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ABSTRACT

This paper tackles the problem of learning a dialog policy
from example dialogs – for example, from Wizard-of-Oz
style dialogs, where an expert (person) plays the role of the
system. Learning in this setting is challenging because dialog
is a temporal process in which actions affect the future course
of the conversation – i.e., dialog requires planning. Past
work solved this problem with either conventional supervised
learning or reinforcement learning. Reinforcement learning
provides a principled approach to planning, but requires more
resources than a fixed corpus of examples, such as a dia-
log simulator or a reward function. Conventional supervised
learning, by contrast, operates directly from example dialogs
but does not take proper account of planning. We introduce
a new algorithm called Temporal Supervised Learning which
learns directly from example dialogs, while also taking proper
account of planning. The key idea is to choose the next dialog
action to maximize the expected discounted accuracy until
the end of the dialog. On a dialog testbed in the calendar
domain, in simulation, we show that a dialog manager trained
with temporal supervised learning substantially outperforms
a baseline trained using conventional supervised learning.

1. INTRODUCTION

In a spoken dialog system, the dialog policy is the compo-
nent that examines the current state of the dialog, and decides
what action to perform. In this paper, we are interested in the
problem of learning a dialog policy from example dialogs.
Providing example dialogs is often an easy method for a do-
main expert to express the desired behavior of a dialog policy
– for example, an expert might be a developer of an existing
smartphone application.

Past work has solved this problem using supervised learn-
ing, which predicts a dialog action given the current dialog
state. The limitation of this approach is that the effects of an
action on the future course of the dialog are not considered –
i.e., proper multi-step planning is not done. As an illustration
of this problem, consider the case where dialogs in a calen-
dar domain are provided by multiple domain experts – e.g.,
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multiple wizards in a wizard-of-oz setting. Consider a dialog
state s in which the time slot has been received from the user,
but with low confidence. In s, suppose most experts choose to
next request the date slot with action a, and a minority choose
to confirm the date slot with action a′. After taking action a in
this state, the experts have a variety of error recovery mecha-
nisms later in the dialog, and are therefore difficult to mimic,
because of sparisity in the training data. On the other hand, af-
ter taking action a′ in this state, the experts are less stochastic
and are easier to follow. This illustration shows that choosing
the most common action in the current state does not neces-
sarily maximize accuracy over the entire dialog: maximizing
accuracy over the entire dialog requires balancing immediate
accuracy and expected future accuracy by looking ahead.

A related method for policy learning is reinforcement
learning. Reinforcement learning does do proper planning,
but also requires the developer to design a reward function,
which quantifies the goodness of a particular action taken in
a particular dialog state. In practice this is difficult to do: do-
main experts often iteratively adjust the reward function until
the resulting policy matches their expectations, suggesting
experts may find it easier to give example dialogs rather than
the reward function.

The paper introduces temporal supervised learning, an al-
gorithm for learning a dialog policy that properly accounts for
the effects of actions on the future, which learns only from ex-
ample dialogs in a fixed dataset. The key idea is to choose the
next dialog action to maximize the expected discounted ac-
curacy until the end of the dialog, not merely the accuracy at
the current time step. The algorithm handles input from mul-
tiple or noisy experts, and has only one free parameter which
sets the trade-off between expected immediate accuracy and
expected future accuracy.

In this paper, the next two sections formalize the problem
and present related work; section 4 details the method; sec-
tions 5–6 cover the evaluation and results; and the last section
concludes.

2. BACKGROUND

This paper is concerned with learning the dialog policy from
example dialogs provided by one or more domain experts.



This problem is an instance of imitation learning, also known
as learning from demonstration in the robotics literature [1].

Imitation learning (IL) for dialog systems can be charac-
terized by the tuple 〈S,A, T,D〉, where S is the set of dialog
states, A the set of dialog actions (assumed to be finite in this
paper), T the transition function Pr(s′|s, a), and D a set of
dialogs.1 For example, one dialog state in S could be the very
start of the dialog, and another could be the situation where
the system has heard the user wants to create a meeting today
at a time not yet specified. Example actions include asking the
user an open question like “How may I help you?” or a more
directed question like “Ok, a meeting today, at what time?”.

