[terative Cycle Detection via Delaying Explorers

MSR-TR-2015-28

Ankush Desai
UC Berkeley

Shaz Qadeer
Microsoft

Abstract

Liveness specifications on finite-state concurrent pro-
grams are checked using algorithms to detect reach-
able cycles in the state-transition graph of the pro-
gram. We present new algorithms for cycle detec-
tion based on the idea of prioritized search via a de-
laying explorer. We present thorough evaluation of
our algorithms on a variety of reactive asynchronous
programs, including device drivers, distributed proto-
cols, and other benchmarks culled from the research
literature.

1 Introduction

Asynchronous software systems are ubiquitous; ex-
amples include cyber-physical systems, device drivers
and other operating system extensions, workflows in
web services, protocols in distributed systems, and
client-server applications running natively or in the
browser. Asynchronous programming is difficult due
to the classical challenges of concurrency and reac-
tivity. Concurrency introduces the problem of non-
deterministic scheduling of simultaneously-executing
activities; reactivity introduces the problem of fre-
quent nondeterministic interaction with the environ-
ment. Both phenomena subvert the normal control
flow of sequential computation and cause significant
difficulty in design, implementation, testing, and de-
bugging of asynchronous programs.

This paper presents the design and implementation
of a framework for systematic testing of asynchronous
programs. Systematic testing, popularized by the
CHESS [22] system, is a method of testing concurrent

Sanjit Seshia
UC Berkeley

Sriram Rajamani
Microsoft

programs in which all sources of nondeterminism in
a program are brought under the control of a deter-
mainistic scheduler. The deterministic scheduler gives
the ability to reproduce executions; the executions of
the program can then be enumerated and executed
using this deterministic scheduler. It has been dif-
ficult to apply systematic testing to “live” concur-
rent programs because of the significant engineering
challenge of controlling all sources of nondetermin-
ism. However, emerging domain-specific languages
for asynchronous programming, such as P [9], provide
formal operational semantics and linguistic capability
to compactly model a nondeterministic environment.
A language with such features enable the develop-
ment of simulators that are capable of faithfully exe-
cuting the nondeterministic operational semantics of
a program; therefore, we believe a systematic testing
framework is ideally suited and tremendously useful
for P and other languages like it.

Our testing framework is based on a class of deter-
ministic schedulers called delaying schedulers. A de-
laying scheduler augments a deterministic scheduler
with a delay operation; the delay operation enables
the deterministic scheduler to enumerate the schedul-
ing choices in the program in a priority order based on
domain-specific heuristics. A prioritized search can
be performed by writing a custom delaying scheduler
and then performing iterative deepening [24] with re-
spect to the number of delay operations. We demon-
strate that combining iterative deepening with de-
laying schedulers is highly effective in finding errors
quickly.

The primary application of our test framework
is systematic testing of reactive asynchronous pro-

grams. It is well-known in the model checking liter-
ature [23] that the state space of a typical reactive
program has the property that many paths lead to
the same state. Consequently, the ability to cache
visited states provides an important optimization to
avoid redundant execution of interleavings; we would
like to take advantage of this optimization. However,
incorporating state caching in our testing framework
is nontrivial because of the presence of the external
scheduler. Since a delaying scheduler can be an ar-
bitrary program with a huge state space of its own,
the naive strategy of composing the program under
test with the scheduler explodes the state space and
negates the benefits of state caching. We need to
devise algorithms that cache only the system state
without losing coverage. To find errors fast, our test-
ing strategy is based on iterative deepening with re-
spect to the number of delay operations. We also
need algorithms that reuse work from previous iter-
ations as we deepen the search frontier. We have
designed model checking algorithms, for both safety
and liveness properties, that satisfy our aforemen-
tioned goals. We believe that our algorithm for check-
ing liveness specifications is the first algorithm that
works with iterative deepening.

Our systematic testing framework is being used ex-
tensively for analysis of realistic asynchronous sys-
tems, from device drivers to distributed protocols
to workflows in web services. The conduit for all
these applications is the P domain-specific language
for asynchronous event-driven systems. Our experi-
ence with these applications has guided the design of
the novel abstraction of delaying schedulers.

We summarize the contributions of this paper as
follows:

1. We present algorithms for incorporating model
checking techniques such as state caching and
fair cycle detection into our testing framework.
By caching states, we avoid testing redundant in-
terleavings and enabled efficient checking of live-
ness specifications.

2. We demonstrate the usefulness of our frame-
work in solving a variety of testing problems and
present experimental evaluation on a number of
realistic asynchronous programs.

2 Delaying schedulers

In this section, we formalize the abstractions used by
our test framework for modeling concurrent programs
and schedulers. The concepts defined in this section
will be used to illustrate the capabilities of our sys-
tem in Section 3 and to describe the algorithms in
Section 4.

We model concurrent programs as transition sys-
tems. Let Pid be an uninterpreted set of process
identifiers. A program P is a tuple (S,T, Procs, so)
such that

1. S is the set of states of P.

2. T C Pid xS — S is the transition function of P.
Given pid € Pid and s € S, T'(pid, s) is the next
state of the system obtained by executing the
process pid from state s. If T'(pid, s) = s', we say
that (s,s’) is a transition of P. By formalizing
T as a function rather than a relation, we have
explicitly chosen not to model internal nonde-
terminism inside each process; we note that the
implementation of our testing framework does
support internal nondeterminism though.

3. Procs € S — Set(Pid) is the finite set of alive
processes in each state of P. For any s € 5,
we use #Procs(s) to denote the cardinality of
Procs(s). Thus, #Procs € S — N.

4. sq is the initial state of P.

