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Abstract

Veanes, M. 1997: On Simultaneous Rigid E-Unification, Uppsala Theses in Com-
puting Science 29. 122pp. Uppsala. ISSN 0283-359X, ISBN 91-506-1217-4.

Automated theorem proving methods in classical logic with equality that are
based on the Herbrand theorem, reduce to a problem called Simultaneous Rigid
E-Unification, or SREU for short. Recent developments show that SREU has also
close connections with intuitionistic logic with equality, second-order unification,
some combinatorial problems and finite tree automata.

We show new decidability results of various cases of SREU. In particular, we im-
prove upon the undecidability result of SREU by showing its undecidability in a
very restricted case, in fact the minimal known case. We prove the decidability
of some cases of SREU under certain restrictions regarding the number of vari-
ables and other syntactical criteria. To prove the (computational) complexity of
some cases, we reduce them to certain decision problems of finite tree automata.
The complexity of the latter problems is studied first. In connection with that,
we present a survey of closely related problems and give a comparison with the
corresponding results in classical automata theory.

These results are applied in the context of intuitionistic logic with equality, to
obtain a complete classification of its prenex fragment in terms of the quantifier
prefix: the 33-fragment is shown undecidable and the V*3V*-fragment is shown
decidable. These results have further implications for proof search in intuitionistic
logic with equality.

We also improve upon a number of other recent undecidability results that are
related to the so-called Herbrand Skeleton problem and are of fundamental im-
portance in automated theorem proving in classical logic with equality. In that
context we also prove, as our main tool, a logical theorem that we believe is of
independent interest.
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CHAPTER 1

INTRODUCTION

The central theme of this thesis is simultaneous rigid E-unification. Origi-
nally, simultaneous rigid E-unification was introduced in the context of au-
tomated theorem proving in classical logic with equality, but has thereafter
been shown to have important connections to other research areas, such as
intuitionistic logic with equality, second-order unification, some combinato-
rial problems and finite tree automata. In the thesis we look closely at some
of these connections. In particular, we investigate

e the decidability of various fragments of simultaneous rigid E-unifica-
tion,

e the decidability of some fundamental decision problems of automated
theorem proving related to the Herbrand theorem,

e the complexity of basic decision problems of finite tree automata and

e the decidability of some fragments of intuitionistic logic with equality.

We show new decidability and complexity results in all those areas and point
out some open problems.

This chapter is organized as follows. We start by giving a brief overview
of the so-called rigid variable methods that arise in automated theorem
proving methods in classical logic based on the Herbrand theorem. We
then give a brief history of simultaneous rigid E-unification and illustrate
how it arises in the rigid variable methods when equality is allowed. We ex-
plain also the relationships between the notions: (simultaneous) unification,
E-unification, rigid E-unification and simultaneous rigid E-unification. Fi-
nally, we give an overview of the rest of the thesis.

1.1 RIGID VARIABLE METHODS

Automated theorem proving in classical first-order logic deals with the va-
lidity problem of closed first-order formulas:
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Given a closed formula ¢, is ¢ valid?

There is a category of automated theorem proving methods, known as the
tableau methods and the matriz methods, the theorectical foundation of
which is provided by the Herbrand theorem [74]. Below we illustrate both
methods briefly. Collectively, such methods are referred to as the rigid
variable methods [157].

We can consider, without loss of generality, first-order languages with at
least one constant. So the set of ground!' terms is always nonempty. One
popular form of the Herbrand theorem is this:

A closed formula AZp(T), where ¢ is quantifier free, is valid if
and only if there exists a positive integer m and a sequence of
ground terms t1, ..., L, such that the disjunction o(f,)V ---V
@(t) is valid.

Informally, we refer to the number m as the multiplicity. The reason why it
is sufficient to consider formulas in this dual Skolemized prenex form, is that
any closed formula can easily be transformed into this form that is valid if
and only if the original formula is valid.

The tableau and the matrix methods are all refutation systems?, but one
can easily dualize these methods to get a direct proof instead of a refuta-
tion. If we ignore the details in such dualized versions, we can identify the
following procedure underlying them. We call it the principal procedure of
rigid variable methods. Let 3Z¢(Z) be a closed formula that we wish to
decide the validity of, where ¢(Z) is quantifier free. Proceed as follows:

Step I Choose a multiplicity m.

Step II Check if there exists a sequence of ground terms f1,..., %, such
that the disjunction @(f1) V --- V @(f,) is valid.

Step III If such a sequence of terms exists then 3Fp(Z) is valid, otherwise
increase m and return to Step II.
Let us apply this procedure to the valid formula
dz (P(0) vV P(1) = P(x)). (1.1)

Choose m = 1 at Step I. It is easy to see that Step II fails, so increase m by
1 at Step III and re-execute Step II. Now, Step II succeeds with a solution
given by the terms 0 and 1.

LWe follow the custom of calling variable free terms ground, whereas formulas without
free variables are called closed. A closed formula without quantifiers is also called ground.
?Instead of a direct proof, the negation of the formula is shown unsatisfiable.
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There is of course no general way to compute an upper bound for the mul-
tiplicity directly from the formula, because the validity problem of classi-
cal logic (even without equality) is undecidable. The Herbrand theorem
guarantees, however, that if the formula is valid, then the above procedure
terminates eventually. Once the multiplicity is fixed, Step II reduces to
(simultaneous) unification if we consider logic without equality. If equality
is allowed, then Step II reduces to simultaneous rigid E-unification. Let us
take a brief look at the tableau and the matrix methods in logic without
equality.

Tableau Methods

A proof of a closed formula ¢ using a tableau method amounts to a refu-
tation of =p. The formula —¢ is expanded into a tree or tableau by using
tableau expansion rules. Each branch of such a tree should be thought of as
a conjunction of formulas appearing in it and the tree itself as a disjunction
of its branches. A refutation of - has been obtained if each branch is
inconsistent, i.e., contains an atom and the negation of the same atom.

It is necessary to consider the so-called free variable versions of the tableau
methods in order to avoid the huge level of non-determinism that arises when
choosing the terms in the universal quantifier tableau expansion rules [36,
40, 47]. In the free variable based tableau methods, a tableau proof amounts
to finding a substitution® that replaces all the variables in the tableau with
ground terms such that all branches become inconsistent, which is tanta-
mount to simultaneous unification. Figure 1.1 illustrates a tableau proof
of Formula (1.1). For simplicity, the negation of Formula (1.1) has been
slightly transformed. So all the branches of the tableau in Figure 1.1 can
be made inconsistent if the following system of equations has a unifier:

{ZL“() ~ 0, T =~ ].}

Matrix Methods

The matriz characterization of validity [119] involves a two-dimensional
view of formulas with disjunctions being displayed horizontally and con-
junctions being displayed vertically. For example, the mating method [1]
is based on this characterization. Let us consider a proof of Formula (1.1)
by using the mating method. First, the negation of Formula (1.1) is trans-
formed into the following equivalent one (in negation normal form and with
the scope of the quantifiers being minimized):

(P(0) V P(1)) AVz—=P(z).

3A mapping from variables to terms.
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i (P(0)V P(1)) AVa—P(x)

ii P(0) v P(1)
iii Vz-P(x)
|
iv —'P?ﬂvo)
v ﬁP(Z1)
/N
vi P(0) P(1)

Figure 1.1: A tableau of (P(0)V P(1)) AVz—P(x) with the free variable tableau
system of Fitting [47]. Lines ii and iii result from line i. Lines iv and v result
from line iii by two applications of the y-rule. Line vi results from line ii.
Both branches of the tableau can be made inconsistent with a substitution
that maps zo to 0 and z; to 1.

Next, the subformula Vz—P(x) is duplicated and the quantifiers are removed
from the resulting formula. So, a formula of the following form is obtained:

(P(0) V P(1)) A=P(xo) A =P (x1).
Now, the matrix of this formula looks like this:

|' P(0) P(1) -|
=P (o)
[ —|P($1) J

4

This matrix has two “vertical paths”:

{P(0),~P(x9),P(z1)} and {P(1),~P(zo), ~P(z1)}.

Both paths can be simultaneously made inconsistent (to contain an atom
and its negation), through an application of a substitution that maps z¢ to 0
and z; to 1. This proves that the negation of Formula (1.1) is unsatisfiable.

Remarks We can note that the necessity to increase the multiplicity at
Step III, while searching for a proof of Formula (1.1) with the principal
procedure, corresponds precisely to the two necessary applications of the
~-rule in Figure 1.1 or to the duplication of the subformula Vz—P(x) in the
mating proof of Formula (1.1).

Background

Automated theorem proving methods in classical logic can be divided rough-
ly into two categories. The first category comprises methods that are re-
finements of Robinson’s resolution principle [124] that descends from tech-
niques developed already by Herbrand [74]. The first general method to han-
dle equality in resolution based methods is based on paramodulation [123].



1.2. SIMULTANEOUS RIGID E-UNIFICATION 5

Although there have been other approaches, the main line of research in
resolution theorem proving with equality has been dominated by various
improvements of paramodulation [40].

The other category of methods, that we considered above, is based on se-
mantic tableau or sequent calculus based proof systems, originally developed
by Beth [9] and further studied by Smullyan [137]. Independently, similar
methods were introduced by Kanger [83]. We refer to such methods un-
der the name of tableau. Tableau methods are to a large extent based on
Gentzen’s work [61]. The matriz characterization of provability (where free
variables were used for the first time) was introduced by Prawitz [118, 119]
for formulas in conjunctive normal form and was later generalized to arbi-
trary formulas, independently, by Andrews [1] and Bibel [10]. Related ideas
appear already in Quine [120]. The study of equality reasoning in sequent
calculus based methods was already started by Wang [158]. Important pi-
oneering work in this connection was done by Kanger [84].

Both categories are addressed and compared by several authors. For a
general comparison and an introduction to tableau and resolution systems
for arbitrary formulas, see Fitting [47]. The close correspondence between
tableau and sequent calculus systems is described in Smullyan [137]. For a
comprehensive treatment of equality reasoning in automated theorem prov-
ing in general see the tutorial by Degtyarev and Voronkov [40]. Futher
comparisons can be found, e.g., in Eder [45, 46], Bibel and Eder [11] and
Ophelders and de Swart [108].

1.2 SIMULTANEOUS RIGID E-UNIFICATION

Simultaneous Rigid E-Unification was introduced by Gallier, Raatz and
Snyder [57], who showed that the method of matings by Andrews [1] can
be extended to logic with equality by incorporating simultaneous rigid E-
unification. Considering a free variable tableau method, the key observa-
tion is the following. The problem of finding a substitution that makes a
branch inconsistent amounts to solving the following problem, called rigid
E-unification:

Given a finite set of equations E and an equation e, does there
exist a substitution @ such that Ef and ef are ground* and e is
a logical consequence of Ef? Such a substitution is said to solve
the rigid equation E & e.

Now, the problem of finding a substitution  that simultaneously makes
all the branches inconsistent, corresponds to solving a system of such rigid

4The expression X6, where X is E or e, denotes the result of replacing each free
variable z in X with the term 6(x). The groundness condition of the result is for technical
reasons only, it is not part of the standard definition.
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equations. This problem is called simultaneous rigid E-unification or SREU
for short. There are several papers [50, 52, 53, 56, 58] that explain in detail
how SREU arises in the mating method.

SREU versus E-Unification and Unification

The first decidability and NP-completeness proof of rigid E-unification was
given by Gallier, Narendran, Plaisted and Snyder [52, 56]. Since then, the
decidability (and NP-completeness) of rigid E-unification has been reestab-
lished by other authors, e.g., Plaisted [116], de Kogel [27, 28] and Choi [19].

In contrast, the problem of E-unification is undecidable. A good example is
the undecidability of weak equality in Combinatory Logic due to Scott and
Curry (cf Hindley and Seldin [75, Chapter 5]). Let - be a binary function
symbol and let S and K be two constants. The undecidability of weak
equality implies that the following problem is undecidable:

Given ground terms t and s, is it the case that®

VeVy(K-z) - y~a ~
V:chVZ((S-x)'y)'ZW(fU'Z)'(y'Z)}':SN ’

SREU was proved undecidable by Degtyarev and Voronkov [34]. Before that
result, there were several faulty statements about the decidability of SREU,
e.g., that SREU is NP-complete [50, 52, 56], EXPTIME-complete [66] and
even NEXPTIME-complete [65]. The undecidability of SREU was quite
unexpected and implied the undecidability of several other fundamental
decision problems in automated theorem proving [30].

Simultaneous unification reduces to unification. Unification can be solved
in almost linear time [97] and even in linear time [114] if more complex data
structures are used. It is also known that unification is P-complete [44, 161].

An Example

Let us see how SREU can be used in a rigid variable method, but instead of
using any particular method let us consider the principal procedure. First
of all, it is easy to show that there is a simple reduction from Step II to
SREU without introducing any new function symbols.® Assume that we
want to decide the validity of the following formula:

Jz((c= flc) => v =gle) ANMergle) = x = f(c))). (1.2)

5We use ‘~’ for the formal equality sign.
6Such a reduction is given for example in Voda and Komara [151].
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Choose the multiplicity m to be 1 at Step I. The problem at Step II is now
to decide if there exists a substitution that makes the following formula
ground and valid:

(e fle) = zmg(c) ANergle) =z = f(0)).

Such a substitution exists if and only if this system of two rigid equations
is solvable:

This system is not solvable, because if a substitution 6 solves the first rigid
equation then z6 = g(f*(c)) for some k > 0, and if # solves the second rigid
equation then z6 = f(g*(c)) for some k > 0. So let us increase m by one
and return to Step II. The problem at Step II is now to decide if there exists
a substitution that makes the following formula ground and valid:

[(c= fleo) =z~ g(c) AMemglc) = x = fc)]V
[(cr fle) = ymgle)) Alc=gle) =y~ o))
So let us see how this problem can be solved by using SREU. The easiest

way to see this is to first transform the formula into conjunctive normal
form (a conjunction of disjunctions of literals):

(c# flo)Varglc)Vei flc)Vy=glc))
A (e#EfloVaemgloVe#gloVyr flc))
A (e#Egle)Var floVeiE flo)Vy~glc))
A (e#Egle)vefloVe#gloVyx f(c))

Now, for each conjunct construct a rigid equation E k e, where E is the
set of all the equations in it that occur negatively and e is one of the pos-
itive equations (chosen nondeterministically). By applying this operation
to all the conjuncts of the above formula, we can get a system of four rigid
equations:

{e=fl0)} & y=yglo),
{e=flo), c=gle)} K z=g(c),
{emgle), c=flo)} & z=f(c),

{emygle)} & = flo).

This system is solvable, e.g., with a substitution € such that z6 = f(g(c))
and y8 = g(f(c)). We conclude that Formula 1.2 is valid according to
Step IIL.
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1.3 OUTLINE OF THE THESIS

Chapter 2 We introduce the main notions and definitions that are used
throughout the thesis. Some notions are used only locally within one chap-
ter, in those cases the definitions are given first in the preliminaries of the
corresponding chapter.

Chapter 3 We present a new proof of the undecidability of SREU. This
proof implies that already a very small, actually smallest known, fragment
of SREU is undecidable. Due to the elementary nature of the proof, it
brings out and clarifies the properties of SREU that make it an undecidable
problem. We present a short survey of the earlier undecidability proofs.

Chapter 4 The Herbrand theorem plays a fundamental role in automated
theorem proving and the so-called Herbrand Skeleton problem has been of
considerable interest. In the general case it is effectively equivalent to SREU
and thus undecidable. In this chapter we improve upon a number of un-
decidability results related to the Herbrand Skeleton problem. The main
result is a logical theorem, that we call the Partisan Corroboration Theorem,
that we believe is of independent interest, and is our main tool in proving
the undecidability results.

Chapter 5 Finite tree automata are generalizations of classical finite au-
tomata to automata that accept trees of symbols, not just strings of sym-
bols. They are a fundamental tool in various areas of computer science.
We focus on the following basic decision problems of finite tree automata:
non-emptiness and intersection non-emptiness. The first problem is shown
P-complete and the second one EXPTIME-complete. We include a short
survey of closely related problems and draw some general conclusions from
this.

Chapter 6 We show that SREU with one variable is decidable. Moreover,
we show that this problem is EXPTIME-complete. However, if the number
of rigid equations is bounded by a constant then the problem is P-complete.
So, the intractability of SREU with one variable is strongly related to the
number of rigid equations and not their size. We also show the decidability
of SREU when one allows several variables, but each rigid equation either
contains one variable, or has a ground left-hand side and an equality between
two variables on the right-hand side.
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CHAPTER 2

CHAPTER 5

CHAPTER 3

CHAPTER 4 CHAPTER 6

CHAPTER 7

Figure 1.2: Dependencies between the main results of the chapters.

Chapter 7 The prenex fragment of intuitionistic logic is the collection
of all intuitionistically provable prenex formulas. We give a complete clas-
sification of decidability of the prenex fragment of intuitionistic logic with
equality, in terms of the quantifier prefix: the 33-fragment is shown unde-
cidable and the V*3V*-fragment is shown decidable. At the the end of this
chapter we compare these results with the corresponding results in classical
logic.

Chapter 8 We state the main contributions of the thesis and give a list
of all the results that are known about SREU. Finally, we point out some
open problems and discuss future work.

1.4 HOW TO READ THE THESIS

Chapters 3—7 are self-contained and can be read independently, consulting
Chapter 2 only when necessary. The dependencies between the main results
in the thesis are illustrated with the the diagram in Figure 1.2.

1.5 SOURCE MATERIAL

This thesis is mainly based on the following material.

e M. Veanes. Uniform representation of recursively enumerable sets
with simultaneous rigid E-unification. UPMAIL Technical Report
126, Uppsala University, Computing Science Department, July 1996.
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o M. Veanes. The undecidability of simultaneous rigid E-unification
with two variables. To appear in Proceedings of Kurt Gddel Collo-
quium KGC’97, 1997.

e M. Veanes. On computational complexity of basic decision problems
of finite tree automata. UPMAIL Technical Report 133, Uppsala Uni-
versity, Computing Science Department, January 1997, Submitted.

e Y. Gurevich and M. Veanes. Some undecidable problems related to
the Herbrand theorem. UPMAIL Technical Report 138, Uppsala Uni-
versity, Computing Science Department, March 1997, Submitted.

e A. Degtyarev, Y. Gurevich, P. Narendran, M. Veanes, and A. Voron-
kov. The decidability of simultaneous rigid E-unification with one
variable. UPMAIL Technical Report 139, Uppsala University, Com-
puting Science Department, March 1997, Submitted.

The order of the authors is purely alphabetical and is not intended to indi-
cate the extent of the individual contributions. The main ideas behind some
of the results that are presented in the thesis have been obtained in collab-
oration with some of the coauthors. However, all the written proofs and
the presentation of the material in this thesis is the result of the individual
effort of the author of the thesis.



CHAPTER 2

PRELIMINARIES

2.1 FIRST-ORDER LOGIC

We follow Chang and Keisler [18] regarding first-order languages and struc-
tures. We always assume, unless otherwise stated, that the first-order lan-
guages that we are dealing with are languages with equality and contain
only function symbols. A signature is a collection of function symbols with
fixed arities. A function symbol of arity 0 is called a constant. We use X or
I, possibly with an index, to denote a signature. In general, a signature is
assumed to contain at least one constant.

Terms and Formulas

Terms and formulas are defined in the standard manner. We refer to terms
and formulas collectively as ezpressions. In the following let X be an ex-
pression or a set of expressions.

We write ¥(X) for the signature of X, i.e., the set of all function sym-
bols that occur in X and V(X) for the set of all free variables in X. Let
Z = x1,%2,...,%, be a sequence of distinct variables such that V(X) C
{z1,...,2p}. We use the metanotation X (&) to indicate that V(X) C
{x1,29,...,2,}. Let £ = ty,ty,...,t, be a sequence of terms, then X (f)
denotes the result of replacing each (free) occurrence of z; in X by ¢; for
1 <4 < n. By a substitution we mean a function from variables to terms.
We use 6, possibly with and index, to denote a substitution. We write X6
for X(0(x1),0(z2),...,0(xy))-

We say that X is closed or ground if V(X) = (. By Ty or simply 7 we denote
the set of all ground terms over the signature ¥. A substitution is called
ground if its range consists of ground terms. A closed formula is called a
sentence. Since there are no relation symbols all the atomic formulas are
equations, i.e., of the form ¢ =~ s where t and s are terms and ‘x’ is the
formal equality sign.
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First-Order Structures

First-order structures are (in general) denoted by upper case gothic letters
like 2l and 8. A first-order structure in a signature Y. is called a X-structure.
For f € ¥ we write f% for the interpretation of f in 2.

For a sentence or a set of sentences X, 2 = X means that the structure
2 is a model of or satisfies X according to Tarski’s truth definition. A set
of sentences is called satisfiable if it has a model. If X and Y are (sets of)
sentences then X |= Y means that Y is a logical consequence of X, i.e., that
every model of X is a model of Y. We write |= X to say that X is valid,
i.e., true in all models.

By the free algebra over ¥ we mean the Y-structure 2, with universe Ty,
such that for each n-ary function symbol f € ¥ and ty,...,t, € Ty,
Aty .. tn) = f(t1,...,t,). We let Tx also stand for the free algebra
over X.

Let E be a set of ground equations. Define the equivalence relation =g on
T by s=gtiff E|=s~t. By Ty/g (or simply 7,5) we denote the quotient
of Ts over =. Thus, for all s,t € T,

TeEs~=t & EpEs~t

We call T/g the canonical model of E.

2.2 SIMULTANEOUS RIGID E-UNIFICATION

A rigid equation is an expression of the form E K s =~ ¢t where E is a finite
set of equations, called the left-hand side of the rigid equation, and s and ¢
are arbitrary terms; the equation s = t is called the right hand side of the
rigid equation. A system of rigid equations is a finite set of rigid equations.
A substitution @ is a solution of or solves a rigid equation E K s =~ t if

E () ef) = s0 =16,

ecE

and € is a solution of or solves a system of rigid equations if it solves
each member of that system. The problem of solvability of systems of
rigid equations is called simultaneous rigid E-unification or SREU for short.
Solvability of a single rigid equation is called rigid E-unification.

2.3 TERM REWRITING

In some cases it is convenient to use ground term rewriting techniques at
metalevel [42, 78] when reasoning about equations. Let — be a binary
relation on terms. We define first some well-known properties of —. The
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reflexive and transitive closure of —» is denoted by —. The relation —»
is moetherian if there exists no infinite chain

tp —>ty —> - —— b —>

and confluent if s 25 t; and s = to imply that there is a t such that
t1 — t and ty — t, The relation — is a rewrite relation if s — t
implies that u[sf] — wu[tf] for all terms s, ¢t and u, and substitutions 6,
where u[t] stands for u with certain subterm occurrence .

Let E be a finite set of equations. We say that E is a rewrite system with
respect to an ordering > on terms if we have s > t or ¢t > s for all equations
s~ tin E. We sometimes write E~ if F is a rewrite system with respect
to >, to emphasize the ordering. An equation s =~ t of E is a rule s — t
of E7 if s = t. By —» g+ or simply —> g we denote the smallest rewrite
relation for which s — g ¢t whenever s — ¢ is a rule of E. We sometimes
write — for — g when F is clear from the context. A term s is said to be
in normal form or irreducible with respect to E if there is no term ¢ such
that s — g t. If a term ¢ has a unique normal form with respect to E then
this normal form is denoted by ] g.

