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ABSTRACT
We present a new algorithm for Bayesian inference over
probabilistic programs, based on data flow analysis tech-
niques from the program analysis community. Unlike exist-
ing techniques for Bayesian inference on probabilistic pro-
grams, our data flow analysis algorithm is able to perform in-
ference directly on probabilistic programs with loops. Even
for loop-free programs, we show that data flow analysis of-
fers better precision and better performance benefits over
existing techniques. We also describe heuristics that are
crucial for our inference to scale, and present an empirical
evaluation of our algorithm over a range of benchmarks.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Statistical methods

General Terms
Algorithms, Verification

Keywords
probabilistic programming, algebraic decision diagrams,
data flow analysis

1. INTRODUCTION
We present a data flow analysis for probabilistic programs,

which can be used to perform Bayesian inference. Before
delving into details of the analysis, we first give the reader
some background on probabilistic programs and Bayesian
inference.

Probabilistic programs are “usual” programs (written in
languages like C or Java or LISP or ML) with two added con-
structs: (1) the ability to draw values at random from distri-
butions, and (2) the ability to condition values of variables
in a program through observations. A variety of probabilis-
tic programming languages and systems have been proposed
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[13,14,19,21,26,28]. However, unlike“usual”programs which
are written for the purpose of being executed, the purpose of
a probabilistic program is to implicitly specify a probability
distribution. Bayesian inference is the problem of comput-
ing an explicit representation of the probability distribution
implicitly specified by a probabilistic program.

Probabilistic programs can be used to represent proba-
bilistic graphical models [20], which use graphs to denote
conditional dependences between random variables. Prob-
abilistic graphical models are widely used in statistics and
machine learning, with diverse application areas including
information extraction, speech recognition, computer vision,
coding theory, biology and reliability analysis. They allow
specification of dependences between random variables via
generative models, as well as conditioning of random vari-
ables using phenomena or data observed in the real world. A
variety of efficient inference algorithms have been developed
to analyze and query probabilistic graphical models.

Inference algorithms for probabilistic programs are
broadly classified into: (1) dynamic methods such as the
Gibbs sampling algorithm, the Metropolis-Hastings (MH)
algorithm, which involve executing the program with ran-
dom draws and computing statistics on the resulting data,
and (2) static methods such as message-passing and be-
lief propagation. Current approaches to performing static
inference on probabilistic programs involve compiling such
programs to graphical models such as Bayesian networks
or factor graphs, and using known inference techniques on
such models. For instance, in [3], a functional probabilis-
tic program is first translated into a factor graph, and In-
fer.NET [26] is used to analyze the resulting factor graph
and perform inference.

We propose a new direction for efficient static inference of
probabilistic programs based on techniques from data flow
analysis. Our “data flow facts” are probability distributions,
and our analysis merges data flow facts at join points, and
computes fixpoints in the presence of loops. However, we
show that our data flow analysis does not lose precision,
and performs exact Bayesian inference (see Theorem 1).

Our approach is fundamentally different from sampling
algorithms, which use multiple concrete executions to rep-
resent distributions approximately using a set of samples,
and from message-passing algorithms, which maintain rep-
resentations of approximate distributions. Performing prob-
abilistic inference using data flow analysis offers several ad-
vantages. Prior techniques for static inference are restricted
to loop-free programs [3, 11]. We are able to statically an-
alyze probabilistic programs with loops using the idea of



bool c1, c2;
c1 := Bernoulli(0.5);
c2 := Bernoulli(0.5);

bool c1, c2;
c1 := Bernoulli(0.5);
c2 := Bernoulli(0.5);
observe(c1 || c2);

Example 1. Example 2.

Figure 1: Two probabilistic programs.

bool b, c;
b := true;
c := Bernoulli(0.5);
while (c){
b := !b;
c := Bernoulli(0.5);

}

bool c1, c2;
c1 := Bernoulli(0.5);
c2 := Bernoulli(0.5);
while !(c1 || c2) {

c1 := Bernoulli(0.5);
c2 := Bernoulli(0.5);

}

Example 3. Example 4.

Figure 2: Probabilistic programs with loops.

fixpoints from the program analysis and verification com-
munities. Even for loop-free programs, we show that data
flow analysis offers performance benefits over existing tech-
niques. We are able to perform exact inference, and hence
compute an answer with better precision than current static
techniques which use approximate distributions to scale.

1.1 Probabilistic Programs
We motivate probabilistic programs and inference using

a series of examples. Consider Example 1 in Figure 1. In-
tuitively, this program tosses two fair coins (simulated by
drawing from a Bernoulli random variable with mean 0.5),
assigns the outcomes of these coin tosses to c1 and c2 re-
spectively, and returns the values of the two variables c1 and
c2. The program represents a probability distribution over
Bernoulli variables c1 and c2, where:
Pr(c1=false,c2=false) = Pr(c1=false,c2=true) =
Pr(c1=true,c2=false) = Pr(c1=true,c2=true) = 1/4.

Next, consider Example 2 in Figure 1. In this pro-
gram, in addition to tossing the two coins and assign-
ing the outcomes to c1 and c2, we have the statement
observe(c1||c2). The semantics of the observe statement
classifies runs which satisfy the boolean expression c1||c2
as valid runs. Runs that do not satisfy c1||c2 are classified
as invalid runs. The program specifies the generated distri-
bution over the values of the variables (c1, c2) conditioned
over valid runs, which is given by: Pr(c1=false,c2=false)
= 0, and Pr(c1=false,c2=true) = Pr(c1=true,c2=false)
= Pr(c1=true,c2=true) = 1/3.

Next, we consider probabilistic programs with loops. Con-
sider Example 3 in Figure 2. This program initializes b

to true and c to the outcome of tossing a coin. Then,
it loops until c becomes false, toggling b and assigning
to c the result from a fresh coin-toss in every iteration of
the loop. The while-loop terminates with probability 1,
since for the loop to not terminate, c should be always as-
signed true from the coin toss, the probability of which de-
creases exponentially with the number of iterations. The
program specifies the generated distribution over the values
of the variables (b, c) given by: Pr(b=true,c=true) = 0,
and Pr(b=false,c=true) = 0, and Pr(b=true,c=false) =
2/3, and Pr(b=false,c=false) = 1/3.

