data-flow languages, such
as Lucid [32] and Quartz Composer [17], data flow is reac-
tive in that time-varying values flow across connections. Re-
active data-flow languages hide change-propagation details
from programmers by dealing with the details generically
at connection end points. By hiding change-propagation de-
tails, continuously changing state is treated in the same sim-
ple way that immutable state is. Consider the following code
that causes pacMan’s mouth to close continuously:

1 class Pie { port extent . Number; }
2 port pacMan . Pie;

3 pacMan.extent = 330 + (time % 30);

The last line of this code connects pacMan’s extent signal
to an expression that continuously increases from 330 until
360 degrees, causing pacMan’s mouth to shut continuously in

625

a 30 degree motion. Such behavior occurs because the time

signal is a periodically incrementing number; e.g., it is con-
nected to 1042 and, after ten milliseconds, it is re-connected
to 1043. At connection end-points, signals in SuperGlue are
provided and consumed by components that express event
handling details through a general-purpose language such as
Java or Scala [22]. In our example, Scala code updates the
time signal when time advances and redraws pacMan when
its extent signal changes. We describe how this code in-
terfaces with SuperGlue in Section 2.3. Because SuperGlue
code is completely oblivious to what happens over signal
connections, interactive programs, where continuous change
is common, are expressed more easily. As we will see in Sec-
tion 3, such obliviousness also enables live programming.

In our previous version of SuperGlue [20], class exten-
sions could only be expressed in signal and class defini-
tions. This restriction complicated SuperGlue’s class system
and prevented it from being very dynamic; i.e., signal types
could not change at run-time. As a simplification and to sup-
port live programming, class extensions are now rules in the
same way that connections are. For example, the statement
“pacMan . Figure” is an extension rule that can be writ-
ten down wherever pacMan is visible–not just where pacMan

is defined. As rules, both connections and extensions can
be guarded by conditions. Consider the following code that
causes signals to extend the PositionByKeyboard class when
they already extend both the Position and Keyboard classes:

1 class Position; class Keyboard;

2 class PositionByKeyboard;

3 if (Position . Keyboard)

4 Position . PositionByKeyboard;

The condition on line three of this code ensures that the
Position identifier is only bound to signals that extend both
the Position and Keyboard classes. Line four is an extension
that then causes these signals to extend the PositionByKey-

board class. As we will see in Section 2.2, such extensions
are useful in adapting incompatible signals.

Extension rules in SuperGlue target signals and not
classes. As syntactic sugar, an extension can be specified in a
class definition, but the extension is applied to all signals that
extend the defined class and not the class itself. No cyclic in-
heritance occurs in SuperGlue when the signals of two dif-
ferent classes extend the other class–instead, the classes are
semantically equivalent in that a signal that extends one also
extends the other. Such mutual extension constructions en-
able the refinement of signals that have already been created.
For example, the definition “class RichNumber . Number”
and the extension rule “Number . RichNumber” does not cre-
ate a cycle; instead it causes all Number signals, including
numeric literals, to be RichNumber signals and vice versa.

Because conditions query signals whose values change
over time, their truth values can also change over time. Be-
cause time-varying conditions can guard extension rules, Su-
perGlue supports dynamic inheritance where what classes a
signal extends can vary over time. Dynamic inheritance en-
ables the state-based classification of signals without deeply

nested if statements, and, as described in Section 3, sup-
ports live programming without the need for special-case se-
mantics. Unlike Self [29], where dynamic inheritance occurs
through imperative slot assignment, dynamic inheritance in
SuperGlue is predicated as in Cecil [6, 7]. Consider the fol-
lowing code that causes pacMan to extend the Damaged class
when it overlaps with a ghost:

1 class Figure { port (overlaps,hit) . Hit }
2 class Ghost . Figure; class Damaged . Figure;

3 port pacMan . Figure;

4 if (pacMan.overlaps . Ghost.Hit)

5 pacMan . Damaged;

6 Damaged.fill = red;

For the duration that pacMan overlaps with some figure,
pacMan’s overlaps signal is bound to the hit signal of this
figure. The condition on line four is then only true for dura-
tions where the figure that pacMan overlaps with is a ghost.
During these durations, pacMan extends the Damaged class,
inheriting all the behavior of this class and being subject to
rules that target signals of this class. For example, the con-
nection of red to a damaged figure’s fill color would apply
to pacMan while it overlaps with a ghost. As soon as pacMan

no longer overlaps with a ghost, it unextends the Damaged

class and the special damaged behavior no longer applies.

2.1 Implicit Typing
Dynamic languages avoid static typing because of its ver-
bose type annotations, limited flexibility, and inability to
deal with change. However, static typing also provides pro-
grammers of responsive semantic feedback that is especially
important in a live programming environment: it allows pro-
grammers to converge on correct edits more quickly through
code completion, where programmers can browse the names
of available entities, and validation, which immediately in-
forms programmers of typos. Static types can also convey
programmer intent and resolve ambiguity. In SuperGlue,
multiple connections can connect the same signal. To resolve
ambiguity, connections that target more specific static types
are considered before connections that target less specific
static types if the guarding conditions of both connections
are true. Such by-type prioritization is analogous method
overriding in most object-oriented languages.

To provide semantic feedback without type annotations,
types are computed in SuperGlue through type inference,
which is a form of implicit typing. Implicit typing is viable in
SuperGlue because extensions are declarative rules that can
be accurately inferred by an analysis that is both flow and
context-insensitive. The inferred type of a symbol is a set
of classes that restricts the symbol from only being bound
at run-time to signals that extend all of these classes. Sub-
typing is then defined as a subset relationship: ta is a sub-
type of tb if all classes in tb are classes in ta. Type inference
builds up a symbol’s inferred type by analyzing surrounding
extension conditions and known extension rules that target
classes already contained in the inferred type.

626

1 class Duplicator

2 { size . Number;

3 class T

4 class get . T { port index . Number; } }
5 port ghosts . Duplicator;

6 ghosts.T . (Ghost,Figure);

7 ghosts.size = 10;

8 if (ghosts.get.index = 3)

9 ghosts.get.fill = red;

Figure 2: SuperGlue code that creates ten ghosts, where the ghost
at index three is colored red.

