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Abstract

Many modern database applications deal with large amounts of multidimensional data. Examples include

multimedia content-based retrieval (high dimensional multimedia feature data), time-series similarity re-

trieval, data mining/OLAP and spatial/spatio-temporal applications. To be able to handle multidimensional

data efficiently, we need access methods (AMs) to selectively access some data items in a large collection

associatively.

Traditional database AMs like B+-tree and hashing are not suitable for multidimensional data as they can

handle only one dimensional data. Using multiple B+-trees (one per dimension) or space linearization fol-

lowed by B+-tree indexing are not efficient solutions. We need multidimensional index structures: those that

can index data based on multiple dimensions simultaneously. Most multidimensional index structures pro-

posed so far do not scale beyond 10-15 dimensional spaces and are hence not suitable for high dimensional

spaces that arise in modern database applications like multimedia retrieval (e.g., 64-d color histograms),

data mining/OLAP (e.g., 52-d bank data in clustering) and time series/scientific/medical applications (e.g.,

20-d Space Shuttle data, 64-d Electrocardiogram data). A simple sequential scan through the entire dataset

to answer the query is often faster than using a multidimensional index structure.

To address the above need, we design and implement the hybrid tree, a multidimensional index structure

that scales to high dimensional spaces. The hybrid tree combines the positive aspects of the two types of

multidimensional index structures, namely data partitioning (e.g., R-tree and derivatives) and space parti-

tioning (e.g., kdB-tree and derivatives), to achieve search performance more scalable to high dimension-

alities than either of the above techniques. Our experiments show that the hybrid tree scales well to high

dimensionalities for real-life datasets.

To achieve further scalability, we develop the local dimensionality reduction (LDR) technique to reduce

the dimensionality of high dimensional data. The reduced space can be indexed more effectively using a

multidimensional index structure. LDR exploits local, as opposed to global, correlations in the data and

iii



hence can reduce dimensionality with significantly lower loss of distance information compared to global

dimensionality reduction techniques. This implies fewer false positives and hence significantly better search

performance.

Another challenge in multidimensional indexing is handling time-series data which constitutes a major

portion of all financial, medical and scientific information. We develop a new dimensionality reduction

technique, called Adaptive Piecewise Constant Approximation (APCA), for time series data. APCA takes

the idea of LDR one step further; it adapts locally to each time series object in the database and chooses the

best reduced-representation for that object. We show how the APCA representation can be indexed using a

multidimensional index structure. Our experiments show that APCA outperforms the other techniques by

one to two orders of magnitude in terms of search performance.

Before multidimensional index structures can be supported as AMs in ”commercial-strength” database

systems, efficient techniques to provide transactional access to data via the index structure must be devel-

oped. We develop concurrency control techniques for multidimensional index structures. Our solution,

based on granular locking, offers a high degree of concurrency and has a low lock overhead.

An alternate technique to handle huge data volumes and fast search time requirements in multidimen-

sional datasets is approximate query answering. This is especially true for decision support/OLAP applica-

tions where queries are usually exploratory in nature; fast approximate answers are often preferred to exact

answers that take hours to compute. We develop a wavelet-based approximate query answering tool for

DSS data. Our technique constructs compact synopses (comprising of wavelet coefficients) of the relevant

database tables and subsequently answers any SQL query by working exclusively on the compact synopses.

Our approach provides more accurate answers and faster response times compared to other approximate

query answering techniques, namely random sampling and histograms, especially for high dimensional

data.

Despite the increasing application need, commercial database management systems (DBMSs) lag far

behind in their support for multidimensional data. One of the main reasons is the lack of scalable and effec-

tive techniques to manage large amounts of multidimensional data residing inside the DBMS. We believe

that the techniques developed in this thesis address that problem. We hope that our solutions will encourage

commercial database vendors to provide better support for multidimensional data in the future.
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Chapter 1

Introduction

1.1 Motivation

Many modern database applications deal with large amounts of multidimensional data. These applications

include:

� Multimedia Content-based Retrieval: Such systems represent the visual content of multimedia objects

(e.g., images) using features extracted from those objects. For example, for images, features include

color histograms, texture vectors and shape descriptors. The extracted features are highly multidimen-

sional in nature, i.e., we can view them as points in a high dimensional space (e.g., 64-dimensional

space for color histograms, 16-d space for texture vectors [111]). The system allows the user to sub-

mit one or more query examples and request for the objects in the database that are visually most

similar to those examples. The similarity of a database object to a query is defined as an aggregation

of their similarities with respect to the individual features. The individual feature similarity measures

as well as the aggregation function are chosen so as to capture the human perception of “similarity”

and are dynamically fine-tuned by the system at query time to accurately reflect the subjective per-

ception of the specific user [125, 118]. Multimedia similarity retrieval have numerous applications

including e-commerce (e.g., find all shirts in the shopping catalog similar to chosen shirt), medical

diagnosis/research (e.g., find all tumors with similar shape as the specified one [82]) and computer

aided design (CAD).

� Spatial/Spatio-temporal databases: Spatial databases represent the positions of objects by their (x; y)

(2-dimensional) or (x; y; z) (3-dimensional) co-ordinates and store them along with other object at-

tributes [127]. Spatio temporal databases have an additional temporal dimension defining 3 (i.e.,

(x; y; t)) or 4 (i.e., (x; y; z; t)) dimensional spaces. Typical queries in such systems involve retrieving

objects based on their positions and/or time [127]. For example, one might be interested in all vehicles

within a mile of the location of an accident between 4-4:15pm when the accident happened.

� Time Series/Scientific/Medical Databases: Time series data account for a major fraction of all finan-

cial, medical and scientific data. Similarity search in time series data is useful not only as an end-user
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tool for exploratory data analysis but also as a component inside data mining algorithms like cluster-

ing, classification and association rule mining. Time series databases convert time series segments to

multidimensional points using some transformation (e.g., Discrete Fourier Transform (DFT) [5, 46],

Discrete Wavelet Transform (DWT) [29, 79], Singular Value Decomposition (SVD) [79, 76, 81]).

Similarity search is then performed on the transformed data. Example applications include a doctor

searching for a particular pattern (that implies a heart irregularity) in the ECG database for diagno-

sis, a stock analyst searching for a particular pattern in the stock database for prediction etc. [78].

Multidimensional data is common in scientific and medical databases as well. For example, the Sloan

Digital Sky Survey (SDSS) astronomy database will be storing 200 million objects (galaxies, stars and

quasars) with mostly numeric attributes (e.g., position, color, shape etc.) defining a 100-dimensional

space [140]. Astronomers would then run spatial proximity queries, similarity queries, multidimen-

sional range queries etc. on the high dimensional, multi-terabyte database. In the medical area,

multidimensional features are extracted from medical data (e.g., tumor images in [82], ECG data in

[78] ) which can then be used for similarity retrieval (e.g., find similar tumors in [82], find patterns in

ECG data [78]) for the purpose of diagnosis and/or forecasting.

� Data Mining/OLAP: In a database, each data record contains values for several attributes which to-

gether define a multidimensional space. For example, in the Census Population Survey database, each

person record contains information on age, income, educational attainment, full/part-time work etc.

of the person [20]. An OLAP query may involve finding the average income of all people between

35 and 45 years of age with educational attainment � Bachelors degree (a 2-dimensional query). A

data visualization application may be interested in visualizing all people as points in the age-income

space. The visualization application would also like to perform zoom in/out operations and visual

query constructions on the displayed space. A data mining application may run an algorithm to find

correlations between age and income in the dataset.

Although several emerging application domains deal with large amounts of multidimensional data, com-

mercial database management systems (DBMSs) lag far behind in their support for multidimensional data

and are not able to support such applications efficiently. One of the main problems is inadequate support

for multidimensional access methods. Access methods (AMs) provide an efficient way to selectively access

some data items in a large collection associatively. For example, a similarity query in multimedia retrieval

needs to access color feature vectors that are “close to” the color feature vector of the query image. Scanning

the entire vector database to determine the close ones is usually too slow, especially when the database is

large and resides on disk. Figure 1.1 shows the time taken by linear scan to retrieve the color histograms

close to a given color histogram over a 64-dimensional color histogram database. The time increases lin-

early with the size of the database and takes 9 minutes for a 1 million item database. We need an access

method that allows the application to access those vectors close to the query vector without having to see all

the other vectors in the database. Traditional database AMs like B+-tree and hashing allow such accesses
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for one dimensional data (i.e., linearly orderable data). These AMs cannot be directly used to access multi-

dimensional data as there is no linear order among points in a multidimensional space [88, 126]. There does

exist some indirect ways to use 1-d AMs to index multidimensional data. For example, one can index each

dimension of the multidimensional space using a B+-tree as shown in Figure 2.1. As discussed in Chapter 2,

this technique turns out to be extremely costly, especially at high dimensionalities. Another indirect mecha-

nism is to map mapping the multidimensional keys to one dimensional keys using a space filling curve like

the Z-order; the resulting 1-d key space can then be indexed using a B+-tree. Once again, as shown in Figure

2.2, this technique is usually very expensive. We need index structures that can index data based on multiple

dimensions simultaneously: they are known as multidimensional index structures.

