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Abstract This paper presents new learning-based techniques for mea-
suring disease progression in Multiple Sclerosis (MS) patients. Our sys-
tem aims to augment conventional neurological examinations by adding
quantitative evidence of disease progression. An off-the-shelf depth cam-
era is used to image the patient at the examination, during which he/she
is asked to perform carefully selected movements. Our algorithms then
automatically analyze the videos, assessing the quality of each move-
ment and classifying them as healthy or non-healthy. Our contribution
is three-fold: We i) introduce ensembles of randomized SVM classifiers
and compare them with decision forests on the task of depth video classi-
fication; ii) demonstrate automatic selection of discriminative landmarks
in the depth videos, showing their clinical relevance; iii) validate our clas-
sification algorithms quantitatively on a new dataset of 1041 videos of
both MS patients and healthy volunteers. We achieve average Dice scores
well in excess of the 80% mark, confirming the validity of our approach
in practical applications. Our results suggest that this technique could
be fruitful for depth-camera supported clinical assessments for a range
of conditions.

1 Introduction

Multiple Sclerosis is a chronic, inflammatory and degenerative disease of the
central nervous system that affects over 2.5 million people worldwide and leads
to impairment and disability over time. Treatment focuses on anti-inflammatory
drugs, preventing relapses, and to a lesser extent reducing progression. The avail-
ability of a measurable progression marker is important e.g. to assess the effect
of various drugs on a given patient. However, the current gold standard measure,
the Expanded Disability Status Scale (EDSS) [9] has high inter- and intra-rater
variability making change hard to quantify [8,11]. While alternatives have been
proposed, none have been sufficiently validated for the use as primary outcomes.
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Figure 1. Illustration of the four movements used in our system. Finger-to-
Nose (FNT), Finger-to-Finger (FFT), Drawing Squares (DRS) and Truncal Ataxia
(TAT). See Section 3 for details.

Here, we address this problem via a depth camera system in conjunction with
machine learning algorithms to quantify changes in movement-related symptoms
in an objective manner. Common movement-related symptoms are e.g. tremor
(i.e. a rhythmic oscillation of a body part), ataxia (i.e. swaying of the torso when
staying up right), or lack of accuracy when trying to touch an object (e.g. the
nose). In our system we capture videos of patients while performing carefully
chosen movements (see Fig. 1). Then our algorithms analyze each video and
classify them as healthy or not. Here we focus on the patients motor skills alone,
i.e. additional impairments such as cognitive ones are not considered.

Related literature. Much work has been done on the automatic analysis
of brain images for MS patients [1]. For example, the work in [7] uses random
forests [3] for the automatic segmentation of brain lesions in multi-channel, MR
scans. In [6] prior knowledge about the brain anatomy is integrated within a
statistical framework for the classification of healthy brain tissues as well as the
detection of lesions in MR images.

In this paper we take a substantially different approach, measuring the impact
of MS on the patients motor abilities by imaging their movements rather than
their brain. While initial attempts have been made in this area for MS [12],
they relied solely on the skeleton produced by depth camera APIs rather than
direct analysis of the images. To our knowledge, our work is the first example of
depth video analysis for clinical assessment in MS or other movement-disabling
conditions. We believe that it may represent a better assessment of how the
disease affects the daily life activities of those who live with it.

At a procedural level, the patients are asked to perform expert-selected,
motion-rich tasks (see Fig. 1). An off-the-shelf Kinect depth sensor records such
movements into depth videos. Colour images are discarded to respect patient pri-
vacy. For the video classification step, we test and extend three ensemble-based,
discriminative classifiers. One based on decision forests [3], and two based on new,
randomized SVMs [14]. Resulting Dice scores (on previously unseen videos) in
excess of the 80% mark confirm the validity of our approach.

2 Ensemble Learning for Depth Video Classification

This section describes how to learn ensembles of classifiers for the binary classifi-
cation of depth videos into patients and healthy subjects. The challenges are the
need for: i) good generalization despite training on only few training videos, ii)
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Figure 2. Preprocessing of depth video (image centre as red box). a) Inpainted
depth image. b) Foreground (FG) model assignment and corresponding geodesic dis-
tances [5] (blue corresponds to small distance, here to FG class). c) Obtained FG
segmentation. d) Spatial registration and depth normalization after head detection.

automatic selection of clinically relevant, discriminative spatio-temporal land-
marks in the depth video, and iii) coping with variable video length (video du-
ration may itself be a discriminative feature, e.g. patients may be slower).

To this end, we propose to use new variants of decision forests [3] and support
vector machines (SVMs) [14] for structured input space exploration. With ‘struc-
tured input’ we refer to the fact that we have automatically registered videos.
This allows our algorithms to rely on a common reference where location, depth
and motion features for pixels can be compared with one another.