As an example of how type inference occurs, consider the
following code that overrides a position’s x signal when the
position extends the PositionCell class:

1 class Position { port (x,y) . Number; }
2 class PositionCell

3 { port (xc, yc) . NumberCell; }
4 Position.x = 0;

5 if (Position . PositionCell)

6 Position.x = Position.xc.result;

Overriding in SuperGlue is defined as follows: if the type
of a is ta, the type of c is tc, and tc is a strict sub-type
of ta, then the connection a = b overrides the connection
c = d. On line four, the inferred type of Position includes
only the Position class because the type of a class identi-
fier always contains itself. On line six, Position’s inferred
type also contains the PositionCell class because of the
surrounding extension-querying condition on line five. As
a result, the connection on line six, which targets the type
(Position,PositionCell), overrides the connection on line
four, which targets the type (Position). Because Position’s
inferred type on line six contains the PositionCell class, the
member signal xc can be accessed through Position and is
listed by code completion.

SuperGlue supports a form of dependent typing where
class types are prefixed by their containing signals. When
type inference computes a symbol’s type, prefixes are ap-
proximated as signal and class symbols. Consider the code
in Figure 2 that creates ten ghosts. On line nine, the in-
ferred type of ghosts.get contains the following classes:
ghosts.get by definition, Duplicator.get because the
ghosts prefix extends Duplicator on line five, ghosts.T

because of the extension on line four and by a binding of
Duplicator to ghosts on line five, Duplicator.T by line
five again, and finally, Ghost and Figure by the extension on
line six. On line nine, the fill signal can be accessed and
connected because ghosts.get signals extend Figure.

2.2 Dynamic Typing and Adaptation
In SuperGlue, because both connections and extensions can
be guarded by state-dependent conditions, when they are ap-
plied at run-time is not statically known. As a result, Super-
Glue depends on dynamic typing to verify two connection

properties: first, that primitive-extending signals are con-
nected to concrete values of the appropriate primitive class;
and second, that all signals are connected unambiguously.
The first property ensures that component implementations
correctly communicate through primitive-extending signals;
e.g., a providing component pushes through a number that
is consumed as a number by one or more other components.
The second property detects multiple active connections to
the same signal that do not having overriding relationships.
In both cases, dynamic typing ensures that components com-
municate correct and unambiguous values at run-time.

Independently-developed or differently-purposed compo-
nents will often not agree on the types of their non-primitive
signals. For this reason, SuperGlue permits connections be-
tween type-incompatible signals where additional rules can
define compatibility. Consider the following code where
pacMan’s position is connected to a keyboard:

1 class Canvas

2 { class Figure { port position . Position; }
3 port keyboard . Keyboard; }
4 port game . Canvas, pacMan . game.Figure;

5 pacMan.position = game.keyboard;

The signal types involved in the connection on line five are
incompatible: the type of pacMan.position contains only
the Position class while the type of game.keyboard con-
tains only the Keyboard class. The programmer intends the
position of pacMan to be controlled by the keyboard. Such
intent can be realized with code that defines what it means
for a signal to extend the otherwise unrelated Position and
Keyboard classes. At run-time, the above connection causes
pacMan’s position signal to extend both the Position and
Keyboard classes. These classes can then be combined to de-
scribe the target of an extension rule:

1 if (Position . Keyboard)

2 Position . PositionByKeyboard;

By this extension, a signal that extends both the Keyboard

and Position classes also extends the PositionByKeyboard

class, which we refer to as an adapter mixin. Normal mix-
ins enable a form of linearized multiple inheritance where a
mixin is explicitly applied to an object. An adapter mixin is
implicitly applied to a signal that extends a combination of
classes; e.g., a signal that extends Position and Keyboard

will implicitly extend PositionByKeyboard. With implicit
application, adapter mixins can adapt connections to auto-
matically resolve type incompatibility. The PositionByKey-

board class resolves the incompatibility between position
and keyboard as follows:

1 class PositionByKeyboard. (PositionCell,Keyboard)

2 { go up = key up ; go down = key down ;

3 go left = key left; go right = key right; }

The go * and key * signals are respectively defined in the
PositionCell and Keyboard classes whose definitions are
not shown. The connections in PositionByKeyboard cause
imperative position state that is maintained by Position-

Cell to be incremented according to keyboard input and a

627

time signal that is not shown. This code is applied whenever
positions are connected to keyboards. For example, if mul-
tiple figure positions are connected to the keyboard, these
figures will move in unison by keyboard input.

2.3 Implementation and Code Behind
Our prototype implementation of SuperGlue conceptually
builds and maintains a dependency graph that tracks how
signal values are inter-dependent. So that dependencies are
updated reactively, our prototype is based on the UI pattern
of damage and repair: when a signal changes, its dependen-
cies are “damaged” and scheduled in a work-list for “repair”
through re-evaluation. Damage is then propagated through
the dependency graph. Maintaining an exact dependency
graph is unrealistic because signals can depend on each other
in cyclic ways that are difficult to track. Instead, our pro-
totype is conservative: a dependency is recorded when the
evaluation of signal A depends on signal B, but is never ex-
plicitly “unrecorded” when A no longer depends on B. De-
pendent signals are instead flushed after being damaged–if
dependent signals still depend on the changing signal, then
this dependency is re-recorded during repair. Flushing en-
sures that signals are notified only once of changes in signals
that they no longer depend on.

SuperGlue code cannot directly express computations
such as arithmetic or drawing on a canvas. Instead, these
computations are expressed as code behind3 connections
and extensions that are written in Java (or Scala [22]). A
code behind connection expresses the connection’s result in
Java code according to the following Java Signal interface:

interface Signal<T> { T eval(Observer o); }
interface Observer { void notify(); }

A signal provider implements the Signal interface’s eval

method to provide a signal’s current value and ensure that an
Observer is notified when that value changes. Consider the
following Java code that implements a clock’s time signal:

time = new Signal<Number> {
Number eval(Observer o) {
p = period.eval(o).toLong();

timer.schedule(new TimerTask() {
void run() { o.notify(); }}, p);

return System.currentTimeMillis / p; }};

The time signal’s eval method schedules a timer task to
notify the caller that the time has changed, which occurs
in period milliseconds. A signal consumer calls the Signal

interface’s eval method to access a signal’s value, and can
provide an observer so that it is notified of changes in the
value. For example, the time signal calls the eval method
on the clock’s period signal to obtain the clock’s period.
The time signal’s implementation passes its called observer
directly into the period signal. As a result, when a clock’s
period signal change, its time clients are notified directly.