Work on multidimensional index structures dates back to early 1980s. The first multidimensional index

structures to be proposed were the spatial index structures (e.g., R-tree [59], kDB-tree [120], grid file [105]).

Although the above index structures work well at the low dimensional spaces (2-5 dimensions) which they

are designed for, they are not suitable for high dimensional spaces that arise in modern database applications

like multimedia retrieval (e.g., 64-d color histograms), data mining/OLAP (e.g., 52-d bank data in clustering

[2]) and time series/scientific/medical applications (e.g., 20-d feature vectors extracted from Space Shuttle

data [79], 100-d SDSS data [140], 64-dimensional ECG data [78]). A simple sequential scan through the

entire dataset to answer the query is often faster than accessing the data using a spatial access method

[15, 16]. Figure 1.2 shows the cost of answering a range query on a 70,000-item color histogram database

using R-tree and linear scan techniques for various dimensionalities. As the dimensionality increases, linear

scan significantly outperforms R-tree in terms of random disk accesses. 1 We need indexing mechanisms
1We have ignored the CPU cost of the query in this example; the CPU cost of the linear scan technique is usually higher

compared to R-tree [23]. Even when CPU cost is considered, linear scan is faster than the R-tree at high dimensionalities, so Figure
1.2 represents the trend accurately.
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that can scale to high dimensionalities as discussed in the next section.

1.2 Challenges

The main challenges in managing large, complex multidimensional datasets inside a DBMS include:

High Dimensional Index Structures : We need multidimensional index structures that, unlike the spatial

index structures discussed above, scale to high dimensionalities. Although several index structures have

been proposed for high dimensional spaces, none of them scale beyond 10-15 dimensions. Most of them

are variants of the R-tree (we refer to them as data partitioning index structures, cf. Section 3.2) and hence

suffer from the same problems as the R-tree, viz., low node fanout and high degree of overlap between

the bounding regions. The other class of multidimensional index structures, namely space partitioning

index structures (cf. Section 3.2) do not suffer from the above limitations. However, they have their own

share of problems (e.g., no guaranteed utilization (kDB-tree), storage of redundant information (hB-tree)) as

discussed in Chapter 3. We need to develop index structures that overcome the above limitations of existing

multidimensional index structures. Like B+-trees, the developed index structures should be paginated (so

that we do not need the entire structure to fit in memory), height-balanced and have high node fanout. The

index structure should support range and k-nearest neighbor (k-NN) searches based on arbitrary distance

functions so that we can use the index to answer similarity queries (e.g., the color query above [43]) based

on the similarity measure that best captures the perception of the user.2.

Dimensionality Reduction Techniques : While a scalable index structure would be a big step towards

enabling DBMSs to efficiently support queries over high dimensional data, further improvements are pos-

sible. High dimensional data often have highly correlated distributions [140, 24]. In order to exploit such

correlations, a dimensionality reduction technique (e.g., Principal Component Analysis (PCA) [48]) is used

in conjunction with a high dimensional index structure. The idea is to first reduce the dimensionality of

the data and then index the reduced space using a multidimensional index structure [43]. If PCA is able to

condense most of the distance information in the first few dimensions (the first few principal components

(PCs)), the index, being built on a lower dimensional space, will be able to evaluate queries more efficiently

than the index on the original high dimensional space. A good “condensation” is possible only when the

data set is globally correlated, i.e., most of the variation in the data can be captured by a few (arbitrarily

oriented) dimensions. In practice, datasets are often not globally correlated. In such cases, the above tech-

nique, referred to as global dimensionality reduction (GDR), causes significant loss of distance information

resulting in a large number of false positives and hence a high query cost. A key observation is that even
2Here we consider answering single feature similarity queries using the F-index (e.g., the color query using color index).

Multifeature queries (e.g., find similar images with respect to both color and texture) are typically evaluated by retrieving the
similar items with respect to each individual feature (i.e., individual color and texture matches) using the corresponding F-indices
and then merging them using a merging algorithm as described in [42, 111].
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when a global correlation does not exist, there may exist subsets of data that are locally correlated. GDR

can not exploit such local correlations. A technique that can discover such local correlations in data and

exploit those correlations for building the reduced-space index can significantly enhance the scalability of a

multidimensional index structure.

Time Series Indexing Techniques : Similarity search in time series databases poses several new index-

ing challenges. It is a difficult problem because of the typically high dimensionality of the raw data. For

example, the raw ECG data in [78] has dimensionality between 256 and 1024. The most promising solution

involves performing dimensionality reduction on the data, then indexing the reduced data with a multidi-

mensional index structure. All dimensionality reduction techniques proposed so far for time-series data

(e.g., DFT, DWT, SVD) are global techniques; they choose a common representation for all the items in the

database that minimizes the global reconstruction error. A technique that adapts locally to each time-series

item and chooses the best reduced-representation for that item (i.e., the one with the lowest reconstruc-

tion error for that item) can reduce the dimensionality of time-series data with significantly lower loss of

information. If such a representation can be indexed using a multidimensional index structure, it, due to

its high fidelity to the original signal, would support much faster similarity search compared to previous

dimensionality reduction techniques.

Integration of Multidimensional Index Structures to DBMSs : While there exists several research

challenges in designing scalable index structures, one of the most important practical challenges is that of

integration of multidimensional index structures as access methods (AMs) in a DBMS. Building a database

server with native support for all possible kinds of complex data and index structures that covers all ap-

plication domains is not feasible. The solution is to build an extensible database server that allows the

application developer to define her own data types and operations on those data types as well as her own

indexing mechanisms on the stored data which the database query optimizer can exploit to access the data

efficiently. Commercial ORDBMSs already support user-defined data types and operations and have re-

cently started providing extensibility options for users to incorporate their own index structures [18, 135].

However, the interfaces exposed by commercial systems for index structure integration are too low level

and places too much burden (e.g., writing code to pack records into pages, maintain links between pages,

handle concurrency control etc.) on the AM implementor. The Generalized Search Tree (GiST) [63] pro-

vides a more elegant solution to the above problem by providing a higher level interface and abstracting out

the primitive page-level operations from the AM implementor. The AM implementor just needs to register

a few extension methods with GiST. GiST implements the standard index operations, search, insertion and

deletion, with the help of those methods provided by the AM implementor, who thus controls the behavior of

the search operation and organization of keys within the tree, thereby customizing GiST to her desired AM.

Although GiST considerably reduces the effort of integrating multidimensional index structures as AMs in

DBMSs, before it can be supported in a “commercial strength” DBMS, efficient techniques to support con-
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current access to data via the GiST must be developed. Developing concurrency control (CC) techniques for

GiST is particularly beneficial since it would need writing the CC code only once and would allow concur-

rent access to the database via any multidimensional index structure implemented in the DBMS using GiST,

thus avoiding the need to write the code for each index structure separately.

Approximate Query Answering for Decision Support Applications : Another problem in multidimen-

sional data management is dealing with huge data volumes and stringent response time requirements in deci-

sion support/OLAP systems. Multidimensional index structures are not always the best option for accessing

OLAP data as OLAP queries may involve selections with unrestricted dimensions [128]. For example, the

query “get the average income of all people between 35 and 45 years of age with educational attainment

� Bachelors degree” mentioned above is unrestricted along the income and full/part-time work dimensions

and is only left-restricted along the educational attainment dimension. Assuming that the index is built on

all dimensions, such queries may cause accessing large portions of the index structure leading to high cost

[128]. 3 Furthermore, OLAP queries may involve joins with usually just 1 or 2 join dimensions. There is

no efficient way to handle such queries using indexes built on all dimensions. Alternate techniques need

to developed for managing multidimensional data for OLAP applications. Approximate query answering

has recently emerged as a viable solution to this problem. Approximate answers are often acceptable in

DSS applications as such applications are usually exploratory in nature. For example, during a drill-down

query sequence in ad-hoc data mining, the main purpose of the initial queries in the sequence is to deter-

mine the truly interesting queries and regions in the database. Computing the exact answers for such queries

would unnecessarily waste time and system resources. Providing fast and accurate approximate answers, on

the other hand, would enable the users to focus on their explorations quickly and effectively. The general

approach to approximate query answering is to first construct compact synopses of interesting relations in

the database (using a data reduction technique like random sampling, histograms, wavelets etc.) and then

answering the queries by using just the synopses (which usually fit in memory). Approximate query an-

swering techniques proposed so far either suffer from high error rates (e.g., random sampling techniques for

joins and non-aggregate queries, histogram techniques at high dimensions) or are severely limited in their

query processing scope (e.g., wavelet-based techniques). We need to develop approximate query answering

techniques that are accurate, efficient and general in their query processing scope.

1.3 Contributions and Structure of Thesis

In this thesis, we analyze the problems posed by the above challenges and design, implement and evaluate

techniques to efficiently manage large, complex multidimensional datasets inside a database system. The

developed techniques include:
3Techniques to overcome the above problem has been proposed in the literature [107, 128]. Multidimensional index structures

have been used to index OLAP data in [39, 122].
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� Index Structure for High Dimensional Spaces: We design an index structure, namely the hybrid

tree, that scales to 50-100 dimensional spaces. Such dimensionalities are common for multimedia

features (e.g., 64-d color histograms) and time-series/scientific/medical applications (e.g., 20-d feature

vectors extracted from Space Shuttle data [79], 100-d space in SDSS [140], 64-d ECG data [78]).