Depth Video Preprocessing. The video preprocessing stage performs fore-
ground segmentation and registration to assure that the recorded persons are
roughly centred in the image (see Fig. 2d). We start with inpainting depth
values in regions where Kinect does not provide measurements, using nearest
neighbours. Then, the closer subject is separated from the background using a
Gaussian model of depths followed by a geodesic-based refinement stage [5] (see
Fig. 2b). Finally, template-matching in depth space is used as a head detector
for centring and mapping the segmentations to a canonical depth.

2.1 Structured Video Exploration with Classifier Ensembles

Given the segmented depth videos we need to encode them for the purpose of
classification. In the related field of action recognition videos are often described
via histograms of optical flow, space-time features or bag-of-features (see e.g.
[10]). However, the most commonly used descriptors consider only local spatio-
temporal intervals, making them unsuitable to capture the possibly slow anoma-
lies that may occur in MS. Additionally, differences in how a patient or a healthy
subject perform the same movement may be more subtle than differences be-
tween categories such as running, jumping and clapping, which are typical for
action recognition tasks. Indeed, early stage MS patients may show very mild
motion anomalies, which may still be used as evidence for early disease detection.

Visual features. Here we derive visual features to capture effects such as
tremor in limbs and other motion-related instabilities, based on optical flow
for consecutive image pairs in depth videos. More formally, for a segmented
depth video with size (w × h × d) we assume to be given pairs of optical flow
(Vx(x, y, t), Vy(x, y, t)), t ∈ {1, . . . , d − 1}, i.e. flow components (x, y) for pixel
positions (x, y) in two images taken at time t and t+ 1.
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To go beyond optical flow information of only image pairs and discover longer
and more informative time intervals in the videos we consider the physical quan-
tity of acceleration, describing the rate at which the velocity of an object changes
with time. Hence, we are writing ATj (x, y) = ∆Vj(x, y)/∆T for acceleration com-
ponent j ∈ {x, y} at position (x, y) and time interval T = [dτ1, dτ2), τ1, τ2 ∈
[0, . . . , 1) , τ1 < τ2 with duration ∆T = d(τ2 − τ1). Finally, we use the following
approximation to determine the acceleration quantities in a more robust way

ÃTj (·) =
∑
t∈T

1 [sgn (Vj(·, t)) 6= sgn (Vj(·, t+ 1))] g([Vx(·, t) Vy(·, t)]>, κ) , (1)

where 1 [P ] is the indicator function based on P and sgn (P ) returns the sign of
P . Moreover, g(v, κ) = G(‖v‖2 − κ) where G(P ) is the Heaviside step function
response for P and κ ∈ R+ is a hyper-parameter to control the influence of
the flow magnitude, i.e. it allows us to eliminate noisy oscillations from the
flow components. In this sense, Eq. (1) provides us with a location-dependent
quantity measuring sign changes in the optical flow vectors over time, which can
be efficiently computed. Next, we describe how to learn the most informative
spatio-temporal parameters in our structured input space classifiers.

Depth Video Exploration via Ensemble Learning. Structured video
classification ensembles are classifiers with specific knowledge and constraints
about the input space they are applied to. In our case, the input space X =
{(Vx(·, t), Vy(·, t)) : t ∈ {1, . . . , d − 1}} contains optical flow information for all
consecutive pairs of preprocessed and spatially registered videos. Our output
space Y = {PAT, HS} is binary, i.e. we classify a sample as patient or healthy
subject. Given the standardized input space, we treat the entire video as a single
sample x ∈ X , i.e. our goal is to explore and identify the most informative spatial
and temporal areas of the input space on a global level rather than learning only
a local model. Also, training and testing is extremely fast, i.e. inference has
constant complexity per classifier, independently of the video length. Next, we
describe how the relevant parameters can be learned in ensembles of decision
trees or support vector machines (SVMs), respectively.
Ensembles of decision trees. Random forests [3,4] are ensembles of binary
decision trees and our approach can be seen as a modification over standard
classification trees. More formally, the training set Z ⊆ X × Y is split into two
subsets for the left ZL and right ZR child nodes (such that ZL ∩ ZR = ∅ and
ZL ∪ ZR = Z) until a stopping criterion is met. Information gain Q is often
used to measure the quality of parameters Θ for the binary split ψ(x|Θ) →
{L, R}, where (x, y) ∈ Z is an entire training video x with corresponding binary
ground truth label y. Consequently, the optimal parameters can be found as

Θ∗ = arg maxΘ Q(Z, Θ) where Q(Z, Θ) = H(Z) −
∑
i∈{L,R}

|Zi|
|Z| H(Zi) with

Zi = {(x, y) ∈ Z : ψ(x|Θ) = i} and H(·) is the entropy estimated from the
empirical probability distributions over Y in the resulting child nodes. From
here, we populate Θ to contain the relevant parameters, i.e. we learn the optimal
parametrizations for our visual features in (1) in terms of spatial locations and
time intervals in the videos. Hence, we defineΘ = (B1, B2, γ, d1, d2, k) whereB =
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(x1, y1, x2, y2, τ
′
1, τ
′
2) defines a cuboid selecting a space-time window in the image

domain where τ ′1, τ
′
2 ∈ [0, . . . , 1) defines a temporal sequence on the unit interval.