A sequence of states sg,s1,82,...,8, IS an execu-
tion of P if there is a sequence of process identifiers
pidy, pid, . .., pid, _, such that T'(pid;, s;) = $;41 for
all i € [0,n). A pair (s, s) is a reachable transition of
P if there is an execution $g, 1, S2, . .., S, such that
$ = 8u-1, and 8’ = s,. A pair (s,s’) is a repeat-
edly reachable transition of P if there is an execution
80,81, .-.,8, such that s = s,,_1, s’ = s,,, and s,, = s;
for some i € [0,n).

We also model deterministic schedulers as transi-
tion systems, with their own internal state. A de-
terministic scheduler D is a tuple (D, Next, Step, dy)
such that

1. D isthe set of states of D. The state of the sched-
uler typically includes a data structure (such as

a stack) which maintains an ordering among the
process ids of the program.

2. Next € D — Pid is a total function. Given a
program state s and a scheduler state d, Next(d)
is the id of the process that is prescribed by the
scheduler to be executed next.

3. Step € S x D x S — D is a total function. Sup-
pose we have a program state s and a sched-
uler state d, and we execute the process with id
Next(d) at s, and obtain the resulting program
state s’. Then Step(s,d,s’) yields the scheduler
state corresponding to the program state s’. The
Step function enables building schedulers which
change their state in response to specific events
that occur during execution of the program, such
as sending or receiving of messages, changes in
states of queues or other data structures etc.

4. dy is the initial state of D.

We denote by P|D the composition of program
P and deterministic scheduler D. The sequence
(s0,do), (s1,d1), (s2,d2),... is the unique execu-
tion of of P||D if T(Next(d;),s;) = and
Step(si, di7 Si+1) = di+1 for all 4 Z 0.

A deterministic scheduler, although useful for re-
producible execution, does not enable by itself thor-
ough testing of an asynchronous program. To enable
systematic testing, we leverage the notion of delay-
ing scheduler [12], a deterministic scheduler with a
delay operation. We model this operation as a total
function Delay € D — D. Given a scheduler state
d, the application Delay(d) yields a new scheduler
state such that Next(Delay(d)) indicates the “next”
process that can be scheduled at state s. Given a
program P and a delaying scheduler D, a sequence
(s0,do), (51,d1), (s2,dz), ... is an execution of P||D if
for all ¢ > 0, either s; = s;41 and Delay(d;) = d; 41 or
T(Nemt(di),si) = Si+1 and Step(si,di,siH) = di—i—l-
A pair (s,d) is a reachable state of P||D if it occurs
on an execution.

Delay-bounded search with parameter n enumer-
ates those executions in which the number of delay
operations is bounded by n. For executions of length
I, there can be at most I™ executions with no more

Si+1

than n delays. Thus, for small values of n, it is feasi-
ble to enumerate all executions even for large values
of I. Our results in Section 5 show that if a bug ex-
ists, it is possible to write a domain-specific delaying
scheduler for which the bug will manifest for small
values of the delay bound. This property makes de-
laying schedulers useful for systematic testing.

In order to ensure that all scheduling choices are
covered, the delaying scheduler must ensure that all
processes are indeed generated by successive appli-
cations of Delay. To formalize this requirement, we
define Nezt®(d) inductively as follows:

Next®(d)
Next*+1(d)

{Nezt(d)}
Next® (d) U { Next(Delay***(d))}

where Delay® (d) is k iterative applications of Delay
to d. A delaying scheduler must satisfy the following
property for every reachable state (s,d) of P||D:

Procs(s) = Next#Proes(9) ().

3 Exploiting schedulers for sys-
tematic testing

In this section, we give an overview of how our sys-
tematic testing framework exploits the abstraction of
sealable delaying schedulers defined in the last sec-
tion. We begin by informally describing three de-
laying schedulers we have implemented. Later, we
describe how we add sealing to these schedulers to
encode scheduling assumptions.

Random scheduler. The random delaying sched-
uler serves as a baseline for comparison when evaluat-
ing other schedulers with more sophisticated strate-
gies. This scheduler picks a random order of the pro-
cesses for each new visited state and explores transi-
tions in that order. The delay operation simply skips
over the next process to be scheduled. The random
delaying scheduler is particularly useful in those sce-
narios where the user has no strong intuition about
the schedules that can find bugs faster.
Round-robin scheduler. The round-robin delay-
ing scheduler cycles through the tasks in task cre-
ation order. It schedules the next task on a delay or

when the current task is completed. It can be used
for finding bugs that manifest through a small num-
ber of interleavings between processes, and when the
bugs manifest regardless of the order in which the
processes are interleaved.
Run-to-completion scheduler. The run-to-
completion delaying scheduler explores schedules that
follow causal sequence of events. When a delay is
applied, the schedule departs from the causal order.
Even for small values of delay bound, this scheduler
is able to explore long paths in the state space since it
just follows event generation order as new events get
generated. In our experience, this scheduler is able
to find bugs which manifest only after certain events
have occurred, even at low delay bound values.
Each of these schedulers can be used to systemati-
cally test programs by iteratively increasing the num-
ber of allowed delay operations along any execution.
We have used these schedulers to test many asyn-
chronous programs. For a given buggy program, dif-
ferent schedulers can be compared by measuring the
number of states generated before reaching the error.
Our results, presented in Table 2 and described in
detail in Section 5, show a significant variation in the
winning scdeduler across different programs. This re-
sult indicates the benefit of a general framework that
enables testers to write a variety of delaying sched-
ulers.

4 Incorporating model check-
ing techniques

In this section, we show how to incorporate state
caching techniques into our systematic testing frame-
work. The introduction of state caching solves
two different problems. First, it reduce potentially
redundant enumeration of executions. Second, it
enables efficient checking of liveness specifications.
Liveness checking, although possible without state
caching [21], requires heuristic detection of nonter-
minating executions which becomes very expensive
in the presence of cycles.