All previously proposed multidimensional index structures are either purely data partitioning (DP)

(e.g., R-tree and its variants) or space partitioning (SP) (e.g., kDB-tree and its variants) in nature

(see Section 3.2). We explore a “hybrid” technique that combines the positive aspects of the two

types of index structures into a single data structure to achieve search performance more scalable than

either of the above techniques. The hybrid tree is disk-based, height balanced and have high node

fanout (independent of data dimensionality). It supports range and k-NN searches based on arbitrary

distance functions. Our experiments on real-life datasets show the hybrid tree scales well to high

dimensionalities and significantly outperforms both DP-based and SP-based index structures as well

as sequential scan (which is a competitive technique for high dimensional data) at all dimensionalities.

� Local Dimensionality Reduction for High Dimensional Indexing: To improve the scalability of the

hybrid tree even further, we propose a new dimensionality reduction technique called Local Dimen-

sionality Reduction (LDR). LDR discovers local correlations in the data and performs dimensionality

reduction on the locally correlated clusters individually. We develop an index structure (based on the

hybrid tree 4 ) that exploits the correlated clusters to efficiently support point, range and k-nearest

neighbor queries over high dimensional datasets. Our technique guarantees that for any query, the

reduced-space index returns the same answers as it would have if the query was executed in the orig-

inal space (referred to as “exact searching”). LDR marks a significant improvement over the GDR

technique which works well only when the data is globally correlated and cannot exploit local corre-

lations in data. Our experiments on synthetic as well as real-life datasets show that our technique (1)

reduces the dimensionality of the data with significantly lower loss in distance information compared

to GDR (smaller number of false positives) and (2) significantly outperforms the GDR, original space

indexing and linear scan techniques in terms of the query cost for both synthetic and real-life datasets.

� Locally Adaptive Dimensionality Reduction for Time Series Data: We introduce a new dimension-

ality reduction technique which we call Adaptive Piecewise Constant Approximation (APCA). While

previous techniques (e.g., SVD, DFT and DWT) choose a common representation for all the items in

the database that minimizes the global reconstruction error, APCA approximates each time series by

a set of constant value segments of varying lengths such that their individual reconstruction errors are

minimal. We show how APCA can be indexed using a multidimensional index structure. Since our

distance measure in the APCA space lower bounds the true distance (i.e., the Euclidean distance in

the original space), we guarantee exact searching, i.e., return the same answers as the original space
4Any multidimensional index structure can be used in conjunction with the LDR technique. We used the hybrid tree in our

experiments for LDR due to its scalability of high dimensions.
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index. Our experiments show the APCA outperforms DWT, DFT and SVD by one to two orders of

magnitude in terms of search performance.

� Concurrency Control Techniques to enable integration of multidimensional index structures

as AMs in a DBMS: We develop efficient techniques to provide transactional access to data via

multidimensional index structures. Concurrent accesses to data via index structures introduce the

problem of protecting ranges specified in the retrieval from phantom insertions and deletions (the

phantom problem). We propose a dynamic granular locking approach to phantom protection in GiSTs.

The granular locking technique offers a high degree of concurrency and has a low lock overhead. Our

experiments show that the granular locking technique (1) scales well under various system loads and

(2) similar to the B-tree case, provides a significantly more efficient implementation compared to

predicate locking for multidimensional AMs as well. Since a wide variety of multidimensional index

structures can be implemented using GiST, the developed algorithms provide a general solution to

concurrency control in multidimensional AMs. The other advantage of developing the solution in the

context of GiST is, as mentioned earlier, that the CC code would have to written only once. To the

best of our knowledge, our proposal is the first such solution for multidimensional index structures

based on granular locking.

� Wavelet-based Approximate Query Processing Tool for DSS applications: We develop a wavelet-

based approximate query answering tool for high-dimensional DSS applications. We construct a com-

pact and approximate synopsis of interesting tables based on multiresolution wavelet decomposition.

We propose a novel wavelet decomposition algorithm that can build these synopses in an I/O-efficient

manner. We develop novel query processing algorithms that can answer any SQL query by working

just on the compact synopsis. This guarantees extremely fast response times since our approximate

query execution engine can do the bulk of its processing over compact sets of wavelet coefficients,

essentially postponing the expansion into relational tuples till the very end of the query. Unlike pre-

vious techniques, we can handle all types of queries: aggregate queries, GROUP BY queries as well

as queries that return relations as answers (i.e., select-project-join queries). Our experiments on syn-

thetic as well as real-life data sets show that our techniques (1) provide approximate answers of better

quality than either sampling or histograms, (2) offer query execution-time speedups of more than two

orders of magnitude, and (3) guarantee extremely fast synopsis construction times that scale linearly

with the size of the data.

In addition to developing and implementing the above techniques individually, we have the integrated

some of these techniques into the MARS database system. MARS (Multimedia Analysis and Retrieval

System) is a new object-relational DBMS that supports flexible and customizable similarity-based search and

ranked retrieval over arbitrary, application-defined data-types. 5 MARS consists of 100,000 lines of C++
5MARS also provides built-in support for query refinement (via relevance feedback) in order to improve the quality of search

results.
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code and is fully operational at this moment. MARS allows applications to create new data-types and define

the meaning of similarity for those data-types. For example, an image content-based retrieval application

can create a new image datatype and define a function that, given two images, returns the similarity between

them. Subsequently, the application can run image similarity queries on MARS; MARS would compute the

results based on the application-specified similarity functions. MARS allows queries to have exact search

conditions in addition to similarity search conditions; the results are filtered based on the exact conditions

and ranked based on the similarity conditions. Applications that deal with multidimensional data including

multimedia content-based retrieval, spatial/spatio-temporal retrieval, time-series retrieval and data mining

applications, can easily be supported on MARS. To support similarity search in such applications efficiently,

the MARS index manager (MARS/IM) supports multidimensional AMs in addition to one-dimensional AMs

like B+-trees. The multidimensional AMs supported by MARS/IM include the R-tree and the hybrid tree

(they are supported only as secondary AMs). An application can create a multidimensional index of either

type on one or more attributes of a relation. Similarity queries on a relation can then be answered by

running a range query or a k-NN query on the index 6, the distance function will be chosen based on the

application-specified similarity function. MARS allows the distance functions to be dynamically modified

by the application at query time in order to adapt to the user’s subjective perception of similarity. As

expected, using the index significantly speeds up similarity queries in MARS, often by several orders of

magnitude. We plan to integrate some of the other techniques developed in this thesis into MARS as well.

The rest of the thesis is organized as follows. Chapter 2 provides a background on multidimensional data

management techniques. Chapters 3 to 7 form the core of this thesis. Chapter 3 introduces the hybrid tree, an

index structure that scales to high dimensional feature spaces. Chapter 4 describes the local dimensionality

reduction (LDR) technique. Chapter 5 proposes the locally adaptive dimensionality reduction technique,

namely adaptive piecewise constant approximation APCA, for indexing time series data. In Chapter 6, we

present concurrency control techniques in order to enable integration of multidimensional index structures

as AMs in a DBMS. Chapter 7 describes our wavelet-based approximate query answering tool for DSS data.

Finally, in Chapter 8, we summarize the contributions of this thesis and outline some directions for future

research.

6The decision as to whether to use an index or not is made by the query optimizer – so the system may not always use the index
to answer a similarity query.
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Chapter 2

Background on Multidimensional Data
Management Techniques

The purpose of this chapter is to provide a background on multidimensional data management techniques.

We start with an overview of database access methods, mainly the B+-tree. In Section 2.2, we describe

two ways B+-trees can be used to index multidimensional data and point out their limitations, thereby mo-

tivating the need for multidimensional index structures. Section 2.3 presents the R-tree, the most popular

multidimensional index structure, and serves as a background for Chapter 3. Section 2.4 discusses the lim-

itations of R-tree and motivates the need for index structures that scale to high dimensionalities. In Section

2.5, we present dimensionality reduction techniques and discuss their limitations. Section 2.6 provides an

overview of existing dimensionality reduction techniques for time series indexing, highlighting their weak-

nesses. Section 2.7 presents concurrency control techniques for B-trees and explains why they cannot be

applied for concurrency control in multidimensional access methods. Finally, in Section 2.8, we provide a

background on approximate query answering techniques.

2.1 Access methods

Access methods (AMs) provide an efficient way to selectively access some data items in a large collection

associatively. Consider a directory of all people in UIUC being stored as a relation in a database. Consider

a query for all people with last name “Smith*” (“*” denotes wildcard) on the above relation. If there are

no way to access the relation associatively by last name, the entire relation would have to be scanned to

answer the query and every item in the relation would have to be examined. This technique is usually too

slow, especially for large relations. Now let assume that there exists an ordering AM on last name. The

AM can either keep the directory (i.e., the relation) itself sorted by last name (primary index) or maintain a

separate sorted list of last names with pointers into the full records in the directory (secondary index). The

AM can answer the above range query in time linear in the number of names in the range, after an initial

search logarithmic in the size of the directory (e.g., binary search). The B+-tree is a robust ordering AM that

is ubiquitous in database systems. It is a paginated search tree (i.e. each node corresponds to a disk page)
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Figure 2.2: Using Z-order to linearize multidimen-
sional space and indexing linearized space using a
B-tree.

with high fanout nodes that is used for one dimensional (i.e., linearly orderable) key spaces (e.g., integers,

floats, strings). B+-trees grow bottom up by splitting overfull nodes, followed by posting of index terms

higher in the tree. Searchers touch only logfanout(filesize) pages (approximately), which is a factor of 8

improvement over binary search when fanout is 256, a typical value. Storage utilization with node splitting

is about 69%.