3 “Code behind” is often used to describe imperative code that implements
complicated behavior in an otherwise declaratively-specified user interface.

The SuperGlue runtime produces and consumes signals
according to the Signal Java interfaces based on the the
rules of a SuperGlue program. For example, the connec-
tion period = 100 causes the SuperGlue runtime to create
a Java Signal object that returns 100 when its eval method
is called. As we discuss in Section 3, edits to code will no-
tify observers of the signals derived from the edited code;
e.g., when the 100 token is changed through editing, the Su-
perGlue runtime will notify all observers that the period’s
eval method was called with. It is through the implementa-
tion and routing of signals via declarative rules that Super-
Glue adds its value to the program; i.e., SuperGlue acts as a
middle man between components that do the real work.

Code behind extensions are evaluated by the SuperGlue
runtime when a signal extends or unextends a class. The Java
interface for a class extension is as follows:

interface Extension

{ void enter(Signal s); void exit(Signal s); }

The enter and exit methods of a class extension are called
when a signal starts or stops extending a class, which occurs
when the signal is created, destroyed, or when the guard
of an extension changes. The enter and exit methods of
a class extension are responsible for managing the signal’s
state with respect to the class. Consider the following Java
code that implements the NumberCell class extension:

NumberCell = new Extension() {
static Map<Signal,State> signals = ...;

void enter(Signal s)

{ State state = new State(s);

signals.put(s, state); state.notify(); }
void exit (Signal s) { signals.remove(s); }}

Number cell state is stored in a map and is keyed by the
signal’s own identity. The state is implemented as follows:

class State extends Observer {
Double value; Signal signal;

Set<Observer> clients;

void notify() {
if (signal.set enable.eval(this)) {
value = signal.set to.eval(this);

foreach (o : clients) o.notify();

clients.clear(); }}}

A number cell State object is an observer that queries
the set enable and set to signals when called. If the
set enable signal is true, then the value of the number cell
is set to the value of the set to signal while the number
cell’s observers are notified and flushed. The number cell
State object is used as its own observer in queries to the
set enable and set to signals, so it will be called when-
ever the values of these signals change. The number cell get
signal is implemented to access number cell state as follows:

get = new Signal<Number>() {
Number eval(Observer o) {
state = NumberCell.signals.get(container());

state.clients.add(o);

return state.value; }}

628

When evaluated, the get signal looks up number cell state
according to its containing NumberCell signal. It then adds
the called observer as a client of the NumberCell state object
and returns the NumberCell’s current value. Beyond manag-
ing state, code behind extensions can implement behavior
that reacts to a signal extending a class. For example, the
code behind extension for a canvas’s Figure class causes ex-
tending signals to be drawn on the canvas.

Signal initialization involves calling class extension enter

methods to allocate the signal’s state and the initialization of
the signal’s sub-signals. To break cycles, signals that are de-
fined recursively are not initialized, although they can still
be used. Currently, signal initialization is a significant drag
on performance: even the most trivial signal requires ex-
tensive initialization, which is the reason object creation in
Section 4 is very expensive. Additionally, with our current
scheme, extensions can cause an unbounded number of ob-
jects to consume individual resources. Consider the code
Number . canvas.Figure, which expresses that every num-
ber signal in the program’s universe should be drawn as a
figure in canvas. Since the number of Number signals in a
program is probably quite large, writing such a statement
could cause the program to lock up. We plan to fix initial-
ization by changing extension notification semantics so that
some classes can act more like concrete sets: code behind
could iterate over all of the class’s extending signals, as well
as be notified of when signals enter or leave the set. To en-
able iteration, extension of such a class would be restricted
to signals that have a fixed location in the connection graph
with respect to the class. As an example, if Figure in a can-
vas object is such a restricted class, then it could only be
extended by signals that can be addressed from the canvas
object; e.g., the code Number . canvas.Figure would fail
because there is no concrete path of connections from arbi-
trary Number signals to the canvas signal. Correspondingly,
state management must become more implicit with garbage
collection-like semantics. Implementing these features in
our prototype is left to future work.

3. Live Programming
Live programming in SuperGlue is enabled by its simple re-
active data-flow model and a programming environment that
takes advantage of this model. By adhering to the declar-
ative data-flow model, the code of a SuperGlue program
has a direct relationship with its execution state. As a re-
sult, the programming environment can responsively update
program execution state according to programmer edits. The
object-oriented features that improve SuperGlue’s scalabil-
ity are declarative and do not interfere with this property;
e.g., dynamic inheritance occurs via declarative predicates
rather than imperative slot assignment. SuperGlue is tightly
integrated into a programming environment that includes a
source code editor with modern conveniences such as auto-
indenting, semantic highlighting, code completion, hover

help, and hyperlink navigation. These services enhance live
programming by allowing programmers to write, read, and
navigate code more quickly; e.g., the programmer can use
code completion to conveniently browse what signals and
classes are available through a signal. As mentioned before,
many of these services, such as code completion, would be
difficult to implement reliably and responsively without im-
plicit typing.

The SuperGlue code is processed by the SuperGlue run-
time in four phases: scanning, parsing, type inference, and
execution. All four phases are incrementally performed after
every edit. As described in Section 2.3, the execution phase
is additionally performed when program state changes; e.g.,
when the time signal advances. All four phases are based on
a layered version of the damage and repair pattern that was
described in Section 2.3: a keyboard edit damages the token
stream, a change in the token stream damages the parse tree,
a change in the parse tree damages inferred type informa-
tion, and finally, a change in inferred type information can
damage the program’s execution.

The live programming experience is sensitive to the er-
ror recovery and edit latency characteristics of each code-
processing phase. Syntactic, semantic, and run-time errors
are inevitable while the programmer is typing. In the pres-
ence of these errors, a programmer should still receive use-
ful feedback about the other parts of the program. Forcing
programmers to immediately fix errors slows them down by
forcing them off their preferred development plan. Edit la-
tency is the amount of time that it takes for an edit to per-
colate through all four phases. Long edit latency reduces the
responsive of the feedback provided to programmers, which
leads to a “mushy” live programming experience. Users will
notice latency at 100 milliseconds and become distracted by
latency that is greater than 500 milliseconds.