The probability Pr(b = true, c = false) is the proba-
bility that the program executes the while loop an even
number of times, and is given by the summation (1/2) +

float skillA, skillB,skillC;
float perfA1,perfB1,perfB2,

perfC2,perfA3,perfC3;
skillA := Gaussian(100,10);
skillB := Gaussian(100,10);
skillC := Gaussian(100,10);

// first game:A vs B, A won
perfA1 := Gaussian(skillA,15);
perfB1 := Gaussian(skillB,15);
observe(perfA1 > perfB1);

// second game:B vs C, B won
perfB2 := Gaussian(skillB,15);
perfC2 := Gaussian(skillC,15);
observe(perfB2 > perfC2);

// third game:A vs C, A won
perfA3 := Gaussian(skillA,15);
perfC3 := Gaussian(skillC,15);
observe(perfA3> perfC3);

Figure 3: (Example 5) TrueSkill skill rating.

(1/8) + (1/32) + · · · , which equals 2/3. The probability
Pr(b = false, c = false) is the probability that the pro-
gram executes the while loop an odd number of times, and
is given by the summation (1/4) + (1/16) + (1/64) + · · · ,
which equals 1/3.

Consider Example 4 in Figure 2. This program repeat-
edly assigns to c1 and c2 outcomes of fair coin tosses, in
a loop, until the condition (c1||c2) becomes true. Thus,
this program specifies the generated distribution over the
variables (c1, c2) given by: Pr(c1=false,c2=false) = 0,
and Pr(c1=false,c2=true) = Pr(c1=true,c2=false) =
Pr(c1=true,c2=true) = 1/3. The alert reader would no-
tice that this distribution is identical to the distribution
specified by Example 2. Though observe statements can
be equivalently represented using while loops using a sim-
ple program transformation illustrated in this example, our
inference algorithm handles observe statements more effi-
ciently, when compared to loops. Also, there is no simple
transformation that converts any while loop to an observe

statement. Consequently, we have both observe statements
and while loops in our language.

The final example we use in this introduction is a simpli-
fied version of the TrueSkill [16] skill rating system used by
Microsoft’s Xbox Live to rate the relative skills of players
playing online games. In Example 5 (Figure 3), we have
3 players, A, B and C, whose skills are given by variables
skillA, skillB and skillC respectively, which are initial-
ized by drawing from a Gaussian distribution with mean
100, and variance 10. Based on the outcomes of some num-
ber of played games (which is 3 games in this example),
we condition the skills thus generated. The first game was
played between A and B, and A won the game. This is
modeled by assigning to the two random variables perfA1

and perfB1 denoting the performance of the two players in
the first game, and constraining that perfA1 is greater than
perfB1 using an observe statement. Note that the per-
formance of a player (such as player A) is a function of her
skill, but with additional Gaussian noise introduced in order
to model the variation in performance we may see because of
incompleteness in our model (such as the amount of sleep the
player got the previous night). The second game was played
between B and C, and B won the game. The third game was
played between A and C, and A won the game. Using this



model, we want to calculate the joint probability distribu-
tion of these random variables, and use this to estimate the
relative skills of the players. Note that each observe state-
ment constrains performances in a game, and implicitly the
skills of the players, since performances depend on skills.
Such a rating can be used to give points, or match players
having comparable skill for improved gaming experience. In
this example, the skills skillA, skillB, and skillC inferred
by our tool are: skillA = Gaussian(102.1, 7.8), skillB =
Gaussian(100.0, 7.6), skillC = Gaussian(97.9, 7.8). Note
that since A won against both B and C, and B won against
C, the resulting distribution agrees with our intuitive assess-
ment of their relative skills.

1.2 Inference
Calculating the distribution specified by a probabilistic

program is called inference. The inferred probability dis-
tribution is called posterior probability distribution, and the
initial guess made by the program is called the prior prob-
ability distribution. For instance, in Example 5, the prior
distribution for skillA is Gaussian(100,10), whereas the
posterior distribution is Gaussian(102.1, 7.8). One way to
perform inference is runtime execution. We can execute the
program several times using sampling to execute probabilis-
tic statements, and observe the values of the desired vari-
ables in valid runs [14], and compute statistics on the data
to infer an approximation to the desired distribution. Al-
ternatively, a probabilistic program can be compiled to a
graphical model [3,21] over which inference is performed us-
ing message passing algorithms such as belief propagation
and its variants [27].

Data flow analysis, invented by Kildall [18], uses a lattice
of data flow facts, merging at join points, and fixpoints for
loops to compute solutions to several “meet-over-all-paths”
(MOP) analysis problems. The main contribution of this pa-
per is a new technique to perform inference on probabilistic
programs using data flow analysis.

We consider Boolean Probabilistic Programs, and in par-
ticular the programming language BernoulliProb (see
Section 3), where all variables are boolean and the only
distribution allowed is the Bernoulli distribution. This lan-
guage is similar to the pWhile language [2], which in turn
is based on the probabilistic while language in [22]. Our
main formal result, Theorem 1, is the correctness of our in-
ference algorithm with respect to the formal semantics of
our probabilistic language.

Probabilistic programs with discrete variables over a fi-
nite domain can be directly encoded with BernoulliProb,
without any approximation. Further, probabilistic programs
with continuous variables can be approximated to boolean
programs by approximating continuous distributions with
discrete distributions (see Section 4). Using such transfor-
mations, any probabilistic program can be approximately
represented in BernoulliProb and analyzed using our
technique.

We have implemented our approach and we find that in
several examples, we are able to perform exact inference. If
the probabilistic program has a large number of variables,
explicit representation of joint probability distributions is
expensive. Our implementation uses Algebraic Decision Di-
agram (ADD) [1], a graphical data structure for compactly
representing finite functions, to represent probability distri-
butions, and perform data flow analysis symbolically. For

r ∈ R
x ∈ Vars
T ::= bool types
uop ::= not unary operators
bop ::= and | or binary operators

D ::= | T x1, x2, . . . , xn declaration

E ::= expressions
x variable
| c constant
| E1 bop E2 binary operation
| uop E1 unary operation

S ::= statements
x := E deterministic assignment
| x := Bernoulli(r) Bernoulli assignment
| observe (E) observe
| skip skip

| S1;S2 sequential composition
| if E then S1 else S2 conditional composition
| while E do S1 loop

P ::= D S programs

Figure 4: Syntax of BernoulliProb.

large examples, where exact inference is infeasible, we pro-
pose a batching technique where we periodically project the
joint distribution to marginal distributions over individual
variables, to save space at the cost of some approximation.
In our experiments, our approximate inference produces re-
sults with better precision than other state-of-the-art infer-
ence approaches.

This work is related thematically to our other recent work
in the intersection of program analysis and Bayesian infer-
ence. In particular, related recent efforts include using weak-
est preconditions to perform efficient sampling [6] and using
a framework of model-learners to do Bayesian reasoning [15].

