
SymDiff: A language-agnostic semantic diff tool
for imperative programs

Shuvendu K. Lahiri1, Chris Hawblitzel1, Ming Kawaguchi2, and Henrique
Rebêlo3

1 Microsoft Research, Redmond, WA, USA
2 University of California, San Diego

3 Federal University of Pernambuco, Brazil

Abstract. In this paper, we describe SymDiff, a language-agnostic tool
for equivalence checking and displaying semantic (behavioral) differences
over imperative programs. The tool operates on an intermediate verifi-
cation language Boogie, for which translations exist from various source
languages such as C, C# and x86. We discuss the tool and the front-end
interface to target various source languages. Finally, we provide a brief
description of the front-end for C programs.

1 Introduction

An evolving software module undergoes several changes — refactoring, feature
additions and bug fixes. Such changes may introduce compatibility bugs or re-
gression bugs that are detected much later in the life-cycle of the software. There
is a need for tools that can aid the developers understand the impact of changes
faster. Such tools will complement “syntactic diff” tools such as WinDiff and
GNU Diff on one hand, and regression testing based change validation (that
provides limited coverage) on the other.

In this paper, we describe the design of SymDiff (Symbolic Diff), a seman-
tic differencing tool for imperative programs. Unlike most existing equivalence
checking tools for software, the tool operates on an intermediate verification
language called Boogie [1] (and hence language-agnostic). This provides a sep-
aration of concerns — the core analysis algorithms are independent of source
language artifacts (object-orientation, generics, pointer arithmetic etc.) and are
therefore reusable across different languages. To perform scalable equivalence
checking, we leverage the modular program verifier in Boogie that exploits the
Satisfiability Modulo Theories (SMT) solver Z3 [4]. A novel feature of the tool is
that it displays abstract counterexamples for equivalence proofs by highlighting
intra-procedural traces in the two versions (see Figure 1), a semantic extension
to differing source lines highlighted by syntactic diff tools.

Because of the language-agnostic nature of the tool, one only needs a trans-
lator from the source language (such as C) to Boogie (many of which already ex-
ist). We describe the front-end interface required from such translators to target
SymDiff. Finally, we briefly describe the implementation of one such front-end
for C programs.

Fig. 1. Output of SymDiff for displaying semantic differences for C programs. The
yellow source lines highlight a path, and the gray lines display values of some program
expressions after each statement in the trace.

2 SymDiff

SymDiff operates on programs in an intermediate verification language Boo-
gie [1]. Boogie is an imperative language consisting of assignments, assertions,
control-flow and procedure calls. Variables (globals, locals and procedure param-
eters) and expressions can be either of a scalar type τ or a map type [τ ′]τ . We
currently restrict SymDiff to the non-polymorphic subset of Boogie. A Boogie
program may additionally contain symbolic constants, functions, and axioms
over such constants and functions.

SymDiff takes as input two loop-free Boogie programs and a configuration file
that matches procedures, globals, and constants from the two programs. Loops,
if present, can be unrolled up to a user-specified depth, or may be extracted
as tail-recursive procedures. The default configuration file matches procedures,
parameters, returns and globals with the same name; the user can modify it to
specify the appropriate configuration. The tool can (optionally) take a list of
procedures that are assumed to be equivalent (e.g. procedures that do not call
into any procedures with modifications). For each pair of matched procedures f1
and f2, SymDiff checks for partial equivalence — terminating executions of f1
and f2 under the same input states result in identical output states. The input
state of a procedure consists of the value of parameters and globals (hereafter
referred to as a single variable gl) on entry, and the output state consists of the
value of the globals and returns on exit.

procedure Eq.f1.f2(x){

var gl0;

gl0 := gl; //copy the globals

r1 := inline call f1(x);

gl1 := gl; //store output globals

gl := gl0; //restore globals

r2 := inline call f2(x);

gl2 := gl; //store output globals

assert (r1 == r2 && gl1 == gl2);

}

Fig. 2. Procedure for checking equiva-
lence of f1 and f2.