Editing in the SuperGlue programming environment is
syntax-aware and not syntax-directed [28]; i.e., syntax errors
are tolerated. Scanning and parsing in our prototype is fairly
fast and supports very robust error recovery: in the presence
of syntax errors, the program still executes, other parts of
the program can be processed reliably, and editor services
will still work correctly. We achieve this through precedence
parsing [11], which as a bottom-up parsing method, is easily
made incremental and very error tolerant. In fact, precedence
parsers are not sensitive to syntax errors at all. The flip-side
is that precedence parsing is not very expressive and cannot
detect syntax errors as conventional BNF-based parsers can.
To deal these problems, we augment precedence parsing
with enhanced scanning, a brace matcher, and a type checker
that also checks for syntax errors. A detailed discussion of
these techniques is beyond the scope of this paper and will
be reported on in the future.

3.1 Type Inference
Incremental type inference is achieved by storing computed
type information and typing context at each node in the

629

parse tree. The parse node’s type information is damaged
when the node’s parse structure, typing context, or child-
tree types have changed. Error recovery involves reporting
detected errors in the programming environment and then
reverting to a previously computed or default types for use
in typing parent parse nodes. Also, symbol tables support
change operations. When the symbol table is used by a parse
node to lookup some name, a dependency with the parse
node is recorded in the table. When a symbol is changed, all
parse nodes that depend on the symbol’s new and old names
are damaged. As with scanning and parsing, type errors,
such as the failure to find a symbol bound to a name, are
reported without stopping the executing program. At worst,
a type error acts to disable the current rule being edited.

All connection and extension rules that are encoded in a
SuperGlue program are organized by our prototype accord-
ing to the inferred types that they target. Inference involves
traversing rules that are compatible with a symbol’s grow-
ing inferred type. When a rule is changed in source code,
all symbols whose inferred types are affected by the old and
new version of the rule are damaged so that repair will re-
compute their inferred types using the new rule. Because a
rule can be used in computing types for a large number of
symbols, changing a rule can incur noticeable latency. For
example, changing a rule that targets the Number class will
not only damage all user-defined symbols whose type con-
tains Number, but will also damage all numeric literals. In
a 280 line SuperGlue program, which we describe in Sec-
tion 4, changing a rule that targets the Number class incurs
a typing delay of around three and a half seconds4. How-
ever, because most classes are only extended a few times in
a program, rule changes often incur no noticeable latency.

Various techniques are used in our prototype to speed up
incremental type inference. Because of dependent typing,
the number of possible types in a program is exponential
with respect to the number of declared classes–although
in practice only a few types are significant. When editing
changes an extension rule that targets an inferred type, all
symbols whose inferred types are subtypes of this type must
be damaged. All significant inferred types are hashed in our
prototype so that the significant sub-types of a type can be
quickly computed and its symbols damaged; otherwise the
editing of extension rules would be intractable.

As an example of live type inference, consider the frame-
expanded movie in Figure 3 that is narrated as follows:

(a) The programmer types port clyde . Ghost, where Ghost

is underlined with red jaggies because it cannot be re-
solved to a symbol.

(b) As soon as the programmer defines the Ghost class, the
reference to Ghost in clyde’s definition becomes valid.
The programmer then tries to access clyde’s position

4 All times are measured in this paper on a 2 GHz Macbook Pro with 2 GB
of RAM, running Java 1.5.0 07 and Eclipse 3.3M5.

signal, which is underlined with red jaggies because
position is not a member of clyde.

(c) As soon as the programmer causes the Ghost class to ex-
tend the MyFigure class, the access to clyde’s position

signal becomes valid.

(d) Because the position signal in all Ghost signals extends
the Position class, the x and y position signals show up
in code completion on clyde’s position signal.

3.2 Execution
Hot swapping in a dynamic language replaces code so that
its re-execution occurs according to the new version of the
code as opposed to the old version. Changing class mem-
bers or inheritance relationships can also cause updates to
objects in the heap, as is supported in most Smalltalk [12]
environments. By being based on a simple data-flow model,
live programming in SuperGlue goes much more farther than
this: code edits immediately change the program’s data-flow
graph and the observable execution state of the program.
Because of SuperGlue’s support for reactivity and dynamic
inheritance, live programming can be supported with very
few special-case semantics. Edits that change connection
and extension rules semantically masquerade as program-
matic change. As we described in Section 2, connection and
extension rules are guarded by arbitrary conditions whose
truth values can change over time. The editing of a rule can
then resemble changing the state of an implicit guarding
condition. For example, if the programmer types the code
“pacMan . Pie,” the added extension rule can be realized
as a pre-existing extension “if (P) pacMan . Pie,” where
condition P changes from false to true. In our prototype, rule
changes cause dependent run-time signal values to be dam-
aged, where signal re-evaluation occurs according to an up-
to-date set of rules. Through this masquerade, only edits that
add or remove signal and class definitions need to be special-
cased in our prototype.

Because variables can be bound to an unbounded number
of signal values, rule changes can result in higher latency
than what can occur during type inference. As mentioned in
Section 2.3, edits that add new signals to a program incur
latency in the initialization of these signals and all of their
member signals. Because edit latencies are linear in the
number of created signals, so it is easy to imagine how an
edit that increases the size of something can take an arbitrary
amount of time to process. We given an example of this
problem Section 4.2. Initialization latency is currently one of
the weakest parts of our prototype and we hope to improve
on it in the future through tuning and multi-threading. Note
that signal initialize time is needed in whether a change
occurs programmatically or through editing. However, this
latency acts to distract the programmer during editing

As with the other phases, all errors that occur during the
execution phase are duly reported and then shunted off to
the background as program execution continues. Errors that

630

(a) (b)

(c) (d)

Figure 3: An example of how type inference is used to provide semantic feedback in the SuperGlue programming environment.

can occur during the execution phase include ambiguously
connected signals, unconnected primitive signals, and cus-
tom errors that are detected in code behind, such as divide
by zero. Unlike errors in the previous phases, which can
be reported against the program’s source code, errors in the
execution phase are reported against signal values and are
recorded in a separate view. Beyond reporting errors, our
prototype does not currently provide facilities for debugging
why errors have occurred, which is left to future work. After
an error is reported, a default value is used if necessary to
allow program execution to continue.

For code behind to play well in SuperGlue’s live pro-
gramming environment, it must report errors on signal val-
ues rather than throw exceptions, which would cause the pro-
gram to stop executing. Code behind should also fall back
on default behavior that indicates errors in the program’s ex-
ecution, if possible. For example, the figure draw routine we
have coded to draw 2D shapes will report an error and draw
a figure as a rectangle if the figure is not a concrete shape.
Such error recovery allows the programmer to ignore errors
as convenient and focus on other parts of the program.