2. PROBABILISTIC PROGRAMS
We start by formally defining Boolean probabilistic pro-

grams. Figure 4 shows the syntax of BernoulliProb. The
only type T allowed in the language is the boolean type,
with values true and false. A program has a declaration
of variables x1, x2, . . . , xn followed by statements. We use
V(P ) to denote the variables of program P , and S(P ) to
denote the statement body of program P . Primitive state-
ments include deterministic assignments, Bernoulli assign-
ment, observe and skip statements. A deterministic assign-
ment is of the form x := E , where E is an expression. Expres-
sions are formed from variables and constants using binary
and unary operators. A Bernoulli assignment is of the form
x := Bernoulli(r), where r is a real number. An observe
statement is of the form observe(E), where E is an expres-
sion. A skip statement is of the form skip. Compound
statements are formed from primitive statements using se-
quential composition, conditional composition and looping.

The operational semantics of BernoulliProb is given in
Figure 5 as a probabilistic transition system. A state σ of
the program with variables x1, x2, . . . , xn is a valuation to
all the variables. The domain of all possible states is Γ. A
configuration ω is a pair 〈σ,S〉, where σ is a state, and S is a
statement. Intuitively, a run of a program returns the final
state σ′, which is the first component of the configuration on
termination. Since programs are probabilistic, each time we



〈σ, x := E〉 →1 〈σ[x← σ(E)], skip〉
〈σ, x := Bernoulli(r)〉 →r 〈σ[x← true], skip〉
〈σ, x := Bernoulli(r)〉 →1−r 〈σ[x← false], skip〉
〈σ, observe(E)〉 →1 〈σ, skip〉, if σ(E) = true

〈σ, skip;S〉 →1 〈σ,S〉
〈σ,S1;S2〉 →p 〈σ′,S′;S2〉, if〈σ,S1〉 →p 〈σ′,S′〉
〈σ, if E then S1 else S2〉 →1 〈σ,S1〉, if σ(E) = true

〈σ, if E then S1 else S2〉 →1 〈σ,S2〉, if σ(E) = false

〈σ, while E do S〉 →1 〈σ, skip〉, if σ(E) = false

〈σ, while E do S〉 →1 〈σ,S; while E do S〉, if σ(E) = true

Figure 5: Semantics of BernoulliProb.

run a program P we might get a different final state. The
semantics of the program is the distribution over final states
returned by the program. We formalize this below.

Given a state σ, we use the notation σ(xi) to denote the
value of variable xi in σ, and the notation σ(E) to denote
the value of the expression E in σ.

The probabilistic transition system shown in Figure 5 has
transition rules of the form form ω →p ω′, meaning config-
uration ω takes a step to configuration ω′ with probability
p, inspired by the transition system for the functional lan-
guage Fun [3]. We use the notation σ[x ← v] for the state
obtained by updating the value of x in σ with v and leav-
ing the values of all other variables in σ unchanged. The
only transition in Figure 5 whose probability is not 1, is the
one for Bernoulli assignment x := Bernoulli(r). This state-
ment assigns true to x with probability r and, false to x
with probability 1 − r. The configuration 〈σ, observe(E)〉
transitions to the configuration 〈σ, skip〉 with probability 1
if σ(E) is equal to true. In this case, we say that the obser-
vation succeeds. Otherwise, if σ(E) is equal to false, then
the configuration 〈σ, observe(E)〉 gets stuck with no outgo-
ing transitions. Thus, implicitly, the resulting distribution
of a program is conditioned on all observations succeeding.

The sequential composition S1;S2 transitions depending
on the transition of the first statement S1. The conditional
composition if E then S1 else S2 transitions according to
how the current state σ evaluates the expression E . The
while loop while E do S also transitions according to how the
current state σ evaluates the expression E . If the expression
evaluates to false the loop exits, otherwise it executes the
body S and loops.

A run of a statement S starting from state σ and end-
ing in state σ′ is a sequence ω = (ω1, ω2, . . . , ωn+1) for
n ≥ 0, where the following conditions are satisfied: (1)
ω1 →p1 ω2 · · ·ωn →pn ωn+1, (2) the initial configura-
tion ω1 = 〈σ,S〉, and (3) the final configuration ωn+1 =
〈σ′, skip〉, where the statement part is equal to skip, sig-
nifying termination of execution. Given such a run ω, we
say that the statement S evaluates to state σ′ starting at
state σ with probability Pr(ω) = p1 · · · pn. The set of all
runs of the statement S starting from state σ and ending
with state σ′ is denoted by Ω(σ,S, σ′). Note that we are
only concerned with runs of finite length in Ω(σ,S, σ′) that
end in a configuration with a skip statement. Since the lan-
guage BernoulliProb has loops, the number of such runs
is potentially infinite.

Given a statement S, the probability Pr(σ,S, σ′) of exe-
cuting statement S starting at state σ and ending at state
σ′ is given by

Pr(σ,S, σ′) = Σω∈Ω(σ,S,σ′) Pr(ω)

Algorithm 1 The Infer algorithm.
Algorithm Infer

Input: A BernoulliProb program P .
Output: A posterior distribution ρ over P ’s output.
1: ρ0 := λσ.ite(∀xi ∈ V(P ).σ(xi) = false, 1, 0);
2: ρ := Post(ρ0,S(P ))
3: ρN := Normalize(ρ)
4: return ρN

Note that even though the summation is potentially over an
infinite number of runs, we are interested in its limit which is
always lesser than one. Given a distribution ρ over program
states Γ, we define

Pr(ρ,S, σ′) = Σσ∈Γρ(σ) · Pr(σ,S, σ′)

Consider a program P with variables x1, x2, . . . , xn and
statement S. Let σ0 denote the state where all variables
x1, x2, . . . , xn are assigned false, and ρ0 denote the Dirich-
let distribution over states λσ.ite(σ = σ0, 1, 0), where the
expression ite(e, x, y) evaluates to x if e is true, and y if e
is false. Intuitively, the semantics of the program P is the
probability distribution ρ obtained by starting the execution
of S from initial state σo. Formally, the semantics of P is
the distribution λσ.Pr(ρ0,S, σ).

We note that the semantics given here sums over all the
runs of the program. In Section 3, we present our main
result of the paper, which shows that this summation can
be computed by a data flow analysis which merges data flow
facts at join points.

We end this section by noting two facts about the seman-
tics of BernoulliProb programs. First, if a program P
has non-trivial observe statements, the resulting distribu-
tion λσ.Pr(ρ0,S, σ) is not necessarily normalized (i.e., the
sum of the probabilities over all states can be strictly less
than 1). If we wanted a distribution, we can calculate the
sum of probabilities S of all the states and appropriately
normalize each of the probabilities by S. Second, we can
write pathological programs containing statements such as
observe(false) or non-terminating while loops with no ter-
minating executions. The output distribution of such a pro-
gram maps all states to 0 probability, which is equivalent to
saying that the semantics of such a program is undefined.