There are two main challenges our algorithms at-
tempt to solve. First, our test framework executes

the composite system comprising the program and
the sealable delaying scheduler being used for testing
it. Since a sealable delaying scheduler can be an ar-
bitrary program with a huge state space of its own,
the naive strategy of composing the program under
test with the scheduler explodes the state space and
negates the benefits of state caching. Our algorithms
must avoid caching the scheduler state without los-
ing coverage. Second, our test framework is based
on iterative deepening with respect to the number of
delay operations. Our algorithms must handle the
requirement of iterative deepening efficiently.

4.1 Safety

We model a safety property as a relation £ C S x .S,
that marks some of the state transitions of the pro-
gram as error transitions. We are interested in check-
ing if there is a reachable transition (s, s’) such that
E(s,s"). Our algorithm for solving this problem is
given in Figure 1. The algorithm uses three global
variables: (1) an integer bound (which is iteratively
incremented); (2) a dictionary H to store (hashes of)
visited states; and (3) a dictionary Frontier to store
for each state s in the frontier (from which any fur-
ther exploration exceeds the current delay bound) the
scheduler state (d) with which s was discovered, the
number of delays expended to enable the next tran-
sition (n), and the index of the next transition to be
executed at the state (7).

Control starts at the procedure IterativeSearch,
which increments the value of bound by § during each
iteration of the while loop, and invokes BoundedDFS
for each state from the Frontier with the current val-
ues of delay and process id. We use the names s, s,,
and s’ to denote program states and the names d and
d, to denote scheduler states.

BoundedDFS is invoked with a program state s,
scheduler state d, current delay value n (which is the
sum of the delays in the path that reaches (s, d) from
the initial state), and ¢ is the index of the next tran-
sition from s to be explored. BoundedDFS iterates
through the transitions from s starting from index 7,
by applying the Delay operation in the outer while
loop. For each application of the Delay, the delay
value n and the count ¢ are incremented. If the de-

var bound : Z;
var H : Dictionary(S);
var Frontier : Dictionary(S, (D X Z X 7));

BoundedDFS(s: S,d:D,n:7Z,i:7Z){

}

var s’ : S;
while (i < #Procs(s)) {
if (n > bound) {
Frontier(s) := (d,n,1); break;

s’ := T(Nexzt(d), s);

if (E(s,s')) exit(Yes);

if (s € H') continue;

H.Add(s);

BoundedDFS(s', Step(s,d, s'),n,0);
d := Delay(s, d);
n:=n+1;1:=1+1;

}

IterativeSearch() {

var Frontier’ : Dictionary(S, (D X Z X Z));
bound := 0;
H.Add(s0);
Frontier(so) := (do, 0, 0);
while (Frontier # 0) {
Frontier’ := Frontier; Frontier := ()
foreach ((s,d,n,i) € Frontier’)
BoundedDFS(s,d,n,1);
bound := bound + §;
}

exit(No);

Figure 1: Iterative safety checking

lay value n exceeds the bound value, then the current
state (d,m, i) is stored in the frontier with s as the
key. If the delay value n < bound, then we explore
the successor s’ of s which is obtained by executing
the process with id Next(d). If E(s, s’) holds, then we
have found a violation of the safety property. Oth-
erwise, we check if s’ is already in the dictionary H;
if not, we add it and explore the successors of s’ by
calling BoundedDFS recursively.

Since we do not store scheduler state in H, we
greatly reduce the total number of visited states of
the composite system (which consists of program
state and scheduler state) without missing any reach-
able state of the system. Our empirical results (Ta-
ble 1 in Section 5) quantify the efficiency improve-
ment we obtain using this optimization.

To state the correctness of our algorithm formally,
we need a couple of definitions. Let P be a program.
An execution (finite or infinite) of P is non-repeating
if all states in it are distinct. The program P is re-
active if it has no non-repeating infinite executions.
Note that it is not necessary for a reactive program
to have a finite number of reachable states.

Theorem 1 Consider a reactive program P and a
delaying scheduler D satisfying the assumption stated
at the end of Section 2. Let E be a safety property.
The algorithm in Figure 1 returns Yes iff there is
a reachable transition (s, s') of P such that E(s,s’).
Furthermore, the algorithm terminates if P has finite
number of reachable states.

Proof sketch: There are three parts to the proof.
First, we argue that every execution of P is possible
in the composed system P||D; this argument requires
the assumption at the end of Section 2. Second, we
have to argue that every iteration of the bounded
search terminates. This argument is subtle if the re-
active program P is not finite-state and is as follows.
Because of state caching, the states in the reachable
sub-graphs generated in each iteration are all distinct
from each other. For a reactive program, we can show
by contradiction that each sub-graph is finite. Sup-
pose the reachable sub-graph is infinite. Since the de-
lay bound used for generating this sub-graph is finite,
this sub-graph must be finitely branching. Therefore,
by Konig’s lemma, there must be an infinite path in

map = null

map =3

map =3

Figure 2: Calculate MAP

this graph. Since the program is reactive, some state
must repeat along this path which creates a contra-
diction. Finally, since the number of choices to be
explored at each state is bounded by the finite num-
ber of processes, we are guaranteed that every choice
would eventually be taken as we keep increasing the
bound. The above argument also shows that if the
number of reachable states is finite, then the algo-
rithm will terminate.

4.2 Liveness

Checking that a liveness property is satisfied by the
program reduces to detecting a reachable cycle in
the composition of the property automaton with the
transition system of the program. In this paper, we
focus only on this final algorithmic problem of de-
tecting a reachable cycle, ignoring the details of how
the property is actually specified by the user. Similar
to safety, we model a liveness property as a relation
E C S xS marking those state transitions of the pro-
gram whose repeated visitation indicates a liveness
error. We would like to check if there is a repeatedly
reachable transition (s, s’) such that E(s,s’). In the
context of liveness checking, we denote a transition
(pid, s,s’) € T such that E(s, s’) as an accepting tran-
sition and a cycle containing an accepting transition
is called an accepting cycle.