In addition we learn a threshold parameter γ ∈ R, a variable d ∈ {x, y} selecting
one of the acceleration components and a variable k ∈ {1, . . . , 4} selecting one of
the following functions to obtain the binary split ψ(x|Θ) = 1 [ρ(x|Θ) > γ] using

ρ(x|Θ) =


f(d1, B1) k = 1

f(d1, B1) + f(d2, B2) k = 2

f(d1, B1)− f(d2, B2) k = 3

|f(d1, B1)− f(d2, B2)| k = 4, and

(2)

f(d,B) =
1

(y2 − y1)(x2 − x1)

x2∑
x′=x1

y2∑
y′=y1

Ã
T (B)
d (x′, y′) , (3)

where T (B) = [τ ′1, τ
′
2] and Ã(·) stems from Eq. (1). Finally, the best node split

parameters Θ∗ are obtained by evaluating randomly chosen ones for Θ for a
pre-defined number of trials and stored in each internal node.
Ensembles of SVMs. Support Vector Machines (SVMs) [14] are non-probabi-
listic, binary classifiers defined by separating hyperplanes in the feature space.
In standard SVM training, the input data would be linearized versions of our
input samples from X as defined before. However, due to the high and variable
number of dimensions (e.g. each sample lives in a high dimensional x ∈ R2wh(d−1)

space), training becomes very slow and requires temporal normalization which
is undesired since it alters the movement characteristics. Instead, we propose a
randomized input space exploration with ensembles of SVMs by adapting the
above described technique for decision trees. For each SVM in our ensemble we
consider a fixed size input space X SVM of much smaller dimensionality than X .
Then, each component of a sample xSVM ∈ X SVM is populated using Eq. (2) with
randomly sampled parameters for Θ as for tree node training. Consequently,
the degree of video space to be explored can be controlled by the dimensionality
chosen for the input data space X SVM. The final predictions for both, the decision
tree ensemble and the SVM ensemble is obtained by output averaging.

3 Experimental Evaluation

Here we provide a movement description and present our experimental findings.
Movements and Recording Protocol. We analyze depth video recordings
for patients at different stages of their disease (considering their cerebellar func-
tion scores for upper extremities provided from expert neurologists) and healthy
subjects. Still images of the movements are shown in Fig. 1 and both examined
groups were advised in the same manner on how to perform them. For Finger-
to-Nose (FNT), the person has to stretch out the left or right arm horizontally
and then move the index finger towards the nose until contact. For Finger-to-
Finger (FFT) the person has to stretch out both arms and index fingers and
bring the latter together in parallel until they touch. Both, FNT and FFT are
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repeated three times in total. For Drawing Squares (DRS) the index fingers
are lifted to eye level, brought down to breast height, moved outwards toward
the shoulders, up to eye level and finally back to the starting position without
repetitions. For Truncal Ataxia (TAT) both arms are stretched out to the
side and held for 5 seconds. All movements are repeated with eyes open and
closed. While FNT and TAT are part of standard neurological examinations,
FFT and DRS were chosen by our MS expert clinicians in order to stimulate
various cerebellar functions. Over several months, we collected a total of 1041
(317 PAT, 724 HS) depth videos in two hospitals and in a separate location only
for healthy subjects, using the above recording protocol.

Quantitative Analysis. We could not use [13] as a baseline since an initial
data analysis phase revealed that the variance of body joint location accuracy
exceeds the amplitude of the movement-related motions we intend to measure.
For our proposed ensemble classifiers we used the following setup in a 5-fold cross
validation. We trained 300 trees in each fold until a minimum of 2 samples were
left in the leaves, used 2000 trials for node parameter estimation and an inverse
frequency reweighing to correct the imbalance of available training samples for
the PAT and HS classes, in our own implementation. Likewise, we trained 300
Linear SVMs and 300 Kernel SVMs using 500-dimensional input samples pop-
ulated as described above and hyper-parameter optimization was done using a
grid search over a 10-fold cross-validation set. We used the SVM implementation
in OpenCV [2] and the optical flow of [15] therein and fixed κ = 1.15 in Eq. (1).