3. ALGORITHM
Algorithm 1 describes the inference algorithm Infer for

BernoulliProb programs, which is based on data flow
analysis. Infer takes a BernoulliProb program P as in-
put and returns the joint distribution over the output states
of P (see Section 2). Line 1 constructs an initial distribu-
tion ρ0, which is a Dirichlet distribution mapping the state
with every variable set to false as having probability 1,
and all other states as having probability 0. Recall that
the function ite(e, x, y) evaluates to x if e = true and y if
e = false. The procedure Post (line 2) returns the poste-
rior sub-distribution over the output of statements S(P ) of
program P , starting with ρ0 as the input distribution. Post
is a recursive procedure shown in Algorithm 2.

The function Normalize takes the output of Post, which
is a function ρ from output values of P to [0, 1], and if
range(ρ) 6= {0} it returns a probability distribution ρN over
output values, given by (1/Σv∈Γρ(v)) ·ρ (recall that Γ is the
domain of all possible states).

Algorithm 2 relies on notations introduced in Section 2 for



Algorithm 2 The Post computation.

Algorithm Post(ρ,S)

Input: An input distribution ρ over the states of the program P , and
a statement S

Output: Output distribution over the states of the program P
1: switch (S)
2: case x := E:
3: return λσ.Σ{σ′|σ′[x←σ′(E)]=σ}ρ(σ

′)

4: case x := Bernoulli(r):
5: return λσ.(r × Σ{σ′|σ′[x←true]=σ}ρ(σ

′)+

6: (1− r)× Σ{σ′|σ′[x←false]=σ}ρ(σ
′))

7: case observe (E):
8: return λσ.ite(σ(E), ρ(σ), 0)
9: case skip:
10: return ρ
11: case S1;S2:
12: ρ′ = Post(ρ,S1);
13: return Post(ρ′,S2)
14: case if E then S1 else S2:
15: ρt = λσ.ite(σ(E), ρ(σ), 0);
16: ρf = λσ.ite(σ(E), 0, ρ(σ));
17: return λσ.(Post(ρt,S1)(σ) + Post(ρf ,S2)(σ))
18: case while E do S1 :
19: ρp := ⊥; ρc := ρ
20: while ρp 6= ρc do
21: ρp := ρc
22: ρc := Post(ρp, if E then S1 else gskip)
23: end while
24: return λσ.ite(σ(E), 0, ρc(σ))
25: end switch

valuations σ, σ[x← v], and values σ(x), σ(E). Distributions
ρ, ρc, etc (normalized or un-normalized) map valuations to
[0, 1]. Let⊥ denote the null map which maps every valuation
to 0.

Post operates recursively over the syntax of an input
BernoulliProb statement S (as defined in Figure 5). In
lines 2–3, Post handles the case when the statement is a
deterministic assignment. In this case, the output distribu-
tion maps a state σ to the sum over all the input densities of
states σ′ that equal σ on executing the deterministic assign-
ment. Lines 4–6 handle Bernoulli assignment. The output
distribution for this statement is a convex combination of
the result of the deterministic assignment x := true scaled
by r, and the deterministic assignment x := false scaled
by 1− r. Lines 7–8 handle the observe statement. The out-
put distribution (which is unnormalized) maps a state σ to
the density over the input distribution if the expression E
evaluates to true and 0 otherwise. Note that the output
distribution here is unnormalized, unless E is true for all
states. Lines 9–10 handle the skip statement, which is an
identity for Post.

Lines 11–12 handle sequential composition by first com-
puting Post over the first statement, and using the resulting
distribution to compute Post over the second statement.
Lines 14–17 handle conditional statements. The output dis-
tribution is the pointwise sum of the distribution obtained
from the “if-part” and the “else-part”. The “if-part” and
“else-part” are recursively computed by applying Post on
their bodies, after splitting the input distribution ρ depend-
ing on the condition predicate E to ρt and ρf .

The final case (lines 18–24) handles a while loop by com-
puting a fixpoint. It uses two scratch variables ρp and
ρc to represent the “previous” distribution and “current”
distribution respectively. Iteratively, Post is repeatedly
applied on the input distribution ρp with the statement
if E then S1 else skip until the output distribution ρc
is the same as the input ρp. We note that this fixpoint is

potentially nonterminating, even though ρp and ρc may con-
verge in the limit. In our implementation we terminate the
fixpoint when the KL-divergence between ρc and ρp goes
below a certain threshold.

Readers familiar with data flow analysis will note that
our data flow facts are probability distributions, and our
algorithm merges these distributions at join points (lines 14–
17), and computes fixpoints for loops (lines 18–24). Next,
we prove that even with such merging of data flow facts
at join points, this algorithm computes the exact posterior
distribution given by the “sum over all paths” definition in
Section 2.

Lemma 1. For any statement S and any distribution ρ,
if the Post algorithm terminates, then:

λσ.Pr(ρ,S, σ) = Post(ρ,S)

Proof: We show that for any statement S over variables
x1, x2, . . . , xn, any input distribution ρ over the program
states, and any output state σ, we have that Pr(ρ,S, σ) =
Post(ρ,S)(σ) when the Post algorithm terminates. The
proof is by induction over the structure of S, and we carry
it out by performing a case analysis of all types of statements
supported in BernoulliProb.
Case 1(deterministic assignment):
If S = x := E , we have that

Pr(ρ,S, σ) = Σσ1∈Γρ(σ1)× Pr(σ1,S, σ)
= Σ{σ1∈Γ|σ=σ1[x←σ1(E)]}ρ(σ1)× Pr(σ1,S, σ)+

Σ{σ1∈Γ|σ 6=σ1[x←σ1(E)]}ρ(σ1)× Pr(σ1,S, σ)
= Σ{σ1∈Γ|σ=σ1[x←σ1(E)]}ρ(σ1)× 1+

Σ{σ1∈Γ|σ 6=σ1[x←σ1(E)]}ρ(σ1)× 0
(from Figure 5)

= Σ{σ1∈Γ|σ=σ1[x←σ1(E)]}ρ(σ1)
= Post(ρ, x := E)(σ)

(from line 3 of Algorithm 2)

Case 2(Bernoulli assignment):
If S = x := Bernoulli(r), we have that

Pr(ρ,S, σ) = Σσ1∈Γρ(σ1)× Pr(σ1,S, σ)
= Σ{σ1∈Γ|σ=σ1[x←true]}ρ(σ1)× Pr(σ1,S, σ)+

Σ{σ1∈Γ|σ 6=σ1[x←false]}ρ(σ1)× Pr(σ1,S, σ)
= Σ{σ1∈Γ|σ=σ1[x←true]}ρ(σ1)× r+

Σ{σ1∈Γ|σ 6=σ1[x←false]}ρ(σ1)× (1− r)
(from Figure 5)