The most commonly used algorithm for detect-
ing accepting cycles is the nested depth-first search
(NDFS) algorithm [16]. NDFS works by computing
reachable states using a standard depth-first search

DN N DD B e e e e e

var bound : Z;

var H : Dictionary(S, (D x Z));
var Frontier : Set(S);

var map : Dictionary(S, S);

. IterativeCycleDetection() {

var Frontier’ : Set(S);
var map’ : Dictionary(S, S);
bound := 0; map(so) := null;
H(so) := (do,0); Frontier := {so};
while (Frontier # () {
Frontier’ := Frontier; Frontier := (J;
foreach (s € Frontier’)
CalculateMap(s);
map’ := map;
while (true) {
var roots : Set(S);
var root : S;
roots := Range(map) \ {null};
if (roots = () break;
choose (root € roots);
map(root) := null;
RefineMap(root, root, roots \ {root});
}
map 1= map’;
bound := bound + ¢;
}

exit(No);

Figure 3: Iterative cycle detection

1: CalculateMap(s : S) {

2: var d : D;

3: var n,i : Z;

4: var p,s’ :S;

5: (d,n) := H(s); i :=0;
6: while (i < #Procs(s)) {

T if (n > bound) {

8: Frontier.Add(s); break;

9: }
10: s = T(Next(d), s);
11: if (E(s,s’) A map(s) = s') exit(Yes);
12: if (s’ ¢ Domain(H))
13: H(s") :== (Step(s,d, s"),n);
14: if (E(s,s") Amap(s) < s)
15: p:i=s;
16: else
17: p = map(s);
18: if (s’ ¢ Domain(map) V map(s') < p) {
19: map(s') := p;
20: CalculateMap(s');
21: }
22: d := Delay(s,d);
23: n:=n+1;1:=1+1;
24: }
}

Figure 4: Calculate maximum accepting predecessor

1: RefineMap(s : S, root : S, roots : Set(S)) {
2: var d : D;

3: var n,i: Z;

4: var p,s’ : S;

5: (d,n) :== H(s); i:=0;

6: while (i < #Procs(s) An < bound) {
7 s’ := T(Next(d), s);

8: if (map(s’) & roots) {
9: if (E(s,s") A map(s)

= ') exit(Yes);
10: if (E(s,s") A map(s) < s’

)

11: pi=s';
12: else
13: p = map(s);
14: if (map(s’) = root V map(s’) < p) {
15: map(s’) := p;
16: RefineMap(s', root, roots);
17: }
18: }
19: d := Delay(s,d);
20: n:=n+1;1:=14+1;
21: }

}

Figure 5: Refine maximum accepting predecessor

and then invokes a nested depth-first search whenever
an accepting transition is popped from the stack; this
nested search looks for a path to target state of the
accepting transition just popped. These two searches
can be combined into a single stack and a state table
using the “magic”-bit trick [16].

We have used a straightforward extension of the
safety algorithm in Section 4.1 to implement an iter-
ative version of NDFS. The correctness of the NDFS
algorithm depends fundamentally on the constraint
that the nested search must be invoked in the or-
der states are popped from the stack. Therefore, our
implementation of the iterative NDFS algorithm re-
quires the sledgehammer of restarting the search from
the initial state with an empty state table. While this
approach is correct, it is inefficient since it causes each
partial search to be done repeatedly (we present em-
pirical results in Section 5).

Figures 3, 4, and 5 together provide pseudo-code
describing a new algorithm that exploits a method

of finding accepting cycles using maximal accepting
predecessors [4]. The advantage of this method is
that it does not require search to be performed in
any fixed order. We exploit this feature to create an
iterative version of the algorithm. To the best of our
knowledge, this is the first model checking algorithm
for liveness, which allows incremental exploration of
the state space while effectively reusing work from
previous iterations.

4.2.1 Maximum accepting predecessor algo-
rithm

In this section, we review the method for detecting
accepting cycles using maximal accepting predeces-
sors. Let us assume that there is a total order <
on the set of states in the program. Let null be a
distinguished state that is different from all reach-
able states and is the least according to <. A state
s is an accepting predecessor of a state s’ if for some
n > 0, there are process identifiers pid, ..., pid,,_;
and states s1, ..., s, such that T'(pid,, s;, s;+1) holds
for all i € [0,n), E(s;—1,s;) and s = s; for some
i € (0,n], and s’ = s,. It is possible for a state to
not have any accepting predecessors. We define the
maximum accepting predecessor (MAP) of a state to
be null if it does not have any accepting predeces-
sors and otherwise the unique state that is maximum
among its accepting predecessors.

The MAP of all reachable states can be computed
by a simple adaptation of the standard reachability
algorithm. This algorithm is captured by the Calcu-
lateMap procedure in Figure 4. Our algorithm uses
four global variables—bound, H, Frontier, and map;
only the map variable is important for MAP calcu-
lation, the other becoming relevant only in the con-
text of iterative deepening. In Figure 4, let us ignore
lines 7-9; we will cover them later in Section 4.2.2
when we discuss our iterative cycle detection method.
The table map contains a mapping from each vis-
ited state to the current underapproximation of its
MAP. If a state is not currently present in the ta-
ble, we can think of null as its approximate MAP.
This approximation is propagated from a state along
all non-accepting outgoing transitions. On an outgo-
ing accepting transition, if the target state is greater

than the current MAP of the source state, then the
target state is propagated instead. This propagation
happens in lines 14-17 with the propagated value
stored in the local variable p. Finally, in lines 18-
21, the propagated value is used to revise the current
MAP estimate of the target and schedule it for re-
exploration if its estimate increased.