The frame-expanded movie in Figure 4, which demon-
strates live programming execution, is narrated as follows:

(a) pacMan’s position is bound to the keyboard of the can-
vas it is displayed in. So that pacMan’s orientation cor-
responds to the direction it is moving in, its rotation

signal is bound to its position. pacMan then moves as
expected in a video game.

(b) Ghosts for the game are created by defining a ghosts

signal that extends the Duplicator class. Initially two

ghosts are created, which are drawn as ghost shapes on
the canvas by extending the Figure and Ghost classes.
Because both ghosts occupy the same default position,
only one ghost is visible.

(c) The Ghost class is defined as an open extension to the
ghosts.get class. In this class, the position and fill

signals of each ghost extend the Random class, causing
each ghost to have a random color and motion.

(d) Finally, the number of ghosts is changed from two to
eight, causing six more ghosts to appear after around
three seconds of edit latency.

4. Preliminary Experience
Although our SuperGlue prototype is still immature, it
can already be used to write complete programs. Previous
work [20] demonstrates how a previous prototype was used
to build rich user interfaces with complicated widgets such
as tables and trees. This section describes our experience
with implementing a simple game in SuperGlue using a li-
brary that wraps Java2D components. The game is a simpli-
fied version of PacMan with the following features:

– The game consists of a player controlled pacMan protago-
nist and multiple computer controlled ghost antagonists
on a canvas.

– Normally, if pacMan is touched by a ghost, it is trans-
ported to the northwest corner of the canvas.

– In the middle of the canvas is a powerPellet. If pacMan
eats/touches the powerPellet, the powerPellet disap-
pears for some amount of time. During this time, if

631

(a) (b)

(c) (d)

Figure 4: An example of how execution occurs during live editing in the SuperGlue programming environment.

pacMan touches a ghost, the ghost is transported to the
northwest corner of the canvas.

Aspects of this game have been used in the examples of this
paper. We divide our discussion into three parts: code com-
plexity and design (Section 4.1), live programming experi-
ence (Section 4.2), and performance (Section 4.3).

4.1 Code Complexity and Design
The code for our game can be divided into three categories:
58 lines of game-specific SuperGlue code that is listed in
Figure 5, 225 lines of library SuperGlue code, and 5,750
lines of library-specific Scala code. No game-specific Scala
code was required, and we do not expect SuperGlue pro-
grams to require custom Java or Scala code. To be complete
in our discussion, our prototype is implemented in 23,000
lines of Scala code. Our prototype also depends on an IDE
framework, under in-house development at the EPFL, that
handles most scanning, parsing, and Eclipse-based IDE ser-
vices, which consists of 28,000 lines of Scala code.

A large portion of the code in our animation library
wraps Java2D (2,600 lines of Scala code). This animation li-
brary supports the rectangle and ellipse-like arc (Pie) shapes,
Affine transforms (scaling, rotation, translation), and shape-
area operations (union, intersection, subtraction). On top of
this functionality, we can derive more complicated shapes;
e.g., the GhostShape in Figure 5 is a union of an ellipse and
translated article, with two small ellipses cut out to form its
eyes. Our Java2D wrapper also supports fill and line col-
ors, keyboard input, and rudimentary collision detection.
Many Java2D features have not yet been wrapped and a
more complete wrapping will require more code. The other
Scala parts of the library are devoted to arithmetic, timers,
interpolation, random number generation, and number cells
that can be updated. Number cells are especially important
because they are currently the only form of state that our li-
brary supports. Other library classes are built on top of these
classes using SuperGlue code. For example, a PositionCell

class composes two number cell classes and extends the

632

class GhostShape ! Shape {

 port gs ! Shape;

 gs = (Pie + Rectangle.scale(height = 0.495).translate(y = 25) -

 Eye.translate(x = 10) - Eye.translate(x = 30));

 this.shape = gs.shape;

 class Eye ! Shape;

 Eye.shape = Pie.scale(width = 0.2, height = 0.2).translate(y = 10).shape;

}

class PacManShape ! Shape {

 port gs ! Shape;

 gs = Pie(start = open / 2, extent = 360 - (open)).rotate(by = rotation.by);

 this.shape = gs.shape;

 port open ! Number;

 open = 60;

 port rotation ! Rotation;

}

class PowerPellet ! (Shape,Timed) {

 port pie ! Rectangle(arc.width = 10, arc.height = 10);

 this.shape = pie.scale(width = 0.3, height = 0.3).rotate(by = (time * 4)).shape;

 if (this ! Canvas.Figure) {

 this.position.x = 500;

 this.position.y = 100;

 this.fill = cyan;

 this.enable = invisible.on.!.result;

 }

 port invisible ! Alarm;

 invisible.duration = 40;

}

class Execution ! (Canvas,Clock) {

 this.period = 100;

 port pacMan ! (PacManShape,Figure,Entity);

 pacMan.fill = yellow;

 pacMan.open = time % 30;

 pacMan.position = keyboard;

 pacMan.rotation = pacMan.position;

 port ghosts ! Duplicator;

 ghosts.size = 2;

 ghosts.get ! Ghost;

 class GhostHit;

 class Ghost ! (ghosts.get,GhostShape,Figure,Entity) {

 position ! Random;

 position.time = time / 20;

 fill ! Random;

 hit ! GhostHit;

 position.step = 1.9;

 }

 class Pellet ! (PowerPellet,Figure) {

 if (overlaps = pacMan.hit)

 invisible.enable = true;

 }

 if (pacMan.overlaps ! GhostHit) {

 pacMan.reset_pos = pellet.invisible.on.!.result;

 pacMan.fill ! red;

 }

 if (Ghost.overlaps = pacMan.hit)

 Ghost.reset_pos = pellet.invisible.on;

 if (pellet.invisible.on = true) Ghost.fill.color = blue.color;

 class Entity ! Figure {

 position ! PositionCell;

 port reset_x ! position.p_x.set(to = 0,enable = reset_pos);

 port reset_y ! position.p_y.set(to = 0,enable = reset_pos);

 port reset_pos ! Boolean;

 reset_pos = false;

 }

 port pellet ! Pellet;

}

program ! Execution;

Figure 5: The SuperGlue code for a PacMan-like game; this code has been copied directly from the running version of the game.