Here, we assume that state transitions are Markovian.
Every dialog D ∈ D consists of an interleaving sequence
of state–actions, (s1, a1, s2, a2, . . . , sL), where at is the ac-
tion chosen by the expert in state st, the next-state st+1 are
randomly drawn from the transition probability distribution
Pr(·|st, at), L is the dialog length. The goal of an imitation
learning algorithm is to learn a policy π̂ that is similar to πe,
the (possibly stochastic) expert policy, from the dialogs.

Our solution to imitation learning, and dicussion of exist-
ing work, will make use of reinforcement learning (RL) [2],
so we also review it here. As above, we will assume state
transitions are Markovian, which allows RL to be modeled as
a Markov Decision Process (MDP) [3]. An MDP is charac-
terized by a five-tuple 〈S,A, T,R, γ〉, where S, A, and T are
defined as in IL,R is a reward function, and γ ∈ [0, 1] is a dis-
count factor. Given a policy π that maps states to actions, its
action-value function Qπ(s, a) is the expected discounted to-
tal reward collected by taking action a in state s and following
π thereafter. Denote by V π(s) := Qπ(s, π(s)) the state-value
function. In RL, the transition and reward functions are typ-
ically unknown, and the goal of an RL algorithm is to learn
a policy that maximizes its value function [2] from past data.
We denote an optimal policy and the optimal value functions
by π∗, V ∗, and Q∗, respectively.

3. RELATED WORK

Broadly speaking, most existing work on imitation learning
for dialog systems has fallen into two categories: supervised
learning and inverse reinforcement learning. First, standard
supervised learning has been applied to learn a mapping from
dialog state to action [4, 5, 6, 7]. Here, the learning algorithm
is not explicitly aware of the effects of its choices on the fu-
ture, i.e. it assumes state–action pairs are IID along the dialog,
which does not hold, as in the example in Section 1.

Outside of dialog policy learning, algorithms from the
machine-learning literature have been developed which ex-
tend supervised learning to account for this problem [8, 9].
However, they have requirements that go beyond a fixed cor-

1In the machine learning literature, the example dialogs are called trajec-
tories.

pus – for example, asking the expert for additional labels, or
domain-specific heuristics.

A second approach to imitation learning for dialog sys-
tems has been to infer a reward function from dialog data us-
ing inverse reinforcement learning (IRL) [10, 11, 12]. IRL
takes dialog data as input, and infers the reward function for
which the policy followed in the data is optimal. Once that
reward function has been learned, normal RL can be applied.
Although IRL-based imitation learning does do proper plan-
ning, it assumes access to more than just example dialogs.
In particular, past work has assumed that the dialog policy
learner can explore new state–action pairs not observed in the
dialog data. In real settings, this can be unrealistic, since com-
mercial service providers are reluctant to experiment on cus-
tomers, risking dissatisfaction.

RL has been applied to dialog policy learning extensively,
including algorithms designed to learn from a fixed corpus
[13]. However, RL is solving a different problem: imitation
learning seeks to imitate an observed policy, and RL chooses
actions to maximize rewards. As explained already, it is of-
ten nontrivial to design a reward function that yields a policy
desired by a system designer.

In sum, there is no existing work on dialog policy learn-
ing – or, to our knowledge, imitation learning/learning from
demonstration in any domain – that takes proper account of
planning but requires only example dialogs. This is the prob-
lem this work addresses.

4. METHOD

Our goal is to learn a mapping π from dialog states to dialog
actions, given a corpus of dialogsD from one or more experts.
We assume that an expert may be deterministic or stochastic.

As mentioned above, casting the learning problem naively
as supervised learning (SL) can lead to poor performance. The
key problem is that – as a consequence of the IID assumption
– SL does not consider the effects of its output on the future.
The intuition of our approach is to incorporate temporal in-
formation into the training of the classifier. Specifically, we
learn a multi-class classifier that chooses an action given the
current state in order to minimize the expected discounted er-
ror for the entire dialog.