Clearly, this algorithm maintains the invariant that
if map(s) # null, then there is a path from map(s)
to s. Therefore, during the above calculation of the
maximum accepting predecessor, if it ever happens
that an accepting transition from s to s’ is explored
and map(s) = ¢, then the algorithm has discovered
a reachable cycle containing an accepting transition
and the execution terminates (line 11). However, it
is possible that the MAP calculation finishes without
discovering an accepting cycle. When this happens,
it does not mean that such a cycle does not exist.
For example, consider the state-transition graph in
Figure 2. The number labeling the state represents
its location in the total order <; the initial state is
numbered 4; the accepting transitions are labeled F;
the propagated values along a transition are denoted
by p. In this graph the cycle comprising the nodes
3, 2, and 1 is accepting and reachable from the ini-
tial state 4; however, the MAP calculate phase will
terminate without reporting a cycle.

The definition of accepting predecessors implies
that all states in a strongly-connected component
must have the same MAP value. Thus, the MAP
calculation creates a partition of the set of strongly-
connected components; we call the MAP value of the
partition its root. The graph in Figure 2 contains
two partitions {4} and {1, 2, 3}, each containing a sin-
gle strongly-connected component; the roots of these
partitions are null and 3, respectively. The strongly-
connected component {1,2;3} has an accepting cy-
cle. But the calculate MAP phase was unable to find
this cycle because this component is reachable from
the accepting transition (4,3) which ends up giving
a MAP value of 3 to all states in the component.
Since map(2) # 1 when the accepting edge from 2
to 1 is explored, the cycle is not discovered. If the
MAP values were to be re-calculated from scratch,
starting from the root of the partition and confin-
ing the search to the partition, the cycle would be

discovered because the accepting edge (4,3) is out-
side the partition. This observation suggests a refine-
ment of the algorithm to find an accepting cycle by
iteratively recalculating the MAP values for a parti-
tion. Each such calculation either finds an accepting
cycle or decomposes the partition into smaller sub-
partitions. If no further sub-partitions are created,
then there is no accepting cycle in the graph. The
loop in Figure 3 from lines 11-19 does exactly this
iterative refinement of MAP values. Instead of call-
ing CalculateMap, the loop calls RefineMap; the dif-
ferences between CalculateMap and RefineMap are
relevant only to account for iterative deepening.

4.2.2 Iterative maximum accepting prede-
cessor algorithm

In this section, we describe how to build itera-
tive deepening into the algorithm described in Sec-
tion 4.2.1. At the top-level, just like the iterative
safety algorithm described in Section 4.1, iterative
cycle detection also creates a increasing sequence of
sub-graphs of the state-transition graph of the pro-
gram. The bookkeeping for creating this increase se-
quence is based on global variables bound, H, and
Frontier, similar to the safety case. In each iteration,
instead of a reachability algorithm, we run the algo-
rithm described in Section 4.2.1 to detect accepting
cycles assuming the current sub-graph is the entire
graph. If a cycle is detected, the algorithm termi-
nates with Yes, otherwise the sub-graph expansion
continues from the states in Frontier. This iterative
process is captured in the pseudo-code of Figure 3.
There are important differences in the bookkeeping
of the liveness algorithm compared to the safety case
though. The main reason for these differences is that
while the safety algorithm is purely reachability, the
liveness algorithm is doing MAP calculation which
may require exploring a state several times in order
to propagate increasing MAP values. Since the sub-
graph reachable from a state in a particular iteration
depends on the scheduler state and delay value at
the time of the first visit, both these values must be
stored for all visited states in the H dictionary. The
reader might recall that in the safety case, it sufficed
to store these values only for the states in the frontier.

Furthermore, since each state must be re-explored
completely, the transition index ¢ is not required to
be stored in either H or Frontier; the exploration
of outgoing transitions from a state always starts at
index 0.

The following theorem characterizes the soundness
of our algorithm.

Theorem 2 Consider a reactive program P and a
delaying scheduler D satisfying the assumption stated
at the end of Section 2. Let E be a liveness property.
The algorithm in Figure 1 returns Yes iff there is a
repeatedly reachable transition (s,s’) of P such that
E(s,s"). Furthermore, the algorithm terminates if P
has finite number of reachable states.

The proof for the liveness algorithm is very similar to
the proof sketch for the safety algorithm presented in
Section 4.1.

4.3 Related work

Directed model checking [10] algorithms perform local
prioritizion of state transitions during exploration;
each transition is given a cost and transitions out of a
visited state are taken in increasing order of the cost.
A delaying scheduler also provides mechanism to or-
der transitions coming out of a state; hence it can
be used in combination with directed model check-
ing. However, the main motivation of using delaying
schedulers in our test framework is to be able to per-
form global prioritization over the set of all states;
this prioritization is defined by the delay bound re-
quired to reach a state and the goal of iterative deep-
ening is to explore states reachable with a smaller
bound before states reachable with a larger bound.

Algorithms for detecting accepting cycles can be
broadly classified into two families: those based on
nested depth-first search (NDFS) [7] and those based
on strongly connected components (SCC) [8]. In gen-
eral, explicit-state model checkers have implemented
NDFS-based algorithms, and symbolic model check-
ers have implemented SCC-based algorithms. To the
best of our knowledge, we are the first to propose a
cycle detection algorithm that works with iterative
deepening.