633

Position class to provide a mutable position, while the
PositionByKeyboard class builds on PositionCell to up-
date the position according to keyboard input.

Our library leverages rule-based abstractions to create de-
fault connections when possible, which reduces the number
of explicit connections that must be expressed per program.
For example, many library classes depend on timers: num-
ber cells use time signals to control how often they are in-
cremented (velocity), random number generators use time
signals to control how often they generate new random num-
bers, and interpolation transforms a time signal into a wave.
These classes extend the Timed class whose time signal is
connected by default to the time signal of a containing Clock

signal. By having the Game class extend the Clock class, any
time dependent behavior that is defined inside the Game class
is by default connected from the game’s clock.

We have found mutual extensions (Section 2) and adapter
mixins (Section 2.2) to be very useful and repeatedly appli-
cable in the design of our animation library. The Position-

ByKeyboard adapter mixin has already been mentioned
in Section 2.2. Additionally, the PositionByRandom class
adapts the Position and Random classes to move figures in
random patterns, the ColorByRandom class adapts the Color

and Random classes to generate random colors, while the
RotationByPositionCell class adapts the Rotation and
PositionCell classes to compute the rotation of a shape
according to the direction it is moving in. Mutual extensions
allow us to create rich versions of classes that are only ap-
plied in restricted contexts. For example, numbers only sup-
port basic arithmetic operations by default. However, when
used in the context of a time signal, it is often useful that
numbers (including literals) also support interpolation and
random number generation operators. By defining a Number

extended RichNumber class inside the Clock class, program-
mers can write “0 <> 360” to express a value that oscillates
between 0 and 360 according to the containing Clock signal,
or “0 # 256” to express a random value between 0 and 256

that also changes according to the containing time signal.
Type inference computes types that ensures these operators
are only accessible on numbers (including literals) that are
used in the body of a class that extends the Clock class.

Given the design of our animation library, the game-
specific code in Figure 5 is very concise and limited to con-
figuration tasks, e.g., how many ghosts, establishing core
game relationships, e.g., that pacMan is controlled by the key-
board, and core game logic; e.g., reseting pacMan or a ghost’s
position when they collide. All adaptation code between non
game-specific classes has been counted as part of the library.
Admittedly, programs might require adaptations between li-
brary classes that do not already exist, but these adaptations
can be published or at least added to the developers own li-
brary for reuse in future programs.

4.2 Live Programming
The live programming experience is difficult to describe on
paper and is best seen in action in the electronic version
of this paper. However, edit latency can measurably affect
the live programming experience. Many edits used in the
construction of our game do not incur noticeable edit la-
tency. However, as discussed in Section 3, there are situa-
tions where noticeable and sometimes very long pauses can
occur; e.g., by causing many signals to extend a new class
or creating many different signals at once. One informal
benchmark that we use in our game is based on ghost cre-
ation latency: how long does it take to duplicate N ghosts?
The good news: the edit latency of ghost creation is linear–
creating 2N ghosts takes only twice as long as creating N
ghosts. The bad news: it take around 500 milliseconds to du-
plicate one ghost. The ugly news: creating ten ghosts will
waste five seconds of the programmer’s life. As described in
Section 2.3, the problem is in the way our prototype deals
with signal initialization, which we plan to fix in the future
through a language change. Significant edit latency can also
occur when type inference and circuit caches are cold. For
example, when a ghost is first created during a game, around
two seconds are needed to build the ghost’s circuits. Fortu-
nately, all future ghosts obtain these circuits from a cache.

Another part of the live programming experience to con-
sider is error detection and debugging. Our current proto-
type only supports the reporting of errors, and does not pro-
vide any support for debugging beyond providing responsive
feedback from the executing program. The value of respon-
sive feedback as a debugging aid cannot be understated: be-
ing able to see at one moment on one screen how an edit af-
fects the program’s execution allows the programmer to very
quickly determine if the edit was good or not. Errors often
do not accumulate as they would if the programmer waited
until after many edits to test the program. Additionally, be-
cause they lack control flow, programs have simpler execu-
tion models that do not involve call stacks, instruction step-
ping, and so on. However, because of SuperGlue’s support
for object-oriented dispatch of rules, code is substantially
more abstract than execution; i.e., execution errors need not
be directly related to one piece of code. For example, if a
signal is connected ambiguously, the involved rules could be
scattered throughout the program.

The immediate feedback of live programming eliminates
much of the need to separately debug programs. This elimi-
nation should in theory speed up the programming process,
but we cannot measure this in our current prototype. Given
sufficient error recovery and edit latency characteristics, live
programming feedback should always be available to pro-
grammers. However, many users often disable feedback in
their IDEs or word processors because they are distracted by
transient syntax, type, spelling, or grammar errors. In many
cases, users are overwhelmed by useless feedback that re-
sults from poor error recovery. Part of the distraction is re-

634

lated to users who prefer little or no feedback; e.g., they use
Emacs or notepad instead of Eclipse. Beyond habit and er-
ror recovery, good feedback must be tuned so that is con-
tinuously available discreetly in the background without dis-
tracting the user when its not needed. Ensuring and validat-
ing that feedback is engineered in this way is left to future
work.

4.3 Performance
More than most dynamic languages, SuperGlue eschews
performance in favor of being higher-level, more flexible,
and supporting live programming. Although edit latency
is important to live programming, overall program perfor-
mance is less so. However, there is the danger that Super-
Glue could be too slow for many kinds of applications. One
area where our prototype’s performance could be improved
is in application start-up. Because of our prototype’s reliance
on incremental work list processing, much work is done and
thrown away because many nodes are processed before their
dependencies are “ready.” For this reason, on start up, our
game requires around 32 seconds to start-up: two seconds
for parsing, ten seconds for type inference, and 20 seconds
to perform initial execution processing. Our focus on edit
latency, which work lists address, has led us to poor batch
performance, and future work should focus on fixing this.

Another way of measuring performance in our game is
through frame rate. For our game, we measure frame rate
as related to ghost count: around 100 frames per second
is possible for pacMan and a couple of ghosts, ten frames
per second with ten ghosts, and five frames per second with
twenty ghosts. Although such performance might be accept-
able for a simple game, our implementation needs better per-
formance so that SuperGlue can be used more widely.