We start by defining Pe(a|s), the probability of observing
a in expert-generated dialogs given state s, without regard to
the future. Intuitively, we want to minimize misclassification
rate not just in the current state, but also in all future reach-
able states. This rate in state s is 1 − Pe(a|s), by definition.
To incorporate temporal information, we will employ the ma-
chinery of RL, and define an expert-induced reward function
as the negation of the misclassification rate:

Re(s, a) := Pe(a|s)− 1, (1)

The RL discount γ ∈ [0, 1] specifies how much weight to
place on misclassification at the current timestep versus the



future. If γ = 0, this policy reduces to a myopic policy that
is indifferent to the future, and is thus equivalent to a typical
supervised learning approach. As γ increases, more weight is
placed on accuracy in the future.

With the addition of Re and γ, RL can now be applied
to dialogs to produce a policy, using any batch reinforcement
learning algorithms [14], such as experience replay [15],
least-squares policy iteration [16], and fitted Q-iteration [17].
Note that TSL is agnostic to the type of action, such as
requesting/confirming/presenting information, or quering a
database. From the standpoint of TSL, the only relevant fac-
tor is whether experts take this action in the current state, and
what successor states result.

To implement the method, two practical issues arise. The
first is exploration in the example dialogs. Batch RL algo-
rithms assume that the training dialogs include sufficient
exploration; if action a is never attempted in state s, the pol-
icy may be poorly learned in those states. In our experiments,
we collected dialogs both with and without exploration. As
shown later, TSL outperforms SL in both cases, and has
strong performance even without exploration.

The second issue is how to estimate the expert-induced re-
ward functionRe(s, a). We propose a model-based approach:
from the dialogs, we learn a multi-class classifier which out-
puts a distribution Pr(a|s) over all a for a given s as an esti-
mate of the expert policy. In our work, we use a multinomial
logistic regression model, since its output is well-calibrated,
but we note that calibration techniques can be used to convert
any classifier’s predictions to label probabilities.

This estimated multinomial distribution naturally encodes
some of the key properties required for IL. Consider a state s
which is visited often. In s, if experts all agree on an action a∗,
Re(s, a) will be nearly 0 for a = a∗ and nearly −1 for a 6=
a∗. If experts disagree on which actions to take in s, Pe(a|s)
will spread mass out among those actions – for example, for
2 equi-probable actions in s, Pe(a|s) = 0.5 and Re(s, a) =
−0.5 for both a. Therefore, among frequently-visited states,
TSL will prefer states where experts agree more, since that
leads to higher expected rewards. Next, consider a state s
where there is little or no data. Here, Pe(a|s) will spread mass
out among many actions (due to, say, regularization), so all
actions will yield low reward. TSL will avoid visiting these
states. Moreover, this reward also encourages the agent to fin-
ish episodic tasks early, since all rewards are non-positive.

4.1. Theoretical justifications

This section formalizes two intuitions that our method rests
on. Let M = 〈S,A, T,R, γ〉 be the original decision mak-
ing problem where R is the unknown target reward func-
tion that is hard to specify. With the optimal value function
Q∗, the advantage function [18] is defined by: A(s, a) :=
maxbQ

∗(s, b) − Q∗(s, a). A policy π is ε-optimal in MDP
M , if V ∗(s) − V π(s) ≤ ε for any s ∈ S. With R replaced

by the expert-induced reward function (Equation 1) in M , we
have a new MDP Me, for which quantities like V πe , Q∗e and
Ae can be defined similarly.

The first observation is that a difference in distributions
in states encountered at training and testing time can cause a
supervised-learning algorithm to produce a policy with poor
test performance.

Proposition 1 Let A be a supervised-learning algorithm de-
signed to minimize classification error for states encountered
in example dialogs generated by expert E . Assume the (pos-
sibly stochastic) expert policy, πe, is ε1-optimal in M , and
A returns a policy πSL whose classification error is ε2 in di-
alogs generated by E , for some positive ε2. Then, no matter
how small ε1 and ε2 are, it is possible to construct an MDP
M and expert E such that πSL achieves the lowest possible
rewards among all possible policies, when it is run in M .

The proposition can be proved easily with examples, such as
the example in Section 1. It should be noted that the classi-
fication error in the proposition above referw to test error, as
opposed to training error evaluated on training dialogs.

The second observation is that, minimizing the cumula-
tive classification error is fundamentally related to solving the
original problem: if the expert policy is near-optimal with re-
spect to the unknown reward function, then TSL indeed gives
a policy with a certain performance guarantee.