2.2 Inadequacy of B-trees

The B-tree, being an ordering AM, cannot index data based on multiple dimensions simultaneously as there

is no linear order between, say, two 2-d points (2; 5) and (4; 2). There are two ways a B-tree can be used for

indexing multidimensional data:

� Using multiple B-trees, one per dimension: This approach is shown for a 2-d space in Figure 2.1.

This approach is inefficient as at most one of the indexes can be a clustering (i.e. primary) index. If

neither BTree1 or BTree2 are primary indices, a 2-d range query (that requests all points contained in

the range) would need to execute a 1-d range query on each BTree (shaded regions) and then take the

intersection of the results, thus accessing much more data than is necessary for the 2-d range query. If

one of them is a primary index (say, BTree1), only one 1-d range queries needs to executed which still

would access more data than necessary. This problem becomes more severe at high dimensionalities.

Insertion and deletions also create problems as all the indices need to be updated.

� Linearizing multidimensional space and then using a B-tree: This approach is shown for a 2-d space in

Figure 2.2. Linearization is achieved by Z-order but other ordering techniques (e.g., Hilbert curve) can

be used instead [72]. This solution is also inefficient as a 2-d range query (same as the one in Figure

2.1) needs to access irrelevant regions of the data space (shaded region) just because those regions
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Figure 2.3: A 2-dimensional R-tree.

happens to lie within the upper and lower bounds of the query according to superimposed Z-order.

This would also create problems in terms of access method concurrency control as the searches would

acquire locks on much larger regions than is necessary, leading to low concurrency and high lock

overhead (see Chapter 6 for details). Once again, the problems are greatly exacerbated by increasing

dimensionality.

2.3 R-trees

From the above discussion, it is clear can we need multidimensional index structures to efficiently access

multidimensional datasets associatively. One of the earliest multidimensional index structures to be pro-

posed is the R-tree [59]. It is also one of most popular ones and several variants of the R-tree have been

proposed in the last few years (e.g., R+-tree, R*-tree, VAMSplit R-tree). To the best of our knowledge, it

is the only true multidimensional index structure supported by a commercial DBMS [141]. An example

R-tree (for the same point distribution as Figures 2.1 and 2.2 is shown in Figure 2.3. It recursively clusters

the multidimensional data using minimum bounding rectangles (MBR), forming a hierarchical tree structure

(e.g., a 3 level tree in Figure 2.3). Like the B-tree, it is height balanced and paginated (i.e., the nodes corre-

spond to disk pages). The leaf nodes contain either the actual tuples (if it is a clustering/primary index) or

just the multidimensional keys along with a pointer to the actual tuple (if it is a secondary index). Non-leaf

nodes contain entries of the form hMBR; child pointeri where child pointer is the address of a lower

level node in the R-tree and MBR is the smallest rectangle the spatially contains all the items in the lower

node’s entries. The R-tree guarantees a node utilization bound i.e. every node contain between m and M

entries except the root (m and M can be different for leaf and non-leaf nodes). Although Figure 2.3 shows

point data, R-tree can store data with spatial extents (e.g., polygons).

A range search in the R-tree (to find all points contained in a rectangular box) proceeds top-down from

the root by determining the overlapping entries in the node and recursively searching the corresponding
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child subtrees. For example, the 2-d range query shown in Figure 2.3 (same as the ones in Figures 2.1 and

2.2) would first examine the root node and determine that R1 and R2 are the only overlapping entries. 1

Then, it would explore the entries inside R1 and determine that it only overlaps with R6. Subsequently, it

checks the leaf node corresponding to R6 and adds all the qualifying points to the result. Then, it would

explore the entries inside R2 and determine that R10 is the only overlapping one: so it accesses the leaf

node corresponding to R10 and adds all the qualifying points to the result. The R-tree can also support

the k-nearest neighbor (k-NN) query efficiently, i.e., find the k nearest neighbors to a given point in terms

of Euclidean distance [121, 66]. K-NN queries with respect to other distance functions has been studied

recently [82, 131, 21].

Inserting a new point in the R-tree involves selecting a leaf node L to place the point (by starting from

the root and recursively selecting the node that requires the least enlargement to accommodate the point),

and placing the point in L. If the boundary of L changes or L is split (because it became overfull) due

to the insertion, the changes are recursively propagated up the tree. The node splitting algorithm of the

R-tree bipartitions the objects in the node such that the sum of the areas of the two MBRs after the split is

minimized. Several optimizations of the R-tree bipartitioning algorithm have been proposed in the literature

(e.g., new criteria like minimizing the overlap between the MBRs, minimizing the perimeter of the MBRs

etc.) [11, 50]. The deletion takes place by locating the leaves L that may contain the point, looking for the

point in those leaves and deleting it if found. If the leaf becomes underfull, it is deleted and the changes are

propagated up the tree. We refer the interested readers to [59] for further details.
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2.4 Dimensionality Curse

The R-tree and its variants (e.g., R+-tree, R*-tree) work well at 2-5 dimensional spaces. Beyond 5 dimen-

sions, the performance of these index structures deteriorate rapidly. A simple sequential scan through the

entire dataset (examining each item to determine whether it qualifies as an answer) turns out to be faster

than using the R-tree (see Figure 1.2). This phenomenon, commonly known as the “dimensionality curse”,

occurs due to many reasons. First, let us consider the R-tree-specific reasons:

� High Overlap: There is a high degree is overlap between the index nodes of the R-tree at high dimen-

sions [15]. Overlap increases the average number of paths a search needs to follow, thereby increasing

query cost.

� Low Fanout: The fanout of the nodes decreases linearly with the increase in dimensionality. If the

disk page size is 4KB, the fanout of an R-tree non-leaf node at 64-d drops to about 7. Lower the

fanout, deeper the tree, higher the cost.

The above problems occur in all bounding region based index structures (also referred to as data par-

titioning(DP) index structures) no matter what the shape of the region is. Examples include SS-tree (that

uses minimum bounding spheres [149]), SR-tree (that uses both rectangles and spheres [77]), X-tree (that

uses rectangles [15]), M-tree (where region shape is determined by the Lp metric used, i.e., diamonds if

L1 is used, spheres if L2 is used etc. [33]). Space partitioning (SP) index structures overcome the above

problems by always splitting nodes along one dimension 2 (in contrast to DP-based structures that use all

the dimensions to split) and representing the partitioning inside an index node using a kd-tree [90]. This

eliminates overlap and makes the node fanout independent of dimensionality. However, existing SP-based

techniques have other problems (e.g., no guaranteed node utilization in kdB-trees, redundant information in

hB-trees) which will be discussed in detail in Chapter 3.

Another reason for dimensionality curse is the increasing sparsity of high dimensional spaces [146]. If

the space is sparse, the nearest neighbors to a query point P would be far away from P (as well as from

each other) requiring the k-NN algorithm to explore a larger region in space to return the answers and hence

accessing more nodes of the index structure (i.e. more disk pages). This effect is most severe in uniformly

distributed datasets [16, 146]. In a uniformly distributed dataset, above a certain dimensionality, all points

are more or less equidistant (equally far) from each other, raising the question of “meaningfulness” of nearest

neighbor queries in high dimensional spaces [16]. This is not the case with most real-life datasets and hence

nearest neighbor queries are meaningful for such datasets. An example distance distribution for a real-life

64-d color histogram dataset (based on L1 distance) is shown in Figures 2.4 and 2.5. The figures show that

all points are certainly not equidistant from the query point; a few points are close of the query point while

most points are far from it. However, even real-life feature spaces do exhibit the some sparsity effect and

sequential scan would start to outperform an index scan above a certain “cut-off” dimensionality. Our goal
1We are using the Ri’s to denote both the node and the corresponding MBR. For example, R1 denotes the the node containing

entries (R4; R5; R6; R7) in Figure 2.3(b) and the corresponding MBR shown by the dashed rectangle in Figure 2.3(a).
2hB-tree, although a SP-based technique , uses multiple dimensions to split [90].
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is to design indexing techniques that have high cut-off dimensionality (above 100) so that it is useful for

indexing feature spaces that arise in most real life applications (2-100 dimensional spaces).