Let E be a rewrite system. Then E is noetherian if the corresponding
rewrite relation — g is noetherian, and E is confluent if the corresponding
rewrite relation — g is confluent. A rewrite system E is convergent or
canonical if it is both noetherian and confluent. Convergent systems enjoy
the property that each term has a unique normal form. Moreover, if we
want to decide whether an equation s = t logically follows from a set E of
equations, and FE is a convergent rewrite system, then it is enough to see if
slp = tlg (cf [42, Section 2.4)), i.e.,

EEs~t & slp=tls.

To construct a canonical rewrite system from a given set E of equations,
while preserving the set of logical consequences of F, is the main motivation
behind the completion procedure [86]. It is well-known that for any set of
ground equations there exists an equivalent canonical rewrite system [92].
Moreover, such a system can be constructed in O(n?) time [51, 55] or even
in O(nlogn) time [138]. A simple property that guarantees that a ground
rewrite system E is canonical is that it is reduced [138], i.e., for each rule
[ = rin E, [ is irreducible with respect to E \ {{ — r} and r is irreducible
with respect to F.

It follows by Birkhofl’s completeness theorem for equational logic [12] that,
given a set of ground equations E and and a ground equation s = t, s = t is
a logical consequence of E iff s can be reduced to t by using the equations
in E as rewrite rules in both directions.
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2.4 FINITE TREE AUTOMATA

Finite tree automata, or simply tree automata from here on, are a gener-
alization of classical automata. Tree automata were introduced, indepen-
dently, in Doner [43] and Thatcher and Wright [143]. The main motivation
was to obtain decidability results for the weak monadic second-order logic
of the binary tree. Here we adopt the following definition of tree automata,
based on rewrite rules [20, 22].

» A iree automaton or TA A is a quadruple (@, %, R, F') where

— () is a finite set of constants called states,
— Y is a signature that is disjoint from @,

— R is a set of rules of the form f(¢q1,...,¢.) = ¢, where f € &
has arity n > 0 and ¢,q1,...,q, € Q,

— F C Q is the set of final states.

A is called a deterministic TA or DTA if there are no two different
rules in R with the same left-hand side.

Note that if A is deterministic then R is a reduced set of ground rewrite
rules and thus canonical [138]. Tree automata as defined above are usu-
ally also called bottom-up tree automata. Acceptance for tree automata or
recognizability is defined as follows.

» The set of terms recognized by a TA A = (Q, X, R, F) is the set
T(A)={reTs|(@FqeF)T rq}.

A set of terms is called recognizable if it is recognized by some TA.

Two tree automata are equivalent if they recognize the same set of terms.
It is well-known that the nondeterministic and the deterministic versions
of TAs have the same expressive power [43, 60, 143], i.e., for any TA there
is an equivalent DTA. For an overview of the notion of recognizability in
general algebraic structures see Courcelle [21] and the fundamental paper
by Mezei and Wright [103].

2.5 CLASSICAL AUTOMATA THEORY

We use some notions from classical automata theory and follow Hopcroft
and Ullman in that respect [76]. Characters are treated as constants, in the
usual case.
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Finite Automata

We use the following formal definition of a DFA.

» A deterministic finite automaton or DFA M is a 5-tuple (Q, %, 6, qo, F')
where
— ( is a finite set of states,
— X is a finite input alphabet disjoint from @,
—0:0Q x X — Q is the transition function,
— qo € @ is the initial state, and
— F C Q is the set of final states.

The transition function can be partial, i.e., undefined for certain elements
of @ x X. Let M = (Q,%,0,q0,F) be a DFA. The language accepted by M,
denoted by L(M), is the set of all strings ajas ...a, € £*, n > 0, such that
there exists a sequence ¢i,¢q2...,q, of states such that ¢, is a final state
and §(gj—1,a;) = gj for 1 < j <n.

Turing Machines

We use the following formal definition of a Turing machine.

» A nondeterministic Turing machine M is a 7-tuple
(Q: Ein: Z: 67 qo0, b: F):
where

— ( is a finite set of states,
— Y is a finite set of tape symbols disjoint from @,

— b € X is a tape symbol called blank,

Yin is a subset of X called the set of input symbols,

— 0 is a mapping from @ x ¥ to subsets of @ x ¥ x {left,right},
and is called the transition function of M,

— qo is the initial state of M, and
— F C Q is the set of final states.

M is deterministic if the range of § consists of singelton sets, in which
case we consider ¢ as a mapping from @ X X to @ x ¥ x {left,right}.
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An instantaneous description or ID of M is any string aqf where ¢ € @
and o € ¥* and S is a string in ¥* not ending with a blank. The intended
meaning of an ID agf of M is to give a complete description of a possible
execution state of M: ¢ is the state of the machine, o corresponds to the
contents of the tape from the left edge of the tape to (but not including)
the symbol pointed to by the tape head, and [ is the rest of the contents of
the tape terminated by the rightmost nonblank. So any “snapshot” of M
during its computation is some ID (there can of course exist ID’s that can
never be reached by M).

A move is a pair (v, w) of ID’s such that w follows from v according to the
transition function of M. The binary relation of all moves of M is denoted
by ks, and its transitive and reflexive closure by 3,. The tape head can
either move to the right: (assuming (p, b, right) € d(q, a))

o Ja] B [a[b] B
T Fm T
q p

or to the left: (assuming (p, b, left) € 6(q,a))

o |cla] B [a—[c[b] B
T Fm T
q p

The language accepted by M is the following set of strings:
L(M) ={weZX|qguwkty apb where p € F and app is an ID }.

The notions of valid (and invalid) computations [76] of a TM are a powerful
tool in proving undecidability results about context free languages.

» A wvalid computation of M is a nonempty sequence (w1, ws, ..., wy)
such that

— each w; is an ID of M, i.e., w; € T*Q(X* \ £*b) for 1 <i < mn,
wy is the initial ID, one of the form gov where v € X},
— wy, is a final ID, w,, € T*F(X* \ £*D),

— w; Far wigpq for 1 <i < n.

We use the following obvious relationship between valid computations and
the language of M:

There is a valid computation of M with initial ID qov iff v € L(M).
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Complexity Classes

We use the following computational complexity classes and corresponding
acronyms in the thesis. In some cases there is no unanimous notation for
a class in the literature. In particular, the class EXPTIME is denoted by
DEXPTIME by some authors (to distinguish it from NEXPTIME) or by
DEXP, and the class NL is sometimes denoted by NLOGSPACE or NLOG.
Some authors prefer to write PTIME instead of P. We use the following
shorthands.

NL The class of problems that can be solved nondeterministically within
logarithmic space.

P The class of problems that can be solved deterministically within poly-
nomial time.

NP The class of problems that can be solved nondeterministically within
polynomial time.

PSPACE The class of problems that can be solved within polynomial
space.

EXPTIME The class of problems that can be solved deterministically
within exponential time, i.e., within time 27(") where p is a polyno-
mial and n the size of the input.

We refer the reader to Papadimitriou [112] and Johnson [81] for precise
definitions and an extensive treatment of the subject. We establish some
new P-completeness, PSPACE-completeness and EXPTIME-completeness
results in the thesis. In the first case the reductions are within logarithmic
space, and in the last two cases the reductions are in P, although we believe
that all our reductions can be carried out within logarithmic space but we
do not prove it formally. So we speak about P-completeness with respect
to logarithmic space reductions and PSPACE-completeness or EXPTIME-
completeness with respect to polynomial time reductions.



CHAPTER 3

UNDECIDABILITY OF SREU

3.1 INTRODUCTION

The first undecidability proof of SREU was given by Degtyarev and Voron-
kov [34]. Before that result, there were several faulty proofs of its decidabil-
ity, e.g. [52, 66]. In general, this quite unexpected undecidability result had
a serious impact on the automated theorem proving community, as several
effectively equivalent fundamental decision problems in automated reason-
ing in classical logic with equality turned out to be undecidable [30]. We
return to this in the next chapter.

Here we show that four or even three rigid equations with ground left-hand
sides and two variables in a signature with one binary function symbol an no
other nonconstant function symbols, already imply undecidability. In fact,
we give a uniform representation of all the recursively enumerable sets by
using just three or four rigid equations with these properties. As a corollary
we get that the undecidability of SREU holds already in very restricted
cases.

At the end of this chapter we give a brief summary of the other proofs.
The main idea behind our proof is based on a technique that was used by
Plaisted [116] in a similar context, we refer to the technique as shifted pairing
after Plaisted. The idea is to express repetition explicitly by a sequence of
strings (like IDs of a TM). The first string of the sequence fulfills some initial
conditions, the last string some final conditions and another sequence is
used to check that the consequtive strings of the first sequence satisfy some
relationship (like validity of a computation step).

A similar technique was used already by Goldfarb in the proof of the unde-
cidability of second-order unification [64], which is by reduction of Hilbert’s
tenth problem, and later, adopted from that proof, also in a proof of the
undecidability of SREU by Degtyarev and Voronkov [37], which is also by
reduction of Hilbert’s tenth problem. In this proof the key point is to ex-
plicitly represent the “history of a multiplication process”.



3.2. OVERVIEW OF THE CONSTRUCTION 19

We note also that shifted pairing bears certain similarities to the tech-
nique that is used to prove that any recursively enumerable set of strings is
given by the intersection of two (deterministic) context free languages [76,
Lemma 8.6].

3.2 OVERVIEW OF THE CONSTRUCTION
We consider a fixed Turing machine

M = (QM: Yin, Etape: 6: 9, b, {qacc}):

and assume, without loss of generality, that the final ID of M is simply
Gacc 1-€., the tape is always empty when M enters the final state, and that
qo 7 qace- Let also v be a string over the input alphabet of M. We effectively
construct a system S (z,y) of four rigid equations:

quzw(xay) = {Sid(il?), SIHV(ZJ): Sl(xay)a 52($7y)}
where
Sid(l') = Eid l_v c{d « T = Cid,
Sv(y) = Emy F hy ¥ = Cmv,
Sl(way) = Hl 'szgh
Sa(x,y) = IMakaxmty,.y

where all the left-hand sides are ground, ¢y, ciq, cl,, and cmy are constants,
‘. is the only nonconstant function symbol in the system and t, is a ground
term that represents the initial ID of M with input string v. We prove that
M accepts v iff SM is solvable. This establishes the undecidability result
because all the steps in the construction are effective.

The main idea behind the rigid equations is roughly as follows. Assume
that there is a substitution 6 that solves the system.

e From 60 being a solution of Siq(z), it follows that z6 represents a
sequence (vg,v1,...,Us) of IDs of M, and v, is the final ID of M.

e From 6 being a solution of Sy (y), it follows that y6@ represents a
sequence

((wo,wg),(wl,wf),...,(wn,w;’;))
of moves of M, i.e., w; Fp w?‘ for 0 <i <n.

e From 6 being a solution of Sy (z,y) it follows that n = m and v; = w;
for 0 <i<m.

e And finally, from 6 being a solution of Ss(z,y) it follows that vg = v
andvi:wj_l for 1 <i<m.
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S == i
Co] | L | (O - B

(vo, v1) (v1,v2) (Vn—2,Vn-1) (Un-1,0n)  (Un,€)

Figure 3.1: ({vo,v1), (v1,v2),...,{Un,€)) is a “shifted pairing” of (vo,v1,...,Vn).

The combination of the last two points is the so-called “shifted pairing”
technique. This is illustrated by Figure 3.1. The outcome of this shifted
pairing is that zf is a valid computation of M with input v, and thus M
accepts v. Conversely, if M accepts v then it is easy to construct a solution
of the system. We now give a formal construction of the above idea.

3.3 WORDS AND TRAINS

Words are certain terms that we choose to represent strings with, and trains
are certain terms that we choose to represent sequences of strings with. We
use the letters v and w to stand for strings of constants. Let . be a binary
function symbol. We write it in infix notation and assume that it associates
to the right. For example t; . t3 . t3 stands for the term .(¢1,.(t2,3)).

» We say that a (ground) term ¢ is a c-word if it has the form
A1 A2 0" aQpC

for some n > 0 where each a; and ¢ is a constant. A word is a c-word
for some constant c.

We use the following convenient shorthand notation for words. Let ¢ be the
word @ « @2 «---«ay . c and v the string ajas - - - a,. We write v.c for ¢t and
say that t represents v.

» A term ¢t is called a c-train if it has the form
tl-tQ-'--.tn.C

for some n > 0 where each ¢; is a word and ¢ is a constant. If n =0
then ¢ is said to be empty. The t;’s are called the words of t. A train
is a c-train for some constant c.

By the pattern of a train

(Ul-Cl)-('UQ-CQ)-"‘-(UH-CH)-C
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we mean the string c;co - - - ¢,,. Let V = {V;};c; be a finite family of regular
sets of strings over a finite set ¥ of constants, where I is a set of constants
disjoint from ¥. Let U be a regular set of strings over I and let ¢ be a
constant not in ¥ or I.

» We let Tn(V, U, ¢) denote the set of all c-trains ¢ such that the pattern
of tis in U and, for ¢ € I, each i-word of ¢ represents a string in V;.

Example 3.1 Consider the set Tn({V,, V}, V.},ab*c, A). This is the set of
all A-trains ¢ such that the first word of ¢ is an a-word representing a string
in V,, the last word of ¢ is a c-word representing a string in V. and the
middle ones (if any) are b-words representing strings in V. a

We say that a set of trains has a regular pattern if it is equal to some set
Tn(V,U,c) with V, U and ¢ as above. The main result of this section is the
following theorem.

Theorem 3.1 (Train Theorem) Any set of trains with a regular pattern
is recognizable and a DTA that recognizes this set can be obtained effectively.

The construction of the rigid equations Siq and Sy, follows easily from the
Train Theorem. We believe that this theorem is of independent interest. For
example, several theorems that are used in a similar context in Plaisted [116,
Theorems 8.2-8.11], can be stated as corollaries of Theorem 3.1. Before we
prove the theorem we state the following simple lemma. This lemma follows
from the wellknown fact that all regular sets of strings are recognizable
(cf [60]), assuming an appropriate representation of strings.! For any string
v, we write v" for v in reverse and for a set of strings V we let V' = {v" |
veV}

Lemma 3.1 LetV be a regular set of strings over a set & of constants and
¢ a constant not in X. Then {v.c|v € V'} is recognizable and a DTA is
obtained effectively from V.

Proof. Let M = (Q, %, 4, qo, F) be a DFA that accepts the reverse of V', or
V', (clearly M exists, cf [76, p 281]). For each a € ¥ let @ be a new state.
Let A be the DTA (Qa,[, Ra, Fa) where

Qa = QU{L~1|(1€E},

r = 2u{.c},
Ry = {a.q—pldlga)=p}lU{a—alaceX}U{c— q},
Fy = F.

! Traditionally a string ajas - - - ay, is represented by a term ay (- - - a2(a1(qo))), i.e., the
symbols of the alphabet are treated as unary function symbols, and the term is written
using the reverse notation gpaiaz---an.
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We must prove that, for all ¢ € Tr,
t =g, qforsomeq € F & t=uv.cforsomevec L(M).
Let us consider the direction ‘<=’ first. So assume that
V=0, 10y - -ap € L(M)",

ie, ag- - ap—2an—1 € L(M). So, there exist ¢1,¢2...,¢, € @, such that
gn € F and the following holds:

d(qo,a0) = qu,- -, 0(qn—2,n—2) = qn-1, 0(qn—1,an-1) = qn.
But then we can, by the definition of R4, construct the following reduction:

VeC=0Qp_10p_2- -GGy C —> Ap_10p_2- G100 Qo
— Ap—1Gp—2-" Q1. q1
— Gp—1+qn-1
— gqn €F,
which shows that v.c € T'(A). The direction ‘="’ follows also easily. First
note that any term ¢ in 7p that reduces to a final state ¢ with respect to R4

must be a ¢-word that represents some string v over 3. From the definition
of R4 follows then, like above, that v must be in V. X

We now prove the Train Theorem. For a more detailed proof see Veanes [147,
Theorem 3.8].

Proof. Let V, X, U, I, and ¢ be like above. For each i € I,let ¥; = XU{.,i}
and let A; = (@4, X;, R;, F;) be a DTA given by Lemma 3.1 such that

T(A;) ={v.i|veV;}.
Let . = T U {.,c} and let A, = (Q¢, X¢, R, F;) be a DTA given by
Lemma 3.1 such that

T(A)={u.cluelU}.

Assume, without loss of generality, that all the DTAs have mutually disjoint
sets of states, except for the states a for a € ¥ that are the same in all the
A;’s for i € I. In fact, one can think of any constant a € ¥ and the
corresponding state a as being the same element.

Let now R' be the set of rules obtained from R. by relpacing, for all i € I,
each rule 7.p; — po in it with the set of rules {qg.p1 = p2 | ¢ € F; }, and
discarding the rule ¢ — 7. Let now R be the following set of rules:

R=|JRiUR.

il
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Note that R is a reduced set of rewrite rules due to the disjointness assump-
tions and the assumption that the states a for a € ¥ are the same in all
the DTAs. We are now ready to define A as the DTA (Q,T, R, F..) where
'=XUTlIU{.,c}and

Q=Jiu@\{ilier}.

il
We can now prove that
T(A) =Tn(V,U,c).

Let use consider the direction ‘C’ first. Assume that t € T'(A4), i.e., t reduces
to some state ¢ in F,. via the rules in R. This reduction is only possible if
it has (in principle) the following form:?

t—SRqIG2 " GnsC— R q.

where each ¢ is in Fj;, for some iy € I. Furthermore, by definition of R’
and A., we know that iyi5---i, € U. The first part of the reduction is
possible only if

t:tl-tz-"'.tn.c,

where each t; reduces to g;. Note that, due to the disjointness properties
of the DTAs, only the rules in R;, can be used in the reduction # = q,
and thus ¢, € T(A;,). Hence each t; has the form v . for some v € V;, ,
and the pattern of ¢ is iyis - - - i,,, which we know is in U. This proves that
t€ Tn(V,U,c).

Let us now consider the direction ‘D’. So assume that ¢t = t1.t2 . -ty
where each ¢ is in T'(A;, ) for some iy, € [ and iyis---i, € U. It follows that
each t;, reduces with R;, to some g € F;, and thus ¢t reduces to qi1gs - - - gn.«cC.
By definition of R, q1q2 - - qn « ¢ Teduces to some q € F,. It follows that
t s ¢ for some ¢ € F, and thus t € T'(A). X

The following example illustrates the construction in the proof of the Train
Theorem.

Example 3.2 Let X = {0,1}, I = {a,b} and let A be a new constant. Let
V = {V;}ier where V, = 0*1 and V;, = 0*10*. Let U = bab*a. We construct
a DTA that recognizes the set Tn(V, U, A). Consider the following transition
diagrams of a DFA for V,":

O OB

2A formal argument can be given by using induction and proving some lemmas
first [147, Chapter 3].
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and of a DFA for V4":
0

@

By following the construction in Lemma 3.1 we get that the rules of A, and
Ay are as follows:

R, = {1—51,0=0,a—=q, 1.q1 =@, 0.q2 = @},
R, = {151,050, b—q3, 0.q3 g3, 1.qs = qs, 0uqu — qa}.

For the set U" we can consider a DFA with the following transition diagram:

aab
O e e O D)

From this we can extract the DTA A, with the following set of rules:
Ry = {a—3b—b A—p,
&.p1 = P2, Dupy = P, Bepa = P3, bapz = pa}-
Now, following the construction in the Train Theorem, we get that the DTA
A has the following set of rules. First, a set R’ is constructed by removing
the first two rules in Ry and replacing & and b with ¢ and g4, respectively.
Second, R is taken as the union of R., R, and R’ . So R is the following
set of rules:
R = {1-51,0-20,a=q,1.q10 = ¢, 0.q2 = @} U

{b—¢gs,00q3 2 a3, 1g3 2 q4, 00qu > @u} U

{A = p1, @2ep1 = P2, queP2 = P2, q24P2 = P3, qaaP3 —> Pat.
Let us consider a reduction in R. Let us write a A-train t1 «to«---+t, A as
[t1,t2,...,tp]. Take for example

t=1[010.b, 001.a, 1.b, 01.al.

The pattern of t is baba which is in U. Let us see how t reduces to py.

t —r [010.q3, 001.q1, 1.g3, Ol.qi]
s [01.g3, 00.q2, @i, O.qo]
—r [0eqs, Ouqe, a1, @]

—r (. @ @, @]

—R' (49244G2 « D1
*

— R (4.
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3.4 REPRESENTING IDS AND MOVES

In this section we show how to construct the rigid equations Sjq(x) and
Smv(y). Our main tool is the Train Theorem. In doing so, we use the
following observation, that relates rigid E-unification with recognizability.

Lemma 3.2 Let A= (Q,X,R,F) be a DTA, f a binary function symbol,
and ¢, and ¢y constants not in Q or X.. There is a set of ground equations E
such that for all 8 with range Ty, 6 solves E'ly f(c1,x) = co iff 6 € T(A).

Proof. Let E = RU{ f(c1,q9) = ¢c2 | ¢ € F}. It is easy to check that E
is a reduced rewrite system and thus canonical, and since cs is irreducible
with respect to E we have in particular for all £ € Ty, that

E':f(cl,t)NCQ = f(Cl,t) —*>E Co
& t—3pqfor some g€ F
and so the statement follows. X

Let us assign arity 0 to all the tape symbols (Xape) and all the states (Qar)
of M. Let X be the following signature:

Y= Etape U QM ) {607617A7'}7

where eg, e; and A are new constants.

Representing ID Sequences

Recall that an ID of M is any string in X¢, .Qm X, that does not end
with a blank (5). We represent IDs by e-words, where ¢ is one of eg or e;.
In particular, the final ID is represented by the word @acc « €1 and IDs in
general are represented by corresponding eg-words.

» Any train of the form

(vos€g)s(V1-€0)s(Vau€g)e s u(Upe€p)s(Gaccer) A,

where n > 0 and each v; is an ID of M, is called an ID-train.

It is clear that the set of all IDs and the set consisting of just the final ID
are regular sets. The set of patterns of the ID-trains is given by the regular
expression epege;. By using the Train Theorem, let

Aiq = (Qia, X, Riq, Fia)

be a DTA that recognizes the set of all ID-trains. Let ¢, and ciq be two
new constants and, by using Lemma 3.2, let Sjq(x) be such that,

{28 € Tx | 8 solves Siq(z) } = T(Aiq)-
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Representing Move Sequences

Let cup be a new constant for each pair of constants a and b in the set
Yiape U Qnr. Let also ez and A’ be new constants. Let now I' be the
following signature:

T'={cuw|a,be€ Tape UQn }U{ea, A',.}

Note that . is the only symbol that occurs in both ¥ and T'.

For and ID w of M we let w' denote the successor of w with respect to
the transition function of M. For technical reasons it is convenient to let
qi.. = €, i.e., the successor of the final ID is the empty string. The pair
(w,w™) is called a move. Let w = ajaz -+ an, and wt = byby - - - by, for some
m >1and n > 0. Note that n € {m —1,m,m + 1}. Let k = max(m,n). If
m < nlet a = b and if n < m let by, = b, i.e., pad the shorter of the two
strings with a blank at the end.

> We write (w,w™) for the string cu,p,Casbs * * * Carp, and say that the
es-word (w,wT).es represents the move (w, w™). By a move-train we
mean any A’-train
t=tgeti e - uty A,

such that each t; represents a move and n > 1.