= Post(ρ, x := Bernoulli(r))(σ)
(from lines 5–6 of Algorithm 2)

Case 3(Observe statement):
If S = observe(E), we have that

Pr(ρ,S, σ) = Σσ1∈Γρ(σ1)× Pr(σ1,S, σ)
= Σ{σ1∈Γ|E(σ1)=true}ρ(σ1)× Pr(σ1,S, σ) +

Σ{σ1∈Γ|E(σ1)=false}ρ(σ1)× Pr(σ1,S, σ)
= Σ{σ1∈Γ|E(σ1)=true}ρ(σ1)× ite(σ = σ1, 1, 0) +

Σ{σ1∈Γ|E(σ1)=false}ρ(σ1)× 0
(from Figure 5)

= ite(E(σ), ρ(σ), 0)
= Post(ρ, observe(E))(σ)

(from line 8 of Algorithm 2)



Case 4(Skip statement):
if S = skip, we have that

Pr(ρ,S, σ) = Σσ1∈Γρ(σ1)× Pr(σ1,S, σ)
= ρ(σ)× Pr(σ,S, σ) +

Σ{σ1∈Γ|σ1 6=σ}ρ(σ1)× Pr(σ1,S, σ)
= ρ(σ)× 1 + Σ{σ1∈Γ|σ1 6=σ}ρ(σ1)× 0

(from Figure 5)
= ρ(σ)
= Post(ρ, skip)(σ)

(from line 10 of Algorithm 2)

Case 5(Sequential composition):
If S = S1;S2, we have that

Pr(ρ,S, σ) = Σσ1∈Γρ(σ1)× Pr(σ1,S, σ)
= Σσ1∈Γρ(σ1)× Σσ2∈Γ Pr(σ1,S1, σ2)× Pr(σ2,S2, σ)

(from Figure 5)
= Σσ1∈ΓΣσ2∈Γρ(σ1)× Pr(σ1,S1, σ2)× Pr(σ2,S2, σ)
= Σσ2∈ΓΣσ1∈Γρ(σ1)× Pr(σ1,S1, σ2))× Pr(σ2,S1, σ)
= Σσ2∈Γ Pr(ρ,S1, σ2)× Pr(σ2,S1, σ)
= Σσ2∈ΓPost(ρ,S1)(σ2)× Pr(σ2,S1, σ)

(by induction)
= Pr(Post(ρ,S1),S2, σ)
= Post(ρ,S1;S2)(σ)

(from lines 12–13 of Algorithm 2)

Case 6(Conditional composition):
If S = if E then S1 else S2 we have that

Pr(ρ,S, σ) = Σσ1∈Γρ(σ1)× Pr(σ1,S, σ)
= Σ{σ1∈Γ|E(σ1)=true}ρ(σ1)× Pr(σ1,S1, σ) +

Σ{σ1∈Γ|E(σ1)=false}ρ(σ1)× Pr(σ1,S2, σ)
(from Figure 5)

= Σσ1∈Γite(E(σ1), ρ(σ1), 0)× Pr(σ1,S1, σ) +
Σσ1∈Γite(E(σ1), 0, ρ(σ1))× Pr(σ1,S2, σ)

= Post(λσ1.ite(E(σ1), ρ(σ1), 0),S1)(σ) +
Post(λσ1.ite(E(σ1), 0, ρ(σ1)),S2)(σ)

(by induction)
= Post(ρ, if E then S1 else S2)(σ)

(from lines 15–17 of Algorithm 2)

Case 7(While loop):
If S = while E do S1 we have that

Pr(ρ,S, σ) = Σσ1∈Γρ(σ1)× Pr(σ1,S, σ)
= Σ{σ1∈Γ|E(σ1)=false}ρ(σ1)+

Σ{σ1∈Γ|E(σ1)=true}ρ(σ1)× Pr(σ1,S1;S, σ)
(from Figure 5)

= Pr(ρ, (if E then S1;S else skip), σ)
= Post(ρ, while E do S1)(σ)

(from lines 19–24 of Algorithm 2)

Our main theorem, which states that the data flow anal-
ysis algorithm computes the exact posterior distribution as
specified by the “sum over all paths” semantics is stated be-
low, and follows directly from the above lemma.

Theorem 1. Let P be a BernoulliProb program with
n variables x1, x2, . . . , xn and a statement S. Let σo be a
state which assigns all n variables the value false, and let
ρo be the Dirichlet distribution which maps such a state σo to
probability 1 and all other states to the probability 0. Then, if
the Post algorithm terminates, then the output distribution
of P is given by the Infer algorithm.

It is important to note that the Post algorithm might not
always terminate. Consider the following example program:

bool x := true;
while (true)

x := !x
return x;

In this program x is initialized to true, and toggles in every
iteration of the loop. Thus, the probability distribution ρc
computed by the Post algorithm while analyzing the while
loop is given by λσ.ite(σ(x), 1, 0) at the end of even number
of iterations of the loop, and λσ.ite(σ(x), 0, 1) at the end
of odd number of iterations of the loop. Hence, the Post
algorithm does not terminate on this example. This example
is reminiscent of Markov chains with periodic cycles. In
Section 6, we show that in several real-world examples where
such oscillating behaviors do not occur, the Post algorithm
is indeed able to terminate and produce useful results.

4. DISCRETIZATION
We extend BernoulliProb to handle continuous distri-

butions. There are two phases. First, we extend Bernoul-
liProb to support discrete distributions over finite sets.
Next, we show how we can approximate a continuous distri-
bution as a discrete distribution over a finite set, which effec-
tively shows that a probabilistic program defined over con-
tinuous distributions can be approximated by a Bernoul-
liProb program.

Let D be a distribution over elements of a finite set S of
cardinality |S| > 0. Then, we can encode elements of S using
tuples of log |S| boolean variables in the standard way (that

is, using boolean tuples in {0, 1}log |S|. Thus, using this en-
coding, we are able to model D as a distribution over tuples
of boolean variables, thus reducing a program defined over
arbitrary finite distributions to a BernoulliProb program.

Now consider a continuous distribution N . For ease of
exposition, we assume that N is a Gaussian distribution
whose probability density function is defined as follows

f(x;µ, σ2) =
1√
2πσ

e
− (x−µ)2

2σ2

where µ and σ2 are the mean and variance parameters re-
spectively. For a suitable choice i ∈ N, define an interval
[a, b] such that a = µ− iσ and b = µ+ iσ. For some w > 0,
define the following set.