Given two programs P1 and P2

and a pairing of procedures over the
two programs, the algorithm below
checks for equivalence modularly. For
each pair of paired procedures f1 and
f2, we create a new Boogie proce-
dure Eq.f1.f2 (Figure 2) that checks
partial equivalence of f1 and f2. To
enable modular checking, the proce-
dure calls inside Eq.f1.f2 (i.e. callees
of f1 and f2) are replaced by unin-
terpreted functions that update the
modified globals and the return; the
input to the functions are parameters
and the globals that are read by the
procedure. The resulting set of proce-

dures {Eq.fi.fj | fi ∈ P1, fj ∈ P2} (one for each matched pair fi and fj) are an-
alyzed by the Boogie modular verifier using verification condition generation [1]
and SMT solver Z3. We omit details of verification condition generation here; it
suffices to know that it transforms a program (a set of annotated procedures) to
a single logical formula whose validity implies that the program does not fail. In
our case, if all the Eq.fi.fj procedures are verified, then the matched procedure
pairs in P1 and P2 are partially equivalent. On the other hand, if the assertion
in any Eq.fi.fj procedure cannot be proved by Boogie, we extract a set of in-
traprocedural paths through fi and fj and report them to the user. We modified
Boogie to produce multiple (up to a user-specified limit) counterexample traces
for the same assertion.

In addition to the purely modular approach, SymDiff offers various options
for inlining callees (to improve precision at the cost of scalability) for the case of
non-recursive programs. There are options for either inlining (a) every callee, (b)
only the callees that can’t be proved equivalent, or (c) only behaviors in callees
that can’t be proved equivalent (differential inlining [8]). These options require
a bottom-up traversal of the call graph of procedures.

3 Interface for source languages

In this section, we briefly describe the important considerations for adapting
SymDiff for a source imperative language such as C, C#, or x86. First, one
needs a translator for the language (say C) that performs two tasks: (i) repre-
sents the state of a program (e.g. variables, pointers and the heap) explicitly in
terms of scalar and map variables in Boogie, and (ii) translates each statement
in the source language to a sequence of statements in Boogie. The precision and
soundness of the resulting tool will be parameterized by how faithful the trans-
lator is. Many such translators exist today with various precision and soundness
trade-offs. For example, HAVOC [3] translates C programs to Boogie; Spec# [2]

converts C# programs to Boogie; there have also been translators from binary
(x86) programs to Boogie [5].

When two procedures cannot be proven equivalent, SymDiff generates coun-
terexample traces on the source programs (Figure 1). The counterexample con-
tains an intra-procedural trace for each procedure and values of “relevant” pro-
gram expressions (of scalar type) for each statement. We have found this to be
the most useful feature of the tool when applied to real examples. This feature
requires two pieces of (optional) additional information in the translated Boogie
programs, for each source line translated:

– The source file and the line number have to be provided as attributes.
– For each scalar valued program expression e to be displayed in the trace

(e.g. e->oper in Line 10 of the first program in Figure 1), associate the
corresponding expression in Boogie.

Note that this requires only a one time change to the translator for the source
language to Boogie.
Non-deterministic statements. In the presence of non-deterministic state-
ments (such as the Boogie statement havoc x that scrambles a variable x), a
procedure may not be equivalent to itself. Source language translators often use
non-deterministic statements such as havoc to model allocation, effect of I/O
methods such as scanf, calls to external APIs etc. To use SymDiff effectively,
we require that the translators use deterministic statements to model such cases.
We provide an example of deterministic modeling of allocation for C programs
in the next section. SymDiff also models external procedures as deterministic (in
their parameters) transformers using uninterpreted functions.