Example 3.3 Take %;, = {0,1}, and let q,p € Q. Assume that the
transition function § of M is such that, when the tape head points to a
blank and the state is q then a 1 is written to the tape, the tape head
moves left and M enters state p, i.e., 6(q,b) = (p,1,L). Imagine that the
current ID is 00q, i.e., the tape contains the string 00 and the tape head
points to the bank following the last 0. So (00g, 0p01) is a move. This move
is represented by the word cop « Cop = Cq0 = Cp1 » €2, 1.€., (00q, 0p01) . €. O

It is straightforward to see that the set of all strings {(w,w™") where w is an
ID, is a regular set. The patterns of all move-trains are given by the regular
expression esesel. By using the Train Theorem let

Amv = (va; F; Rmv; Fmv)

be a DTA that recognizes the set of all move-trains. Assume also that Q,y
and Qiq are disjoint. Let ¢, and c¢yy be new constants and, by using
Lemma 3.2, let Sy,,v(y) be such that,

{y8 € Tr | 8 solves Sy (y) } = T(Amv).
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3.5 FINAL CONSTRUCTION

In this section we finish the construction of SM and prove the undecidability
results. The only essential components that we have not defined yet are II;
and IIy. We let II; and II> be the (sets of equations corresponding to the)
following rewrite systems. The differences between II; and Il are indicated
with frames.

H1 {cab%@|a,b€ZtapeUQM}U
{61—)60, €y — €y, A’—)A, 6.60—)60}
M, = {cu—[b]]a,be€ SipeUQn}U

{61 — €p, €3 — €y, A’—)A, 6.60—)60, }

It is easy to see that both sets are in fact reduced sets of ground rewrite
rules and thus canonical. We can now state the main theorem of this section.
For any input string v for M let the term ¢, in the system S be the word
Qo s €9, i.e., t, represents the initial ID of M with input v.

Theorem 3.2 SM(x,y) is solvable iff M accepts v.
Before proving the theorem we state and prove some useful lemmas.

Lemma 3.3 If 6 solves Si(z,y) and S2(z,y) then x6,y8 € Txur.

Proof. We prove by induction on the size of xf that if 8 solves the following
system, where tg is any term in Tx_r, then 20, y6 € Tsur.

{Hllgxzy, Hg'v;l?ztg.y}

The statement follows then by choosing o = qov - €p.

So consider a fixed tp and assume that 6 solves the above system. If z6
is a constant then so is its normal form in I, say zflm, = ¢, and so
to.yf ——1, c. But then ¢ € ¥ and consequently 26, y8 € Tyur. The cases
when z6 is not a constant, but either 6|, or x6)m, is a constant, are also
immediate.

So assume that 6 = t1 .t and (¢1 « t)du, = t1dun; « td, for i € {1,2}. So
t1dm, = tod, and thus t; € Txyur since ty € Teur; also

It follows from II; |= t1 .t = yf that yf = s; . s for some terms s; and s
such that
I Et=s
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and II; = s; = t;. From the latter follows that s; € Tuur because t; €
Tsur. Let now €' be such that 26" =t and yf' = s. So 8’ solves the system

{Iike=y, Ibhkz=s .y},

and it follows by the induction hypothesis that ¢ and s are in Ty, and
consequently, so are t; .t = zf and s1 .5 = yb. X

Lemma 3.4 If 0 solves SM(z,y) then 20 € Ty, and y6 € Tr.

Proof. Assume that 6 solves SM(z,y). Obviously 20 € Tsug,, since 6
solves Sig(z). By Lemma 3.3 we know also that z6 € Tsur. But X\ {.},
'\ {.} and Qiq are mutually disjoint, and thus zf € Ty;. A similar argument
shows that y8 € Tr. X

Lemma 3.5 If 6 solves SM(z,y) then x6 is an ID-train and y8 is a move-
train.

Proof. Assume that 6 solves SM (z,y). By Lemma 3.4 follows that 26 € Ty
and y6 € Tr. The statement follows now by the definition of the DTAs Ajq
and Any. X

We can now prove Theorem 3.2.

Proof. We prove that SM(z,y) is solvable < M accepts v.

Proof of ‘=’ Let # be a substitution that solves SM (z,y). By using Lem-
ma 3.5 we get that xf and y# have the following form:

0 = (vo«€p)e(V1+€0)u-- s (Um_1:€0)s(Um€1)a A
y0 = ((wo,wg)es)s ((wi,w])uez)u o ((wy, w)) es) A
where m > 1, n > 1 and all the v;’s and w;’s are IDs of M and v,;, = Gacc-

Since 6 solves Si(x,y), it follows that the normal forms of 6 and yf under
II; must coincide. But

20, = (vo-€o)s(viuep)e v (Um—1s€0)e(Um=€o)sA,

y0li, = (wo.e€p)«(wiaep)e--u(wWp_1-€0)s(wyaep).A.

Note that each term (w;, wj') « ez reduces first to w} . ep where w} = w; or
w} = w;b. The extra blank at the end is removed with the rule 5.ep — eg.
So

n=m, Up=(qacc, Ui=w;(0<i<n). (3.1)
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Since 6 solves Sz (z,y) it follows that the normal forms of z6 and (gov.eo).yé
under IIs must coincide. But

20, = 20lm,

because z6 does not contain any constants from I' and the rule eg . A — A
is not applicable. Moreover, since wy, = ¢acc, it follows that w,;} = € and
thus (w,,w;") .eg = ¢4,..5+ €0. But

(anccb . 60) A —o, (5 . 60) A —m, e0. A —m, A

The normal form of (gov . €p) « y8 under II, is thus

(qov-eg) « (wg «eo) « (Wi vep) e v (Wl | veg). A

It follows that vg = qov, i.e., vg is the initial ID of M with input v, and
wi =i (0<i<n). (3.2)

From (3.1) and (3.2) follows now that (vg,v1,...,v,) is a valid computation
of M, and thus M accepts v.

Proof of ‘<=” Assume that M accepts v. So there exists a valid computation

(vo,v1,...,uy,) of M where vg = qov, v, = Gace and v;r =041 for 0 <i < n.
Let 6 be such that z is the corresponding ID-train and y# the corresponding
move-train. It follows easily that € solves Sas(x,y). X

The shifted pairing technique that is used in Theorem 3.2 is illustrated in
Figure 3.1. So the following result is an immediate consequence of Theo-
rem 3.2, because all the constructions involved with it are effective.

Corollary 3.1 (Degtyarev—Voronkov) SREU is undecidable.

Furthermore, the following result (due to Plaisted [116]) is an immediate
consequence.

Corollary 3.2 (Plaisted) SREU is undecidable already if the left-hand
sides are ground.

Furthermore, we can sharpen this result as follows.

Corollary 3.3 SREU is undecidable if the left-hand sides are ground, there
are only two variables and four rigid equations and one binary function
symbol.
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Figure 3.2: The term ((c.¢).(c.c)).(((c.¢).c) . (cuc)).

The undecidability with two variables and four rigid equations seems like an
artifical extra condition, but in fact, it turns out to be an important special
case. One implication is that the provability problem for the 33-fragment
of intuitionistic logic with equality is undecidable (see Chapter 7). Another
important fact is that two variables are necessary to get undecidability.
If there is only one variable then SREU is decidable (see Chapter 6). In
the next section we show that already three rigid equations are enough to
imply undecidability. The case with two rigid equations is one of the few
remaining open problems.

Remark We can also note that one constant is already enough. One
can easily simulate any number of constants with just one constant ¢ and .,
e.g., as follows. Assume that we need at most 2* constants for some positive
integer k. Then the i’th constant can be simulated by the term correspoding
to the perfectly balanced binary tree of depth k 4+ 1 and with 2* + 1 leaves
such that the i’th vertex at level k is internal and all the others are external.
For example if k¥ = 3 then the fifth simulated constant would be the term
in Figure 3.2. It is easy to see that the above theorems and proofs remain
intact if each constant is replaced by the corresponding simulated constant.

3.6 MINIMAL CASE OF UNDECIDABILITY OF SREU

In this section we show that the two DTAs A;q and A, above can be
combined into one DTA A by using elementary techniques of finite tree
automata theory. By this way we reduce the number of rigid equations in
SM into three and obtain a sharper version of Corollary 3.3.

Let A= (Q',%X',R', F') be the the following DTA, where ¢ is a new state,

Q" = QuUQm U{g},

Y = YUT,

R, = RidURva{q1'q2_>q|Q1€-Fid7 qZEFmv}a
F' = {q}.
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By the disjointness conditions between Ajq and Ap, it follows that A is in-
deed a deterministic tree automaton, and thus R a canonical rewrite system.
It follows by elementary properties of tree automata that

T(A)={t.s|t € T(Ai), s€T(Any) }.
Let now 5'11}”(:6, y) be the following system of rigid equations:
S{)\/l(ﬂ?,y) = {R'Igg;.yzq, Sl(may)a SZ(xay)}

We can now prove the following result.
Theorem 3.3 S,ﬂ”(az,y) is solvable iff M accepts v.

Proof. By Theorem 3.2 it is enough to prove that for all 6,
0 solves SM(z,y) < 6 solves SM(x,y).

By Lemma 3.3 follows that we only need to consider 8 such that z6,y0 € Tx.
But, for all such 6,

REw.yd~q & 0.y g q
< zf.yf € T(A)
& 20 € T(Ajq) and y0 € T'(Anvy)
& 6 solves Sig(z) and Sy (y).

The rest is obvious. X

We can note that the above construction is very general, since the choice of
M and v is arbitrary. In particular, we can choose as M a universal Turing
machine M,. Let for example M, be the Turing machine that accepts the
universal language L, [76, Section 8.3],

L, = {{(M,v) | M is a Turing machine that accepts v },

where (M, v) is some encoding of the pair (M, v) that is carried out in some
fixed alphabet. The precise details of such an encoding are not relevant
here. We can now use the observation that the construction of R’, II; and
Il in SMv is independent of v and let SU(z,x,y) be the system SMe(x,y)
but with ¢, replaced by the variable z. So, for any Turing machine M and
input string v we have, by Theorem 3.3, that

A~

S%(t(n,v),T,y) is solvable & M accepts v

We conclude with the following sharpening of Corollary 3.3.

Corollary 3.4 SREU is undecidable already for some fized ground left-
hand sides, two variables and three rigid equations.
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3.7 UNDECIDABILITY PROOFS OF SREU

In this section we briefly summarize the main points in the other undecid-
ability proofs of SREU that have emerged since the problem was first [34]
found to be undecidable. The different proofs reflect the undecidable nature
of SREU more or less directly. The most transparent proof is probably by
reduction of second-order unification, which shows how closely these prob-
lems are related. The proof by reduction of Hilbert’s tenth problem is less
transparent, but reveals that one can express certain derivations with a
system of rigid equations.

Reduction of Monadic Semi-unification

The first proof of the undecidability of SREU [34] was by reduction of the
monadic semi-unification problem to SREU. This proof has its roots in [31]
where it is proved that the variable-bounded semi-unification problem® can
be reduced to SREU. Semi-unification was proved undecidable in Kfoury,
Tiuryn and Urzyczyn [85] and the monadic semi-unification was proved
undecidable in Baaz [2]. A semi-unification problem consists of a set of
expressions s; < t;, 1 < i < n, where s; and t; are terms. Its solution
consists of a substitution o and a set of substitutions 7;, 1 < ¢ < n, such
that 7;0s; coincides with ot;. In the monadic case each 7; is either empty
or involves exactly one variable.

The first step in reducing the monadic semi-unification to SREU is to give
a uniform (in n) presentation of this problem by a finite set of (simpler) ®-
unification problems. A ®-unification problem corresponds roughly to some
particular permutation (or guess) of n variables invoved in the 7;’s (there
are at most n! such guesses). It follows that ®-unification is undecidable.
A ®-unification problem is then reduced to SREU. This reduction is rather
technical, and it does not really reveal the reasons why SREU is undecidable.

Reduction of Second-Order Unification

The second proof of the undecidability of SREU by Degtyarev and Voron-
kov [33, 38], and probably the most straightforward one, is by reducing
second-order unification to SREU. The undecidability of second-order uni-
fication was proved by Goldfarb [64].

A second-order unification problem is the problem of deciding if a finite
set S of second-order equations is unifiable. A second-order equation is an
expression ¢t & s where ¢t and s are terms with possibly some (second-order)
variables in place of function symbols. One can assume, without loss of
generality, that all the equations in S are such that

3Decidability of the variable-bounded semi-unification problem is an open problem.
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1. either all variables in ¢ and s are first-order, or

2. that s = X(s1,...,5,) where all variables in all the s; and ¢ are
first-order and X is a second-order variable.

In the second case a second-order substitution § maps X to a term X6 where
the so-called “bound” variables w1, . . ., wy, (say @) may occur, meaning that
X0 corresponds to the A-abstraction A@j.X#. Now, 6 is a unifier of s ~ ¢
iff it is the case that if we replace w; in X6 by s;6, for 1 < i < m, then we
obtain t6.

The set S is reduced (roughly) to the following system of rigid equations [38,
Theorem 1]. The first case is simply reduced to the (rigid) equation k ¢ = s.
The second case is reduced to two rigid equations, the first one stating that
X is a term possibly containing new “constants” from @, the second one
stating that {w; =~ s1,...,wy, = sp} & X ~t, where all the w;’s are
constants.

This is actually just a reformulation of the original problem, and one readily
proves that S has a unifier if and only if this system of rigid equations is
solvable [38, Lemma 5].

Recently it was claimed that second-order unification is undecidabile already
when restricted to terms such that all arguments of second-order variables
are variable free [130].2 In the case of s above, this means that all the
s;’s must be variable free. If this claim is correct then the undecidability of
SREU with ground left-hand sides follows already from the above reduction.

Reduction of Hilbert’s tenth problem

In the year 1900 David Hilbert presented a list of 23 problems at a mathe-
matics conference in Paris. The tenth problem was to investigate whether
there is a general method for deciding if a diophantine equation has an inte-
ger solution or not. A diophantine equation is an equation p(z1,...,z,) =0
where p(Z) is a polynomial in variables Z with coefficients that are integers,
e.g., 3zy* —5x2+3 = 0 is a diophantine equation. The problem was proved
undecidable by Matiyasevich 70 years later [99].

As the third undecidability proof of SREU [37], Degtyarev and Voronkov
showed how to reduce Hilbert’s tenth problem to SREU. The proof is quite
short and the key argument [37, Lemma 6] lies in representing multiplication
with a system of rigid equations. The idea is to represent multiplication of
two positive integers k and [ as a list D of pairs, such that the first pair in
D is (0,0) the next (0 + k,0 + 1), the one after that (0 + &k + k,0+ 1+ 1)
and so on. The conditions on D are:

4The proof of this claim [130] is very complicated and we have not checked all the
details.



34 UNDECIDABILITY OF SREU

1. The first pair of D is (0,0).

2. For any two consequtive pairs (m,n) and (m',n') in D, m' =m + k
and n’ =n + 1.

3. The last pair of D has the form (z,!) for some z.

These conditions can be expressed by a system of rigid equations with two
lists of pairs (in the same spirit as shifted pairing). It follows that x = kl.
Goldfarb uses the same idea in his proof of the undecidability of second-
order unification [64].

Reduction of PCP

The Post Correspondence Problem or PCP over an alphabet X can be stated
as follows. Given (vy,ve,...,v;) and (wy,ws, ..., wg) as two sequences of
strings over X, is there a sequence i1,12,...,%,, m > 1, such that

Wi, Wiy, * =+ Wi, = Vjy Vi, *** j

m m

This is an undecidable problem [117]. A reduction from PCP to SREU is
given in Plaisted [116], where the shifted pairing technique is introduced
that we have used in our proof. The important implication is that SREU is
undecidable already with ground left-hand sides.



CHAPTER 4

THE HERBRAND SKELETON
PROBLEM

4.1 INTRODUCTION

One popular form of the classical Herbrand theorem [74] is this:

An existential formula AZp(Z) is provable if and only if there

ezist a positive integer m and ground substitutions 61, ...,0,, in
the language of ¢ such that the disjunction @81 V ---V b, is
provable.

The number m is called the multiplicity. Multiplicity one may not always
suffice. The following example was suggested by Erik Palmgren in a similar
context:

plz) = (e=0=zxr1l)Alcmrl=2z=0)

Clearly, ¢(0) V (1) is provable, but none of the formulas ¢(0), ¢(1) or (c)
is provable. An even simpler example is

() = PO)VP(1)= P(z)

where 0 and 1 are constants. Clearly (0) V (1) is provable but neither
1(0) nor (1) is provable. The Herbrand theorem suggests the following
approach to automated theorem proving. Given a formula ¢(Z), first guess
the multiplicity m, and then find the appropriate tuples of terms 1, ..., tm.
This gives rise to the following decision problem. Assume that there is at
least one constant in the language.

1. The Herbrand Skeleton Problem: Given a quantifier free formula ¢ and
a positive integer m, do there exist ground substitutions 6y,...,0,,
such that @by V ---V @b, is valid?
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The Herbrand Skeleton problem is effectively equivalent to any of the fol-
lowing six decision problems [30].

2. Formula Instantiation: the Herbrand skeleton problem with multi-
plicity one.

3. Matriz Instantiation: Given a matrix, is there a substitution that
makes every vertical path through that matrix inconsistent?

4. Ezistential Intuitionistic: Is a given existential formula provable in
intuitionistic logic?

5. Prenex Intuitionistic: Is a given prenex formula provable in intuition-
istic logic?

6. Skeleton Instantiation: Given a formula and a proof skeleton, is there
a derivation of that formula with the given skeleton?

Formula instantiation can be considered as the basic problem that underlies
all the other problems. Obviously, the Herbrand skeleton problem of any
given multiplicity m reduces to it simply by creating a disjunction of m
copies of the given formula.

In the case of logic without equality, all the above problems are decidable
and reduce to unification. In the case of logic with equality, all the above
problems are equivalent to SREU [30]. The undecidability of SREU [32,
34, 37, 38] thus implies that problems (1-7) are all undecidable. Note that
SREU had several false decidability proofs [53, 56, 66] before it was proved
undecidabile, and the problems (1-7) were believed to be decidable.

The Herbrand m-Skeleton problem is the Herbrand Skeleton problem with
fixed multiplicity m. Clearly, SREU is a special case of the 1-Skeleton
problem. Voda and Komara have proved that, for each multiplicity m,
the m-Skeleton problem is undecidable [151]. One important conclusion for
automated theorem proving, drawn in [151], is that there is no m for which
there exists an effective decision procedure that would tell us whether m
substitutions suffice to establish the provability of a given quantifier free
formula.

Actually, we had a hard time to understand the proof of Voda and Komara
until, finally, we convinced ourselves that they have a proof. We wondered if
there is a way to derive their result from the Degtyarev—Voronkov theorem.
It turns out that indeed there is such a way.

The main result of this chapter is that we show that SREU can be reduced
to m-Skeleton problem for any fixed m without adding new nonconstant
function symbols. As a corollary, we get a considerably shorter proof of the
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undecidability of the m-Skeleton problem. By using results proved in Chap-
ter 3, we can identify, for each multiplicity m, the minimal known fragment
of classical logic for which the Herbrand skeleton problem of multiplicity
m is undecidable. Our main tool is a logical theorem that we prove first:
the Partisan Corroboration Theorem. We believe that this theorem is of
independent interest.

At the end of this chapter we consider briefly an intriguing generalization
of the Herbrand Skeleton problem, suggested recently by Voronkov [157].

4.2 PRELIMINARIES

Atomic formulas and negated atomic formulas are called positive and neg-
ative literals respectively. A clause is a disjunction of literals. By a Horn
clause we mean a clause with exactly one positive literal.! A Horn clause is
written as F = s = t where F is a conjunction of equations, and s and ¢ are
terms. By a Horn formula we understand a conjunction of Horn clauses.

If 2 is a Y-structure and ¥/ C ¥ then 2A[Y' is the ¥'-structure that is
the reduction of 2 to signature ¥'. Let 2 and 8 be X-structures, 2 is a
substructure of 9B, in symbols A C B, if A C B and for each n-ary F' € 3,
FA = FB1A",

One easily establishes, by induction on terms and formulas, that if 2 is a
substructure of B then for all quantifier free sentences p, 2 = ¢ iff B = .

Recall that, for any set E of ground equations and for all ground terms s
and t,
TeEs~ct & FEpFsxt,

where 7, is the canonical model of E. Recall also that Birkhoff’s com-
pleteness theorem for equational logic [12] states the following in the case of
ground equations. Let E be a set of ground equations and s = t a ground
equation, then E = s = t iff s can be reduced to ¢ by using the equations
in E as rewrite rules in both directions.

4.3 SOME LOGICAL TOOLS

In this section we prove some logical properties that are used in the next
section. The main result is Theorem 4.1. The following proposition is
actually a consequence of Loé-Tarski theorem.? We say that two (sets of)
expressions X and Y are constant-disjoint if C(X)NC(Y) = 0.

Proposition 4.1 Let @; for ¢ € I, be pairwise constant-disjoint quantifier
free sentences. Then |=\/,.; i implies |= o; for some i € I.

!By a Horn clause we mean thus a strict Horn clause.
2Existential sentences are preserved under extensions.
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Proof. For i € I, let ¥; = X(p;) and let ¥ = (J; X;. Assume that \/,; ¢;
is valid and suppose (by contradiction) that F£ ¢; for all i € I. Then there
is (for each i € I) a ¥;-structure 2; such that 2; = —p;. Without loss of
generality, take all the A; to be pairwise disjoint.

We now construct a X-structure 2 such that 2; C A[Y; for i € I. First let
A= UiEI A;. For each i € I and constant ¢ € L; let ¢® = ¢%i. For each n-

ary function symbol f in ¥ define f% as follows. For all @ = a4, ...,a, € A,
DI PPN
A, | fR(@), ifde A;
fa) = { ay, otherwise.

It is clear that 2 is well-defined because of the disjointness criteria and that
A; CAMY; for i € 1. Hence AE; | —¢;, and thus 2 | —p; for each i € 1.
But this contradicts that = \/,c; @i X

If we drop the constant-disjointness criterion in Proposition 4.1, then of
course the proposition is false. A simple counterexample is

E0~1V-(0~1).

We state now some other obvious but useful propositions. Proposition 4.2
is an easy corollary of Birkhoff’s completeness theorem.

Proposition 4.2 Let t and s be ground terms and let E and E' be sets of
ground equations such that C(E") NC(E,s) = 0, then:

1. fEEUEEt=sthen El=t~s.
2. If E =tws then ¥(t) C X(E,s).

Proof. Assume that E' UE =t ~ s. By Birkhoff’s completeness theorem
we know that s can be rewritten to ¢ by using E'UE as a set of rewrite rules.
So there is a sequence of terms sg, S1,...,S,_1,S, Where so = s, s, =t and
s; is rewritten to s;41 by using some rule in E' U E, for 0 < i < n. By
induction on i (for i < n) follows that X(s;) C X(E,s) and only a rule
from E can be used to rewrite s;. Part 1 follows by Birkhoff’s completeness
theorem and part 2 follows immediately (take E' = (). X

For a finite set E of equations we write E also for the corresponding conjunc-
tion of equations and let the context determine whether a set or a formula
is meant.

Proposition 4.3 Lett and s be ground terms and E' and E sets of ground
equations such that E is finite and C(E")NC(E,s) = 0. Then

TipvelE(E=trs) = E(E=t=xs).
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Proof. From 7/pup F (E = t = s) follows immediately that 7/pup
t ~ s and thus E'UE =t~ s. Hence E =t = s by Proposition 4.2, i.e.,
E(E=t=s). X

We use the following definitions. Let ¢ be a quantifier free formula and m
a positive integer.