Tree Identification Lann Protocol ORSet
p Store (s) Store (s,d) | overhead Store (s) Store (s,d) | overhead Store (s) Store (s,d) | overhead
2 2.50E+02 7.45E+02 2.98 1.12E4-03 1.89E+03 1.68 2.31E+04 5.67E+04 2.46
3 3.35E+03 1.15E4-04 3.45 2.45E+05 6.04E+05 2.47 5.57TE+05 1.23E406 2.21
4 7.19E4-04 3.01E4-05 4.19 5.57TE4+06 2.08E+07 3.74 4.45E+407 1.58E+08 3.55
5 4.96E+05 2.57E406 5.18 9.05E407 5.02E+08 5.55 2.60E+09 * *

Table 1: Overhead of storing composite state (s,d) as compared to only program state (s)

Evaluation

In this section, we present an empirical evaluation
of our sealable delaying scheduler framework and
the model checking algorithms. All the experiments
we report were performed on an Intel Xeon E5620,
2.39GHz (8 cores) with 16 GB of memory running
64-bit Windows server OS.

In order to study the relative efficacy of different
delaying schedulers, we designed a benchmark suite
consisting of various kinds of models. We used the
protocol programming language P [9] to write all
our benchmarks, and used the P compiler to gen-
erate Zing models for our experiments. Our bench-
marks include: LCR [20] algorithm for leader elec-
tion in synchronous ring; SyncBFS [20] algorithm for
breadth-first search in synchronous network; CTS, a
clocked transition system; TSP, a distributed time-
synchronization protocol; OSR and USB, two Win-
dows device drivers; ORSet and CSscale, two dis-
tributed state-replication protocols that guarantee
eventual consistency; Lann, a leader-election proto-
col; a tree-identification protocol; elevator door, el-
evator planning, and truck lift controllers; German
and MSMIE cache-coherence protocols. Our bench-
marks have significant complexity and their sizes
range from 250 lines (for Lann) to 2200 lines (for
TSP) of P code. We remind the reader that P is
a domain-specific language for writing asychronous
protocols; the same functionality if implemented di-
rectly in C would be much larger. For lack of space,
we are eliding the references to these benchmarks; we
can provide details in the final version.

10

5.1 Importance of keeping scheduler
state separate

Table 1 shows that the overhead of storing the state of
the delaying scheduler alongside the state of the pro-
gram is significant. This evaluation was performed
using the run-to-completion delaying scheduler on
three distributed protocols, each of them parameter-
ized by the number of participating processes. Each
row in the table presents the results for a different
number of processes. The overhead of storing com-
posite state appears to to be proportional to the num-
ber of processes p in the system, since the scheduler
can be in p different states for a given program state.
A nice property of delay-bounded scheduling is that
its complexity is independent of the number of pro-
cesses in the systems depending purely on number
of scheduler invocations [12]. By developing algo-
rithms that do not require storing the scheduler state
together with the program state, our safety checker
continues to enjoy this property.

5.2 Importance of a scheduling frame-
work

Table 2 show our results evaluating three delaying
schedulers. Each row in the table corresponds to
a benchmark program. All benchmarks have bugs,
and we stopped the exploration when the search finds
the bug and recorded the number of states explored
before the checker discovered the bug. The execu-
tion time is proportional to the number of states ex-
plored before discovering the bug; we omit reporting
the actual time. There are two top-level columns
labeled Iterative Depth bounding and I[terative De-
lay Bounding; the latter has sub-columns under-
neath for different delaying schedulers; we used three
schedulers —random, run-to-completion, and round-

Iterative Depth Bounding Iterative Delay Bounding
Models Random DFS Random Scheduler [Run-to-completion Scheduler [Round-robin Scheduler
Depth [States Explored Delay [States Explored [Delay [States Explored [Delay [States Explored
Asynchronous Windows Device Drivers
OSR [35] 806585 [8 [15896 6 [7885 [12] 71957
USB [40] 1616157 | 2 1487 2 | 687 | 2 | 3380
Distributed State-Replication Protocol
ORSet [*] * [3] 8578 [4] 179930 [2] 2231
CScale [] * 5 45021 6 894355 [4] 15634
Distributed Leader Election Protocol
Lann Protocol [* [* [15] 66785 [2 [9075 [8 [3680401
Tree Identification | * | * [26 259115 | 6 | 27804 | * | *
Real-World Systems
Elevator Door 25 13808 4 1771 4 2277 6 13848
Elevator Planning 35 18609583 9 26532 5 32907 16 24349202
Distributed Truck Lift 30 950005 8 1656 3 64249 4 13180
Coherence Protocol
German 25 595723 [6 [3011 [2 [3613 [* [*
MSMIE [35] 2230542 | 8 | 44123 | 6 | 5156 | 9 | 223411
Time Synchronization Protocol
TSP (bug 1) [*] * [11 | 9.4E+04 | 19 | T.6E+07 [~ *
TSP (bug 2) [*] * [22] 2.9E407 [16 | 5.1E+405 [31] 3.1E409

* s Bug could not be found, search ran out of memory and explored more than 10'° states

Table 2: Comparison between iterative depth bounding and iterative delay bounding using different delaying

schedulers

robin— whose descriptions appear in Section 3. This
table demonstrates two main points. First, iterative
delay bounding works dramatically better than it-
erative depth bounding, which provides compelling
justification of the use of delaying schedulers in our
test framework. Second, there is no single delaying
scheduler that performs best for all the models. The
numbers for the winning scheduler in each row are
in bold; a quick scan of the rows clearly indicates
that bold entries appear in many different columns.
Therefore, it is crucial to have a test framework that
allows the use of different delaying schedulers depend-
ing on the domain.

Benchmarks such as OSR device driver, Windows
USB driver, German and MSMIE protocol have bugs
deep in the search space. That is, the bugs manifest
only after a certain number of events/messages are
exchanged among the processes. For such models,
run-to-completion scheduler performs best, exploring
the least number of states before finding the bug.