S =

{
a+ k

b− a
w
| 0 ≤ k < w

}
We define a discrete distribution D over the elements of

S which is a discrete probability mass function that approx-
imates the Gaussian probability density function f(x;µ, σ2)
as follows.

D(x ∈ S; i, w) =
1

N

∫ x+ b−a
w

x

f(x;µ, σ2)dx

where i and w are parameters that control the degree of
approximation, and

N =

∫ b

a

f(x;µ, σ2)dx

a normalization constant ensuring that D is a probability
distribution.



It is easy to see that the degree of approximation is con-
trolled by the parameters i and w. In particular, the ap-
proximation improves with i→∞ and w → 0.

Therefore, with the two reductions described above, we
are able to reduce probabilistic programs defined over con-
tinuous and finite distributions to BernoulliProb pro-
grams.

5. IMPLEMENTATION

Algebraic Decision Diagrams. Recall that our algorithm
(in Section 3) maintains joint probability distributions at ev-
ery program point. A probability distribution is a real val-
ued function over variable values. For example, after execut-
ing the fragment x = Bernoulli(0.5), we obtain the function
λx.0.5 representing the distribution which maps both values
of x (true and false) to 0.5. As a second example, after
symbolically executing Example 2 (Figure 1), we obtain the
function λ(c1, c2).ite((c1||c2), 1/3, 0).

These are functions from tuples of boolean values to real
numbers. One way to represent such functions is using ta-
bles (similar to truth tables, but having probabilities as the
range). However, with n boolean variables a table represen-
tation has 2n rows, and this is infeasible for large n. Alge-
braic Decision Diagrams (ADDs) can compactly represent
such functions as directed acyclic graphs. ADDs [1] are gen-
eralizations of Binary Decision Diagrams (BDDs), invented
by Bryant [5]. An ADD is a directed acyclic graph. Each
internal node of the graph is a decision node, labeled with a
variable name. Each leaf node is labeled with a real value.
Each internal node n has two outgoing edges labeled with 0
and 1 respectively, and the target of these edges are called 0-
successor and 1-successor of n respectively. Each ADD fixes
a total order among its variables, and the ordering of vari-
ables in every path respects this total order. Furthermore,
each variable occurs at most once on a path from the root to
the leaf. ADDs can be compactly constructed from decision
trees by performing the following two reductions until sat-
uration: (1) merging isomorphic nodes, and (2) eliminating
nodes whose 0-successor and 1-successor are identical. Once
we fix a total ordering of variables, and apply the above 2
reductions in any order till convergence, the resulting ADD
is canonical (regardless of the order in which the reductions
were applied).

Functions can be manipulated using graph algorithms on
their ADD representations. For example, if f1 and f2 are
two functions represented as ADDs with sizes |f1| and |f2|
respectively, the ADD for operations such as f1+f2 or f1×f2

can be obtained using graph algorithms on the ADDs of f1

and f2 with a worst-case complexity of O(|f1| · |f2|). Given
a function f with a free variable x represented as an ADD,
we can also obtain the ADD for ∃x.f by eliminating x from
the ADD using graph operations, and potentially doubling
the size of the ADD in the worst case. We refer the reader
to [1] for details of these algorithms.

For instance, Figure 6 shows the ADD for the distribution
of Example 2 from Figure 1: part (a) shows the distribution
represented as a decision tree, and part (b) shows the ADD
obtained by applying the two reductions above until none
applies.

Our implementation of the inference algorithm uses ADDs
for a compact representation over distributions. Each of the
operations in the Algorithm 2 can be implemented using

𝒄𝟏 

𝒄𝟐 

𝟏
𝟑  𝟎 

𝟎 𝟏 

0 1 

𝒄𝟏 

𝒄𝟐 

𝟏
𝟑  𝟎 

0 

𝟏 

0 
𝟏 

𝒄𝟐  

𝟏
𝟑  𝟏

𝟑  

0 1 

(a)  Decision tree  (b)  ADD 

Figure 6: ADD representation of Example 2.

ADD operations as described below. Consider the opera-
tion for processing the deterministic assignment statement
in line 3. Let fρ be the ADD representation of ρ and let
fx′=E be the ADD representing the relation x′ = E , where
x′ is a fresh variable. We implement the summation in line
3 as follows: (1) First we compute g = fρ ∧ fx′=E . (2)
Next we existentially quantify x from g to get h = ∃x.g.
(3) Finally, we rename x′ to x in h to get the result of
Post as h[x′/x] and return the resulting ADD (we note that
∧, existential quantification and renaming are implemented
by ADD packages using graph operations). The implemen-
tation for Bernoulli assignment can be done by separately
processing the two deterministic assignments x := true and
x := false as above, and scaling the two resulting ADDs by
r and (1 − r) respectively, and adding them (we note that
scaling and adding operations provided by ADD packages).
The operations in lines 8, 15 and 16 can be directly imple-
mented on ADDs since ite operation is supported by ADD
packages. The fixpoint computation in lines 20–23 can be
implemented using the techniques described above, and in
addition we terminate the fixpoint when the KL-divergence
between ρc and ρp goes below a certain threshold.

Each of these operations ∧, ite, scaling, summation,
equality check are directly supported by ADD packages such
as CUDD [32] and takes time proportional to the product
of the sizes of the arguments in the worst case. The normal-
ization operation in Algorithm 1 is not directly supported
by ADD packages. We implement this operation using a
bottom-up scan of the ADD in time proportional to the size
of the ADD.

Figure 7 illustrates how the Infer algorithm proceeds on
Example 2 from Figure 1. In particular, the Post com-
putation on the first two statements c1 := Bernoulli(0.5)
and c2 := Bernoulli(0.5) results in uniform distributions
over c1 and (c1, c2) respectively. Both these distributions
are compactly represented by ADDs with a single leaf node.
Next, Post processes the statement observe(c1||c2) which
results in a subdistribution represented by the ADD shown
in the figure. Finally, Infer normalizes this subdistribution
(via the call to Normalize) in order to obtain the final ADD
representing the posterior distribution of (c1, c2).
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Figure 7: Sequence of ADDs obtained by applying
Post and Normalize to Example 2.

Our implementation uses the ADD library from the
CUDD package [32]. Our implementation supports a much
richer language than BernoulliProb, including continu-
ous distributions, floating point variables, multidimensional
array with statically determined sizes, for-loops, etc. Con-
tinuous distributions are automatically discretized using the
technique in Section 4, and Algorithm 2 is easily extended
to for-loops and static sized arrays.