» A set of m ground substitutions © is an m-corroborator for ¢ if
=\ b
9co

When © = {#} consists of a single substitution 6, then we say that 6
is a corroborator for ¢ or corroborates .

So the m-Skeleton problem is the problem of existence of m-corroborators
for given formulas.

» For z € V(p), a guard for z in , if it exists, is a clause
E=strs

in ¢ such that E and s are ground and x occurs in ¢t. We say that

N e

zEV(9)

is a guard of ¢ if each ¥, is a guard for z in ¢; @ is is called guarded
if it has a guard.

Intuitively, in the light of the second part of Proposition 4.2, the notion of
a Horn formula being guarded is a sufficient condition to guarantee that
if there is a corroborator 6 for ¢ then the range of [V (p) is Ty, i-e.,

E(pt) = E(p).

SREU is, by definition, the problem of existence of corroborators for Horn
formulas. However, we only need to consider guarded Horn formulas. To
see that, consider a Horn formula ¢; let ¥ be its signature expanded with
a constant if ¢ has no constants and let ¢ be a constant in X. Let ¢'(x) be
the Horn clause Ex, = z ~ ¢ where®

By ={f(c,....,c)mc|feX)

Let now ¢ be the guarded Horn formula

(A d@)nre

zEV(yp)

3Note that when f is a constant then f(c,...,c) stands for f.
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Clearly, 1) has a corroborator iff ¢ has one. Note that, for all terms ¢,

E(Ex=tmce) & teTs.

Example 4.1 A simple example of a guarded Horn formula is this:

where Ey, E, II;, II; and ¢ are ground, ¢i, ¢}, ¢z and ¢} are constants and
. is a binary function symbol. The guard of ¢ is

(Ey = clvxmc)A(By = dyuy = ca).
An example of a Horn formula with a common guard for all variables is

v = (E=z.y=c)A
(H1 :>£L'%y)/\
(H2:>azzt.y),

where E, II;, II, and ¢ are ground and c is a constant. The guard of ¢ is
E=z.y=xc

Note that the above formulas have the same structure as the systems of
rigid equations SM and SM in Chapter 3. O

We use the following definition.

» A corroborator of a disjunction ¢ is partisan, if it corroborates some
disjunct of ¢.

The main result of this section is the following theorem.

Theorem 4.1 (Partisan Corroboration Theorem) Any corroborator
of a disjunction of constant-disjoint guarded Horn formulas is partisan.

Proof. Let ¢ = \/;.; i where all the ¢;’s are constant-disjoint guarded
Horn formulas. Let 6 be a corroborator for . We must prove that 6
corroborates ¢; for some i € I.
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We can assume (without loss of generality) that there exist positive integers
m and n such that each ¢; has the following form:

oi = N EFssiath A N\ (DF=ufxof),
1<k<m 1<k<n

v

~~

pi

where 1; is a guard of ¢;, i.e., each EF and s¥ is ground and V(g;) = V(¢;),
for all i € I. Let C; = C(y;) for i € I. We have that

CiﬂCj:w (Vi,j €1, i #j). (4.1)

Let ¥ = X(p). For i € I let K; denote the class of all E-structures that
satisfy .0, i.e,
K; = { E-structure 2 | A |= ;0 }.

From the validity of ¢ follows that each ¥-structure belongs to some ;.
Let now J be any subset of I such that

=il (Vi€ ). (4.2)
(Take for example J = §.) So
C(<pi6) =C; (Vl € J) (43)

To see that (4.3) holds, suppose (by contradiction) that C(y;0) contains
some ¢ ¢ C;. Clearly, ¢ belongs to some z6 where z occurs in the guard ;.
By the second part of Proposition 4.2, every constant in x6 belongs to C;.
This gives the desired contradiction.

If I = J then the theorem follows by Proposition 4.1. Assume that I # J.
Now we prove the following statement:

If | ;0 for all i € J then |=1);0 for some i € I\ J. (4.4)

Proof of (4.4) Assume }~ ;0 for all i € J. Form an equation set D as
follows.

o If J=01let D=0.

e If J # B then there is for each i € J a clause in ;0 that is not
valid and by (4.2) this clause is not in ¢;6. In other words, there is a
mapping f:J — {1,2,...,n} such that

i (D/D = ol ~ o/ e (vie ). (4.5)

7 i

Let f be fixed and let D = |J,., D!"4.
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For each mapping g : I\ J = {1,2,...,m} let E,; denote the following set
of equations: '
B, = |J B9,
ieI\J
and let 2, be the canonical model of DU Eg, i.e.,
Ay =T/E,uD-

We can prove now the following statement.

(*) Fix g : I\ J — {1,2,...,m}. There exists an ¢ € I\ J such that
ng € K;.

Proof of (*) Assume that (*) doesn’t hold. (Assume also that J # (§
or else (*) holds trivially.) Then 2, € K; for some j € J. Fix such an
appropriate j.

So 2, satisfies each clause in ¢;60 and in particular
A, (D;(J) = uf(]) ~ Ujf(]))e'
Let D' = D;(j)G, u' = uf(j)ﬁ and v’ = vj’-c(j)ﬁ. By (4.3) follows that
C(D',u',0v") C Cj
and

C(Ey, D\ D')

C(E;)UC(D\ D)
= CEHU |J DY)

i€ i)

1eI\J i€J,i#j

= U a.

i€l,it]

So, by (4.1),
C(D',u',v"YNC(E,, D\ D") = 0.

It follows, by Proposition 4.3, that
= (D{(]) = u;(j) ~ vjf(]))g_

But this contradicts (4.5).

By using (*) we can now prove the following statement
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(**) There exists an i € I\ J such that = ¢;6.

Proof of (**) Assume that the claim is wrong.

Then there is for each ¢ € '\ J a clause in ;0 that is not valid, i.e.,
there is a mapping g : I\ J — {1,2,...,m} such that

H#ENYD = 9 x99 (Viel\J).

(Note that only the ¢;’s can be nonground.) Fix such an appropriate
g.

By using (*) we know that 2, € K; for some ¢ € I\ J. Choose such
an i. So 2, satisfies each clause in ;0 and in particular

A, = BV = 570~ (1979),

But, by (4.3) and (4.1), C(Eig(i),s‘g(i)) NC(E, \Eig(i),D) = (. Hence,
by Proposition 4.3,

o R A )}
So we have contradiction.

This proves statement (4.4). Let now J be the mazimal subset of I such
that (4.2) holds. In other words, for all i € I\ J, £ ;6. By the contra-
positive of (4.4) we conclude that for some i € .J, = ¢;6 and the theorem
follows. X

Remark Theorem 4.1, as well as its proof, remain correct if the disjunc-
tion is infinite. We do not use this generalization.

The following example illustrates why the conditions of being constant-
disjoint and guarded are important and cannot in general be discarded. In
each case there is a counterexample to the theorem.

Example 4.2 Let us first consider an example where the disjuncts are
guarded but not constant-disjoint. Let ¢(z) be the following guarded Horn
formula:

(c=0=>z=1)A(cx1=>2~0)

where ¢, 0 and 1 are contants, and let o1 = p(z1), Yo = p(xo) and ¢ =
w1 V o where 21 and xp are distinct variables. Consider now any ground



44 THE HERBRAND SKELETON PROBLEM

substitution € such that 8(z1) =1 and 6(z) = 0. It is easy to show by case
analysis that 6 corroborates ¢, i.e., that

E (cr0=>1=1)A(cxl=1=0)V
((c=0=>0~1)A(c=1=0=0

However, 6 corroborates neither ¢, nor ¢g.

Let us now consider the case when constant-disjointness is not violated but
the disjuncts are not guarded. Let ¢;(y, z1,y1) be the formula

((y%0:>.’1,'1 Nyl)/\(y%yl = I1 NO))
and let g (zo,yo) be the formula
(c=myo=>zo~=1)A(c= 1=z~ Yy))

where ¢, 0 and 1 are constants and 1, o, y1, Y0,y distinct variables. Let
1 = @1 V. Let 6 be a ground substitution such that 6(x1) =1, 8(z¢) = 0,
O(y) = ¢, B(y1) =1 and O(yo) = 0. Then |= 10 but [~ p160 and & pof (the
situation is exaclty the same as in the previous case). O

4.4 FROM 1-SKELETON TO N-SKELETON PROBLEM

The 1-Skeleton problem is undecidable. This follows from the undecidability
of SREU by Degtyarev and Voronkov [34, 38]. We can formulate their result
in the current setting as follows (cf [38, Theorem 1]).

Theorem 4.2 (Degtyarev—Voronkov) The 1-Skeleton problem of guar-
ded Horn formulas is undecidable.

Under certain restrictions on the language and the structure of formulas,
the 1-Skeleton problem becomes decidable. As we have shown in Chapter 3,
1-Skeleton problem is already undecidable in the presence of one binary
function symbol (in addition to constants); moreover, two variables suffice
for undecidability. In the case one variable the problem becomes decidable
as is shown in Chapter 6.

For technical reasons it is convenient to assume that we have a fixed signa-
ture ¥ with {c1,co,...} as the set of distinct constants in it. ¥ may also
have other function symbols of arity > 1. Let us also be precise about
the variables that we allow in ¥-expressions, by assuming that all variables
come from the collection {z1,zs,...}.

For each natural number n, constant ¢ and variable z, let ¢(™ denote a new
constant and let (™ denote a new variable. We define by induction on
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any Y-expression X the corresponding expression X (™ as the one obtained
from X by replacing in it each variable z with 2™ and each constant ¢ with
¢(™ . For any substitution @ of Y-variables with Y-terms we let () denote
a substitution that takes the variable (") to the term #(z)™. So, for any
Y-expression X and natural number n,

(X)) = X (Mg

The following property is immediate. For any Y-sentence ¢ and natural
number n,

Fe & Eo.

Theorem 4.3 Let ¢ be a guarded Horn formula and n a positive integer.
Then ¢ has a corroborator iff \i—, 09 has an n-corroborator.

Proof. The ‘=’ direction is trivial. We prove the ‘<=’ direction as follows.
Let I = {1,2,...,n} and let ¢ be the formula A, ; 0. Assume that ¢
has an n-corroborator {6; | i € I }. So

= VA 276,
iel jel
By the distributive law this is equivalent to
= A (V8.
fiI—=T iel
From this follows in particular that
F \/ <P(i)9i-
icl

Let X; = V(W) for i € I. Since all the X;’s are pairwise disjoint we can
let 8" be a substitution such that 0’ [X; = 6;]X; for ¢ € I, and it follows that

=\ 0
i€l
By Theorem 4.1 follows now that |= @@’ for some i € I. Fix such an
appropriate ¢. But then, by Proposition 4.2, the range of 6| X; is 7'2“0(1)),

and thus there is a substitution # with range 75, such that 8 [X; = 6’| X;.
Hence |= ¢(96(9) and so |= pf by above. X

Corollary 4.1 (Voda—Komara) For alln > 1, n-Skeleton problem is un-
decidable.
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Proof. The reduction in Theorem 4.3 is trivially effective. So, if we had a
decision procedure (for some n) for finding n-corroborators, we could use it
to find corroborators, but this would contradict Theorem 4.2. X

Assume that we are using an automated theorem proving method that is
based on the Herbrand theorem. Roughly, this involves a search for terms,
for a given bound m on multiplicity. Corollary 4.1 (Voda and Komara [151])
tells us that there is no m for which we could effectively decide when to stop
our search for such terms in case they don’t exist.

Recall that monadic SREU is SREU restricted to signatures with function
symbols of arity < 1. The decidability of monadic SREU is currently one
of the few open problems related to SREU [73]. An effectively equivalent
problem is the decidability of the prenex fragment of intuitionistic logic with
equality with function symbols of arity < 1 [35]. Some evidence speaks in
favour of that the problem is decidable, although with very high compu-
tational complexity (e.g., many subcases are decidable). We get also the
following result.

Corollary 4.2 If the n-Skeleton problem is decidable in the monadic case,
for some n > 1 then so is monadic SREU.

Proof. Note that, given a formula ¢, the formula A, ¢ contains the
same nonconstant function symbols as ¢. The rest follows by Theorem 4.3.
X

One might show decidability of monadic SREU by keeping Corollary 4.2 in
mind and first show that the monadic n-Skeleton problem is decidable for
some n > 1. This may be easier than a direct proof, due to the freedom of
choice of n.

Minimal Case
Consider the system of rigid equations, constructed in Chapter 3:
S“(z z,y)={Ekzc.y~q Ihikery Ibhkzz.y}.

Recall that E, II; and II, are gound and, for any TM M and input string v
for M, the system S“(t<M v)» T, y) is solvable iff SM is solvable iff M accepts
v, Where the term #(y7,) represents the encoding of the pair (M,v). Let
<p“(z, x,y) be the corresponding formula:

Mz =E=>zycr ANy Al >z = 2.0y).

So, for all substitutions @, 6 corroborates ©"(t(ns,v),%,y) iff M accepts v.
We get the following result.
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Corollary 4.3 For all n > 1, the n-Skeleton problem of guarded Horn for-
mulas restricted to 2n variables and 3n clauses with ground negative literals
is undecidable, already for some fized negative literals

Proof. Let M be a TM and v an input string for M, and let n be a positive

integer. So
n

o= Nt y)"?
i=1
is a guarded Horn formula with 2n variables and 3n clauses. Furthermore,
the negative literals in ¢ are fixed for any fixed n. The statement follows
by Theorem 4.3 and Theorem 3.3. X

4.5 HERBRAND F-SKELETON PROBLEM

The automated theorem proving methods that are based on the Herbrand
theorem are in general called rigid variable methods [157]. The principal
procedure for such methods can be described as follows. Let ¢(Z) be a
quantifier free formula.

Step I Choose a multiplicity m.
Step IT Check if ¢(Z) has an m-corroborator.

Step III If an m-corroborator exists then 3Zp(F) is valid, otherwise in-
crease m and go to Step II.

Voronkov investigates the complexity of various problems related to such
methods [157]. In particular, he considers the rigid-variable methods in
the context of a fragment of classical logic for which validity is decidable,
and proves that, for this fragment, a rigid-variable method (by Gallier et
al [52, 53, 50]) introduces (by using Plaisteds result [116]) an undecidable
sub-problem at Step II. He notes that the result of Voda and Komara [151]
simply shows the inadequacy of the formulation of the Herbrand Skeleton
problem and suggests the notion of strategy for multiplicity.

Strategies for Multiplicity

Informally, a strategy for multiplicity is a procedure that selects the initial
multiplicity for Step I and then increases the multiplicity each time Step II
is re-entered. The standard strategy is the one that, initially, chooses m =1
and then increments m by one each time Step II is rerun. A strategy is called
formula-independent if it does not depend on ¢. The formal definition is as
follows.
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» A strategy (for multiplicity), is a function f whose first argument is a
quantifier free formula, second argument is a natural number and the
range of f is the set of natural numbers.

The second argument is the number of times Step II has been re-executed.
We say that a strategy f is increasing if f satisfies the following property,
for all k,1 € N,

k<l = f(@:k)<f(<p7l)

So, an inreasing strategy is such that, each time Step II is re-executed,
the multiplicity is increased. Let f be a strategy. The following decision
problem arises at Step II:

» The f-Skeleton Problem. Given a quantifier free formula p and k € N,
does ¢ have an f(¢p, k)-corroborator?

Unless otherwise stated, by strategy we mean computable strategy. Clearly,
existence of a noncomputable (increasing) strategy follows by the Herbrand
theorem. Voronkov poses the following problem:

Does there exist an increasing strategy f for which the f-Skele-
ton problem is decidable?

This problem is currently open.

Some Special Cases

For some classes of formulas, a strategy for multiplicity can be shown to
exist. Consider the following class of formulas [157]. A variable z is said to
occur positively in a formula ¢ if £ has an occurrence in ¢ which is within
the scope of an even number of negation symbols.*

» A closed formula ¢ is ground-negative if all variables in it occur posi-
tively.?

It is pointed out in [157] that the validity problem for ground-negative for-
mulas is decidable. However, the systems of rigid equations that arise from
such formulas are with ground left-hand sides and thus their solvability un-
decidable by Plaisted’s result [116]. It is also shown that for ground-negative
formulas there exists a (nonincreasing) strategy, basically, a function that
given a ground-negative formula ¢ (the second argument is not used) re-
turns the multiplicity m such that ¢ is valid iff ¢ has an m-corroborator.
The following result is shown in [157], by using Corollary 4.3.

4Here the formula ¢ is assumed to contain only the connectives ‘A’, v’ and ‘—’, to
avoid “hidden” negation symbols.
5The definition in [157] is slightly more general.
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Theorem 4.4 (Voronkov) For any formula-independent strategy for the
class of ground-negative formulas, Step II is undecidable.

Further Remarks

Note that the validity problem of existential closures of Horn formulas with
ground negative literals, like 3x3yp" (t(ar,v), 7, y) for example, is decidable,
since such formulas are ground-negative. At the same time the 1-Skeleton
problem of " (t(ar,v),,y) is undecidable as we have shown.

We can also note the following “reversed” fenomenon. The following prob-
lem is undecidable if there is either one binary or two unary function symbols
in the signature [159, 160] and no relation symbols besides equality (cf [13,
Corollary 4.1.3]):

e Given a Horn clause ¢(%), is 3Zp(Z) valid?

Actually, it is enough that there are three literals and three variables in
(%) [160]. On the other hand, we know that the 1-Skeleton problem of
Horn clauses is decidable, this is just rigid E-unification.

See also Chapter 7 (Section 7.5).



CHAPTER 5

FINITE TREE AUTOMATA

5.1 INTRODUCTION

Finite tree automata [43, 143] is a natural generalization of classical finite
automata to automata that accept or recognize trees of symbols, not just
strings. In the deterministic case, this generalization is best understood by
first looking at a deterministic finite automaton with input alphabet ¥ as a
finite ({€e} U X)-structure with the elements of its universe as states, where
€ is a constant and the symbols in ¥ are unary function symbols.! The
generalization consists of arbitrary (not just unary) function symbols in X.
The recognizability condition of a ground (or closed) term is, like in the
unary case, simply that its value is a final state.

Many decision problems concerned with finite automata (non-emptiness,
inequivalence, etc.) have natural counterparts with finite tree automata.
As in the case of finite automata, decision problems of finite tree automata
are typically complete for the computational complexity classes they belong
to and, due to their simple formulation, have proved to be useful tools in
classifying complexity bounds of other problems. In particular, inequiva-
lence [127, 132] and intersection non-emptiness [29, 48, 133] are examples
of such decision problems.

The intersection non-emptiness problem of finite tree automata arises nat-
urally in the context of type inference in logic programming [48]. The
same decision problem restricted to top-down deterministic finite tree au-
tomata arises also in sort inference in typed functional programming [133].
Our main motivation for studying this problem is its close connection with
SREU. These connections are investigated in Chapter 6.

IThe idea is that the interpretation of ¢ is the initial state and that the interpretation
of a unary function symbol ¢ is a function o such that there is a transition with label o
from a state ¢ to a state p iff o(¢) = p. So the value of a term o1 (02(---0n(€))) is the
state after reading the string o, ---o201. This observation is attributed to Biichi and
Wright [15].
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The main contributions of this chapter can be summarized as follows. We
present a comprehensive proof of EXPTIME-completeness of the inter-
section non-emptiness problem of finite tree automata. More precisely, it
is proved that the hardness result holds already for deterministic finite
(bottom-up) tree automata. Although the complexity of this problem has
been used in the above mentioned contexts and also in the context of a “de-
cidability” proof of SREU [66], its proof is either merely remarked upon [48],
or only briefly outlined and incomplete [66, 133]. The proof of its complex-
ity is however highly nontrivial and in order to trust it we had to prove it
ourselves. In general, it was very hard to find complexity results related to
the basic decision problems of finite tree automata, as they are scattered
throughout the literature, and we decided to make a short survey by col-
lecting the complexity results of the closely related problems. This survey
is summarized in Table 5.1 at the end of this chapter.

We show also that the non-emptiness problem of finite tree automata is
P-complete by showing its close connection with the two well-known P-
complete problems alternating graph accessibility [68, 80] and generabil-
ity [68, 82, 89]. We consider a notion of succinctness with respect to which
the intersection non-emptiness problem is in fact a succinct version of the
non-emptiness problem. We believe that these decision problems of finite
tree automata will appear in other contexts and expect that this survey will
be useful therein. In general we conclude that there is a rule of thumb:

If a decision problem for (deterministic) finite automata is com-
plete for a certain space complexity class, then the same decision
problem for (deterministic) finite ¢ree automata is complete for
the corresponding alternating space complexity class.

But alternating space is precisely deterministic time, only one exponential
higher [17].

5.2 PRELIMINARIES

Finite Tree Automata

Let us recall the definition of a (bottom-up) tree automaton.

» A iree automaton or TA A is a quadruple (@, %, R, F') where

— ( is a finite set of states,
— Y is a signature or an input alphabet disjoint from @,

— R is a set of rules of the form o(q,...,¢,) = ¢, where 0 € &
has arity n > 0 and ¢, q1,...,q, € @,



52 FINITE TREE AUTOMATA

— F C @ is the set of final states.

A is called a deterministic TA or DTA if there are no two different
rules in R with the same left-hand side.

Tree automata as defined above are usually also called bottom-up tree au-
tomata. Top-down tree automata were introduced by Rabin [121] and were
also studied by Magidor and Moran [95]. Here we use the following defini-
tion, also based on rewrite rules.

» A top-down tree automaton or TTA A is a quadruple (Q,X,R,I)
where @ and ¥ are as above,

— R is a set of rules of the form ¢ — o(q1,...,qn), where o0 € &
has arity n > 0 and ¢,q1,...,q, € Q,

— I C @ is the set of initial states.

A is called a deterministic TTA or DTTA if I is a singleton set, and
whenever ¢ — g 0(§) and ¢ — g o(p) then §=p.

Terms are also called trees. A set of terms (or trees) is called a forest.
Recognizability for tree automata (either bottom-up or top-down) is defined
as follows.

» The forest recognized by a TA A = (Q,%,R,X) (or a TTA A =
(Q,%,R71, X)) is the set

T(A)={7€Ts|(F¢eX)T Rrq}).

A forest is called recognizable if it is recognized by some TA (or TTA).

Recall that two tree automata are equivalent if they recognize the same
forest. It is well-known that the nondeterministic and the deterministic
versions of TAs have the same expressive power [43, 60, 143], i.e., for any TA
there is an equivalent DTA. Clearly there is no essential difference between
a TA and a TTA. However, the class of forests recognized by DTTAs are
properly contained in the class of all recognizable forests. A simple example
of this is the forest {f(a,b), f(b,a)} that is clearly recognizable but not by
any DTTA [60, Example 2.11].

We say that a TA is total if every term over its input alphabet reduces
to some state. Every TA can trivially be extended (by adding new rules
and a new dummy state) to an equivalent total TA. Every total DTA A =
(Q,%,R,F) can be seen as a pair (2, F), where 2 is a X-structure with
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universe () whose interpretation function is determined by R as follows: for
all f € ¥ (of arity n) and ¢,q1,-..,q, € Q,

fm(qlaaqn):q = f(ql;---;qn)—>Rq-

Then we have that
T(A)={reTs | €F}. (5.1)

Conversely, any pair (2, F') where 2 is a finite X-algebra and F' a subset of
its universe, can be seen as a DTA. This is actually the definition of a DTA
used by Gécseg and Steinby [60]. We note that the study of various forms
of recognizability is a research area by itself [21, 103].