Proposition 2 Assume the (possibly stochastic) expert policy,
πe, is ε1-optimal in M , and a learned policy, π̂, is ε2-optimal
in Me. Then, π̂ is ε-optimal in M , where ε = ε1 + ε2Amax

and Amax = maxs,aA(s, a).

Proof (sketch) Let s be an arbitrary state, and V π̂(s) its value de-
fined using the target reward R. Now consider dialogs generated by
π̂ from s. The near-optimality of π̂ (inMe) implies that, the expected
discounted number of times π̂ deviates from πe in these dialogs is at
most ε2. Each such deviation contributes to the gap V πe(s)−V π̂(s)
by at most Amax. Combined with near-optimality condition of πe in
M , it follows that V ∗(s)− V π̂(s) is at most ε. �

The two propositions above together show that, while
(non-temporal) SL may lead to a policy with poor test-time
performance, the objective in TSL is sound in principle: op-
timizing against the expert reward Re does indeed result in
a policy with controlled performance in the original decision
making problem, even if the reward function is not specified.

5. EXPERIMENTAL DESIGN

This experiment draws on an end-to-end simulation of a spo-
ken dialog system which enables a user to query a calendar,
and to create, delete, and update appointments. An appoint-
ment consists of 4 values: a time, date, location, and person
the meeting is with. The system follows the same architecture



User: 

“Good morning.  

Create a new meeting 

at 3, after lunch.”

task: create

time: 3 AM

score: 0.42

turn-index: 1

time.val: 3 AM

time.confirmed: no

time.score: 0.42

time.seen: 1

date.val: [none]

date.confirmed: no

date.score: [none]

date.seen: 0

task.val: create

task.confirmed: no

task.score: 0.42

task.seen: 1

…

Time.confirm: 3 AM

Request: date

Time.confirm: 3 AM

Request: date

At 3 AM, is that right?

Ok, at 3 AM.  Which day is 

the meeting?

Which day is the meeting?

request.time: 0

request.date: 0

confirm.time: 1

time.score: 0.42

…

0.34

0.45

0.89

System: “Which day is the 

meeting?”

Text of user input and 

system output

Semantic parse of 

user input

Persistent 

dialog state

System action candidates

(parse and text)

State/action

features

State/action

score

Max 

score

request.time: 0

request.date: 1

confirm.time: 1

time.score: 0.42

…

request.time: 0

request.date: 1

confirm.time: 0

time.score: 0.42

…

Fig. 1: Architecture of the end-to-end spoken dialog system. Components are described in the text.

as machine learning-based dialog systems common in the re-
search literature [19, 20].

The mechanics of action selection are shown in Figure
1. In the left column, the user says a command to the sys-
tem such as “Good morning. Create a new meeting at 3 after
lunch”. A simulated speech recognizer and natural language
understanding unit convert this into a semantic parse, shown
in the second column. Note that this recognizer and parser
may make mistakes – in this example, “3 after lunch” is rec-
ognized as “3 AM” because of the keyword “morning” in the
user input. Speech recognition errors are also simulated.

The semantic parse is passed to a dialog state tracker,
which maintains a persistent dialog state, shown in the third
column. This process is based on simple hand-written update
rules that accumulate information observed over the course of
the dialog. The state tracker then outputs one or more action
candidates, shown in the fourth column. Each action candi-
date is described in terms of the semantic content it contains,
and can be rendered into natural language. In Figure 1, three
candidates are shown; in practice, there can be hundreds or
thousands, depending on the dialog state.

For each candidate, a vector of 1059 features are extracted
(fifth column). Each feature is either binary or real-valued.
The features do not contain actual semantic values (like “3
AM”), but rather indicate which value types are present, what
confidence they have been recognized with, etc. Finally, the
agent’s policy is applied, producing a state–action score for
each candidate, and the action with the maximum score is out-
put to the user. The whole cycle then repeats.

To create dialogs from which to learn, a bank of 15 expert
policies were hand-created. These expert policies were deter-
ministic functions of the persistent dialog state, but because
the state–action features used by TSL were simpler, they were

not deterministic functions of the features – i.e., just as with
example dialogs provided by real experts, the simulated ex-
perts’ policies are partially observable w.r.t. the features. To
generate a training dialog, an expert is sampled uniformly,
and then that expert is used throughout the dialog.2 Although
there are limitations to dialog simulation, simulation does al-
low us to evaluate whether an action taken following a learned
policy would have been taken by a (simulated) expert – a mea-
surement that would be very costly with real experts.