Heuristics. We have implemented the following heuristics
for scaling and optimizing our implementation:

• Fast exponentiation: To speed up the Post com-
putation over while loops we employ exponentia-
tion. We describe exponentiation by way of an
example. Consider the program while E do S
and an input distribution ρ0. Define f(ρ) =
Post(ρ, (if E then S else skip)). Then the Post
algorithm computes the posterior distribution by ap-
plying f to ρ0 until a fixpoint is reached (in practice,
a fixed constant number of times). If we can symboli-

cally represent f , then we can efficiently compute f2n

by computing f2 = f ◦ f , f4 = f2 ◦ f2, . . . , and finally
evaluate f2n(ρ0). This can be done as follows:

f(ρ) = λσ′.
∑
σ

ρ(σ)× t(σ, σ′)

where

t(σ, σ′) := Pr(σ, if E then S else skip, σ′)

With this definition of f , it is easy to compute f2 as
follows:

f2(ρ) = λσ′.
∑
σ

ρ(σ)× t2(σ, σ′)

where t2(σ, σ′) :=
∑
σ′′ t(σ, σ

′′)t(σ′′, σ′) Since the
function t maps program states to real numbers, it
can be compactly represented as an ADD. As a con-
sequence, t2 can be efficiently computed and it follows
that f2n is also efficiently computable.

• Variable ordering : The size of an ADD crucially de-
pends on the ordering of variables used to construct it.
Our compiler implements well-known algorithms [24]

using the program’s variable dependency graph to de-
termine ADD variable ordering.

• Batch processing : Given a joint probability distribu-
tion p(x1, x2, . . . , xn) over n variables, the marginal
distribution over xi is the projection of the joint dis-
tribution to that variable. Formally, if each of the
xi is a continuous variable ranging over values with a
lowerbound ` and an upper bound u, the marginal dis-
tribution over a particular variable xi, denoted pi(xi)
is defined as:∫ u

`

· · ·
∫ u

`

p(x1, x2, . . . , xn)dx1 . . . dxi−1dxi+1 . . . dxn

Computation of marginals for discrete distributions is
done by replacing the integrals with discrete summa-
tion. With ADDs, such summation is easily imple-
mented by existential quantification:

pi(xi) = ∃x1x2 . . . xi−1xi+1 . . . xn.p(x1, x2, . . . , xn)

When the space required by the ADD for the
joint distribution p(x1, x2, . . . , xn) becomes large,
we approximate the distribution using its projec-
tion to the tuple of marginal distributions as:
〈p1(x1), p2(x2), . . . , pn(xn)〉. The latter representa-
tion, though more concise, loses information about cor-
relations between the variables, and is therefore less
precise. However, when exact inference runs out of
memory, this technique allows us to perform efficient
and approximate inference, with a very compact mem-
ory representation. We use marginalization to imple-
ment a heuristic called batch processing as follows. We
periodically replace the ADD for the joint distribution
by the component marginal distributions for batches
of data (for example, every n names in TrueSkill, for
some value of n), and perform approximate inference.

6. EVALUATION

Benchmarks. We present empirical results from running
the inference algorithm on the following benchmarks1:

• Students: This example is adapted from the advisor-
student examples in Markov Logic Networks [19]. We
have an array of m students, n teachers, and k courses,
and we have information about which teacher is teach-
ing which course, and which student attends which
course. The probabilistic program for this example
models our belief that if a student s attends a course
c taught by teacher t, then we can infer that s likes t
(represented by a Bernoulli variable Likes(s, t)) is true
with a certain probability p. The goal is to infer the
posterior probability of every random variable in the
two-dimensional array Likes.

• Friends: This benchmark performs probabilistic tran-
sitive closure. Given n students and an input friend-
ship matrix (this is an n × n symmetric matrix F
with F (a, b) = 1 if student a is a friend of student
b, and ? or unknown otherwise), we wish to compute
the set of all friends for each student. The proba-
bilistic program in this case encodes a probabilistic

1The source code for all benchmarks is available in [8].



unfairCoin(p) {
x := p;
b := true;
while (b) {
b := random(Bernoulli 0.5);
if (b)
x := 2 * x;

if (x >= 1.0)
x := x - 1;

else if (x >= 0.5)
x := 1;

else
x := 0;

}
return x;

}

uniform(N) {
g := N;
while (g >= N) {

n := 1;
g := 0;
while (n < N) {

n := 2 * n;
if (random(Bernoulli(0.5)))

g := 2 * g;
else

g := 2 * g + 1;
}

}
return g;

}

(a) (b)

Figure 8: The unfairCoin and uniform benchmarks.

transitive closure constraint – that is, the constraint
(F (a, b) = 1) ∧ (F (b, c) = 1) ⇒ (F (a, c) = 1) holds
with a certain probability. The objective is to com-
plete the friends matrix F conditioned on the above
constraint.

• Compare: We have two n-bit numbers, where each bit
is drawn from a Bernoulli distribution. We want to
compute posterior probabilities of these distributions
conditioned on the observation that the two numbers
are unequal.

• TrueSkill: This is the TrueSkill model [16] (the sim-
plified version of TrueSkill is shown in Figure 3). We
have an array of n players, each of whose skill is drawn
from a Gaussian distribution. When player i plays
with player j, we observe that the performance of
player i in that game (another Gaussian with mean
given by the skill of player i), is greater than the per-
formance of player j in that game. Using observations
from m such games, we desire to infer the posterior
probability distributions for the skills of each player.

• Loopy programs: The benchmarks OneCoin (Example
3 in Section 1), Dice, unfairCoin (Figure 8(a)) and
uniform (Figure 8(b)) are benchmarks that contain
loops. The benchmark Dice: Figure 8(a) and 8(b) are
examples with complex loops [17] that are beyond the
scope of existing probabilistic inference solvers. The
program unfairCoin(p) simulates a biased coin with
mean p. Its parameter is the number d of binary digits
used in the discretization of real numbers. For the
experiments we took an arbitrary value of p = 0.6. The
program uniform(N) simulates a uniform distribution
over the interval [0, N − 1]. In order to demonstrate
the generality of our approach, we also consider the
benchmark MC that is a program representing a Markov
chain defined by the following transition matrix:0, 9 0, 05 0, 05

0, 7 0 0, 3
0, 8 0 0, 2


Results. All experiments were performed on an 2.00GHz
Intel i7 processor system with 4GB RAM running Microsoft
Windows 7. The maximum memory consumed by ADD in-
ference in any of the benchmarks is less than 200MB.

Benchmark Parameters EP ADD
(seconds) (seconds)

OneCoin 0.25 0.56
Dice 183 0.57
unfairCoin d = 5 ⊥ 0.95

d = 10 ⊥ 179
uniform N = 100 ⊥ 1.09

N = 800 ⊥ 7.54
N = 2000 ⊥ 21.50

MC ⊥ 0.71

Table 3: Comparing runtimes of ADD inference
with Expectation Propagation (EP) for loopy bench-
marks.