Alternation and Computational Complexity

Alternation was introduced by Chandra, Kozen and Stockmeyer [17] as a
generalization of nondeterminism. First, let us give an intuitive definition of
an alternating Turing machine or ATM. An ATM is like a nondeterministic
Turing machine (TM), except that every configuration or instantaneous
description (ID) is labelled as either “universal” or “existential”. Actually,
each state is either universal or existential and an ID is labelled accordingly.?
We inductively determine if an ID “leads to acceptance” as follows. Any
final ID leads to acceptance. For any nonfinal ID we have two cases: an
existential ID leads to acceptance if at least one of its successors leads to
acceptance; a universal ID leads to acceptance if all of its successors lead to
acceptance and it has at least one successor.

All computation models based on a Turing machine can be considered as
variants of a TM with different acceptance conditions, this point is empha-
sized by Johnson [81]. We define an ATM formally as follows.

» An alternating Turing machine is a pair (M, U) where M is a TM and
U a subset of the states of M, called the set of universal states. The
states of M not in U are called existential.

An ATM with an empty set of universal states is simply a TM. An ID of
an ATM is said to be existential (respectively wniversal, final, initial) if
its state is existential (respectively universal, final, initial). We can now
formally define the notion of acceptance for ATMs.

» Let M be an ATM with initial state go and z a string over its input
alphabet. Then M accepts x iff the initial ID gox, leads to acceptance,
where leads to acceptance is defined recursively as follows.

2In the original definition of an ATM there is also a possibility of a “negated” state,
but it can be omitted without loss of generality [17, Theorem 2.5].
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— Any final ID leads to acceptance.
— If v is a nonfinal ID then it leads to acceptance iff

x v is existential and some successor of v leads to acceptance,
or

x v is universal, all successors of v lead to acceptance and v
has at least one successor.

Note that the acceptance condition of an ATM without universal states is
the same as the acceptance condition of the underlying TM.

Alternating Space vs Deterministic Time The notion of space (and time)
complexity of ATMs is the same as that of TMs. The key property that
we are going to use is that, alternating space is precisely deterministic time,
only one exponential higher [17]. In particular,

o APSPACE = EXPTIME,
¢ ALOGSPACE = P,

where the classes APSPACE and ALOGSPACE consist of all problems that
can be solved by a polynomial space ATM and a logarithmic space ATM,
respectively.

5.3 BASIC DECISION PROBLEMS

All the basic decision problems of finite tree automata, like the non-empti-
ness problem, the inequivalence problem (or the more general inclusion prob-
lem) are decidable (see Gécseg and Steinby [60]). The proofs are fairly easy
by first transforming a TA into a DTA by a powerset construction and then
using a “pumping property” for DTAs. It is also easy to show that recogniz-
able sets of terms are closed under Boolean operations. This is illustrated
next.

¢ Complementation: Let A = (Q, %, R, F) be a total DTA. The com-
plement of A is the DTA A = (Q,%,R,Q\ F). It follows immediately
from (5.1) that T(A) = T= \ T'(A).

e Intersection: Let A = (Q1,%, R1,F1) and B = (Q2,%, Ra, F>) be
TAs. The direct product of A and B is the TA

Ax B = (Ql X QQ,Z,R,Fl XFQ),

where R is the set of rules f((a1,b1),...,(an,bs)) = (a,b) such that

—

f(@) — g, a and f(b) —> g, b. It follows easily that

T(A x B) = T(A) NT(B).
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Note that if A and B above are total DTAs then so is their direct prod-
uct. Let A and B be total DTAs. Clearly the inclusion and inequivalence
problems for DTAs reduce effectively to the non-emptiness problem, since

T(A) CT(B)if T(A)NT(B) =0. It follows for example that

T(A)=TB) < (TANTB)UTB)NTA)=0
& T(AxBxBxA) =10 (5.2)

In the following two sections we address the following decision problems.

» Non-emptiness of TAs (or, more particularly, of DTAs or DTTAS) is
the following decision problem: Given a finite tree automaton A, is
T(A) non-empty?

» Inequivalence of TAs (or, more particularly, of DTAs or DTTAs) is
the following decision problem: Given finite tree automata A and B
with the same signature, are T'(A) and T'(B) unequal?

» Intersection non-emptiness of TAs (or, more particularly, of DTAs or
DTTAs) is the following decision problem: Given a finite sequence
(Ai)i<n of finite tree automata, is (;_,, T'(4;) non-empty?

For finite automata the same decision problems are defined analogously.

It is clear that, by using (5.2), inequivalence of DTAs reduces (in loga-

rithmic space) to non-emptiness [60]. For DFAs this was already shown by

Moore [105]. It is also clear that for a fixed n, the intersection non-emptiness

problem reduces (in logarithmic space) to the non-emptiness problem.

5.4 NON-EMPTINESS AND INEQUIVALENCE

For finite automata the non-emptiness problem is basically the same as
the graph accessibility problem and is thus complete for nondeterministic
logarithmic space or NL-complete [128]. It follows that the inequivalence
problem of DFAs is also NL-complete. Analogously, for finite tree automata
there is a simple reduction from the alternating graph accessibility problem
to the non-emptiness problem and vice versa. Alternating graph accessibil-
ity was shown P-complete by Immerman [80] by a direct simulation of any
ALOGSPACE ATM. There is also a very simple reduction from generabil-
ity, which is another P-complete problem due to Jones and Laaser [82] and
Kozen [89], to non-emptiness of DTAs and vice versa. We follow Greenlaw,
Hoover and Ruzzo [67, 68] in our formulation of alternating graph accessi-
bility and generability.?

3The book of Greenlaw, Hoover and Ruzzo [68] includes an excellent up-to-date survey
of around 150 P-complete problems.
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» Alternating graph accessibility. Given is a directed graph with a set
of vertices V' and a set of edges E, a subset U of V, and designated
vertices @ and b in V. The vertices in U are called universal and those
in V\ U are called existential.

The problem is to decide if apath(a,b) holds, where, for any two ver-
tices « and y, apath(x,y) is true if either

1. z=y,or

2. z is existential and there exists a vertex z with (z,2z) € E and
apath(z,y) is true, or

3. x is universal and for all vertices z with (z,z) € E, apath(z,y) is
true.

» Generability. Given is a finite set @, (the graph of) a binary function
fon @, asubset V of @ and an element ¢ in Q.

The problem is to decide if ¢ is in the smallest subset of () that includes
V and is closed under f.

The generability problem remains in P even with more than one function.
More generally, it is the problem of deciding if, given a finite algebra, a
subset of its universe and an element in it, this element is in the subalgebra
generated by the given subset [89]. Actually, generability is basically the
same problem as non-emptiness of DTAs. In the following proof it is easily
seen that all reductions can be carried out within logarithmic space, assum-
ing reasonable representations of the problems, and we do not mention that
explicitly.

Theorem 5.1 Non-emptiness of DTTAs, DTAs and TAs is P-complete.

Proof. First we show how alternating graph accessibility reduces to non-
emptiness of DTTAs. Consider a directed graph G = (V, E) a subset U of
V' of universal vertices, and two designated vertices a and b in V. We can
assume without loss of generality that the out-degree of any vertex in G is
either two or zero. Le A be the TTA (V, X, R, {a}), where ¥ = {c, g1, 92, [},
¢ is a constant, g1,g2 unary function symbols, and f a binary function
symbol. Let the rules of A be as follows:

1. b —pgec,
2. for each vertex = and edges (z,y1), (z,y2) € E,

(a) if x is universal then = —s g f(y1,¥2),
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(b) if z is existential then # — g ¢1(y1) and x — g g2(y2).

Clearly A is a DTTA. It follows easily that for any vertex z,
apath(z,b) < (3reTs)r g, (5.3)

and thus apath(a,b) iff T(A) is non-empty. The ‘=’ direction follows by
induction on the size of any alternating path to b and case analysis on x
(universal or existential). The base case (z = b) is trivial. Let us consider
one induction case, namely, when x is existential and different from b. Then,
for some vertex z,

apath(z,b) = (z,z) € E, apath(z,b)
(IH) *
= & -—prygz), z—RT

*
= T —R g(T)a

where 7 € Ty and g is either g; or go. The ‘<=’ direction also follows easily
by induction on the length of reductions.

We prove now that the non-emptiness problem of TTAs (and thus TAs) is
in P by giving a simple reduction from it to alternating graph accessibility.
Let A be a TTA (Q,%, R, I). Assume without loss of generality that there
is only one constant ¢ in ¥ and that I is a singleton set {go}. We construct
a graph G = (V, E) with designated vertices a and b and a subset U as the
set of universal vertices as follows. Let V = Q UU where U is the collection
{ut | ¢ =t € R}U{u.} of new vertices. Let a = go and b = u.. Let

E = {(qaut)7(utaql)a"'a(UhQTl)|q_>f(q17"'7qn)€R}'
t

Like above, statement (5.3) is proved for all z € @) by induction. It follows
that apath(a,b) iff T(A) is non-empty.

Finally, we give a simple reduction from generability to the non-emptiness
problem of DTAs to show that it is P-hard. Let @) be a finite set, f a binary
function on Q, V C @ and ¢r € Q. Let A be the DTA (Q, X, R, {¢r}), where
Y. consists of a binary function symbol f and a constant ¢, for each g € V.
Let R be the following set of rules:

R = {ceg—=qlqgeV}IU{fla,e)—ql|fla,e)=q}

It follows easily that T'(A) is non-empty iff ¢ is in the least subset of @
including V' that is closed under f. X

Non-emptiness of DTAs is in fact the same problem as (the more general
formulation of) generability given above. Consider a total DTA A with
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signature ¥ as the pair (U, F') where 2 is a ¥-algebra and F' a subset of its
universe. Non-emptiness of T'(A) is simply the question of whether there
exists a term 7 € Ty such that 7% € F, or in other words, if the subalgebra,
of 2 generated by the empty set intersects with F'.

The non-emptiness problem is clearly a particular case of the inequivalence
problem. It is also easy to see that there is logspace reduction from any two
DTAs A and B to the DTA in (5.2). It follows thus that inequivalence of
DTAs is also P-complete. From a statement in Seidl [132, Theorem 4.3] fol-
lows that inequivalence of DTTAs is P-complete as well. For TAs in general
the situation is different, however. In order to reduce the inequivalence prob-
lem of two TAs into the non-emptiness problem by using (5.2) it is necessary
to first transform the TAs in question into DTAs which in general implies
an exponential increase in the number of states (this is true already in the
case of NFAs [122, 101]). In fact, Seidl has proved that the inequivalence
problem of TAs is EXPTIME-complete [132, Theorem 2.1]. The inequiva-
lence problem of NFAs and regular expressions is PSPACE-complete [102].
For more recent developments regarding complexity of word problems see
Mayer and Stockmeyer [100].

5.5 INTERSECTION NON-EMPTINESS

EXPTIME-hardness of the intersection non-emptiness problem of finite tree
automata has been observed by other researchers and used in various con-
texts. It was first remarked by Frithwirth et al [48] and used in the context
of type inference of logic programs. Goubault gives an incomplete proof in
the case of DTAs in the context of a faulty proof of EXPTIME-completeness
of SREU [66]. Seidl [133] uses EXPTIME-hardness of the intersection non-
emptiness of DTTAs and outlines a proof, in the context of sort inference in
typed functional programming. The proof presented here is a generalization
of the proof of PSPACE-hardness of the intersection non-emptiness of DFAs
by Kozen [90]. The idea is to encode the set of valid computation trees of
a fixed polynomial space ATM and a given input string, as the forest given
by the intersection of a collection of DTAs. The same idea is used in the
above references.

To see that the intersection non-emptiness problem can be solved in ex-
ponential time consider a sequence (4;);<, of TAs and take their direct
product, call it A. Clearly A can be constructed in exponential time and
we know also that (,_,, 7'(4;) = T'(A). So, inclusion in EXPTIME follows
by Theorem 5.1. Without using Theorem 5.1, one can reduce the intersec-
tion non-emptiness problem to other problems known to be in EXPTIME
(or EXPTIME-complete), like the inference problem for full implicational
dependencies [16], relational query evaluation [146] or a certain restricted
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logic program [134] (using the relationship ALOGSPCE=P [17]). One such
reduction is given below.

Theorem 5.2 Intersection non-emptiness of TAs and DTAs is EXPTIME-
complete.

A formal proof of Theorem 5.2 is given in the subsequent sections as lem-
mas 5.4 and 5.8. The following outline illustrates the main ideas of that
proof.

Proof. (Outline) Inclusion in EXPTIME is explained above. EXPTIME-
hardness is proved as follows. Let M = ((Q,%i,%,d,q0,0,{qr}),U) be
a fixed polynomial space ATM and z a fixed input string. Let n be the
maximum number of tape cells used by M and let ID denote the IDs of M
of legth n (possibly padded with extra blanks). We can assume that M has
a unique final ID describing an empty tape and that each universal ID has
either 2 or 0 successors. Define a ternary relation > C ID x ID x (ID U{¢})
such that v > (vy,v9) iff

1. v is existential, v 37 v1 and v2 =€, or

2. v is universal, v ks v, v Fas v and vy # vs.

For each k, 1 < k < n, imagine that we have a small window that provides
us only with a restricted view of M’s tape immediately surrounding the
k’th symbol. Let >4 C ID x ID x (ID U {e}) be such that v >y (vy,ve) iff
v > (v1,v2) is possible according to that view. In addition assume that

n

/\ v D> (1)1,1)2) < vb (’1)1,1)2). (54)

k=1
Let I" be a signature consisting of QUX as unary function symbols, a binary
function symbol () and a constant nil. For any ID v = ¢ica -+ - cp_10p and
term 7 we write 7v as a shorthand for the term ¢, (cp—1(- - c2(c1(7)) - +)),
and for any two terms 7, and 7 we write (71, 72) for the term ()(7,72).
Define ID-trees as the least class of terms in 7 that satisfies:

1. nil is the empty ID-tree;
2. if ; and 7» are ID-trees such that either both are empty or only 7 is

empty and v € ID then 7 = (11, 72)vb is an ID-tree.

We refer to 7 and 7 as the left and right subtrees of T, v is called the root
of 7. Define also root of nil to be the empty string (¢). A move-tree is any
ID-tree 7 such that for each internal subtree 7' of T,

Root(7") > (Root(Left (7)), Root(Right(7'))).
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A move-tree is called valid if its root is the initial ID and its leaves are final
IDs.

The kernel of the proof is a polynomial time construction of tree automata
A and Aj for each k, 1 < k < n, recognizing the following forests. The
automaton Ay recognizes the set of all ID-trees 7 such that

1. each leaf of 7 is a final ID, and

2. for each internal subtree at level m in 7, where m is even,

Root(7") >y (Root(Left(7")), Root(Right(7"))). (5.5)
The automaton Aj recognizes the set of all ID-trees 7 such that

1. the root of 7 is the initial ID, and

2. (5.5) holds for each internal subtree 7' at level m in 7, where m is odd.
It follows that 7 € (,_; T'(Ax) NT(A}) iff 7 is a valid move-tree. X

Any signature can easily be encoded with just one binary function symbol
and a collection of constants. The following corollary is an easy consequence.

Corollary 5.1 Intersection non-emptiness of DTAs when restricted to sig-
natures with one binary function symbol and constants is EXPTIME-hard.

EXPTIME-hardness

We give a polynomial time reduction of polynomial space ATMs to the
intersection non-emptiness problem of DTAs. It follows that the problem is
APSPACE-hard and thus EXPTIME-hard. For the rest of this section let

M = ((Q:Zin72757q0767 F)aU)

be a fixed ATM that is space-bounded by some polynomial S such that
S(m) > m. We can assume, without loss of generality, that M has a single
tape, this follows from a straightforward generalization of the corresponding
property for TMs [76, Theorem 12.2]. Let z € ¥ be a fixed string and
n = S(|Jz|). Let ID stand for the set of all possible strings that represent
IDs of M that may be padded with extra blanks at the end so that each
string represents the first n tape symbols of M, i.e.,

m = |J s®esthh,
0<k<n

From here on we say ID for any element of ID. We can assume without loss
of generality that M satisfies the following conditions:
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e The initial state qp is existential and occurs only in the initial ID
(IDy = qoxb™~12D).

e M has exactly one final state ¢r and the final ID has the form ID; =
qeb™.

e Each universal ID has 0 or 2 successors.

Let all the symbols in ¥ U@ have arity 1, i.e., treat them like unary function
symbols. Let also () and nil be new function symbols with arities 2 and 0,
respectively. Let I' = ¥ U Q U {(), nil}. We represent “computations trees”
of M by certain terms in Tp. For a string v = cjcy - - ¢, over ¥ U Q and
T a term we write 7v for the term ¢, (¢p—1(---¢c1(7) --+)), and for any two
terms 71 and 7, we write (71, 72) for the term (}(71,72).

» I[D-trees is the least class of terms in 7Tt that satisfies:

— nil is an ID-tree, called the empty ID-tree;

— if 7, and 7 are ID-trees such that either both are empty or only
To is empty and v € ID then 7 = (71, 72)vb is an ID-tree.

We refer to 71 and 7 as the left and right subtrees (or collectively
immediate subtrees) of T, v is called the root of 7. We use the notations
Left(7), Right(r) and Root(7). We let also Root(nil) = e.

Let 7 and 7' be ID-trees. We say that 7' is an m-fold subtree of 7 if either
m =0and 7 = 7 or 7’ is an (m — 1)-fold subtree of some immediate subtree
of 7. By subtree we mean m-fold subtree for some m > 0. The depth of T
is the largest m > 0 such that there exists an m-fold subtree of 7, e.g., the
depth of nil is 0.

The roots of all the non-empty subtrees of 7 are called its nodes. A non-
empty subtree of 7 with empty immediate subtrees is called external. A
non-empty subtree of 7 that is not external is called internal. The root of
any external subtree of 7 is called a leaf of 7. Below we use the following
definitions.

» An ID-triple is any element of ID x ID x (ID U {e}), where € denotes
the empty string. By a move of M we mean any ID-triple (v, vy, vs)
where either

— v is existential, v F v; and vs =€, or

— v is universal, v F vy, v F vy and vy # vg.

We write v > (v, v2) iff (v,v1,v2) is a move.
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» A move-tree is any ID-tree 7 such that for each internal subtree 7' of
T7
Root(7") > (Root(Left(7')), Root(Right(7"))).
A move-tree is valid if its root is the initial ID and its leaves are final
IDs.

The notion of a valid move-tree is a straightforward generalization of the
notion of a valid computation of M on input z. We exploit the following
obvious characterization of acceptance in terms of valid move-trees: M
accepts x iff there exists a valid move-tree.

Main Construction The kernel of the hardness proof is a polynomial time
construction of a collection of tree automata such that their intersection is
precisely the set of all valid move-trees. We construct two kinds of automata,
one for each k, 1 < k < n.

1. The first kind recognizes all move-trees the leaves of which are final
IDs and which satisfy the following additional property. Roughly, for
all internal m-fold subtrees 7 where m is even, the ID-triple (v, vy, v2),
where v is the root of 7 and v; and vy the roots of the left and right
subtrees of 7, is a possible move by looking only at the tape symbols
immediately surrounding the k’th symbol.

2. The second kind recognizes all move-trees the root of which is the
initial ID and which satisfy the same additional property as above,
except for odd m.

First, we formally define the sets of ID-trees correspeonding to items 1 and 2,
and show that their intersection gives us precisely all the valid move-trees.
Then we present formal constructions of DTAs that recognize these sets.
We need some additional notations and definitions.

By a position we mean any integer k such that 1 < k < n. Let k be a
position and v = a1 - - - a;—1qa; - - - an € ID where ¢ € ). We write v[k] and
View(v, k) for the following substrings of v,

_ qay, ifk=1;
vlk] = {ak, otherwise.

v[kJv[k + 1], if k=1,
View(v, k) = v[k — 1]u[k], if kK =n;
v[k — 1Jv[k]v[k + 1], otherwise.

We let also View(e, k) = € and for any ID-triple (v,v1,v2),
View ((v,v1,v2), k) = (View(v, k), View(vy, k), View (vs, k)).

Consider a fixed position k.
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Figure 5.1: Base case of T.

» A k-move is an ID-triple ¥ = (v, v1, v2) such that the following holds.
1. If v[k] € QX then there exists a move @ such that View (&, k) =
View(7, k).
2. If v[k] = a € X then v1[k] € {a} U Qa and either v» = € or
va[k] € {a} U Qa.

We write v >y, (v1,v2) iff (v,v1,v2) is a k-move.
The following lemmas follow easily and we leave their proofs to the reader.
Lemma 5.1 An ID-triple is a move iff it is a k-mowve for all positions k.

Lemma 5.2 For all positions k and all ID-triples ¥ and . If U is a k-move
and View(¥, k) = View (W, k) then & is a k-move.

For all positions k, let T}, denote the following set of terms. Below we show
that T} is recognizable, and that the time complexity to construct a tree
automaton that recognizes T}, is polynomial in .

» T} is the set T of all ID-trees such that
1. (nil,nil)ID¢b € T,

2. (11, 2)vb € T if 7y is non-empty and,
(a) vy (Root(rr), Root(72)),
(b) Left(m1) € T and Right(m) € T U {nil}, and
c) either 75 is empty, or Left(m2) € T and Right(rs) € TU{nil}.

So any ID-tree in T}, has external subtrees of the form shown in Figure 5.1.
A possible induction case is illustrated in Figure 5.2.  For each position
k, we let T} denote the following sets of terms. Also in this case we show
that each T is recognizable by a tree automaton that can be constructed
in polynomial time.

» T} is the set of all (r,m)IDyb where 7,7 € T and either both are
empty or only 7 is empty, where T is the set of all ID-trees where qq
does not occur such that
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Figure 5.2: One possible induction case of Tk; ¢ is universal and d(q,a) =
{(QI, b: left): (q27 c, right)}'
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Figure 5.3: All ID-trees in T}, have this form.

1 mleT,
2. (m1,2)vb € T if 7y is non-empty and (a—c) hold,
(a) vy (Root(rr), Root(7)),
(b) Left(m ), Right(m) € T, and
(c) either 7 is empty or Left(r), Right(rz) € T.
All ID-trees in T} are illustrated in Figure 5.3.

Let 7 € T, N T} and let 7' be any internal m-fold subtree of 7 for some
m > 0. If m is even (odd) then it follows by definition of T}, (T}), that

Root(7") > (Root(Left(r")), Root(Right(7"))).
We have thus the following property.
L,emma 5.3 For all positions k, if T € T NI} then for all internal subtrees
e Root(7") 1 (Root(Left(7")), Root(Right(r"))).

We can now state our main lemma.

Lemma 5.4 Intersection non-emptiness of DTAs is EXPTIME-hard.

Proof. Construct tree automata A, and A} for 1 < k < n such that
T(Ay) = Ty and T(A}) = T (see Lemma 5.5 and Lemma 5.6). Each one
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is constructed in time that is polynomial in n = S(|z|), and thus the total
time complexity of the construction of all the automata is polynomial in |z|.
It is sufficient to show that
n
{7| 7 is a valid move-tree } = ﬂ (T, NTE)
k=1

The direction ‘C’ (i.e., that each valid move tree is in T} and T}) is easy to
check. (Note that the property that all computation paths of M have even
length is needed here.) We prove the direction '2’. Let 7 € (\,_, (Tx N T}).
It follows immediately from the definition of any T} that the leaves of 7 are
final IDs. It follows also immediately from the definition of any T}} that the
root of 7 is the initial ID. It remains to prove that 7 is a move-tree, i.e.,
that for any internal subtree 7’ of 7,

Root(7") > (Root(Left (7)), Root(Right(7'))),
but this follows by first applying Lemma 5.3 and then Lemma 5.1. X
Recognizability of Ty, Consider a fixed position £ distinct from 1 and nn. The
handling of positions 1 and n is similar. We construct a tree automaton Ay,

that recognizes T}. It is clear that one can easily extract an algorithm from
this construction that has polynomial time complexity in n. Let

A = YETUQSESUSQEEUSIQY,
I = Ax(AU{e}).