Benchmarks such as ORSet and CScale have bugs
that occur when certain operations in the model in-
terleave. For example, in the case of ORSet, the bug

11

occurs when Add and Read Operations on the set are
interleaved. The results show that in such cases a
simple scheduler like round-robin scheduler performs
best. Hence, for models that have bugs manifesting
when some processes interleave, a simple scheduler
like round-robin may work best.

We uncovered subtle errors in modeling assump-
tion in the time synchronization protocol (TSP). It-
erative depth bounding failed to find these bugs, also
round-robin delaying scheduler failed to find the first
bug. We found that the error occurs when a partic-
ular message is delayed for too long after reaching
stable state in the protocol; this is a deep bug and
run-to-completion scheduler performed well. Since
we are doing prioritized search with iterative deepen-
ing on delays, performing the exploration till a suf-
ficiently small bound gives enough confidence about
the correctness of the protocol as compared to naive
uniform search.

For models such as elevator door, elevator plan-
ning, and distributed lift, it is interesting to note
that the random delaying scheduler performed best.
By studying the kind of bugs and buggy schedules

occurring in these models one may be able to design
a new scheduler which gives higher priority to sched-
ules that are similar to the buggy schedules. One can
then use this scheduler for models that have similar
bugs.

5.3 Importance of iterative deepening
in liveness checking

All the benchmarks in Table 3 have liveness bugs,
and we stopped the exploration when the search finds
the bug and recorded the number of states explored
and time taken by the checker to discover the bug.
We implemented three algorithms for evaluation of
our liveness checking algorithm —NDFS, iterative
NDFS and iterative MAP. The results for both it-
erative NDF'S and iterative MAP were obtained us-
ing the random delaying scheduler. As explained in
Section 4.2, iterative NDFS runs NDFS with a de-
lay bound; whenever the bound is incremented, the
search restarts from the initial state.

We first compared NDFS with iterative NDFS to
evaluate the efficacy of iterative deepening (with de-
laying schedulers) for detecting liveness errors, a key
contribution of this paper. Table 3 reveals that itera-
tive NDF'S explores many fewer states before finding
the cycle as compared to NDFS. This happens be-
cause instead of going deep, iterative NDFS tries to
find cycle within the iterative bound, thereby finding
cycles in the search space as soon as they are reach-
able. For all the models in Table 3, iterative NDFS
was able to detect cycle faster than NDFS. For mod-
els like elevator planning and tree identification pro-
tocol, NDFS failed to find the cycle and ran out of
memory whereas iterative NDFS found the cycle.

Next we compared the efficacy of iterative MAP in
avoiding re-exploration compared to iterative NDFS.
Table 3 shows that iterative MAP explores almost
the same number of states as iterative NDFS before
detecting a cycle. This happens because both algo-
rithms have to explore all the states reachable till
the iterative bound after which at least one cycle is
reachable. The small difference is due to the search
they perform in the iteration where the cycle is reach-
able. However, iterative MAP algorithm finds the
cycle up to three times times faster than iterative

12

NDFS because it avoids the overhead of complete re-
exploration after each iteration.

It was easy to parallelize MAP algorithm using the
existing framework for parallel search in Zing. Ta-
ble 3 also presents results for parallel exploration of
iterative MAP algorithm. We observed good scaling
up to four threads and obtained improvements up to
three times in time taken.

Finally, we also compared the time taken in the cal-
culation of maximal accepting predecessors (Calcu-
lateMap) versus the time taken in refining this calcu-
lation (RefineMap). For all problems, the time taken
for the two phases is roughly the same. This indicates
to us that there are opportunities for optimizing both
the phases of the algorithm. One possible optimiza-
tion is to discard partitions without cycles early in
the RefineMap phase. For a partition to have cycle,
it is necessary that there is at least one node with
in-degree greater than 1, and at least one of the in-
coming edges for that node should be a back edge.
We can propagate this information back to the root
node of partition and use it to eliminate partitions
without cycles early.

6 Related Work

Work on testing of concurrent programs can be classi-
fied into three categories: (1) model checking, (2) de-
terministic testing, and (3) nondeterministic testing.
Model checking tools [2, 1, 28] verify properties of
concurrent models and view systematic testing as
state-space exploration problem; related work about
optimizations like state-caching and heuristic based
search was described in Section 4.3. Deterministic
testing [6, 18] is similar to simulating the program
based on a given input and a fixed schedule. The
testing coverage is obtained by repeatedly changing
the (input, schedule) pair to guide program across dif-
ferent execution paths. Tools like VERISOFT [15] and
CHESS [22] combine ideas from model checking and
deterministic testing to systematically explore execu-
tions of a program on a given input. But they fail to
scale in the presence of uncontrollable nondetermin-
ism in the environment. Our approach belongs to
this class of techniques; we exploit a domain-specific

Number Of States Explored Time Taken (HH:MM:SS) MAP Time per Phase
Models NDFS Tterative | Iterative NDFS Tterative | Iterative | Parallel-Iterative Calc Refine
NDFS MAP NDFS MAP Map (4 threads) MAP MAP
Elevator Door 188067 34562 38675 2:13:34 1:24:23 0:28:55 0:12:05 0:10:11 0:18:44
Lann Protocol 3455431 443421 361342 28:01:56 7:34:13 4:43:22 2:10:35 2:21:21 2:22:01
Elevator Planning * 1083223 887634 * 30:33:12 9:04:21 3:55:50 3:38:12 5:26:09
Tree Identification * 4582233 3876253 * 61:23:34 20:10:34 6:23:44 9:03:18 11:07:16

Table 3: Results for liveness checking (with random delaying scheduler)

language like P [9], using which tester can precisely
model the environment nondeteminism and also con-
strain it via sealing or delay bounding.