2.5 Dimensionality Reduction Techniques

A common technique to overcoming dimensionality curse is to use a dimensionality reduction technique in

conjunction with a multidimensional index structure. The most commonly used dimensionality reduction

technique is Principal Component Analysis (PCA) [38, 48]. PCA examines the variance structure in the

data and determines the directions (which are linear combinations of the original dimensions) along which

the data exhibits high variance. The first direction (called the first principal component (PC)) accounts for

as much of the variability in the data as possible, and each succeeding PC accounts for as much of the

remaining variability as possible. Figure 2.6 shows a set of points and the two PCs (X’ and Y’). Since the

first few PCs account for most of the variation in the data, the rest can be eliminated without significant

loss of information. For example, in Figure 2.6, the second principal component Y’ can be eliminated, thus

reducing the dimensionality from 2 to 1. The 1-d images of the 2-d points are obtained by projecting them

on the first principal component X’ (shown by squares in Figure 2.6). The position of any point along an

eliminated component is assumed to be the mean value of all points along that component. It can be shown

that PCA is the optimal way to map points in a D-dimensional space to points in a d-dimensional space

(d � D), i.e., it minimizes the mean square error, where the error is the distance between each D-d point

and its d-d image [48].

Algebraically, the principal components are computed as follows. Let A be the N � D data matrix

whose each row corresponds to a point in the original D-dimensional space (N is the number of points in

the dataset). The first principal component is the eigenvector corresponding to the largest eigenvalue of

the variance-covariance matrix of A, the second component correspond to the eigenvector with the second

largest eigenvalue and so on. The mapping (to reduced dimensionality) corresponds to the well known

Singular Value Decomposition (SVD) of data matrix A and can be done in O(ND2) time.

The reduced dimensional points can be indexed more effectively using a multidimensional index struc-
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Figure 2.7: The first 4 Fourier bases can be combined in a linear combination to produce X’, an approxima-
tion of the original sequence X. Each basis wave requires two numbers to represent it (phase and magnitude),
so reduced dimensionality N = 2� 4 = 8 in this case.

ture. It can be shown that distances in the reduced space satisfies the lower bounding lemma [43]:

D(Image(A); Image(B)) � D(A;B) (2.1)

where A and B are two points in the original space, Image(A) and Image(B) are their images in the

reduced space and D is any Lp metric. The above property guarantees that executing the query on the

reduced space index cannot result in any false dismissals and hence (by appropriate post-processing) can

produce the exact same results as original space querying (see Chapter 4 for details).

One of the main limitation of PCA is that it works well only when the dataset is globally correlated,

i.e., most of the variation in the data can be captured by a few dimensions. In practice, datasets are often

not globally correlated. In such cases, reducing the dimensionality using PCA causes significant loss of

distance information and hence degrades the query performance. Our goal in this thesis is to develop a

dimensionality reduction technique that works well under all circumstances, even when the dataset is not

globally correlated.

2.6 Time Series Indexing

Time series data is usually high dimensional in nature. For example, the ECG data in [78] has dimen-

sionality between 256 and 1024. As discussed in Section 2.5, the most common technique to handle high

dimensionality is to first reduce the dimensionality of the data and then index the reduced-dimensional data

using a multidimensional index structure. Although PCA is the most common dimensionality reduction

technique for other types of high dimensional data, other techniques like Discrete Fourier Transform (DFT),

Discrete Wavelet Transform (DWT) and Piecewise Aggregate Approximation (PAA) are more common for

time series data. We discuss these techniques in further detail in this section:
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Figure 2.8: The first 8 Haar wavelet bases can be combined in a linear combination to produce X’, an ap-
proximation of the original sequence X. There is one number per basis wavelet (the magnitude), so reduced
dimensionality N = 8.

� Discrete Fourier Transform (DFT): The first technique suggested for dimensionality reduction of time

series is DFT [5]. The basic idea of DFT is that any signal can be represented by the superposition

of a finite number of sine (and/or cosine) waves, where each wave is represented by a single complex

number known as a Fourier coefficient. A time series represented in this way is said to be in the fre-

quency domain. There are many advantages to representing a time series in the frequency domain; the

most important of which is data reduction. A signal of length n can be decomposed into n sine/cosine

waves that can be recombined into the original signal. However, most of the later coefficients (the

higher frequency ones) have very low amplitude and thus contribute little to the reconstructed signal;

they can be discarded without much loss of information thereby producing data reduction.

To perform dimensionality reduction of a time series X of length n into a reduced feature space

of dimensionality N , the DFT of X is computed. The vector containing the first N2 coefficients

(lowest frequency ones) forms the reduced N -d representation of X . The reason the truncation takes

place at N
2 and not at N is that each coefficient is a complex number, and therefore we need one

dimension each for the imaginary and real parts of the coefficients. Figure 2.7 shows a signal X and

its approximation X0 computed from the retained N
2 (which is 4 in this case) coefficients.

The key observation is that the Euclidean distance between two signals in the time domain is preserved

in the frequency domain. This result is an implication of a well-known result called Parseval’s law

[46]. If some coefficients are discarded, then the estimate of the distance between two signals is

guaranteed to be an underestimate, thus obeying the lower bounding requirement in Equation 2.1.

Hence we can use DFT for indexing series data without compromising the exactness of the results.

The original work demonstrated a speedup of 3 to 100 of such an index over sequential scanning

[5, 46].

� Discrete Wavelet Transform (DWT): Wavelets are mathematical functions that represent data in terms
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Figure 2.9: An illustration of the PAA technique. A time series consisting of eight (n) points is projected
into two (N) dimensions.

of the sum and difference of a prototype function, called the basis function. In this sense they are

similar to DFT. They differ in several important respects, however. One important difference is that

wavelets are localized in time, i.e., each wavelet coefficient of a time series object contributes to the

reconstruction of small portions of the object. This is in contrast to DFT where each Fourier coefficient

contributes to the reconstruction of each and every datapoint of the time series. This property of DWT

is useful for multiresolution analysis of the data. The first few coefficients contain an overall, coarse

approximation of the data; addition coefficients can be imagined as ”zooming-in” to areas of high

detail. Figure 2.8 illustrates this idea for Haar Wavelets.

To perform of a time series X of length n into a reduced feature space of dimensionality N , we

compute the wavelet coefficients and retain the first N coefficients. Chan and Fu developed a distance

measure defined on wavelet coefficients (Haar wavelets) which provably satisfies the lower bounding

requirement in Equation 2.1 [29]; hence DWT can be used for indexing.

� Piecewise Aggregate Approximation (PAA): PAA reduces the dimensionality of a time series X of

length (dimensionality) n to N (1 � N � n) by dividing X into N equal-length segments and

recording the mean value of the datapoints falling within the segment [79, 153]. Figure 2.9 illustrates

PAA. The distances in the PAA space lower bounds the distances in the original space, so PAA can

be used for indexing [79]. It can be shown that PAA is identical to the wavelet technique proposed in

[29] except that PAA is faster to compute and can support more general distance measures [153, 79].

All the above dimensionality reduction techniques choose a common representation for all the time

series objects in the database; the first N2 fourier coefficients in DFT, the first N wavelet coefficients in

DWT and the low resolution version of the object in PAA where all parts of the object are represented at

equal resolution. A technique that adapts the reduced-representation locally to each time series and chooses

the best one for that item (i.e., the one with the lowest reconstruction error) can reduce dimensionality with

significantly lower loss of information. Our goal in this thesis is to develop such a representation that can

also be indexed using a multidimensional index structure (and support exact searching).
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2.7 Access Method Integration: Concurrency Control in B-trees

Concurrent access to data via a general index structure introduces two independent concurrency control

problems:

� Preserving consistency of the data structure in presence of concurrent insertions, deletions and up-

dates

� Protecting search regions from phantoms

In this thesis, we address the problem of phantom protection in multidimensional AMs (in the context

of GiSTs). Although this problem has received little attention in the context of multidimensional AMs, it

has been addressed effectively for B-trees. We discuss the solution for B+-trees in this section.

The phantom problem is defined as follows: Transaction T1 reads a set of data items satisfying some

<search condition>. Transaction T2 then creates data items that satisfies T1’s <search condi-

tion> and commits. If T1 then repeats its scan with the same <search condition>, it gets a set of

data items (known as “phantoms”) different from the first read. Phantoms must be prevented to guarantee

serializable execution. Note that object level locking [55] does not prevent phantoms since even if all objects

currently in the database that satisfy the search predicate are locked, concurrent insertions3 into the search

range cannot be prevented.

One solution is for transactions to acquire locks on predicates (instead of objects). For example, a range

scan that accesses all employees in the database whose salary is between 10K and 20K will acquire a shared

mode (S) lock on the predicate: 10K � emp:salary � 20K . A lock request < t; p;m > by transaction

t on predicate p with mode m conflicts with another request < t0; p0;m0 > iff all of the following are true:

(1) t and t0 are different (2) m and m0 conflict and (3)p ^ p0 is satisfiable (i.e. there may exist an object that

satisfies both predicates). A transaction wishing to insert a new employee record whose salary is 11K will

acquire an exclusive mode (X) lock on the predicate emp:sal = 11K which conflicts with the predicate

10K � emp:salary � 20K associated with the range scan and will not be permitted. On the other hand, a

transaction wishing to insert a new employee whose salary is 30K is permitted to execute concurrently with

the scan.

While the predicate locking solves the problem of phantoms, unfortunately, testing for predicate satis-

fiability may be expensive. Even if predicates are simple and their satisfiability can be checked in constant

time, the complexity of acquiring a predicate lock is linear in the number of concurrent transactions which

is an order of magnitude costlier compared to acquiring object locks that can be set in constant time [55].