As the main part in the construction of Ay we use a family {M;};crugoy of
DFAs, where each M; is a DFA that accepts ID and for each v € ID simply
scans v and accepts it in the final state p(4 ;) iff View(v, k) = a. Formally,
for all i € I U {0},

M; = (PiazuQa(si:p(o,i)a{p(aﬂ') | o€ A}): L(Ml) :[Da
such that for all @« € A and v € ID,
6i(P(0,i),V) = P(a,iy & View(v,k) = a.

Furthermore, all the P;’s are assumed to be pairwise disjoint. In particular
we can take all the members to be copies of say My. It is easy to construct
My in time that is polynomial in nn. Let also My be a DFA (with new states)
such that

My = (P, XU Q, 0, pos), {pe}), L(My) = {IDs}.
Let now R; for i € I U {0,f} denote following sets of rules:

Ri = {clp) = p' | di(c,p) =p', c€TUQ, p,p' € P }.
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For any string v = ci¢s ... Cpm_1¢, over ¥ U Q and state p we write pv for
the term ¢, (Crm—1(---c2(c1(p)) ---)). It is clear that for any string v over
Y UQ, and any two states p and p’ in P;,

silp,v)=p & pv-—"sp p.

Let {te,te} U{ts | @ € A} be a set of new state symbols.

» A; is the following tree automaton:

QY = {tot}U{ta|a€e AYURURU(JP,
i€l
A = T,
R* = | JRiURyUR:U
iel
{nil >t} U
{(te,te) = po,e) Y
{{tr,te) = p0,0), (tr,tr) = P00y} U
{{ts,ty) = Po,g) | (B,7) € T}U
{p(a70)5—>ta |lae A} U
{ PView((v,01,00),k)0 = tr | v D> (v1,02) } U
{peb =t },
FA% = )

Note that pyiew((v,v1,02),k) 18 the final state piview(v,k),¢) in M;, where i is the
index (View(vy, k), View(va, k)). It is easy to check that Ay is indeed a de-
terministic tree automaton. The structure of Ay, is illustrated in Figure 5.4.

Lemma 5.5 T'(A;) = Ty.

Proof.

[Proof of T(Ay) C Ty] Let 7 € T(Ag), i.e., 7 € Tr and 7 —*>RAk te. We
prove that 7 € Ty. The proof is by induction on the length of the reduction
T — t;. There are two cases, depending on the last step of the reduction.

1. 7 = pib —> t¢, or

2. T DView(#,k)0 — tr for some k-move @. Let View(#, k) = (o, 3,7).
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Figure 5.4: Tree automaton Ag. A transition from p(, g to tr exists only if
(a, B,7) = View(d, k) for some k-move 7.

Let us consider the first case first. From the definition of the rules of A* and
the disjointness of the underlying DFAs it follows that the reduction has to
be of the following form: (simply trace the arrows backwards in Figure 5.4)
peb  —> te
ponIDe —r pr
(nil, nil)y = P(0,£)5

which shows that 7 = (nil, nil) ID¢b, and thus 7 € T,. We now consider the
second case. Then

=
St

P(a,8,y — te

D(0,8,7)W éR(ﬁ,w) D(a,3,y) (some w € ID such that View(w, k) = a)
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(tg,ty) —  D0,87)

So 7 = (11, 2)wb where 7 N tg and 7 N ty. Since 8 # € it follows that
the reduction 7, — ¢ must have the following form:

p(670)b — tﬁ
P(0,0)W1 ke P3,0) (some w; € ID such that View(wy, k) = ),

and either (tr,t.) — p(o,0) or (tr,tr) — P(o,0). Assume (without loss of
generality) that the former reduction step took place and that v = € (and
thus 7 = nil).

Under these conditions Root(y) = w1, Left(r;) — t; and Right(ry) = nil.
It follows by the induction hypothesis that Left(r;) € T). Let & = (w, wy,€),
since View (W, k) = View (7, k) and ¢ is a k-move, it follows by Lemma 5.2
that @ is a k-move. Now 7 € T}, by the definition of T.

[Proof of T}, C T'(Ax)] Let 7 € Ty. Clearly 7 € 7p. We must show that
7 —» t;. The proof is by induction on the size of 7. The base case is
7 = (nil, nil) ID¢b and it follows by above that 7 — t¢. The induction case
is 7 = (11, 72)vb, where 71 = (711, T12)v1 b,

1. v >y (v1, Root(rz)),
2. 71 € T}, and 712 € Ty U {nil}, and
3. either 7 is empty or Left(rs) € Ty, and Right(z) € T}, U {nil}.
We can assume, without loss of generality, that 75 and 715 are empty. Let

(a, B,€) = View((v,v1,€),k). By using the induction hypothesis and the
rules of A we obtain the following reduction:

T L>(IH) ((te, te)yvrb, te)vb
— (p 0,0)010,t )b
%Ro (P(8,0)D, te)vD
—  (tg,tc)vb
— D(0,8,6)vD

R, p(aﬂﬁ)b'

But v > (v1,€), and thus p(q g, — . X
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Recognizability of T);  As above, we consider a fixed position £ distinct from
1 and n, and construct a tree automaton Aj that recognizes T}. It is clear
that the construction can be carried out in time that is polynomial in n.
We are not as detailed below as we are above, due to the similarity of the
construction.

Let A and I be as in Section 5.5 except that the initial state gg of M is
omitted from ). Let also M; for i € TU{0} have the same definition (except
for that same restriction). Let M be the following DFA: (with new states)

M = (Pf7 E75f7p(0,f); {pf}), L(Mf) = {;Ub(nf‘ﬂ")}

Let now R; for i € TU{0,f} denote the same sets of rules as defined above.
Let {t,tc,te} U {to | @ € A} be a set of new state symbols.

» Aj is the following tree automaton:

QY% = {tt,t}U{ta|la€ AYURURU(JP,
iel

4 = T,

R* = | JRiURyUR:U{qo(po,0) = o}V
iel
{nil -t} U
{{te;te) = P00y, (tte) = Po,oys (t1) = Py} U
{(ts,ty) = P,y | (B,7) €T}U
{p(a,O)b_) ta | a € A}U
{ PView((v,01,00),6)0 = | v > (v1,02) U
{pfb — it }7

FAw = {t;}.

Note that A} is indeed a deterministic tree automaton (in particular note
that the go-transition from p(g o) to p(o,r) does not violate the determinism).
The structure of Aj, is illustrated in Figure 5.5. The proof of Lemma 5.6 is
analogous to the proof of Lemma 5.5.

Lemma 5.6 T(A}) =1}.

Inclusion in EXPTIME

We reduce the intersection non-emptiness problem of TAs to the inference
problem for full implicational dependencies or FIDs. An FID is just a uni-
versal relational Horn sentence, we write it here as a “backward” implication
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Figure 5.5: Tree automaton Aj. A transition from p(, g, to t exists only if
(a, B,7) = View(d, k) for some k-move 7.

@ < ¥ where ¢ is an atom and % a conjunction of atoms. The only func-
tion symbols in an FID are constants. The inference problem is simply the
question of whether a given conjunction of FIDs implies another given FID.
This problem can be solved in exponential time (actually it is EXPTIME-
complete [16, 146]).

Let A; for 1 < i < n for some n > 1 be TAs with a common input alphabet
by

)

A =(Qi,S,Ri, Fy), (1<i<n).

Let A = (Q,%, R, F) be the direct product of all the A;’s. So the states
of A are elements of [}, @; and the rules of A are defined as follows, we

write qfor (‘I1:Q2a---:Qn) € Q:
R = {olq,-.-,a) = q|o(gir, @2, qik) —r, @i (1<i<n)}

We know that T'(A) is non-empty iff (), T'(A4;) is non-empty. We construct
aset of FIDs P with a distinguished atom Nonempty such that P - Nonempty
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iff T(A) is non-empty. Furthermore, it is obvious that this construction
takes polynomial time in the total size of the A;’s (not in the size of A, the
size of A is in general eponential in the total size of the A;’s).

First, for 1 < ¢ < n and each k-ary function symbol o € X, let Rule! be a
new relation symbol of arity k+1. Let also Final; for 1 < i < n and Reduce
be relation symbols of arity 1 and n, respectively. To simplify matters, we
can assume without loss of generality that all function symbols in ¥ have
arity at most 2. The following atoms (or atomic FIDs) are in P: for each
A; and final state ¢ in it there is an atom

Final;(q)

in P; for each A; and rule o(q1,...,qx) = q in R; (where k > 0), there is
an atom

Rule?(qh <o Gk, q)
in P. In addition, P includes the following FIDs: for each constant ¢ € ¥
the FID .
Reduce(Z) + /\ Rule (z;),
i=1
for each unary function symbol ¢ € ¥ the FID

n
Reduce(Z) «+ /\ Rule! (y;, z;) A Reduce(y)
i=1

and for each binary function symbol o € ¥ the FID

n
Reduce(T) + /\ Rule! (y;, zi, x;) A Reduce(y) A Reduce(Z).
i=1

Finally, P includes the FID

n
Nonempty < Reduce(Z) A /\ Final;(z;).
i=1
We have the following relationship between derivations from P and reduc-
tion in R.

Lemma 5.7 For all § € (), P\~ Reduce(q) iff there exists a term 7 € Ty,
such that T =g q.

Proof. Let ¢ € @ be fixed and consider the direction ‘=’. Assume that
P |- Reduce(g). We prove by induction on the length of the proof of P

Reduce(q) that there exists a term 7 € Ty such that 7 —x 7.
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The base case is when there is a constant ¢ € ¥ such that P F Rulef(g;)
for 1 <i <n. Then ¢ — g, ¢; for 1 <i < n and thus 7 = ¢ —r ¢. The
induction case is when there is a nonconstant function symbol f € ¥ (we
can assume that f is binary) and states p,7 € @ such that

Pr Rule{(pi,r,-,q,-) (for 1 <i<n), Pt Reduce(p), P F Reduce(F).

By the induction hypothesis follows that there exist terms 71 and 7 in Ty
such that 71 —g p and » —> g 7. From P + Rule{(pi,ri,qi) (for 1 <i <
n) follows that f(p;,r:) —r, ¢; (for 1 < i < n) and thus f(p,7) —r q.
Consequently 7 = f(11,75) — g q.

The direction ‘<=’ is equally straightforward to prove by induction on the
length of the reduction 7 — g q. X

Since P F Nonempty iff there exists a final state ¢ in A such that P +
Reduce(q), it follows by Lemma 5.7 that P + Nonempty iff T'(A) is non-
empty. The time to construct P is clearly polynomial in the total size of
the A;’s. By Chandra et al. [16] it follows thus that:

Lemma 5.8 The intersection non-emptiness problem of DTAs is in EXP-
TIME.

We obtain an alternative proof of Lemma 5.8 by looking at P as a logic
program and asking the question if the goal Nonempty follows from it. It is
clear that in any proof tree of Nonempty from P the nodes (or intermediate
goals) have a size that is linear in n, simply because there are no nonconstant
function symbols in P. The computational complexity of the problem of
deciding if P F Nonempty is therefore in EXPTIME by a correspondence
between logic programs and ATMs by Shapiro [134, Theorem 4.4] and the
relationship EXPTIME = APSPACE.

We can also note that NFAs correspond to monadic TAs, i.e., TAs over a
signature where,besides constants, there are only unary function symbols.
If we assume the above A4;’s to be modadic then the non-emptiness problem
of T(A) corresponds to the non-emptiness problem of the intersection of the
corresponding NFAs. It is easy to see by looking at P that one can construct
an ATM without universal nodes (i.e., a TM) that uses only linear space
in n and “accepts Nonempty” iff P F Nonempty. Thus the intersection non-
emptiness problem of NFAs is in PSPACE. This fact follows already from
the proof of the PSPACE-completeness of the intersection non-emptiness
problem of DFAs by Kozen [90], where the part of the proof regarding
inclusion in PSPACE holds also for NFAs.
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5.6 SUCCINCTNESS

The use of intersection can shorten a regular expression by an exponential
amount. This fact explains why the inequivalence problem for regular ex-
pressions becomes EXPSPACE-complete when intersection is added [49, 79],
whereas it is PSPACE-complete [102] in the usual case. (A similar effect is
obtained with interleaving [100].) Above, we are just witnessing a similar
effect on TAs. Namely, if we represent a TA A by a sequence of TAs with
the same signature with the understanding that their product is A (modulo
renaming of states), then the size of this representation can in some cases
be exponentially more succinct than the size of A. With this notion of suc-
cinctness it follows that the intersection non-emptiness problem is simply
the succinct non-emptiness problem. Note also that it is generally believed
that EXPTIME is nothing else but P on exponentially more succinct in-
put [112].

Analogously, succinct non-emptiness of finite automata is PSPACE-com-
plete by Kozen’s result [90]. If we consider a finite automaton as a graph,
non-emptiness is just graph accessibility. In this case there is another notion
of succinctness* which implies that the succinct graph accessibility problem
is PSPACE-complete [113] (even for undirected graphs [94]).

5.7 CONCLUDING REMARKS

In this chapter we considered computational complexity of some basic deci-
sion problems of finite tree automata. In particular, we proved EXPTIME-
completeness of the intersection non-emptiness problem (Theorem 5.2) and
we showed P-completeness of the non-emptiness problem (Theorem 5.1). It
follows that for a fixed number of finite tree automata, the problem of non-
emptiness of their intersection is also P-complete. We discussed a notion of
succinctness with respect to which the intersection non-emptiness problem
is in fact a succinct version of the non-emptiness problem.

Our main motivation for studying these problems and their computational
complexity is their close connection with the decidability and computational
complexity of SREU with one variable. The computational complexities of
the problems studied in this chapter and of closely related problems is sum-
marized in Table 5.1. In general there seems to be a rule of thumb that says
that if a decision problem for (deterministic) finite automata is complete for
a certain space complexity then the same decision problem with (determinis-
tic) finite tree automata is complete for the corresponding deterministic time

4The standard notion of succinctness in the case of graphs arises from practical con-
siderations in VLSI [59]. A succinct representation of a graph G with n vertices is a
Boolean circuit, that given (binary representations of) two integers < n as input (repre-
senting two vertices in G), computes the corresponding entry of the adjacency matrix of
G.
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Intersection
Non-emptiness Inequivalence non-emptiness

DFA NL NL PSPACE
NFA NL PSPACE PSPACE

DTA P P EXPTIME

DTTA P P EXPTIME

TA P EXPTIME EXPTIME

Table 5.1: Computational complexities of some basic decision problems of fi-
nite automata and finite tree automata. All problems are complete for the
respective classes.

complexity, only one exponential higher. Besides Table 5.1, further justifica-
tion for this rule follows by comparing computational complexities of some
other decision problems of finite tree automata (studied by Seidl [132]) with
the corresponding decision problems of finite automata studied by (Stearns
and Hunt IIT [140, 141]). This relationship between computational com-
plexities of decision problems of finite tree automata and finite automata
is reflected by the fact that proofs of the former are usually extensions of
proofs of the latter, by going from using nondeterministic Turing machines
to using alternating Turing machines.

Remarks about Table 5.1 The non-emptiness problem of finite au-
tomata is in fact the graph accessibility problem and is thus complete for
nondeterministic logarithmic space or NL-complete [128]. Using (5.2), in-
equivalence of DFAs reduces to non-emptiness [105] and since non-emptiness
is a particular case of inequivalence, it follows that inequivalence of DFAs
is NL-complete as well. For finite automata in general, inequivalence is
PSPACE-complete by Meyer and Stockmeyer [102]. PSPACE-completeness
of non-emptiness of intersection of finite automata was proved by Kozen [90].

Non-emptiness of finite tree automata is closely related to the two well-
known P-complete problems: alternating graph accessibility [80] and gen-
erability [82, 89]. It follows by (5.2) that inequivalence of DTAs is also P-
complete. EXPTIME-hardness of the intersection non-emptiness problem
of finite tree automata has been observed by other researchers [48, 66, 133].
In particular, Seidl outlines a proof in the case of DTTAs [133]. He has
also proved that inequivalence of TAs is EXPTIME-complete [132, Theo-
rem 2.1] and it follows also from a statement by Seidl that when restricted
to DTTAsS, inequivalence is P-complete [132, Theorem 4.3].



CHAPTER 6

SREU wiTH ONE VARIABLE

6.1 INTRODUCTION

We show that SREU with one variable is decidable. Moreover, we show
that this problem is EXPTIME-complete. We prove also that rigid E-
unification with one variable is P-complete and that SREU with one variable
and a constant bound on the number of rigid equations is P-complete. One
conclusion we draw from this is that the intractability of SREU with one
variable is strongly related to the number of rigid equations and not their
size. Note that with two variables, SREU is undecidable already with three
rigid equations. Finally, we consider a case of SREU where one allows
several variables, but each rigid equation either contains one variable, or
has a ground left-hand side and an equality between two variables as a
right-hand side. We show that SREU is decidable also in this restricted
case. In Chapter 7 we use some of these results to obtain new decidability
results in intuitionistic logic.

6.2 PRELIMINARIES

Recall that a canonical model of a set of ground equations E, denoted by
T/g, is the quotient of 75 over =p where =g is simply the congruence
relation induced by E over the set of ground terms over . It is a simple
fact that for all s,t € T,

TeEs~=t & EpEs~t

Structures that are isomorphic with the canonical model of a finite set of
ground equations are also called finitely presented algebras. Various prob-
lems that are related to finitely presented algebras, and their computational
complexity, have been studied in Kozen [88, 89]. Below, we make use of some
of those results.
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6.3 DECIDABILITY

In this section we establish formally the decidability of SREU with one
variable. The proof has two parts.

1. First we prove that rigid E-unification with one variable can be re-
duced to the problem of testing membership in a finite union of con-
gruence classes.

2. By using the property that any finite union of congruence classes is
recognizable, we then reduce SREU with one variable to the intersec-
tion non-emptiness problem of finite tree automata.

The decidability of SREU with one variable follows then from the fact that
recognizable sets are closed under Boolean operations and that the non-
emptiness problem of finite tree automata is decidable. In Section 6.4 we
address the computational complexity of this reduction.

Initial Reduction

We start by proving two lemmas. Roughly, these lemmas allow us to reduce
an arbitrary rigid equation S(z) with one variable to a finite collection of
rigid equations { S;(z) | ¢ < n } such that, for all substitutions 6, 6 solves S
iff @ solves some S;. Furthermore, each of the S;’s has the form E kK = = ¢;
where E is ground and ¢; is some ground term. The set E is common to all
the S;’s.

Let E be a set of ground equations and ¢ a ground term. Denote by [t]g
the interpretation of ¢ in 7, in other words [t]z is the congruence class
induced by =g on 7T that includes ¢. For a set 1" of ground terms we write
[Tk for {[t]g | t € T }. We write Terms(E) for the set of all terms that
occur in E, in particular Terms(E) is closed under the subterm relation.
We use the following lemma. Lemma 6.1 follows also from a more general
statement in de Kogel [27, Theorem 5.11].

Lemma 6.1 Lett be a ground term, ¢ a constant, E a finite set of ground
equations and e a ground equation. Let T = Terms(E U {e}). If [tle € [T)e
and EU{t = c} = e then E = e.

Proof. Assume that [t]g ¢ [T']p and that EU {t = ¢} |=e. Let E' be a
reduced set of rules equivalent to E, such that c|lg = ¢. Let t' = t{g. If
t' = c then

EU{t=c}=E U{txc}=E U{t'~c}=E
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and the statement follows immediately. So assume that ¢’ # ¢. Let R =
E'"U{t' — c}. Let I = r be arule in E'. Neither [ nor r can be reduced
with the rule ¢ — ¢ because [t'|g = [t]g € [T]g- Hence R is reduced, and
thus canonical [138]. Also, R = E U {t =~ ¢}. (Note that t' € [t]g and
[Tle =[T]e)

Let e =tg = sg and let u = tolr = solr. We have that
to L>R u, Sp L>R Uu.

Consider the reduction ty — g u and let t; —» ti+1 be any rewrite step
in that reduction. Obviously, if each subterm of ¢; is in some congruence
class in [T]g then the rule ' — ¢ is not applicable since [t'|g € [T]g and it
follows also that each subterm of t;4; is in some congruence class in [T]g.
It follows by induction on 7 that the rule ¢ — ¢ is not used in the reduction.
The same argument holds for sg 23 u. Hence

* *
tO —E U, S0 —E' U,

and thus E' = tg = so. Hence E |=e. X

Consider a system S of rigid equations. There is an extreme case of rigid
equations that are easy to handle from the point of view of solvability of S,
namely the redundant ones:

» A rigid equation is redundant if all substitutions solve it.

To decide if a rigid equation E(z) k s(z) = t(z) is redundant, it is enough
to decide if E(c) |= s(c) =~ t(c) where ¢ is a new constant.

» The wuniform word problem for ground equations is the following de-
cision problem. Given a set of ground equations E and a ground
equation e, is e a logical consequence of E?

We use the following complexity result [88, 89].

Theorem 6.1 (Kozen) The uniform word problem for ground equations
is P-complete.

So redundancy of rigid equations is decidable in polynomial time.

Lemma 6.2 Let E(x) § e(x) be a rigid equation, ¢ be a new constant and
t be a ground term not containing c. Then

Ele)U{t=c}Eelc) < Et) Ee(l).
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Proof. The only non-obvious direction is ‘=’. Since t does not include ¢,
E(c) U{t = ¢} E e(c) holds with ¢ replaced by ¢, but then the equation
t =~ t is simply superfluous. X

Clearly, S is solvable iff the set of rigid equations in S that are not redun-
dant, is solvable. We use the following lemma.

Lemma 6.3 Let E(x) 5 so(x) = to(x) be a rigid equation and ¢ be a new
constant. There ezists a finite set of ground terms T such that, for any
ground term t not containing c the following holds:

E(t) E so(t) = to(t) < E(c)f=t=s for someseT.

Furthermore, T can be obtained in polynomial time.

Proof. Let T’ be the set Terms(E(c) U {so(c) = to(c)}). Let
T={seT' |E(c)U{s~c}E solc) ®to(c)}.

Note that 7" may be empty. Let ¢ be any ground term that does not contain
c. By using Lemma 6.2, it is enough to prove that the following statements
are equivalent:

1. E(e) U{t =~ c} E so(c) = to(c),

2. E(c) Et=sforsomeseT.
Assume first that [t]g(c) & [T"]g(c). In particular [t]g () & [T]e(c), S0 state-
ment 2 is trivially false. Suppose (by contradiction) that statement 1 holds.

But then E(c) = so(c) = to(c) by Lemma 6.1, which contradicts that the
rigid equation is not redundant.

Assume now that [t]g() = [s]g() for some s € T". Thus
E(c)U{s=c} = E(c)U{t =c}. (6.1)

So, if s € T then statement 2 is trivially true and statement 1 is true by (6.1)
and the definition of 7. If on the other hand s € T then statement 2 is
trivially false and statement 1 is false by (6.1) and the definition of 7.

Observe that the size of T" is proportional to the size of the rigid equation,
and to decide if some term i 7" belongs to T takes polynomial time by
Kozen’s result. So the construction of T" takes polynomial time. X

From Lemma 6.3 we get the following result.
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Theorem 6.2 Rigid E-unification with one variable is P-complete.