3.1 C front end

In this section, we briefly describe the implementation of the front-end for C pro-
grams. The tool takes two directories (for the two versions) containing a set of
.c files and a makefile. We use the HAVOC [3] tool to translate C programs into
Boogie programs. HAVOC uses maps to model the heap of the C program [3],
where pointer and field dereferences are modeled as select or updates of a map.
By default, HAVOC assumes that the input C programs are field safe (i.e. dif-
ferent field names cannot alias) and maintains a map per word-valued (scalar
or pointer) field and type. For example, the statement x->f := *(int*)y; is
modeled as f[x+4] := T int[y]; using two maps f and T int of type [int]int
(assuming offset of f is 4 inside x).

We modified HAVOC to incorporate deterministic modeling of allocation (for
malloc and free) and I/O methods (such as scanf, getc) [8]. Here we sketch the
modeling of allocation: we maintain a (ghost) global variable allocvar, which
can be modified by calls to malloc and free. malloc is modeled as follows
(in Boogie) : malloc(n:int) returns (r:int) {r := allocvar; allocvar

:= newAlloc(allocvar, n);}, where newAlloc is an uninterpreted function.
The specification for free is similar. The modeling ensures that two identi-
cal sequences of malloc and free return the same (but arbitrary) sequence of

Example #LOC #Proc #Versions #Changed Time (sec) # Paths Enum Time (sec)
procs (Avg) (Avg) (Avg) (Avg)

tcas 173 9 42 1.2 0.64 26.72 1.19
print tokens 727 18 7 1.4 1.30 357.43 2.87
print tokens2’ 569 19 10 1.1 0.90 169.36 1.25
replace 563 21 32 1.1 0.96 20.38 2.11
schedule 412 18 9 1.1 0.94 16.00 1.99
schedule2 373 16 10 1 0.83 10.60 0.99

print tokens2 n4 569 19 1 1 1.13 7560 56.83
print tokens2 n6 569 19 1 1 1.30 >10,000 160.63

print tokens2 e4 569 19 1 1 3.50 4200 24.02
print tokens2 e6 569 19 1 1 32.96 >10,000 150.61

Table 1. Results on Siemens benchmarks. “Proc” stands for procedures, “Time” is
the time taken by SymDiff to analyze all the “Changed” procedures.

pointers. This suffices for many examples, but can be incomplete in the presence
of different allocation orders. We also added an option to generate the infor-
mation required to display the counterexample traces. For each statement, we
generate any pointer or scalar subexpression in the trace. For example, for the
C statement x->f.g->h = y[i] + z.f; we add the expressions {x, x->f.g,

x->f.g->h, y[i], z.f} whose values will be displayed in the trace. For pro-
cedure calls, we add the expressions in the arguments and the return. Figure 1
shows the semantic diff as a pair of traces over two programs. The second pro-
gram performs some refactoring and feature addition (case for MULT). A syntactic
diff tool gets confused by the refactoring and offers little idea about the change
in behavior.

Table 1 describes an evaluation of SymDiff on a set of medium-sized C pro-
grams representing the Siemens benchmarks from the SIR repository [10]. Each
program comes with multiple versions representing injection of real and seeded
faults. The benchmark print tokens2’ represents a slightly altered version of
the print token2 benchmark, where we change a constant loop iterating 80
times to one over a symbolic constant n. The experiments were performed on a
3GHz Windows 7 machine with 16GB of memory. We used a loop unroll depth
of 2 for the examples. The runtime of SymDiff (“Time”) does not include the
time required to generate Boogie files. The number of intraprocedural paths
(“Paths”) correspond to the number of feasible paths inside Eq.f1.f2 that reach
the return statement, and “Enum Time” is the time inside Z3 to enumerate them
using an ALL-SAT procedure. The first few rows indicate that the tool scales
well for finding differences when the number of intraprocedural paths is less than
1000. To investigate the effect of large number of paths, we created two sets of
examples print token2 n<k> and print tokens2 e<k> (with loop unrolling of
k), for semantically different and equivalent procedures respectively. The results
indicate that the tool scales better on semantically different procedures, perhaps
due to the large number of paths leading to a difference. For the equivalent cases
too, the scalability appears to be better than the approach of enumerating paths
outside Z3. In addition to these examples, the tool has been successfully applied
to C programs several thousand lines large.