This problem is overcome using granular locking which is an engineering approach towards implementing

predicate locks. The idea is to divide the predicate space into a set of resource granules that may include or

overlap with other resource granules. Transactions acquire locks on granules instead of on predicates. The

locking protocol guarantees that if two transactions request conflicting mode locks on predicates p and p0

3These insertions may be a result of insertion of new objects, updates to existing objects or rolling-back deletions made by other
concurrent transactions.
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such that p ^ p0 is satisfiable, then the two transactions will request conflicting locks on at least one granule

in common. Granular locks can be set and released as efficiently as object locks.

An example of a granular locking approach is the multi-granularity locking protocol (MGL) [89]. Be-

sides preventing phantoms, MGL also has an added benefit that transactions can acquire locks on granules

at different levels of coarseness based on their requirements– a lock on a node of the granule graph in mode

M implicitly locks all the descendants of that node in mode M . To achieve this, MGL exploits additional

lock modes called intention mode locks which represent the intention to set locks at finer granularity[89].

An intention mode lock on a node prevents other transactions from setting coarse granularity (i.e S or X)

locks on that node. (see the lock compatibility matrix shown in Table 6.1). Transactions acquire locks from

the root to the leaf of the granule graph and release locks in the reverse order. A transaction can acquire

an S or IS mode lock at a granule g if it has at least one parent of g locked in either IS or higher mode. A

transaction can acquire an X, SIX or IX mode lock at g if it has all parents of g locked in IX or SIX mode.

Application of MGL to the key space associated with a B-tree is referred to as key range locking. In key

range locking, the entire key space is partitioned into certain key ranges which are supported as lockable

granules. For example, if the domain of the key is the set of integers, the range may be divided into 4 distinct

key ranges (�1; 10]; (10; 35]; (35; 50]; (50;1). A scan acquires locks to completely cover its query range.

For example, a scan that accesses the keys between 5 to 30 will acquire S locks on the ranges (�1; 10] and

(10; 35]. Similarly, a transaction that inserts, deletes, or updates an object that lies in a given range, acquires

an IX lock which denotes its intention to change an object in that range. For example, a transaction wishing

to insert an object whose key value is 11 will acquire an IX lock on the range (10; 35] which conflicts with

the S lock held by the scan (see Table 6.1) and will therefore not be permitted concurrently with the scan

thereby preventing phantoms.

The above discussion suggests that the set of key ranges supported as granules are static. In practice,

an approach in which the key ranges that dynamically evolve as new key values are inserted and/or deleted

from the database are preferred. Dynamic key range schemes are more adaptive to the changes in the key

space over time and provides a higher degree of concurrency. However, since the granules may dynamically

change, the locking protocols are significantly more complex. Further details about granular locking and key

range locking can be found in [55]. In Chapter 6, we discuss in detail why the solution for B-trees cannot be

applied for phantom protection in multidimensional AMs. We need new techniques for concurrency control

in multidimensional AMs.

2.8 Approximate Query Answering Techniques

Approximate query processing has recently emerged as a viable, cost-effective solution for dealing with the

huge data volumes and stringent response time requirements of today’s Decision Support Systems (DSS)

[1, 51, 53, 61, 64, 70, 115, 144, 145]. The general approach is to first construct compact synopses of the

interesting relations in the database (using a data reduction technique) and then answering the user queries
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Figure 2.10: Data reduction techniques for approximate query answering.

by using just the synopsis. Data reduction techniques used for constructing the synopses include sampling,

histograms and wavelets.

� Sampling-based techniques use random samples as synopses for large datasets. Figure 2.10(a) shows

an example 2-dimensional DSS dataset where the location of each point represent the age and salary

of a single individual. Figure 2.10(b) shows the synopsis of that dataset using random samples. Each

sample point stores the location of the point and the number of tuples it represents. The ratio of

the number of sample points to the size of the original dataset is the compression ratio (assuming

that storing the count information has negligible cost compared to the point location which is true

for high dimensional data). For example, in Figure 2.10, the compression ratio is 5. Consider the

range count query shown in Figure 2.10, i.e., we want to know the number of individuals between

40 and 64 years making between 45K and 70K. The exact answer is 5 as shown in Figure 2.10(a).

Figure 2.10(b) shows the computation of the approximate answer using the random sample synopsis.

Since the synopsis is usually much smaller than the original data and usually resides in memory, the

approximate answer can be computed much faster compared to the exact answer. Sample synopsis

can be either precomputed (as shown in the example above) and maintain incrementally [1, 51] or can

be obtained progressively at run-time by accessing the base data using appropriate access methods

[61, 64]. Random samples typically provide accurate estimates for aggregate quantities (e.g., count,

sum and average). Random samples can provide probabilistic guarantees on the quality of estimated

aggregate [60]. Sampling techniques have several disadvantages, especially for non-aggregate queries

and when join operations are involved, which is discussed in detail in Chapter 7.

� Histogram-based techniques use multidimensional histograms as synopses for large datasets. Figure

2.10(c) shows the synopsis of the same dataset using multidimensional histograms. Each histogram

bucket stores a rectangle that specifies the coverage of the bucket, the number of points represented

by that bucket and the number of unique positions along each dimension to capture the distribution
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of the points. For example, for bucket B4 in Figure 2.10(c), the count is 6 and the number of unique

positions are 2 and 3 along the age and salary dimensions respectively. Approximate answers for

range-aggregate queries are obtained by determining the overlap of the range with the buckets and

then computing the aggregates based on the distribution of the points in the overlapping regions.

Figure 2.10(c) shows the computation of the the approximate answer for the range-count query using

the histogram synopsis. Once again, since the histogram synopsis is usually memory-resident, the

approximate answer can be computed much faster compared to the exact answer. While histograms

have been studied mostly in the context of selectivity estimation [52, 68, 69, 99, 116, 117], recently

it has been proposed as an approximate query answering tool [70, 115]. Histogram techniques have

several limitations, especially for high dimensional data, which is discussed in detail in Chapter 7.

� Wavelet-based techniques use wavelet coefficients as synopses. Recent work shows the wavelet-based

synopses can produce surprisingly accurate results with very few retained coefficients, even at high

dimensions [144, 145]. However, the work on wavelet-based approximate querying has so far been

extremely limited in their query processing scope as discussed in Chapter 7.
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Chapter 3

High Dimensional Index Structures: The
Hybrid Tree

This chapter describes the hybrid tree, an index structure for high dimensional feature spaces.

3.1 Introduction

Feature based similarity search has emerged as an important search paradigm in database systems. The

technique used is to map the data items as points into a high dimensional feature space. The feature space

is indexed using a multidimensional data structure. Similarity search then corresponds to a range or k-NN

search on that data structure. To support efficient similarity search in a database system, robust techniques to

index high dimensional feature spaces needs to be developed. Traditional multidimensional data structures

(e.g., R-trees [59], kDB-trees [120], grid files [105]), which were designed for indexing spatial data, are

not suitable for multimedia feature indexing due to (1) inability to scale to high dimensionality and (2) lack

of support for queries based on arbitrary distance measures. Recently, there has been significant research

effort in developing indexing mechanisms suitable for multimedia feature spaces. One of the techniques is

dimensionality reduction (DR). Existing DR techniques have several limitations: (1) they work well only

when the data is strongly correlated (2) they usually do not support similarity queries based on arbitrary

distance functions [13] and (3) they are not suitable for dynamic database environments. We address some of

these limitations in Chapter 4. Since DR techniques are typically used in conjunction with multidimensional

index structures (to index the reduced space) and the reduced spaces are still expected to be high dimensional

in nature, a robust solution to feature indexing requires multidimensional data structures that scale to high

dimensionalities and supports arbitrary distance measures.

This chapter introduces the hybrid tree for this purpose. What distinguishes the hybrid tree from other

multidimensional data structures is that it is neither a pure DP-based nor a pure SP-based technique. Ex-

perience has shown that neither of these techniques are suitable for high dimensionalities but for different

reasons. Simple sequential scan performs better beyond 10-15 dimensions [16]. BR-based techniques tend

to have low fanout and a high degree of overlap between bounding regions (BRs) at high dimensions. On
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Figure 3.1: Classification of Multidimensional Indexing Techniques

the other hand, SP-based techniques have fanout independent of dimensionality and no overlap between

subspaces. But SP-based techniques suffer from problems like no guaranteed utilization (e.g., kDB-trees)

or require storage of redundant information (e.g., hB-trees). The main contribution of this chapter is the

“hybrid” approach to multidimensional indexing: a technique that combines positive aspects of the two

types of index structures a single data structure to achieve search performance more scalable to high di-

mensionalities than either of the two techniques. On one hand, like SP-based index structures, the hybrid

tree performs node splitting based on a single dimension and represents space partitioning using kd-trees.

This makes the fanout independent of dimensionality and enables fast intranode search. On the other hand,

space partitions, like the BRs in DP-based techniques, are allowed to overlap whenever clean splits neces-

sitate downward cascading splits, thus retaining the guaranteed utilization property. The tree construction

algorithms in the hybrid tree are geared towards providing optimal search performance. As desired, the

hybrid tree allows search based on arbitrary distance functions. The distance function can be specified by

the user at query time. Our experiments on “real” high dimensional large size feature databases show that

the hybrid tree scales well to high dimensionality and large database sizes. It significantly outperforms both

purely DP-based and SP-based index mechanisms as well as linear scan at all dimensionalities for large

sized databases.