Proof. P-hardness of rigid E-unification with one variable follows imme-
diately from P-hardness of the uniform word problem of ground equations.
Inclusion in P is proved as follows. Let S(xr) = E(z) k e(z) be a rigid
equation. Test first that S(z) is not redundant. If so, use Lemma 6.3 to
obtain T'. Now, S(x) is solvable iff T' is non-empty. DX

This P-completeness result is extended in Section 6.4 to SREU with one
variable and a constant bound on the number of rigid equations.

Reduction to Tree Automata

We use the following relationship between tree automata and arbitrary
ground rewrite systems [14].

Theorem 6.3 (Brainerd) Let R be a ground rewrite system and T a finite
set of terms. Then the set {t| (s € T) t —>g s} is recognizable. Further-

more, a tree automaton that recognizes this set can be obtained effectively
from R and T.

Recently, corresponding connections between recognizability (with respect
to pushdown tree automata [129]) and nonground term rewriting systems
have been studied by several authors [20, 21, 54, 62, 126]. For a survey
of connections between rewriting and tree automata see Dauchet [22]. We
obtain the following corollary.

Corollary 6.1 Let S(z) be a rigid equation with one variable x that is
not redundant. Then the set of x0 such that 6 solves S(x) is recognizable.
Furthermore, a tree automaton that recognizes this set is obtained effectively
from S.

Proof. Immediate by Brainerd’s theorem and Lemma 6.3 X

By using the fact that the class of recognizable sets is (effectively) closed un-
der finite intersectons and that the non-emptiness problem of tree automata
is decidable [43, 143], the decidability result of SREU with one variable fol-
lows from Corollary 6.1. The decidability is proved formally below, with a
precise computational complexity bound.
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6.4 COMPUTATIONAL COMPLEXITY

In the previous section we showed that SREU with one variable is decidable.
We paid little or no attention to the actual computational complexity of this
decision problem. Here we take a closer look at the reduction and show that
SREU with one variable is in fact EXPTIME-complete. Recall the following
definition.

» The intersection non-emptiness problem of DTAs is the following de-
cision problem. Given a collection {A4; | 1 < ¢ < n} of DTAs, is
N, T(A;) non-empty?

Let us first show that SREU with one variable reduces to the intersection
non-emptiness problem of DTAs in polynomial time. This establishes the
inclusion of SREU with one variable in EXPTIME. We then show that the
intersection non-emptiness problem of DTAs reduces to SREU with one
variable, which shows the hardness part. To show the first part we have
to be more precise about how a DTA can be constructed from a given set
of equations. Brainerd’s theorem is too general here and its computational
complexity is unclear. Instead of using Brainerd’s theorem, we give an ex-
plicit construction of a DTA from a given set of equations. This construction
is in fact based on a construction in de Kogel [27, Theorems 4.1 and 4.2]
that is based on Shostak’s congruence closure algorithm [136].! A similar
construction is used also in Dauchet, Heuillard, Lescanne and Tison [24],
and in Gurevich and Voronkov [73].

Inclusion in EXPTIME

In the following we assume that none of the rigid equations are redundant.
Lemma 6.3 tells us that the set of solutions of a rigid equation E(x) k e(z)
with one variable is given by the union of a finite number of congruence

classes

Uit E@ Es~t),

seT
where T' C Terms(E(c) U{e(c)}) and ¢ is a new constant. We now give
a polynomial time construction of a DTA that recognizes the above set of
terms. Our considerations lead naturally to the following definition. Let E
be a set of ground equations and T a subset of Terms(E).

» ADTA A=(Q,%,R,F) is presented by (E,T) if A has the following
form (modulo renaming of states). First, let go be a new state for
each C € [Terms(E)|g.

Q = {qc|C €|[Terms(E)|g},

IDe Kogel does not use tree automata but the main idea is the same.
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¥ = X(p),
F = {q|Ce[Tlr},
R = {f(qeps- > Ttnls) = e |t = f(t1, ... 1) € Terms(E) }.

It is clear that the above definition is well defined. It follows from elementary
properties of congruence relations that A is deterministic and thus R is
reduced. Note that for each constant c in ¥(E), there is a rule ¢ — g,
in R. Note also that for any equation s =~ ¢ in E, both s and ¢ reduce to
the same normal form g, = g, With respect to R, since they belong to
Terms(E). We use the following lemma.

Lemma 6.4 Let E be a set of ground equations and T C Terms(E). Let
A be a DTA presented by (E,T). Then

1L T(A) ={t€Tom|@seT)Eltrs},

2. A can be constructed in polynomial time from E and T'.

Proof. To prove the first statement, consider a X-structure 2 with the
universe {t}g | t € Txur } and the interpretation function such that t* =
tlg for all t € Tx. Clearly, it is enough to prove that, for all ¢,s € Tx,

EEtrs & AEt=s.

For a proof of this statement see de Kogel [27].

The second part is proved as follows. The number of terms in Terms(E)
is proportional to the size of E. It follows by Theorem 6.1 that the time
complexity of the construction of @, i.e., the time complexity to partition
Terms(E) into congruence classes, is polynomial. The rest is obvious. X

We prove now that SREU with one variable is in EXPTIME.

Lemma 6.5 SREU with one variable is in EXPTIME.

Proof. Let S(z) = {S;(z) | 1 <i < n} be a system of rigid equations.
Assume, without loss of generality, that none of the rigid equations is re-
dundant. Let S;(z) = E;(z) kv ei(z). Let ¥ be the signature of S. Use
Lemma 6.3 to obtain, for each i, 1 < i < n, a set of ground terms T; in
polynomial time such that, for all ¢ in Ty,

Ei(t) Eei(t) <& Ei(c) =t~ s for some s € T;.
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Use now Lemma 6.4 to obtain (in polynomial time) a DTA A; that presents
(Ei(e),T;), for 1 < i < n. It follows by Lemma 6.3 and the first part of
Lemma 6.4 that

T(A)={teTs| Eit) Eeit)} (forl<i<n).
Thus, 6 is a solution to S(z) iff 6 is recognizable by all T'(4;). Conse-
quently, S(z) is solvable iff !, T'(4;) is non-empty. The lemma follows,
since the intersection non-emptiness problem of DTAs is in EXPTIME. X
EXPTIME-completeness

We reduce the intersection non-emptiness problem of DTAs to SREU with
one variable to establish the hardness part. First, let us state some simple
but useful facts.

Lemma 6.6 Let A = (Q,%,R,F) be a DTA, f a unary function symbol
not in X, and ¢ a constant not in QQ or X. Let

S(x) =(RU{f(g) 2 clge Fikazwmc).
Then, for all 6 such that ©0 € Tsu(yy,
0 solves S(z) <& xf = f(t) for somet € T(A).
Proof. Let E = RU{ f(q) = c|q € F'}. From the fact that R is reduced

and that f(g) is irreducible in E and c is irreducible in R, follows that E
is reduced and thus canonical. So, for any z0 € Tyusy, E | 20 ~ ciff

20 =5 c. But

w9 —pc o 20 g f(q) — cfor some g € F
& a6 = f(t) for some t € Ty, and t —p ¢
& 26 = f(t) for some ¢t € T'(A).

X

For a given signature X, and some constant ¢ in it, let us denote by Sy (z)
the following rigid equation:?

Ss(z)={ fle,...,o)mec|feXt o).

The following lemma is elementary [38].

Lemma 6.7 For all 0, 0 solves Sx(x) iff z0 € Tx.

2Note that f(c,...,c) stands for f when f is a constant.
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We have now reached the point where we can state and easily prove the
following result.

Theorem 6.4 SREU with one variable is EXPTIME-complete.

Proof. Inclusion in EXPTIME follows by Lemma 6.5. Let { A; | 1 <i<n}
be a collection of DTAs with signature ¥. Let f be a new unary function
symbol and ¥’ = ZU{f}. For each A;, let S;(z) be the rigid equation given
by Lemma 6.6. So, for all § such that z6 € Ty,

0 solves S;(z) < x0 = f(t) for some t € T'(4;).

Let
S@) = {Si(x) | 1< i <n}U{Sw()}

It follows by Lemma 6.7 that for any 6 that solves S(z), 6 is in Ts.. Hence,
by Lemma 6.6, S(z) is solvable iff ;_, T'(4;) is non-empty. Obviously,
S(x) has been constructed in polynomial time. The statement follows from
Theorem 5.2. X

So in the general case, SREU is already intractable with one variable. It
should be noted, however, that the exponential behaviour is strongly related
to the unboundedness of the number of rigid equations. (See Section 6.4.)

Bounded Case

The exponential worst case behaviour of SREU with one variable is strongly
related to the unboundedness of the number of rigid equations, and not to
the size or other parameters of the rigid equations. This behaviour is ex-
plained by the fact that the intersection non-emptiness problem of a family
of DTAs is in fact the non-emptiness problem of the corresponding direct
product of the family. The size of a direct product of a family of DTAs is
proportional to the product of the sizes of the members of the family, and
the time complexity of the non-emptiness problem of a DTA is polynomial.

» Bounded SREU is SREU with a number of rigid equations that is
bounded by some fixed positive integer.

For bounded SREU with one variable we get the following result.

Theorem 6.5 Bounded SREU with one variable is P-complete.
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Proof. Let the number of rigid equations be bounded by some fixed positive
integer n. P-hardness follows immediately from Theorem 6.2. Without loss
of generality consider a system

S@) = {Si(e) [1<i<n}

of exactly n rigid equations. For each S; construct a DTA A; in polynomial
time, like in Lemma 6.5. Let A be the DTA that recognizes ), T'(4;).
For example, A can be the direct product of {4; | 1 < i < n} (Gécseg
and Steinby [60]). It is straightforward to construct A in time that is pro-
portional to the product of the sizes of the A;’s. Hence A is obtained in
polynomial time (because n is fixed) and T'(A) is non-empty iff S(x) is
solvable. The statement follows from Theorem 5.1. X

Monadic Case

When we restrict the signature to consist of function symbols of arity < 1,
i.e., when we consider the so-called monadic SREU then the complexity
bounds are different. DTAs restricted to signatures with just unary function
symbols correspond to classical deterministic finite automata or DFAs. The
following result is proved in Kozen [90].

Theorem 6.6 (Kozen) The intersection non-emptiness problem of DFAs
is PSPACE-complete.

We get the following result.

Theorem 6.7 Monadic SREU with one variable is PSPACE-complete.

Proof. Inclusion in PSPACE follows from Lemma 6.5 trivially modified
so that Theorem 6.6 is used. PSPACE-hardness follows from Theorem 6.4
trivially modified so that Theorem 6.6 is used. X

A detailed study of monadic SREU can be found elsewhere [73], where also
the PSPACE-completeness is proved. We can note that, in general, the
decidability of monadic SREU is still an open problem [73].

6.5 UNITED ONE VARIABLE CASE

In this section we extend the decidability result of SREU with one variable
to SREU with multiple variables with the following syntactical restriction
on the structure of each rigid equation. We say that a system of rigid
equations has the united one variable property if each rigid equation E K e
in it satisfies the following conditions:
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1. Either F K e includes at most one variable, or

2. F is ground and e has the form z = y for two variables z and y.

SREU restricted to systems with the united one variable property is called
united one variable SREU. This is a nontrivial extension of the one variable
case.

Example 6.1 Let Siq(x), Smy(y) and Sy (z,y) be the rigid equations defined
in Chapter 3, then the system

{Sid(x): va(y)a Sl (ZU,y) }

has the united one variable property. Note that, by adding the rigid equa-
tion Sa(x,y) we violate the united one variable property because Sa(x,y)
contains more than one variable and its right-hand side is not a simple
equality between two variables. O

The main result of this section is that the united one variable SREU is
decidable. The proof is by reduction to the decidable first-order theory of
ground rewrite systems [26].

The Decidable Theory GRS

Now we formally define the theory of ground rewrite systems or GRS. Con-
sider a signature ¥ that contains all the function symbols and constants
that we are going to need in the sequel. Let I' be the following signature
constructed from X.

e For each term ¢ in Ty, let £ be a constant in T

e For each ground rewrite system E over Ty, let Rg be a new binary
relation symbol in T'.3

Now, let 2 be the following I'-structure. The universe of 2 is 7y and the
interpretation function of 2 is defined as follows. Note that the only ground
terms in the signature of 2l are the constants ¢ for ¢t € Tx, since there are
no function symbols in I' of positive arity.

1. For each constant £ € T, t* = ¢.

2. For each relation symbol Ry € T', R% is the rewrite relation e

3In the original definition of GRS [26] there are two more relation symbols for each
E, but we do not use them here.
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We can now define GRS as the first-order theory of 2, i.e.,
GRS ={¢p asentenceinI' | A =¢p}.

We use the following result [26].
Theorem 6.8 (Dauchet—Tison) GRS is decidable.

The proof of Theorem 6.8 is by reduction to finite tree automata. In partic-
ular, it involves, for each ground rewrite system, a construction of a “ground
tree transducer” that is a pair of a bottom-up and a top-down finite tree
automaton, and defines the rewrite relation that is related with that rewrite
system [23, 25]. When GRS is restricted to reduced ground rewrite systems
(which is enough in our case) one can give an easier proof of Theorem 6.8 by
reduction to the decidable weak monadic second-order theory of the binary
tree or WS2S.% See Thomas [144] for a survey of related topics.

Reduction to GRS

We use the following lemma. In the following we consider rigid equations
in a fixed signature ¥ that contains at least one constant. We also assume
that we have a sufficiently large supply of new constants.

Lemma 6.8 Let E(z) k e(x) be a non-redundant rigid equation with one
variable x. There is a formula p(x) in the language of GRS such that, for
all ground terms t,

A=) < E@i) =e(t) andte Ts.

Proof. Let ¢ be a new constant and use Lemma 6.3 to obtain a finite set T’
(€ Txugey) of ground terms such that, for all ground terms ¢ not containing
&

E(t)=e(t) < E(c)Et=sforsomesecT.

Let By = { f(c1,...,c1) ® c1 | f € £}° where ¢; is some constant in X.
Consider both E(c) and Ex as rewrite systems, with equations as rules in
both directions. Let ¢(x) be the following formula:

(P(CU) = (\/ RE(C)(;U:g)) A REz(w7él)'
seT

4Such a proof has been given by Gurevich and Veanes.
5Note that f(ci,...,c1) stands for f whenever f is a constant.
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It follows by definition of 2 that, for all ground terms t,

2A |: ‘P(a & A ': \/ RE(C) (fa §) and 2 |: REE (fa él)
seT

&St L>E(C) s for some s € T, and t — g, ¢;
& E(c) =t= sforsomeseT,and t € Ty
& E(t) Ee(t)and t € Ty,

where the last equivalence holds by the above, because ¢ is not in X. X

We can now prove the following.

Theorem 6.9 United one variable SREU is decidable.

Proof. Let S = {S; |1 <i<n} be asystem of rigid equations with the
united one variable property. Assume, without loss of generality, that none
of the rigid equations in S is redundant. For each rigid equation S;(z) in
S with one variable x let y;(x) be the formula given by Lemma 6.8. For
each rigid equation S;(z,y) = E; & « = y in S, where E; is ground, and x
and y are variables, consider E; as a ground rewrite system with equations
as rules in both directions and let ¢;(z,y) = Rg;(z,y). So, for all ground
terms ¢ and s,

E=Ftrs < t—*>EiS <  AE Rg(t,5).

Finally, let ¢ be the existential closure of the conjunction of all the ¢;’s.
It is straightforward to verify that ¢ is a theorem in GRS iff S is solvable.
The statement follows by Theorem 6.8. X

The computational complexity of the united one variable SREU is not
known, we know only that it is at least EXPTIME-hard. It also remains to
be investigated if there are other decidable extensions of the one variable
case. We can also note the following result. The 3-fragment of GRS is the
set of prenex formulas in GRS with one existential quantifier.

Corollary 6.2 The 3-fragment of GRS is EXPTIME-hard.

Proof. From the proof of Theorem 6.9 it is clear that the reduction from
SREU with one variable to GRS can be performed in polynomial time and
that the resulting formula is a prenex formula with one existential quantifier.
The statement follows now from Theorem 6.4. X



CHAPTER 7

PRENEX FRAGMENT OF
INTUITIONISTIC LOGIC

7.1 INTRODUCTION

The strong connections between SREU and intuitionistic logic with equality
have implied new important decidability results in the latter area [35, 155].
From the undecidability of SREU follows, for example, that the 3*-fragment
of intuitionistic logic with equality is undecidable [37, 38]. By using the
results in Chapter 3, we improve this result to the following.

The 33-fragment of intuitionistic logic with equality is undecid-
able.

The decidability of the V*3v*-fragment of intuitionistic logic with equality
has been an open problem which is settled in this chapter by using the results
in Chapter 6 and an analogue of a Skolemization result for intuitionistic
logic [35]. The following is proved.

The Y*3AV* -fragment of intuitionistic logic with equality is decid-
able and EXPTIME-hard.

The above two results imply the following main contribution of this chapter.
The prenex fragment of intuitionistic logic is the collection of all intuition-
istically provable prenex formulas.

A complete classification of decidability of the prenex fragment
of intuitionistic logic with equality, in terms of the quantifier
prefix.

At the end of this chapter we compare these fragments with the correspond-
ing fragments in classical logic.



7.2. PRELIMINARIES 89

I'A,A— A I'L,A— ¢ ' >trt
Axioms
P{s/a},s mt,A{s/a} = x{s/x} (=) P{s/a},t =5, A{s/a} = x{s/x} (%)
C{t/a},s ~ 6, A{t/a} > x{t/a} ~  T{t/a},t~ s A{t/o} > xdt/o}
Replacement rules
Lo, A= r — r —
Loy A= x (A =) Lo I'2y (= A)
Fiony, A= x L—=oAy
e, A= x 'Y, A= x >y -9
(V=) ——— (= V1) ——— (= V2)
oV, A— x - vy - vy
Ly, A—x F7w=>w,A%<p( ) o, ' =9 ( )
=>— _— (o=
Fo=9v,A = x F—=p=v¢

Propositional rules

I of{t/a},Vop, A = x I — p{y/a}
V=) V. — =V
I,Vep,A = x I'— Vo
r, z}, A = x I'— p{t/z
Dely/eh Az x o ) Doelt/ed o
I,3zp, A = x I'— 3Jze

Quantifier rules

Figure 7.1: Inference rules of LJ¥. Here A stands for an atomic formula; ¢, ¢
and y stand for arbitrary formulas; I and A stand for multisets of formulas.
In the rules (3 —) and (— V) the variable y does not occur free in the
conclusions of the rules.

7.2 PRELIMINARIES

We use . for classical provability and ; for intuitionistic provability. The
particular choice of formal system does not affect the decidability results.
For example, we can assume natural deduction for F. and natural deduc-
tion without the RAA rule for F;. (See for example Troelstra and van
Dalen [145].)

A sequent is an expression of the form A — ¢, where A is a multiset of
formulas and ¢ a formula. In Section 7.3, we consider derivations in a par-
ticular (cut-free) sequent calculus LJ” for intuitionistic logic with equality.
(See Figure 7.1.) Any negated formula - is a shorthand for ¢ = L, where
1 is a propositional constant. It is well-known that a closed sequent — ¢
is derivable in LJ™ iff k; ¢, see, e.g., Orevkov [110].

We use the following general properties.

e The explicit definability property of intuitionistic logic: if F; Jxp then
there is a ground substitution 8 such that F; 6.
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e If p is a conjunction of closed implications of the form ¢ = e, where
¥ is a conjuntion of equations and e is an equation, then . ¢ iff F; ¢.

A prenex formula is a formula of the form

Q121 ... Qnenp(T1, ..., Ty)

where ¢ is quantifier free and each @); is a quantifier. The prenex fragment
of intuitionistic logic is the class of all intuitionistically provable prenex
formulas. For a rigid equation F e let

FEke) = (Nd)=e,
deE

and for a system S of rigid equations let

FS) = NFS)|[Ses}

7.3 CLASSIFICATION OF THE PRENEX FRAGMENT

The decidability problem of the fragments of intuitionistic logic has not
been as thoroughly studied as the corresponding problem in classical logic,
where the decidability of all standard fragments has been systematically
classified [13]. In particular, not much has been known about the prenex
fragment (of intuitionistic logic). Many new decidability results about
the prenex fragment have been obtained quite recently by Degtyarev and
Voronkov [34, 35, 37, 38] and Voronkov [153, 154]. Some of these results
are:

1. Decidability, and in particular PSPACE-completeness, of the prenex
fragment of intuitionistic logic without equality [153, 154].

2. Prenex fragment of intuitionistic logic with equality but without func-
tion symbols is PSPACE-complete [35]. Decidability of this fragment
was proved in Orevkov [111].

3. Prenex fragment of intuitionistic logic with equality in the language
with one unary function symbol is decidable [35].

4. F*-fragment of intuitionistic logic with equality is undecidable [34, 37,
38].

In many of the above results, the corresponding result has first been ob-
tained for a fragment of SREU with similar restrictions. In particular, the
last statement follows from the undecidability of SREU and the following
property, originally used in Degtyarev and Voronkov [34, Theorem 4].
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Lemma 7.1 Let S(Z) be a system of rigid equations.

S is solvable <&+ AEF(S).

Proof. The direction ‘=’ follows by the fact that if there exists a 6 that
solves S then . F(S)6 and thus ; F(S)6 (for this class of formulas). Hence
F; 32F(S). The direction ‘<=’ follows by the explicit definability property
of intuitionistic logic, which provides a solution for S. X

The J33-Fragment

By using some results from Chapter 3, we obtain a uniform characterization
of all the recursively enumerable sets in the 33-fragment of intuitionistic
logic with equality. Let us consider Turing machines with some fixed tape
alphabet and a fixed symbol gy for the initial state. Let ¢, denote the word
that represents gov (the initial ID for input string v).

Recall the following: given a TM M we can construct a system SM (z,y) of
three rigid equations such that the left-hand sides are ground and indepen-
dent of v, and SM (z,y) is solvable iff M accepts v.

Theorem 7.1 Uniformly, for any Turing machine M, there is a formula

Mizzy) = E=zrv.gxc)All zzxy) AL =2~2.y).

where E, IIy and IIy are closed conjunctions of equations and c is a constant,
such that, for all input strings v for M,

Fi 3e3ye™ (ty,z,y) & M accepts v.
Proof. Let M (t,,x,y) = F(SM). Use Lemma 7.1 and Theorem 3.3. K

Let us now consider a universal Turing machine M, and let " = ™= be the
formula given by Theorem 7.1. Let us also write M (z,y) for o™ (t,,z,y).
We get the following result.

Theorem 7.2 The 33-fragment of intuitionistic logic is undecidable already
under the following restrictions:

1. The signature has two symbols: one constant and one binary function
symbol.

2. The only connectives are A\ and at most three =’s.

3. The antecedents of all implications are closed.



92 PRENEX FRAGMENT OF INTUITIONISTIC LOGIC

Dl D2
A > st Ag — sty at
Do DL (Aoy) S2TEEE (A ,,)
Ag = s.txc
——————— (A =ng)
— (A= _— (A=
: A H1—>szt((ﬁzo>)) H2—>sztu.t((ﬁzo>))
EAS.tzc((::O:) S I =>s~t aH2:>sztv.t(_>/\)
- E=s.trc = (1 = sxt)A (Il = s Kty t)
v; (= A)
i 2 L
— Jypd (s, v) = 3)

= Jaypl (z,y)

Figure 7.2: A derivation of 3z3yp) (z,y) in LI¥; Ao, A; and As are multiset
of equations corresponding to E, II; and IIs, respectively; ng, n1 and ng are
the number of A’s minus one, in E, IT; and I, respectively. It is actually
the existence of the derivations Dy, D; and D2, that corresponds to the
solvability problem of the system S27 of rigid equations.