Table 1 compares exact ADD inference with a number
of probabilistic inference tools. Each benchmark is associ-
ated with a set of parameters that define the size of the
problem. The parameters for the Student, Friends and
Compare benchmarks are (#students, #courses, #teachers)
and (#people), (#width) respectively. We compared our
tool with SamIam [11], an inference engine for discrete mod-
els (implementing the algorithms Shenoy-Shafer, Hugin,
ZC-Hugin and Recursive Conditioning) and OpenBugs
an inference engine that employs MCMC sampling. SamIam
performs almost as well as the ADD algorithm for the dis-
crete benchmarks. Exact ADD inference runs of out memory
for the Friends benchmark with p > 6. This motivates the
need for a scalability heuristic like batch processing at the
cost of approximation. OpenBugs can quickly give approx-
imate answers on small examples, but is very slow for exact
answers. This is due to the fact that with a lot of observe
statements, it is hard to find valid paths to compute a rele-
vant answer – this is a standard issue with all rejection sam-
pling based techniques. We give the computation times with
a number of iterations set to get a posterior probability with
a precision of 0.01. Gibbs Sampling (GS) and Expectation
Propagation (EP) are inference algorithms available with
the Infer.NET [26] toolkit. As seen from the table, ADD is
significantly more performant than GS and EP (even though
GS and EP compute approximate answers).

Table 2 reports the results for ADD inference with batch
processing and discretization. For both the benchmark pro-
grams, we use batch processing in order to get an approx-
imate solution whose precision is comparable to the solu-
tion obtained by EP (which is promising as EP is used by
TrueSkill in Xbox live). For example, in TrueSkill, we
marginalize the skill variables after every set of n games. For
the TrueSkill benchmark, ADD also performs discretiza-
tion in order to handle continuous distributions.

Finally, Table 3 shows the results of ADD inference over
the loopy benchmarks. We compare ADD inference with EP.
Since EP does not support fixpoints, we unroll the loops in
the benchmarks a fixed number of times and then feed the
resulting programs to EP. Except for the simple examples,
OneCoin and Dice, the EP algorithm was not able to give
the expected distributions. On the other hand, ADD in-
ference converges in a small number of iterations for the
loops (generally 2 or 3), thanks to the fast exponentiation
method. For the MC example, we are essentially computing
an ADD representation of the transition matrix, which can
be compact in presence of sparse data, and then perform fast
exponentiation until convergence (we use KL divergence [10]
of distributions across iterations to detect convergence).



Benchmark Parameters shenoy-shafer hugin zc-hugin rec-cond OpenBugs GS EP ADD
(seconds) (seconds) (seconds) (seconds) (seconds) (seconds) (seconds) (seconds)

Students s=10, c=10, t=4 0.38 0.40 0.41 0.53 ⊥ 0.88 1.57 0.11

Friends
p=4 0.40 0.41 0.41 0.50 4 7.7 4.09 0.19
p=5 2.75 2.66 3.37 9.62 18 ⊥ 6.06 0.42
p =6 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 27.3 4.66

Compare
n=10 0.28 0.26 0.29 0.33 3 ⊥ 1.58 0.15
n=20 0.33 0.31 0.30 0.37 2 ⊥ 2.34 0.16
n=100 0.53 0.55 0.52 0.92 6 ⊥ 12.58 2.15

Table 1: Comparing runtimes of exact ADD inference with other approximate inference algorithms. The ⊥
entry represents a “did not complete”.

Benchmark Parameters EP ADD
(seconds) (seconds)

Friends
p=6 27.3 4.66
p=7 28.0 10.11
p =8 30.34 20.4

TrueSkill matches=100, n=1 2.86 2.42
matches=100, n=2 2.86 2.82
matches=100, n=3 2.86 3.05
matches=100, n=4 2.86 4.54
matches=100, n=5 2.86 5.94
matches=100, n=7 2.86 9.79
matches=100, n=10 2.86 25.98
matches=5000, n=1 33.17 123
matches=5000, n=2 33.17 153

Table 2: Comparing runtimes of ADD inference (with batch processing and discretization) with Expectation
Propagation (EP).

7. RELATED WORK
There are a variety of probabilistic programming lan-

guages and systems [3, 14, 15, 19, 20, 26, 28]. They perform
either dynamic inference either by running the program and
performing sampling [6,14], or static inference by first trans-
forming the program to a probabilistic model such as a
Bayesian network and then using well known inference al-
gorithms over the transformed model [3,26]. Our technique
is static, and in contrast to previous work, perform infer-
ence directly over the probabilistic program. Our technique
merges data flow facts at join points and hence does not
suffer from explosion due to a large number of paths in the
program.

Data flow analysis for frequency counting has been ex-
plored before by Ramalingam [29]. Geldenhuys et al. [12]
use symbolic execution to estimate the probability of exe-
cuting parts of a program. Both [29] and [12] are frequen-
tist in nature where the probability of a path is obtained via
explicit counting. On the other hand, our work is Bayesian
in nature where we consider the richer class of probabilistic
programs that include sample statements as well as observe
statements and conditional distributions. Recent work has
explored probabilistic abstract interpretation in the domain
of numeric programs [25,30].

The idea of using ADDs for probabilistic inference has
been explored before. Sannar and McAllester [31] define
Affine Algebraic Decision Diagrams to perform inference
over Bayesian networks and Markov Decision Processes.
Kwiatkowska et al. have used a variants of ADDs to per-
form probabilistic model checking in the PRISM project [23].
Bolzga and Maler have used ADDs to symbolically simulate
Markov chains [4]. All these papers study the problem of
computing the steady state distribution of Markov chains.
Markov chains do not support observe statements, and it is
not clear how to encode posterior probability inference ef-

ficiently in the framework of Markov chains. Chavira and
Darwiche [7] use ADDs to compactly represent factors in a
Bayesian network and thereby perform efficient inference via
variable elimination. In contrast, we avoid factor graphs al-
together and use ADDs to represent symbolic program states
(which are distributions) at every program point, much like
a data flow analysis or an abstract interpreter [9]. Further-
more, in contrast to graphical models such as Bayesian net-
works, our technique can handle probabilistic programs with
loops.

8. CONCLUSION
We proposed a technique to perform probabilistic infer-

ence using data flow analysis. We have also implemented
the technique using ADDs as a data structure. We showed
that our algorithm indeed computes the posterior probabil-
ity of a probabilistic program. We have also presented an
implementation which shows promising results. We believe
this approach opens a door to applying other ideas from pro-
gram analysis and verification (such as slicing, and abstract
interpretation) for doing probabilistic inference.
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