SuperGlue’s reactive data-flow model does not support
direct compilation. Instead, a SuperGlue program executes
as a connection graph that resembles a scene graph in a
3D program. As with scene graphs, the connection graph of
a SuperGlue can conceivably undergo high-level dynamic
optimizations that speed up how programs execute, espe-
cially if domain specific knowledge can be considered. As
SuperGlue is only acting as a middle man between Java-
implemented components, a compiler could also bind these
components directly together by inlining the component
Java code with Java code generated from SuperGlue code.
Inlining would allow SuperGlue performance to approach
Java performance levels. However, to preserve live program-
ming support, such inlining must be retractable. Future work
will explore how performance can be improved through dy-
namic graph optimizations and compilation.

5. Related Work
SuperGlue is strongly influenced by Self [29]. Every artifact
of a Self program is an object whose every aspect, includ-
ing what they extend, can be updated at run-time. Self sup-

ports no abstractions other than objects: class or method con-
structions are expressible as objects. SuperGlue is more con-
ventional: behavior is expressed through distinct class con-
structs. Self supports code hot swapping and responsive live
programming in Morphic [18] through polling and a graphi-
cal “meta menu” that can directly edit specific objects [30].
However, live programming does not apply to Self source
code, and direct changes to objects are not copied back into
the code of the program. In SuperGlue, all program behavior
is derived from code that can undergo live programming.

Because dynamic inheritance in Self occurs through im-
perative slot assignment, the type of an object can change
in any way at any time without the benefit of static typing.
Dynamic object inheritance is supported with static typing
in Cecil [6, 7] through declarative predicates, which are also
used in SuperGlue. However in SuperGlue, reactive signals
make predicated class extensions more responsive: because
predicates refer to signals, when a signal extends or unex-
tends a class is known immediately. In Cecil, program be-
havior cannot responsively react to changes in class exten-
sions because predicates can only be checked on demand.

SuperGlue differs from existing dynamic languages such
as Lisp, Smalltalk, or Erlang in its support for live program-
ming and declarative programming model. Of these lan-
guages, Erlang [1]’s robust support for fault tolerance and
hot swapping comes closest to live programming. Like Su-
perGlue, Erlang processes communicate explicitly via mes-
sages and not implicitly through shared pointers. As a result,
a process can be restarted without de-stabilizing the entire
program. SuperGlue supports more responsive live program-
ming through signals, which unlike messages encapsulate
state change. Also, SuperGlue supports the hot swapping of
expressions rather than larger-grained processes.

One of the main contributions of this paper is showing
how visual language liveness can be realized in a textual
language. Ever since SketchPad [27], visual languages have
emphasized simple interactive programming models that ac-
commodate end users or novices. SuperGlue is designed
for programmers who typically use dynamic languages, and
end-user programming is not a goal. Many modern visual
languages solve the scaling up problem in ways that do not
degrade live programming; e.g., assemblies in Fabrik [15]
are reused as objects, and data types in Forms/3 [3] can
be elegantly specified as generic spreadsheet forms. Su-
perGlue solves the scaling-up problem using conventional
class constructs that are more suited to the naming capa-
bilities of textual languages. AgentSheets [24] is a visual
spreadsheet language that is based on graphical rewrite rules
and implicit component assembly through spatial adjacency.
AgentSheets demonstrates how live languages can be based
on rewrite rules, and how many useful visual concepts (spa-
tial adjacency)do not transfer easily to text.

Many existing textual languages are based on reactive
data-flow programming models. Signal [2], Lucid [32], and

635

LUSTRE [5] are textual reactive data-flow languages that
emphasize the formal verification of concurrency in real-
time systems. As a result, they are not designed to support
the rapid development capabilities of a dynamic or live lan-
guage. SuperGlue is very similar to functional-reactive lan-
guages such as Fran [10], Yampa [14], and FrTime [8]. Such
languages augment the functional paradigm with reactive
signals; e.g., the result of a function call f(x) forms a sig-
nal that changes whenever the x signal changes. In contrast,
SuperGlue is based on rules, which are less flexible but have
the advantage that they do not need to be applied explic-
itly. It remains an open question whether functional-reactive
languages can support responsive live programming with re-
cursive applicative programming models.

Subtext [9] bridges the gap between code and execution
by allowing programmers to edit code that directly repre-
sents program executions that lacks textual names. Because
edits operate directly on execution, Subtext supports respon-
sive live programming. On the other hand, Subtext supports
scaling through an unproven “copy-flow” rather than data-
flow. Code and execution remain separate in SuperGlue and
their gap is only bridged through live programming.

Flogo II [13] is another textual live language that focuses
on end-user robot programming. Flogo II supports both re-
active data-flow and procedural code, where the latter does
not support responsive live programming. Given its focus
on end users, Flogo II scaling constructs (Erlang-like pro-
cesses) are more concrete and do not scale as well as Super-
Glue’s classes. An intriguing idea in Flogo II’s is live text:
the state of an executing program is presented as graphical
annotations in the program’s textual source code. For exam-
ple, statements are grayed out when they are guarded by a
condition that is currently false. SuperGlue does not cur-
rently support similar capabilities.

SuperGlue’s static type system relies on type inference
and dependent typing to provide programmers with se-
mantic feedback while avoiding verbose type annotations.
Scala [22] is a statically typed object-oriented language that
utilizes dependent typing and type inference to reduce ver-
bosity, and therefore is a viable alternative to dynamic lan-
guages. SuperGlue’s type system is influenced by Scala’s;
however, dynamic typing is still used to validate connec-
tions. An alternative way of obtaining semantic feedback in
a dynamic language is through the use of heuristics and pro-
gram analysis; e.g., Olin Shivers describes various analyses
for inferring types in Scheme [26]. However, global program
analysis is a hard problem and so is often not very accurate
or efficient. Type inference in SuperGlue relies on a very
simple program analysis that remains accurate while being
both flow and context insensitive.

6. Conclusions and Future Work
Programmer-centric dynamic languages have been around
for awhile: Lisp and Smalltalk are respectively more than

40 and 25 years old. New dynamic languages, such as
Ruby [19] and Python [31], still strongly resemble Lisp and
Smalltalk in their feature sets. Now is the time to explore
languages that support higher-level live programming with
responsive semantic feedback. This paper demonstrates the
viability of both the design and implementation of such a
live language that also supports textual abstraction. We have
shown that a live language could be based on a simple declar-
ative reactive data-flow model that is augmented with pred-
icated object-oriented inheritance and dispatch. We believe
that a live text languages could be based on other simple
computational models such as constraints, first-order logic,
and rewrite rules, where live visual languages already exist.