The rest of the chapter is organized as follows. Recently, many multidimensional data structures have

been developed for the purpose of high dimensional feature indexing. In Section 3.2, we develop a classifi-

cation of these data structures that allows us to compare them to the hybrid tree. Section 3.3 introduces the

hybrid tree and is the main contribution of this chapter. In Section 3.4, we present the performance results.

Section 3.5 offers the final concluding remarks.
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Storage
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dancy

KDB-tree 1 1 1 High (Independent of k) None No None

hB-tree d (1 � d � k) d d High (Independent of k) None Yes Yes

R-tree k 2k - Low for large k (/ 1
k

) High Yes None

Hybrid tree 1 1 or 2 1 High (Independent of k) Low Yes None

Table 3.1: Splitting strategies for various index structures. k is the total number of dimensions.

3.2 Classification of Multidimensional Index Structures

The increasing need of applications to be able to store multidimensional objects (e.g., features) in a database

and index them based on their content has trigerred a lot of research on multidimensional index structures.

In this section, we develop a classification of multidimensional indexing techniques which allows us to

compare the hybrid tree with the previous research in this area. The classification is summarized in Figure

3.1. Since we have already discussed dimensionality reduction techniques, we restrict the discussion in this

section to multidimensional index structures.

Existing multidimensional techniques can be classified in two different ways. One way to classify them

is into Data Partitioning (DP)-based and Space Partitioning (SP)-based index structures. A DP-based

index structure consists of bounding regions (BRs) arranged in a (spatial) containment hierarchy. At the

data level, the nearby data items are clustered within BRs. At the higher levels, nearby BRs are recursively

clustered within bigger BRs, thus forming a hierarchical directory structure. The BRs may overlap with each

other. The BRs can be bounding boxes (e.g., R-tree[59], X-tree[15]) or bounding spheres/diamonds (e.g.,

SS-tree[149], M-tree[33], TV-tree[86]). On the other hand, a SP-based index structure consists of space

recursively partitioned into mutually disjoint subspaces. The hierarchy of partitions form the tree structure

(e.g., kDB-tree[120], hB-tree[90] and LSDh-tree[65]). We compare these two types of index structures with

the hybrid tree as a solution to high dimensional feature indexing in Section 3.3.6.

An alternative way of classification is into Feature-based and Distance based techniques. In feature

based techniques, the data/space partitioning is based on the values of the vectors along each independent

dimension and is independent of the distance function used to compute the distance among objects in the

database or between query objects and database objects. Examples of DP-based techniques that are feature

based include R-tree and X-tree. Examples of SP-based techniques that are feature based include kDB-

tree, hB-tree, LSDh-tree. On the other hand, distance based techniques partition data/space based on the

distance of objects from one or more selected pivot point(s), where the distance is computed using a given

distance function. Examples of DP-based techniques that are distance based include SS-tree, M-tree and

TV-tree. Examples of SP-based techniques that are distance based include vp-tree [31] and mvp-tree [19].

A comparison between the two classes can be found in [22].
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3.3 The Hybrid Tree

In this section, we introduce the hybrid tree. We discuss how the hybrid tree partitions the space into

subspaces and how the space partitioning is represented in the hybrid tree. We discuss the node splitting

algorithms and show how they optimize expected search performance. We describe the tree operations and

conclude with a discussion on where the hybrid tree fits into the classification developed in Section 2.

3.3.1 Space Partitioning in the Hybrid Tree

First, we describe the “space partitioning strategy” in the hybrid tree i.e. how to partition the space into two

subspaces when a node splits. The first issue is the number of dimensions used to partition the node. The

hybrid tree always splits a node using a single dimension. 1-d split is the only way to guarantee that the

fanout is totally independent of dimensionality. This is in sharp contrast with DP-based techniques which

are at the other extreme: they use all the k dimensions to split, leading to a linear decrease in fanout with

increase in dimensionality. Some index structures follow intermediate policies [90]. The only disk-based

index structure that follows a 1-d split policy is the kDB-tree [120]. Single dimension splits in the kDB-tree

necessitate costly cascading splits and causes creation of empty nodes. Due to the above reasons, kDB-

tree shows poor performance even in 4 dimensional feature spaces [56]. kDB-trees cause cascading splits

since it requires the node splits to be necessarily clean i.e. the split must divide the indexed space into two

mutually disjoint partitions. We relax the above constraint in the hybrid tree: the indexed subspaces need
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not be mutually disjoint. The overlap is allowed only when trying to achieve an overlap-free would cause

downward cascading splits and hence a possible violation of utilization constraints. The splitting strategies

of the various index structures is summarized in the Table 3.1.

It is clear from the above discussion that the hybrid tree is more similar to SP-based data structures than

DP-based index structures. But the above “relaxation” necessitates several changes in terms of representa-

tion and algorithms for tree operations as compared to the pure SP-based index structures. The first change

is in the representation. As in other SP-based techniques, the space partitioning within each index node in a

hybrid tree is represented using a kd-tree. Since regular kd-trees can represent only overlap free splits, we

need to modify the kd-tree in order to represent possibly overlapping splits. Each internal node of the regular

kd-tree represents a split by storing the split dimension and the split position. We add a second split position

field to the kd-tree internal node. The first split position represents the right (higher side) boundary of the

left (lower side) partition (denoted by lsp or left side partition) while the second split position represents

the left boundary of the right partition (denoted by rsp or right side partition). While lsp = rsp means

non-overlapping partitions, lsp > rsp indicate overlapping partitions. The second change is in the algo-

rithms for regular tree operations, namely, search, insertion and deletion. The tree operations in SP-based

index structures are based on the assumption that the partitions are mutually disjoint. This is not true for the

hybrid tree. We solve the problem by treating the indexed subspaces as BRs in a DP-based data structure

(which can overlap). In other words, we define a mapping the kd-tree based representation to an “array of

BRs” representation. This allows us to directly apply the search, insertion and deletion algorithms used in

DP-based data structures to the hybrid tree. The mapping is defined recursively as follows: Given any index

node N of the hybrid tree and the BRRN corresponding to it, we define the BRs corresponding to each child

of N . The BR of the root node of the hybrid tree is the entire data space. Given that, the above “mapping”

can compute the BR of any hybrid tree node.

Let N be an index node of the hybrid tree. Let KN be the kd-tree that represents the space partitioning

within N and RN be the BR of N . We define a BR associated with each node (both internal as well as leaf

nodes) of KN . This defines the BRs of the children of N since the leaf nodes of KN are the children of N .

For example, the leaf nodes L1 to L7 are the children of the hybrid tree node N shown in the Figure 3.2. The

BR associated with the root of KN is RN . Now given an internal node I of KN and the corresponding BR

RI , the BRs of the two children of I are defined as follows. Let I = hdim; lsp; rspi, where dim; lsp and rsp

are the split dimension, left split position and right split position respectively. The BR of the left child of I is

defined as RI\(dim � lsp) where, in the expression (dim � lsp), dim denotes the variable that represents

the value along dimension dim (for simplicity) and \ represents geometric intersection. Similarly, the BR

of the right child of I is defined as RI \ (dim � rsp). For example, (0; 0; 6; 6) is the BR for the hybrid tree

node shown in Figure 3.2 (BR is denoted as xlo; ylo; xhi; yhi). The BR of I1 (the root) is (0; 0; 6; 6). The

BRs of I2 and I3 are (0; 0; 6; 6) \ (x � 3) = (0; 0; 3; 6) and (0; 0; 6; 6) \ (x � 3) = (3; 0; 6; 6) respectively.

Similarly, the BR of L3, which, being a leaf of KN , is a child of N , is obtained by BR(I2) \ (y � 2) i.e.

(0; 0; 3; 6) \ (y � 2) = (0; 2; 3; 6). The children of internal nodes with lsp > rsp have overlapping BRs
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Figure 3.3: Choice of split dimension for data nodes. The first split is the optimal choice in terms for search
performance.

(e.g., BRs of I4 and L3 (children of I2) overlap). Figure 3.2 shows all the BRs – the shaded rectangles are

the BRs of the children of the node while the white ones correspond to the internal nodes of KN .

Note that the above mapping is “logical”. The search/insert/delete algorithm does not actually compute

the “array of BRs” during tree traversal: rather it navigates the node using the kd-tree and computes the

BR only when necessary (cf. Section 3.3.4). The kd-tree based navigation allows faster intranode search

compared to array-based navigation. While searching for a correct lower level node using a kd-tree usu-

ally requires order log n comparisons (for a balanced kd-tree), searching in a array requires linear number

of comparisons. Also, in a kd-tree representation, BRs share boundaries. In an array representation, the

boundaries are checked redundantly while in a kd-tree, a boundary is checked only once [90].

3.3.2 Data Node Splitting

The choice of a split of a node consists of two parts: the choice of the split dimension and the split position(s).

In this section, we discuss the choice of splits for data nodes in the hybrid tree.

Choice of split dimension: When a data node splits, it is replaced by two nodes. Assuming that the rest

of the tree has not changed, the expected number of disk accesses per query (EDA) would increase due to

the split. The hybrid tree chooses as the split dimension the one that minimizes the increase in EDA due to

the split, thereby optimizing the expected search performance for future queries.