To enable an expert or learned agent to interact with the
environment, a simulated user was created. The user has a
persistent goal throughout the conversation, and varied but
coherent actions. In addition, speech recognition and under-
standing errors were simulated, so that about half the parsed
user inputs contained at least one semantic error. The dialog
continues until the system takes a transactional action, such as
creating or deleting an appointment, after which the user ends
the dialog. If the dialog goes on for more than 20 exchanges,
the simulated user gives up and abandons the conversation.

Given dialogs collected as described above, we used
multinomial logistic regression to obtain an estimate R̂e of
the expert-induced reward function. A SL policy would sim-
ply return a greedy action with respect to this estimate: for
every s ∈ S, πSL(s) = argmaxa∈A R̂e(s, a). In contrast, the
TSL agent uses Q-learning with experience replay and lin-
ear function approximation to (approximately) optimize total
expert-induced rewards, and returns a non-myopic policy,
denoted πTSL. All meta-parameters in multinomial logistic
regression and Q-learning were tuned on a separate set of
dialogs. With tuned meta-parameters, both learners were run

2Note that these hand-coded policies are used only to mimic experts. All
learning algorithms below only have access to example dialogs generated by
these policies, but not the policies themselves.
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(b) Average task completion rate for policies learned on di-
alogs with exploration (p = 0.1).
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(c) Average accuracy of policies learned on dialogs without
exploration.
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(d) Average task completion rate for policies learned on di-
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Fig. 2: Results from the spoken dialog system problem. The label for each line (e.g. SL-50) indicates the training method and
number of training dialogs used. “Experts” line shows average accuracy between two randomly sampled experts.

for 30 runs, each with varying number of training dialogs and
various settings of γ.

We evaluate policies in two ways. First, the learned policy
was run to produce dialogs, and then each action was com-
pared to the action a randomly selected expert would choose
in that state, from which average accuracy was computed.
Second, the average task success rate is reported.3

6. RESULTS

Figures 2a-2d show average accuracies and task completion
rates for policies learned on dialogs both with and without
exploration. In both cases, the accuracies in Figures 2a and
2c are quite low, partly because the large number of candidate

3As explained in Section 3, in our setting there is no explicit reward func-
tion, and it is infeasible to infer one, hence there is no comparison to an
RL-based system.

actions that can be at the level of thousands, and partly be-
cause the data is quite noisy: two randomly sampled experts
agree on the optimal action in only 22% of turns. TSL accu-
racies are lower than SL accuracies, likely because TSL uses
simple linear models, and SL uses the logistic regression that
is more suitable to modeling probabilistic binary outputs.

Figures 2b and 2d show task completion rates. Here, TSL
yields substantial gains over myopic SL – statistically signifi-
cant at the 95% level – and is maximal when using a moderate
amount of look-ahead: γ = 0.5. This result shows the benefit
of incorporating look-ahead into imitation learning for dialog
policy learning.

7. CONCLUSIONS

In this paper, we have shown that in imitation learning, my-
opically following the expert can lead to poorly learned poli-



cies. In contrast to previous iterative methods that require ex-
ploration in the environment and on-going access to an expert,
we have introduced a batch policy learning algorithm that
only needs a fixed set of expert dialogs. The experts can be
heterogenous and/or noisy. By maximizing the cumulative ac-
curacy with respect to the expert(s) over a dialog, we leverage
temporal information to avoid regions where experts show
non-deterministic behavior or where training data is sparse.
On a realistic simulated spoken dialog system, our method
exceeds direct supervised learning in task completion rate.

There are several directions for future research. First, we
would like to explore other methods for estimating expert-
induced reward values, for example, data smoothing methods
such as kernel density estimation, or confidence estimation
models using application-specific confidence features. Sec-
ond, we can explicitly tackle the problem of state distribution
mismatch during training and testing by reweighing training
examples – actions more likely to be taken at test time than at
training time are weighted higher. Third, our approach can be
easily extended to settings where exploration with expert in-
put is affordable and expects improved performance. Finally,
we plan to evaluate with a real end-to-end dialog system.
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