Future work will focus on improving SuperGlue’s design
and implementation in the following areas:

- As described at the end of Section 2.3, SuperGlue’s sup-
port for class extension and signal initialization will be
changed to enhance performance.

- Our prototype does not currently provide enough debug-
ging support. We plan to allows programmers to inspect,
reason about errors in, and edit specific signals.

- We must improve on latency and performance if the
widespread use of SuperGlue is to be viable. Building
a live programming environment is an undocumented
black art that requires a complete re-think of how code is
scanned, parsed, typed, and executed. The prototype de-
scribed in this paper has already undergone some tuning
and there are still many improvements that we can make.

- We should explore the incorporation of other visual and
interactive features into the SuperGlue’s programming
environment. Features to be explored include support
for direct manipulation, where specific signal values can
be changed directly, and live text, where source code is
annotated with execution details.

Finally, we plan to support SuperGlue with rich libraries
that will make it a good platform for building interactive
programs in an interactive way.

Acknowledgments
We thank Adriaan Moors, Gilles Dubochet, Lex Spoon, and
the anonymous reviewers for comments on drafts of this
paper. This work was partially supported by a grant from
the European Framework 6 PalCom project.

References
[1] J. L. Armstrong and R. Virding. An experimental telephony

switching language. In Proc. of Interantation Switching
Symposium, May 1991.

[2] A. Benveniste, P. L. Geurnic, and C. Jacquemot. Synchronous
programming with events and relations: the Signal language
and its semantics. In Science of Computer Programming,
1991.

636

[3] M. Burnett, J. Atwood, R. Walpole, H. Gottfried, J. Reich-
wein, and S. Yang. Forms/3: A first-order visual language
to explore the boundaries of the spreadsheet paradigm. In
Journal of Functional Programming, pages 155–206, Mar.
2001.

[4] M. M. Burnett, M. J. Baker, C. Bohus, P. Carlson, S. Yang,
and P. van Zee. Scaling up visual programming languages. In
IEEE Computer, pages 45–54, Mar. 1995.

[5] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUS-
TRE: a declarative language for programming synchronous
systems. In Proc. of POPL, 1987.

[6] C. Chambers. Object-oriented multi-methods in Cecil. In
Proc. of ECOOP, pages 33–56, June 1992.

[7] C. Chambers. Predicate classes. In Proc. of ECOOP, pages
268–296, July 1993.

[8] G. H. Cooper and S. Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In Proc. of of ESOP,
2006.

[9] J. Edwards. Subtext: Uncovering the simplicity of program.
In Proc. of OOPSLA Onward, 2005.

[10] C. Elliott and P. Hudak. Functional reactive animation. In
Proc. of ICFP, volume 32 (8) of SIGPLAN Notices, pages
263–273. ACM, 1997.

[11] R. W. Floyd. Syntactic analysis and operator precedence. In
Journal of the ACM, volume 10 (3), pages 316–333, 1963.

[12] A. Goldberg and D. Robson. SmallTalk-80: The Language
and its Implementation. Addison Wesley, Boston, MA, USA,
1983.

[13] C. M. Hancock. Real-time Programming and the Big Ideas of
Computational Literacy. PhD thesis, Massachusetts Institute
of Technology, Sept. 2003.

[14] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows,
robots, and functional reactive programming. In Advanced
Functional Programming, volume 2638 of Lecture Notes in
Computer Science, pages 159–187. Springer, 2002.

[15] D. Ingalls, S. Wallace, Y.-Y. Chow, F. Ludolph, and K. Doyle.
Fabrik, a visual programming environment. In Proc. of
OOPSLA, pages 176–190, Nov. 1988.

[16] R. M. Karp and R. E. Miller. Properties of a model for
parallel computations: Determinacy, termination queueing.
SIAM Journal for Applied Mathemetics, 14(6):1390–1410,
Nov. 1966.

[17] P. O. Latour. Quartz Composer. Apple Computer,
2005. http://developer.apple.com/graphicsimaging/quartz/-
quartzcomposer.html.

[18] J. H. Maloney and R. B. Smith. Directness and liveness in
the Morphic user interface construction environment. In ACM
Symposium on User Interface Software and Technology, pages
21–28. ACM, 1995.

[19] Y. Matsumoto. Ruby: Programmers’ Best Friend. http://www-
.ruby-lang.org/en/.

[20] S. McDirmid and W. C. Hsieh. SuperGlue: Component
programming with object-oriented signals. In Proc. of
ECOOP, June 2006.

[21] National Instruments Corporation. LabVIEW User Manual,
1990.

[22] M. Odersky and et. al. The Scala language specification.
Technical report, EPFL, Lausanne, Switzerland, 2007.
http://scala.epfl.ch.

[23] M. Petre. Why looking isn’t always seeing: Readership skills
and graphical programming. Comm. of the ACM, pages 33–
44, June 1995.

[24] A. Repenning. AgentSheets: an interactive simulation
environment with end-user programmable agents. In Proc. of
Interaction, 2000.

[25] E. Sandewall. Programming in an interactive environment:
the lisp experience. Computing Surveys, 10(1), Mar. 1978.

[26] O. Shivers. The semantics of Scheme control-flow analysis.
In Proc. of PEMP, pages 190–198, June 1991.

[27] I. B. Sutherland. SKETCHPAD, a man-machine graphical
communication system. In Proc. of the Spring Joint Computer
Conference, pages 329–346, 1963.

[28] T. Teitelbaum and T. W. Reps. The Cornell program
synthesizer: A syntax-directed programming environment.
Communications of the ACM, 24(9):563–573, 1981.

[29] D. Ungar and R. B. Smith. Self: the power of simplicity. In
Proc. of OOPSLA, pages 227–242, Oct. 1987.

[30] D. Ungar and R. B. Smith. Programming as an experience:
the inspiration for Self. In Proc. of ECOOP, pages 227–242,
Aug. 1995.

[31] G. van Rossum and F. L. Drake. The Python Language
Reference Manual, Sept. 2003.

[32] W. W. Wadge and E. A. Ashcroft. Lucid, the Dataflow
Programming Language. Academic Press, 1985.

637