4 Conclusion and related work

In this paper, we describe the design of a language-agnostic semantic differencing
tool for imperative programs. We have currently developed a front-end for C
programs. We have also built a preliminary front-end for x86 programs that we
have applied to perform compiler validation. We are also developing a front-end
for .NET programs using a variation of the Spec# tool chain. We are currently
working on making a binary release of the tool along with the C front end at
http://research.microsoft.com/projects/symdiff/.
Related work. There have been a few recent static tools for performing seman-
tic diff for programs. Jackson and Ladd [7] use dependencies between input and
the output variables of a procedure — it does not use any theorem provers. The
approach of regression verification [6] uses SMT solvers to check equivalence of C
programs in the presence of mutual recursion, without requiring all procedures
to be equivalent. This is the work closest to ours1, and the main difference lies in
the language agnostic nature of our tool, generation of abstract counterexamples,
and the modeling of the heap. Differential symbolic execution [9] uses symbolic
execution to enumerate paths to check for equivalence. Our preliminary experi-
ence shows that the use of verification conditions instead of path enumeration
often helps SymDiff scale to procedures with several thousand intraprocedural
paths.

References

1. M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A
modular reusable verifier for object-oriented programs. In FMCO ’05, LNCS 4111,
pages 364–387, 2005.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An
overview. In Construction and Analysis of Safe, Secure and Interoperable Smart
Devices, LNCS 3362, pages 49–69, 2005.

3. J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer. Unifying type checking and
property checking for low-level code. In POPL, pages 302–314, 2009.

4. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS ’08, pages
337–340, 2008.

5. P. Godefroid, S. K. Lahiri, and C. Rubio-González. Statically validating must
summaries for incremental compositional dynamic test generation. In SAS ’11,
volume LNCS 6887, pages 112–128, 2011.

6. B. Godlin and O. Strichman. Regression verification. In DAC, pages 466–471,
2009.

7. D. Jackson and D. A. Ladd. Semantic diff: A tool for summarizing the effects of
modifications. In ICSM, pages 243–252, 1994.

8. M. Kawaguchi, S. K. Lahiri, and H. Rebêlo. Conditional equivalence. Technical
Report MSR-TR-2010-119, Microsoft Research, 2010.

9. S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu. Differential symbolic
execution. In SIGSOFT FSE, pages 226–237, 2008.

10. Software-artifact Infrastructure Repository. Available at
http://sir.unl.edu/portal/index.html.

1 Ofer Strichman has helped incorporate the algorithm into SymDiff.

A Syntax for supporting counterexamples

When two procedures cannot be proven equivalent, SymDiff generates coun-
terexample traces on the source programs (see Figure 1). The counterexample
contains an intraprocedural trace for each procedure and values of “relevant”
program expressions (of scalar type) for each statement. We have found this to
be the most useful feature of the tool when applied on real examples.

This features requires two pieces of (optional) additional information in the
translated Boogie programs, for each source line translated:

– The source file and the line number have to be provided by adding a dummy
assertion statement with two attributes containing the information.

assert {:sourceFile ‘‘foo.c’’} {:sourceLine 34} true;

– To display values in the trace, the following information is required. First,
declare an uninterpreted function value is that takes two integers and re-
turns a Boolean:

function value_is(c:int , e:int) returns (r:bool);

Next, for each program expressions e to be displayed in the trace (e.g.
e->oper in Line 10 of the first program in Figure 1), declare a Boogie sym-
bolic constant c (ctobpl const 2) and associate the corresponding Boogie
expression b (M T.oper EXPR[oper EXPR(e)] in this case).

const {:model_const ‘‘e->oper’’} {:sourceFile ‘‘foo.c’’} {:sourceLine 10}

unique __ctobpl_const_2:int;

Finally, add the following assumption after the statement.

assume value_is(__ctobpl_const_2, M_T.oper__EXPR[oper__EXPR(e)]);

When the SMT solver assigns a model to the constants for each statement in
the trace, SymDiff displays the value for the corresponding source program
expression.