4. The antecedents of implications may be fized.

Proof. Let M be a TM and v an input string for M. Then, by Theorem 7.1,
H EI:UEiygo‘(‘MM (z,y) < M, accepts (M,v) < M accepts v.

Furthermore, all constants in 90‘<‘M vy Can be simulated by one constant and
one binary function symbol (see the remark following Corollary 3.3). X

A Remark on Skeleton Instantiation

Proof search in intuitionistic logic with equality is closely connected with
SREU, and, unlike in the classical case, the handling of SREU is in fact un-
avoidable in that context [152, 155]. A skeleton is the structure of a deriva-
tion in LJ¥, where all the replacement rules have been removed. Skeleton
instantiation is the problem of the existence of a derivation with a given
skeleton. The structure of a skeleton is given, to a certain extent, by the
structure of the formula that one searches a proof for. Voronkov shows that
SREU is polynomially equivalent to skeleton instantiation in the sequent
calculus LJ™ [152].

The sequent — JxIyp™ (z,y) has a derivation in LJ¥ iff it has a derivation
in LJ® of the form shown in Figure 7.2 where the derivations D; consist
solely of replacement rules and the rule (=) at the top. The skeleton of
the derivation in Figure 7.2 is illustrated in Figure 7.3. We can draw the
following conclusion from this.

Corollary 7.1 There is a fized skeleton with two applications of (— 3) and
three applications of (—=>) for which the skeleton instantiation problem in
LJ¥ is undecidable.
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— (=) — (A=ny) —— (A —ny)
— (A=mg) :

. —— (A —=0) —— (A —=0)
— (A —0) — (—==) — (—==)
— (—==) (= A)

(= A)
— (=3
— (=3

Figure 7.3: The skeleton of the derivation in Figure 7.2.

Proof. By using the results proved in Voronkov [152, 155], the sentence
Jz3ypM (z,y) is intuitionistically provable iff the sequent — JzIypM (z,y)
can be derived in LJ® with the skeleton shown in Figure 7.3. Let M = M,,.
The statement follows now from Theorem 7.1. X

The V*3dV*-Fragment

With the following result we obtain a complete classification of decidability
of the prenex fragment of intuitionistic logic with equality, in terms of the
quantifier prefix.

Theorem 7.3 The Y*3IV*-fragment of intuitionistic logic with equality is
decidable and EXPTIME-hard.

Proof. We prove the decidability first. Intuitionistic provability of any
prenex sentence with the prefix V*3V* can be reduced to provability of a
prenex sentence with prefix 3 by using an analogue of Skolemization for
intuitionistic logic [35, Theorem 3.2]. So consider a sentence Jzp(x), where
¢ is quantifier free. The sequent — Jxp(x) is derivable in LJ¥ iff it is
derivable with some skeleton & and only finitely many skeletons need to
be considered and can be computed from ¢ [156].! From ¢ and a skeleton
S one obtains a system S(z) of rigid equations with one variable z such
that S(z) is solvable iff — Jxp(x) is derivable with skeleton S [156]. The
decidability follows now from Theorem 6.4.

Conversely, SREU with one variable reduces in polynomial time, by Lem-
ma 7.1, to intuitionistic provability of a closed 3-formula. So the latter
problem is EXPTIME-hard by Theorem 6.4. X

I The use of the rule (=—) can be restricted so that the premises are guaranteed to
become “smaller” than the conclusion.
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— = — ®
— (—==) — (—==)
— (R — (= W) — (R — (= V2)
(=) — (=)
— (=3 — (=3
Skeleton S; : Skeleton Ss :

Figure 7.4: The only two possible skeletons in LJ¥ for the sequent
s dz(zmc)A((z=0=>0=x1)V(r=1=0~x1)).

Do
00— 01
—_——— (—==)
D, -z ~0=>0~1 (= V1)
—szlrc = (d=0=>0~x1)V(efx1=0~1) ( 1)
— A
—“(@rRc)A (0 =0=>0~1)V(zfx1=>0~1))
(=3

- Jz(zrc)AN((zr0=>0~r1)V(zx1l=0=x1))

Figure 7.5: Any derivation of the sequent
s o) AN((z=0=0x1)V(zx1l=>0~x1))

in LJ® with the skeleton S; in Figure 7.4 must have this form for some
ground substitution 6.

The reduction in the proof of Theorem 7.3 from an 3-formula to SREU with
one variable may take exponential time, so the precise upper bound of the
computational complexity for the V*3IV*-fragment is currently unknown. A

similar decidability proof of another fragment is given in Degtyarev and
Voronkov [35, Theorem 7.1] where the ot98R-0-Td(syst(8)Tj33.4-0-Td(thethat199-T/1992-0-Td(4-0-Tdd(9jdj,
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of rigid equations is solvable. Since neither of the systems is solvable, we
conclude that t4 Jzp(z).

On the other hand, if we consider the formula instantiation problem or the
1-Skeleton problem of p(x) we see that, classically, p(z) is equivalent to the
formula

(xmc)AN(z#£0V0=1Vz1V0ixl).

It is easy to see that the formula instantiation problem of p(z) reduces to
the solvability of the following system of rigid equations

{fr=e {2=0,z=1}K0=1}

that is clearly solvable with a substitution # such that z6 = c. a

Note that, although both formula instantiation and intuitionistic provability
of existential formulas reduce to SREU, these reductions are fundamentally
different, as is illustrated with the above example.

7.4 OTHER FRAGMENTS

Decidability problems for other fragments of intuitionistic logic have been
studied by Orevkov [109, 111], Mints [104], Statman [139] and Lifschitz [93].
Orevkov proves that the ——V3-fragment of intuitionistic logic with func-
tion symbols is undecidable [109]. Orevkov classifies the decidability of
some other pseudo-prenex fragments of intuitionistic logic with equality,
i.e., classes of formulas with a prenex that is a string in {3,V,-—}* [111].
Lifschitz proves that intuitionistic logic with equality and without function
symbols is undecidable, i.e., that the pure constructive theory of equality is
undecidable [93]. Statman proves that the intuitionistic propositional logic
is PSPACE-complete [139].

7.5 CORRESPONDING CLASSICAL FRAGMENTS

The study of the classical decision problem was initiated by Hilbert at the
beginning of this century. The classical decision problem can be formulated
as the provability or validity problem in classical logic:

Given a sentence @, is ¢ valid?

Classically, a formula is valid iff its negation is unsatisfiable, so the corre-
sponding satisfiability problem is an equivalent formulation of the classical
decision problem. Godel’s Incompleteness Theorem [63] was an important
breakthrough in logic that implied the undecidability of the classical deci-
sion problem in general. The identification of which fragments of the class
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of all first-order formulas are decidable had been started already before
Godel’s result, and several fragments had been shown to be as hard as the
whole problem. By now the classification of all the traditional fragments
has been completed [13]. See Gurevich [71] for a popular introduction into
the subject.

Classically, all formulas are equivalent to prenex formulas. Formulas in
prenex form are traditionally classified by imposing restrictions on the quan-
tifier prefix, the signature and either allowing equality or not. Let us
adopt the following notation for classes of formulas [13]. Let [Q,, 3] and
[Q, a, 8]~ stand for collections of closed first-order prenex formulas with
and without equality, respectively, where

1. Qis a string over {3,V, 3*,V*}, indicating that prenex sentences with
quantifier prefix @ are allowed. When all prefixes are allowed then all
is written for Q.

2. a=(ai,...,amn), where each ; is either a natural number or the first
infinite ordinal w, and indicates that there are «; relation symbols of
arity ¢ in the signature. If any number of relation symbols of all arities
are allowed then all is written for a. If there are no relation symbols
then (0) is written for a.

3. B is like a but for function symbols.
Note that constants are not allowed with this classification. When consider-
ing provability (either classical or intuitionistic), constants behave just like
universally quantified variables, so any constant can simply be replaced by

a new universally quantified variable. For a class C of sentences, let us write
C™) and C(F<), for the following fragments:

C) = {peC|rip},
cr) = {pelCltcep}

So, we have that
e [V33,(0), (0, 1)](§‘) is undecidable by Theorem 7.2, and

o [V*3v*, all, all]$ is decidable by Theorem 7.3.

Note that this notion of classification leaves open the decidability of intu-
itionistic provability of existential prenex sentences without constants, i.e.,
the fragment [3*, all, all]g i), Classically, without restrictions on the signa-
ture, maximal decidable fragments are

o [V, all, all](;c) if equality is allowed [70], and
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o [V*3V*, all, all]"<) if equality is disallowed [69, 98].

Let CLAUSE be the class of closed prenex formulas whose quantifier free
part is a clause, i.e., a disjunction of literals.? In the presence of equality,
we have that, the Gurevich fragments

e ([3,(0),(0,1)]~ N CLAUSE)("<) and
e ([3,(0),(2)]~ N CLAUSE)("<) are undecidable [70].

Let HornCLAUSE be the class of prenex formulas whose quantifier free
part is a (strict) Horn clause, i.e., a clause with exactly one positive lit-
eral. The Gurevich fragments are already undecidable when restricted to
HornCLAUSE [160]. In other words, validity is undecidable for closed im-
plications of the form Jz(E = €), where FE is a conjunction of equations and
e is an equation. On the other hand, we know that intuitionistic provability
is decidable for such implications, e.g., by Lemma 7.1 and the decidability
of rigid E-unification [57].

As an exception to the general rule that intuitionistic fragments of prenex
formulas seem to be “easier” than the corresponding classical fragments,
we have the following case. Consider prenex formulas whose quantifier free
part is a conjunction of Horn clauses with ground negative literals, such
formulas form a subclass of “ground-negative” formulas, for which classical
provability is decidable [157]. However, as we have shown, intuitionistic
provability is undecidable for prenex formulas whose quantifier free part is
a corresponding conjunction of implications.

Note that, without equality,
e [all,all, all]") is decidable and in fact PSPACE-complete [153],

whereas classically, there are already 11 different minimal standard frag-
ments of first-order logic without equality which are undecidable (9 of which
use no function symbols at all) [13]. Note also that

e [all,all, (0)](;‘) is decidable [111] and in fact PSPACE-complete [35].

In the presence of equality and only one unary function symbol, the maximal
decidable standard fragments of classical logic are,

o the Rabin fragment [all, (w), (1)]$) [121], and

2(Classically, the corresponding class for satisfiability is the class of Herbrand formulas,
i.e., prenex formulas whose quantifier free part is a conjunction of literals.
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e the Shelah fragment [V*3V*, all, (1)](;) [135].
In intuitionistic logic we have that
o [all,all,(1)]? is decidable [35].

7.6 OPEN CASES

We conclude with the following two open problems regarding intuitionistic
provability of closed prenex formulas. Recall that monadic SREU is SREU
restricted to a signature with function symbols of arity < 1. The decidability
of the following two fragments is open:

? [all, all, (w)]%" and

? [3%, all, all] SV

The fragment [all, all, (w)]" is decidable if and only if monadic SREU is
decidable [35]. Let us write SREU, for monadic SREU with two unary func-
tion symbols. Then monadic SREU is decidable iff SREU; is decidable [32].
If SREU, is decidable then there hardly exists a simple proof of that. A fact
to support this statement is that the word equation problem or unification
under associativity has a simple reduction to SREU> [32]. The word equa-
tion problem is a hard combinatorial problem that was proved decidable by
Makanin [96]. No interesting upper bounds for computational complexity
of the word equation problem are known yet. The monadic SREU is treated

in detail in Gurevich and Voronkov [73].



CHAPTER 8

CONCLUSION

8.1 MAIN CONTRIBUTIONS

The main purpose of the thesis is to gain deeper understanding of SREU.
The fundamental role of SREU in several areas of computer science has been
shown in numerous results by Degtyarev and Voronkov and others. During
the course of this work, it turned out that already very small fragments of
SREU can be used in a straightforward manner to express rich mathematical
constructions. In particular, SREU with ground left-hand sides can be used
to express various problems concerned with finite tree automata. The first
main result using such observations, in combination with Plaisted’s shifted
pairing technique [116] is:

e The minimal known undecidable fragment of SREU (see Theorem 3.3).

A useful tool in proving that result, is the Train Theorem (Theorem 3.1).
We believe that the Train Theorem is of independent interest.

The Herbrand Skeleton problem of fixed multiplicity m, or the m-Skele-
ton problem, is of fundamental importance in automated theorem proving
methods based on the Herbrand theorem. The m-Skeleton problem was
proved undecidable by Voda and Komara [151] by a very complicated argu-
ment, shortly after the result of Degtyarev and Voronkov [34]. Contrary to
their claim [151], we show that the undecidability of the m-Skeleton prob-
lem follows directly from the undecidability of SREU. Moreover, by using
Theorem 3.3 we are able to identify:

o The minimal known fragment of classical logic for which the m-Skele-
ton problem is undecidable, for any given m (see Corollary 4.3).

The main tools that we use to get this this result are the notion of guard-
edness of Horn formulas and the Partisan Corroboration Theorem (Theo-
rem 4.1). We believe that the Partisan Corroboration Theorem is of inde-
pendent interest in logic.
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After it had become clear that SREU is undecidable with two variables, we
soon realized that SREU with one variable is decidable and reduces to the
intersection non-emptiness problem of finite tree automata. The complexity
of the latter problem was unclear and had to be proven first. As it turned
out, the computational complexity results of the basic decision problems
of finite tree automata in general, have not been properly addressed in the
literature and we did a limited survey on that subject [149]. This survey is
summarized in Table 5.1. We formally proved that:

e The intersection non-emptiness problem of finite tree automata is
EXPTIME-complete (see Theorem 5.2).

e The non-emptiness problem is P-complete (see Theorem 5.1).

We also drew some general conclusions relating complexity results of clas-
sical finite automata to the corresponding results of finite tree automata.
In particular, it seems that if a decision problem for (deterministic) finite
automata is complete for a certain space complexity class then the same
decision problem for (deterministic) finite tree automata is complete for the
corresponding alternating space complexity class, but alternating space is
precisely deterministic time, only one exponential higher [17].

Using the above complexity results we were then able to prove that:

e SREU with one variable is EXPTIME-complete (see Theorem 6.4).

e SREU with one variable and a constant bound on the number of rigid
equations is P-complete (see Theorem 6.5).

Hence, the intractability of SREU with one variable is strongly related to
the number of rigid equations. In addition, by using a result of Dauchet
and Tison [26], we were able to extend the decidability result of SREU with
one variable in a non-trivial way: (see Theorem 6.9)

e SREU is decidable if restricted to rigid equations E K e such that

— E K e contains at most one variable, or

— FE is ground and e has the form = ~ y for two variables x and y.

Finally, using the undecidability result of SREU with two variables and the
decidability result of SREU with one variable, combined with techniques
developed in Degtyarev and Voronkov [35] and Voronkov [156], we got a
new result in intuitionistic logic with equality:

e A complete classification of the prenex fragment of intuitionistic logic
with equality, in terms of the quantifier prefix:
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— The 33-fragment is undecidable (see Theorem 7.2).

— The V*3v*-fragment is decidable and EXPTIME-hard (see The-
orem 7.3).

We show also, improving a result in Voronkov [155], that the skeleton in-
stantiation problem in the context of proof search in intuitionistic logic
with equality is already undecidable for some fized skeleton. In fact, such a
skeleton is illustrated in Figure 7.3.

8.2 CURRENT STATUS OF SREU

Let us briefly summarize the current status of SREU and the results that
have been proven about it. The first decidability proof of rigid E-unification
is given in Gallier, Narendran, Plaisted and Snyder [56]. Recently a simpler
proof, without computational complexity considerations, has been given by
de Kogel [27, 28]. Rigid E-unification is studied also in Choi [19]. We start
with the solved cases:

e Rigid E-unification with ground left-hand side is NP-complete [91].
Rigid E-unification in general is NP-complete and there exist finite
complete sets of unifiers [52, 56].

e Rigid E-unification with one variable is P-complete [29] (see Theo-
rem 6.2). Or, more generally, SREU with one variable and a bounded
number of rigid equations is P-complete [29] (see Theorem 6.5).

e If all function symbols have arity < 1 (the monadic case) then it fol-
lows that SREU is PSPACE-hard [66]. If only one unary function
symbol is allowed then the problem is decidable [31, 32]. If only con-
stants are allowed then the problem is NP-complete [32] if there are
at least two constants.

e About the monadic case it is known that if there are more than 1 unary
function symbols then SREU is decidable iff it is decidable with just
2 unary function symbols [32].

o If the left-hand sides are ground then the monadic case is decid-
able [73]. Monadic SREU with one variable is PSPACE-complete [73]
(see Theorem 6.7).

e The word equation solving [96] (i.e., unification under associativity),
which is an extremely hard problem with no interesting known com-
putational complexity bounds, can be reduced to monadic SREU [31].

e Monadic SREU is equivalent to a non-trivial extension of word equa-
tions [73].
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e Monadic SREU is equivalent to the decidability problem of the prenex
fragment of intuitionistic logic with equality with function symbols of
arity <1 [35].

e In general SREU is undecidable [34]. Moreover, SREU is undecidable
under the following restrictions:

— The left-hand sides of the rigid equations are ground [116].

— Furthermore, there are only two variables [147, 148, 150] and
three rigid equations with fixed ground left-hand sides [72] (see
Theorem 3.4).

e SREU with one variable is decidable, in fact EXPTIME-complete [29]
(see Theorem 6.4). Moreover, united one variable SREU, i.e., SREU
restricted to rigid equations that either contain one variable, or have
a ground left-hand side and a right-hand side that is a simple equality
between two variables, is decidable (see Theorem 6.9).

Note also that SREU is decidable when there are no variables, since each
rigid equation can be decided for example by using any congruence closure
algorithm or ground term rewriting technique. Actually, the problem is
then P-complete because the uniform word problem for ground equations is
P-complete [89]. The unsolved cases are:

? Decidability of monadic SREU [73].

? Decidability of SREU with two rigid equations.

Both problems are highly non-trivial.

8.3 FUTURE WORK

There are several directions for future work and open problems that need
to be solved. We can divide these problems into three categories:

1. Classification of unsolved fragments of SREU.
2. Investigation of the f-Skeleton problem.
3. Algorithms for SREU.
The first item is directly related to the corresponding questions about frag-

ments of intuitionistic logic with equality. We now address each of the items
and discuss some possible ways to approach them.
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Unsolved Fragments

One concern of the thesis is to classify fragments of SREU into either de-
cidable or undecidable ones. In that respect there are two unsolved cases:

1. Decidability of monadic SREU [73]. This is equivalent to the de-
cidability of the prenex fragment of intuitionistic logic with equality
restricted to function symbols of arity < 1.

2. Decidability of SREU with two rigid equations.

If we adopt a more precise notion of classification (that is standard in the
context of classical logic [13]), we can note that the following case is un-
solved.

3. Decidability of the 3*-fragment of intuitionistic logic with equality
without constants.

It should be emphasized that the question of the decidability of monadic
SREU is equivalent to the question of the decidability of SREU with just two
unary function symbols or SREU, [32]. It is shown in Degtyarev, Matiya-
sevich and Voronkov [31, 32] that the famous word equation problem, also
known as unification under associativity has a simple reduction to SREU>.
The word equation problem is a hard combinatorial problem that was proven
decidable by Makanin in 1977 [96]. There are no known interesting upper
bounds of the computational complexity of the word equation problem; the
complexity of Makanin’s algorithm has several exponents [87]. It is known
only that the problem is NP-hard [8]. Hence, if SREU, is decidable then
there is probably no simple proof of that. One approach to prove the de-
cidability is to try to generalize the decidability proof of the case with one
unary function symbol [31, 32].

The decidability of SREU with two rigid equations is less important, but
intriguing. One might try to prove its undecidability by using some ideas
from Schubert [130].

There is of course always the question, whether there are some other syn-
tactical criteria, such as the united one variable property, that guarantee
decidability. Answers to such questions might be found by studying the
relationships between SREU and automata theoretic extensions of tree au-
tomata, such as tree pushdown automata, and the decision problems of the
latter [20, 62, 126, 129]. We believe that the study of such relationships
is important also in the context of developing decision algorithms for frag-
ments of SREU.
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The f-Skeleton Poblem

The undecidability of the m-Skeleton problem that arises in Step II of the
principal procedure of rigid variable methods, indicates the inadequacy of
the formulation of the problem. More “intelligent” strategies are needed
for choosing multiplicity and increasing it at Step II. In Voronkov [157], the
results of Chapter 4 are used to show that such strategies cannot in general
be formula-independent, and the following open problem is posed:

Does there exist an increasing strategy for multiplicity, for which
Step II is decidable?

Algorithms for SREU

The topic that has not been treated in the thesis is the study of semi-decision
procedures for SREU, or decision procedures for fragments of SREU, e.g., in
the context of theorem proving. In general of course, SREU is undecidable
and thus does not have a decision procedure.

In Classical Logic The original refutation procedure for classical logic with
equality using SREU, given in Gallier et al [57], is based on the assumption
that solutions to a system of rigid equations can be found by combining
minimal solutions for the individual rigid equations, which cannot work in
general. However, this does not automatically imply incompleteness of the
refutation procedure they propose. (It may be the case that if a formula has
an m-corroborator then their procedure eventually finds an n-corroborator
for some n > m, although it fails to find an m-corroborator.) There are a
number of publications on the use of SREU in automated reasoning, e.g.,
the papers [4, 5, 6, 7, 52, 53, 56, 58, 66, 115], some of the results are based
on the conjecture that SREU is decidable.

Degtyarev and Voronkov [41, 39] present a calculus BPE for solving non-
simultaneous rigid E-unification that is based on “rigid” basic superposition
and is an adaption of basic superposition of Bachmair [3], Nieuwenhuis and
Rubio [106], to “rigid” variables. Their formalization of rigid basic super-
position is close to the one in Nieuwenhuis and Rubio [107]. The calculus
BPE is incomplete for solving rigid F-unification in general, but can be
used in tableau-based methods to get a complete calculus for classical logic
with equality [41, 39]. (See Schumann [131] for a survey of implementations
of tableau-based theorem provers.) It should be investigated if a calculus
similar to BPE can be designed for SREU.

In Intuitionistic Logic In intuitionistic logic with equality, SREU is un-
avoidable [155, 156]; we address this fact briefly in Chapter 7. This explains
why there have been so few attempts to handle equality in theorem proving



105

in intuitionistic logic. Tammet [142] has implemented a resolution based
theorem prover for intuitionistic logic and has plans to include equality
there. A non-standard formalization of equality is used in Sahlin, Franzén
and Haridi [125]. It is noted in Degtyarev and Voronkov [40] that the same
situation arises in other non-classical logics with equality, such as certain
modal logics with equality. It is clear that, in order to handle equality in
intuitionistic logic and other non-classical logics with a semantics based on
Kripke semantics, it is necessary to handle SREU. Currently there are no
reasonable semi-decision procedures for SREU, except for ones based on
straightforward enumeration [115].

Other Applications Due to the simple reduction from second-order unifi-
cation to SREU [33, 38], a reasonable semi-decision procedure for SREU
might also give new insights into how to deal with the former problem. If
monadic SREU is decidable then some algorithm for it may shed some light
on the complexity of the word equation problem.
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