Movement Classification Results. For comparing our proposed classifier en-
sembles we present class-specific dice scores (DPAT, DHS) and their mean D in
Tab. 1. The gray-shaded cells highlight the best performing methods for which
we additionally list sensitivity SSENS, specificity SSPEC, the percentage of correct
predictions SGLOB and corresponding standard deviations over the 5-fold cross val-
idation for all of the above. We also report the average numbers of training/test
samples per fold. For a small subset of videos (6 per movement) we made frame-
and pixel-wise annotations for the raw depth videos based on which we report
segmentation accuracy scores (SSENS and SSPEC) after spatial registration to as-
sess the quality of the preprocessing stage. All proposed classifier ensembles show
encouraging results with FNT, FFT and DRS above 80% mean Dice score for
SVMs and TAT at 74% for forests, where we hope to improve with more training
data in future. The preprocessing pipeline yields almost perfect results on the
videos we have randomly selected for ground truth annotation.

Automated Landmark Selection. In Fig. 3 we show discriminative land-
marks learned by our forest-based algorithm as heat maps over corresponding
movement images (acceleration component x on top and y on bottom, both
summed over the temporal dimension). Clearly, each movement has its specific,
informative regions which are in high correspondence to where swaying of the
waist/torso (DRS) or shoulders/arms and head tremor (TAT) is exhibited. For
DRS also the ‘corners’ of the square are emphasized. Moreover, our features seem
very informative in the nose region for FNT or where the fingers should meet for
FFT, i.e. areas where intention tremor is predominant. The rightmost plots in
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Method FNT FFT DRS TAT

D DPAT DHS D DPAT DHS D DPAT DHS D DPAT DHS

Forest
84.3 79.4 89.2 74.9 58.1 91.7 81.1 70.3 92.1 74.3 57.8 90.9

±4.4 ±5.9 ±2.9 ±6.3 ±11.0 ±1.7 ±3.8 ±5.1 ±2.6 ±5.7 ±8.8 ±2.6

Linear SVM
80.9 75.3 86.4 79.1 65.6 92.7 84.5 75.1 93.9 73.4 56.5 90.3

±3.0 ±5.0 ±1.1 ±4.4 ±7.6 ±1.2 ±2.8 ±4.0 ±1.5 ±3.7 ±5.1 ±2.3

Kernel SVM
85.2 80.5 89.9 81.0 68.3 93.7 81.4 70.6 92.2 66.2 45.8 86.7

±4.0 ±5.7 ±2.3 ±3.6 ±6.6 ±0.6 ±2.6 ±3.4 ±1.8 ±4.0 ±7.2 ±0.8

78.3 91.4 86.7 79.3 91.1 89.5 89.8 90.3 90.2 74.3 86.8 85.1
SSENS SSPEC SGLOB ±10.1 ±2.2 ±3.2 ±17.4 ±2.9 ±0.9 ±7.1 ±3.0 ±2.3 ±11.9 ±3.5 ±3.9

Avg. #Train/fold PAT, HS 103.2 186.4 52.8 96.6 48.0 87.0 49.6 89.4

Avg. #Test/fold PAT, HS 25.8 46.4 13.2 76.6 12.0 61.6 12.4 78.4

Segmentation SSENS SSPEC 99.9 97.9 98.2 99.9 99.9 99.8 99.8 99.8

Table 1. Quantitative results for all experiments, all D,S in %. See text.

Fig. 3 show the importance of x/y acceleration components as a function of the
unit time interval for videos FNT and FFT. There are roughly three modes for
FFT with decreasing amplitude, possibly due to the repetitions of moves while
for FNT the sampling is more uniform. Finally we remark that all landmark
information is discovered with weak supervision only (only a single, binary label
per video is available), making the decision process transparent to the clinician.
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Figure 3. Automatic selection of clinically relevant landmarks. Left: Heat map
visualizations of discriminative image regions for acceleration features (x on top, y on
bottom) for FNT, FFT, DRS and TAT (left to right). Right: Importance of acceleration
components as function of video length for FNT (top) and FFT (bottom). Please use
digital zoom for better visibility.

4 Conclusions and Future Work

We have introduced a new system for quantitative assessment of disease pro-
gression for Multiple Sclerosis (MS) patients, based on a depth camera setup
and a novel depth video classification approach. Using depth video recordings
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of neurologically relevant movements we have proposed structured input clas-
sifier ensembles to distinguish patients from healthy subjects. The idea of our
classifiers is to automatically infer discriminative spatio-temporal regions within
depth videos. We introduced ensembles of decision trees and SVMs to learn novel
acceleration features and their parametrizations as part of the training process
and evaluated them on a new dataset of 1041 depth videos from MS patients and
healthy subjects. Our experimental evaluation showed encouraging performance
and confirmed the fact that automated MS assessment from depth videos is pos-
sible. In the future we will investigate how to learn and fuse predictions across
multiple movements and provide predictions in an ordinal continuous domain.
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