Nondeterministic testing involves repeatedly run-
ning the program on input test-cases by randomly
adding delays during each run. Tools like Cuzz [5],
CONTEST [13], and RACEFUZZER [25] use fuzzing
techniques for performing nondeterministic testing
of concurrent programs. These techniques maxi-
mize concurrency testing coverage by randomizing
the schedules in a systematic way and insert delays
using domain specific heuristics. Though these tech-
niques scale as compared to deterministic testing,
even in the presence of uncontrolled nondetermin-
ism in the environment, they fail to provide cover-
age guarantees. To mitigate the exponential path-
enumeration problem, tools like CONTESSA [19] use
symbolic analysis and partial-order reduction tech-
nique to improve test coverage. PENELOPE [27] ex-
ploits the heuristic that most of the concurrency bugs
occur because of atomicity violations and hence pri-
oritize schedules that exhibit these patterns. Our
approach is to provide generic framework to plugin
any deterministic delaying scheduler for prioritizing
schedules, and hence any of the above strategies can
be used for improving coverage guarantees.

Another recent tool, CONCURRIT [11], proposes
a domain specific language for writing debugging
scripts that help the tester specify thread schedules
for reproducing concurrency bugs. The search is
guided by the script without any prioritization. In
contrast, our work is focused on finding rather than
reproducing bugs. Instead of a debugging script, a
tester writes a domain-specific scheduler with appro-
priate uses of sealing; iterative deepening with delays
automatically prioritizes the search with respect to
the given scheduler.

13

References

[1] The model checker SPIN. IEEE Trans. on Soft-
ware Engineering, 1997.

[2] T. Andrews, S. Qadeer, S. Rajamani, J. Rehof,

and Y. Xie. Zing: A model checker for concur-

rent software. In Proceedings of CAV. 2004.

T. Ball, S. Burckhardt, K. E. Coons, M. Musu-
vathi, and S. Qadeer. Preemption sealing for
efficient concurrency testing. In Proceedings of
TACAS, 2010.

L. Brim, I. Cernd, P. Moravec, and J. Simga. Ac-
cepting predecessors are better than back edges
in distributed LTL model-checking. In FMCAD.
2004.

S. Burckhardt, P. Kothari, M. Musuvathi, and
S. Nagarakatte. A randomized scheduler with
probabilistic guarantees of finding bugs. In Pro-
ceedings of ASPLOS, 2010.

R. Carver and K.-C. Tai. Replay and testing for
concurrent programs. International Jounal on
Software, IEEE, 1991.

C. Courcoubetis, M. Vardi, P. Wolper, and
M. Yannakakis. Memory efficient algorithms for
the verification of temporal properties. In CAV.
1991.

J.-M. Couvreur. On-the-fly verification of linear
temporal logic. In Formal Methods. 1999.

A. Desai, V. Gupta, E. Jackson, S. Qadeer,
S. Rajamani, and D. Zufferey. P: Safe asyn-
chronous event-driven programming. In Proceed-
ings of PLDI, 2013.

[10]

[11]

[12]

[13]

[14]

S. Edelkamp, V. Schuppan, D. Bo, A. Wijs,
A. Fehnker, and H. Aljazzar. Survey on directed
model checking. In Model Checking and Artifi-
cial Intelligence. 2009.

T. Elmas, J. Burnim, G. Necula, and K. Sen.
CONCURRIT: A domain specific language for
reproducing concurrency bugs. In Proceedings
of PLDI, 2013.

M. Emmi, S. Qadeer, and Z. Rakamari¢. Delay-
bounded scheduling. In Proceedings of POPL,
2011.

E. Farchi, Y. Nir, and S. Ur. Concurrent bug
patterns and how to test them. In Proceedings
of IPDPS, 2003.

J. Fisher, T. Henzinger, M. Mateescu, and
N. Piterman. Bounded asynchrony: Concur-
rency for modeling cell-cell interactions. In
FMSB. 2008.

P. Godefroid. Model checking for program-
ming languages using Verisoft. In Proceedings
of POPL, pages 174-186, 1997.

P. Godefroid and G. J. Holzmann. On the ver-
ification of temporal properties. In Proceedings
of PSTV, 1993.

T. L. Harris and K. Fraser. Language support
for lightweight transactions. In Proceedings of
OOPSLA, 2003.

G.-H. Hwang, K. chung Tai, and T. lu Huang.
Reachability testing: An approach to testing
concurrent software. [International Journal of
Software Engineering and Knowledge Engineer-
g, 1995.

S. Kundu, M. Ganai, and C. Wang. Contessa:
Concurrency testing augmented with symbolic
analysis. In Proceedings of CAV. 2010.

N. A. Lynch. Distributed Algorithms. Morgan
Kaufmann Publishers Inc., 1996.

M. Musuvathi and S. Qadeer. Fair stateless
model checking. In Proceedings of PLDI, 2008.

14

[22]

M. Musuvathi, S. Qadeer, T. Ball, G. Basler,
P. A. Nainar, and I. Neamtiu. Finding and repro-
ducing heisenbugs in concurrent programs. In
Proceedings of OSDI, 2008.

R. Pelének, T. Hanzl, I. Cernd, and L. Brim.
Enhancing random walk state space exploration.
In Proceedings of FMICS, 2005.

S. J. Russell and P. Norvig. Artificial Intelligence
- A Modern Approach (3. internat. ed.). Pearson
Education, 2010.

K. Sen. Race directed random testing of concur-
rent programs. In Proceedings of PLDI, 2008.

N. Shavit and D. Touitou. Software trans-

actional memory. Distributed Computing,
10(2):99-116, 1997.

F. Sorrentino, A. Farzan, and P. Madhusudan.
Penelope: Weaving threads to expose atomicity
violations. In Proceedings of FSE, 2010.

W. Visser and P. C. Mehlitz. Model checking
programs with Java Pathfinder. In Proceedings
of SPIN, 2005.