Let N be the data node being split. Let R be the k-dimensional BR associated with N . Let si be the

extent of R along the ith dimension, i = [1; k]. Consider a bounding box range query Q with each side

of length r. We assume that the feature space is normalized (extent is from 0 to 1 along each dimension)

and the queries are uniformly distributed in the data space. Let Poverlap(Q;R) denote the probability that Q

overlaps with R. To determine Poverlap(Q;R), we move the center point of the query to each point of the

data space marking the positions where the query rectangle intersects the BR. The resulting set of marked
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positions is called the Minkowski Sum which is the original BR having all sides extended by query side

length r [12]. Therefore, Poverlap(Q;R) = (s1 + r)(s2 + r):::(sk + r). This is the probability that Q needs

to access node N (1 disk access) (It is the volume of lightly shaded region in Figure 3.3).

Now let us consider the splitting of N and let j be the splitting dimension. Let N1 and N2 be the nodes

after the split and R1 and R2 be the corresponding BRs. R1 and R2 have the same extent as R along all

dimensions except j i.e. si, i = [1; k]; i 6= j. Let �sj and �sj be the extents of R1 and R2 along the jth

dimension. Since the split is overlap-free, � = 1 � �. The probabilities Poverlap(Q;R1) and Poverlap(Q;R2)

are (s1+r):::(�sj+r):::(sk+r) and (s1+r):::((1��)sj +r):::(sk+r) respectively. Since R = R1[R2
(where [ is the geometric union) and Q is uniformly distributed, Poverlap(Q;R) = Poverlap(Q;R1[R2) =

Poverlap(Q;R1)[overlap(Q;R2) . Thus, the probability Poverlap(Q;R1)\overlap(Q;R2) that both N1 and N2 are

accessed is equal to Poverlap(Q;R1) + Poverlap(Q;R2) � Poverlap(Q;R). (Poverlap(Q;R1)\overlap(Q;R2) is equal

to the volume of the dark shaded region in Figure 3.3). If Q does not overlap with R, there is no increase

in number of disk accesses due to the split. If it does, Poverlap(Q;R1)\overlap(Q;R2) is the probability that the

disk accesses increases by 1 due to the split. Thus, the conditional probability that Q overlaps with both

R1 and R2 given Q overlaps with R, i.e.
Poverlap(Q;R1)\overlap(Q;R2)

Poverlap(Q;R)
represents the increase in EDA due to

the split. The increase in EDA if j is chosen as the split dimension evaluates out to be r
sj+r

. Note that
r

sj+r
is minimum if j is chosen such that sj = maxki=1si, independent of the value of r. The hybrid tree

always chooses the dimension along with the BR has the largest extent as the split dimension for splitting

data nodes so as to minimize the increase in EDA due to the split.

An example of the choice of split dimension is shown in Figure 3.3. Note that the optimality of the above

choice is independent of the distribution of data. It is also independent of the choice of split position. Pre-

vious proposals regarding choice of splitting dimensions include arbitrary/round-robin [65] and maximum

variance dimension [150]. The maximum variance dimension is chosen to make the choice insensitive to

“outliers” [150]. Since the number of disk accesses to be made depends on the size of the subspaces indexed

by data nodes and is independent of the actual distribution of data items within the subspace, presence or

absence of “outliers” is inconsequential to the query performance. We performed experiments to compare

our choice of maximum extent dimension as the splitting dimension with the maximum variance choice and

is discussed is Section 5.

Choice of split position: The most common choice of the split position for data node splitting is the

median [120, 90, 150]. The median choice, in general, distributes the data items equally among the two

nodes (assuming unique median). The hybrid tree, however, chooses the split position as close to the middle

as possible. 1 This tends to produce more cubic BRs and hence ones with smaller surface areas. The smaller

the surface area, the lower the probability that a range query overlaps with that BR, the lower the number of

expected number of disk accesses [14]. Our experiments validate the above observation.
1To find the position, we first check whether it is possible to split in the middle without violating utilization constraint. If yes, it

is chosen. Otherwise the split position is shifted from the middle position in the proper direction just enough to satisfy the utilization
requirement.
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Figure 3.4: Index node splitting (with overlap). sj , wj and split positions (LSP and RSP) only along
dimension 1 are shown.

3.3.3 Index Node Splitting

In this section, we discuss the choice of split dimension and split position for index nodes.

Choice of the split dimension: Like data node splitting, the choice of split dimension for index nodes

splitting is also based on minimization of the increase in EDA. However, unlike data node splitting where

the choice is independent of the query size, the choice of the split dimension for index nodes depends on the

probability distribution of the query size as discussed below.

The main difference here compared to data node splitting is splits are not always overlap free. Let wj

(wj � sj) be the amount of overlap between R1 and R2 along the jth dimension (how wj is computed is

discussed in the following paragraph on choice of split position). So �sj + �sj = sj + wj . An example

of an index node split is shown in Figure 3.4. The probabilities Poverlap(Q;R1) and Poverlap(Q;R2) are (s1 +

r):::(�sj + r):::(sk + r) and (s1 + r):::(�sj + r):::(sk + r) respectively. Proceeding in the same way as

before, the increase in EDA if j is chosen as the split dimension evaluates out to bewj+r
sj+r

. The choice of j that

minimizes the above quantity optimizes search performance. But the choice depends on r and can differ

for different values of r. For a given probability distribution of r, the hybrid tree chooses the dimension

that minimizes the increase in EDA averaged over all queries. Let P (r) be probability distribution of r.

The increase in EDA averaged over all queries is equal to
R R+�R
R P (r):

wj+r
sj+r

dr where r can vary from R to

R+�R. The dimension that minimizes the above quantity is chosen as the split dimension. For example, for

uniform distribution, where P (r) = 1
�R , the above integral evaluates to be

�
1� (

sj�wj

�R )log(1 + �R
sj+R

)
�

.

In this case, the hybrid tree chooses that j for which (sj�wj)log(1+ �R
sj+R

) is maximum. In our experiments,

we use all queries of the same size, say R. In this case, the dimension j that minimizes wj+R
sj+R

should be

chosen as the split dimension which is indeed the case since lim�R!0

�
1� (

sj�wj

�R )log(1 + �R
sj+R

)
�

=
wj+R
sj+R

.

Choice of split position: Given the split dimension, the split positions are chosen such that the overlap is

minimized without violating the utilization requirement. The problem of determining the best split positions

along a given dimension is a 1-d version of the R-tree bipartitioning problem. In the latter, the problem is to

equally divide the rectangles into two groups to reduce the total area covered by the bounding boxes. while

in the former, the problem is to divide the line segments (indexed subspaces of the children projected along
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Property of index structure BR-based index structures kd-tree based index structures Hybrid Tree

Representation of space parti-

tioning

Array of bounding boxes kd-tree kd-tree (modified to represent overlap-

ping partitions)

Indexed subspaces May mutually overlap Strictly disjoint May mutually overlap

Node splitting Using all dimensions Using 1 or more dimensions Using 1 dimension

Dead space y elimination Yes No Yes (with live space encoding)

Table 3.2: Comparison of the hybrid tree with the BR-based and kd-tree based index structures. y Dead
space refers to portions of feature space containing no data items (cf. Section 4.2).

the split dimension) into two groups in a way to minimize the the overlap along the split dimension without

violating the utilization constraint. We sort the line segments based on both their left (leftmost to rightmost)

and right (rightmost to leftmost) boundaries. Then we choose new segments alternately from the left and

right sorted lists and place them in left and right partitions respectively till the utilization is achieved. The

remaining line segments are put in the partition that needs least elongation without caring about utilization.

The above bipartitioning algorithm is similar to the R-tree quadratic algorithm but runs in O(nlogn) time

instead of O(n2) (where n is the number of children nodes) since 1-d intervals can be sorted based on their

values (left and right boundaries) along the split dimension.

Before the split dimension is actually chosen, the best split positions are determined for all the dimen-

sions. Then thewj’s and sj’s are calculated for each dimension and the one with the lowest
R R+�R
R P (r):

wj+r
sj+r

dr

is selected. After the selection of the split dimension, the split positions for the selected dimension deter-

mined during the pre-selection phase are used as split positions.

Implicit Dimensionality Reduction:

We conclude the subsection on index node splitting with the following observation. The hybrid tree

implicitly eliminates “non-discriminating” dimensions i.e. those dimensions along which the feature vectors

are not much different from each other. In other words, these dimensions are never used for node splitting.

This is true for data node splitting due to the “maximum extent” choice. To ensure that these dimensions are

indeed eliminated, we must guarantee that an eliminated dimension is never chosen for splitting the index

node. Let N be an index node. Let DN be the set of dimensions used for partitioning space within N . We

can provide the above guarantee if the the split dimension dN of N satisfies dN 2 DN , The reason is that

a dimension not used to split any data node cannot be in DN . Suppose we restrict our choice of the split

dimension of N to DN instead of all dimensions. We show that even then we would make the EDA-optimal

choice.

Lemma 1 (Implicit Dimensionality Reduction) It is possible to make the EDA-optimal choice even when

restricting the choice of the split dimension of node N to DN .

Proof:

The EDA-optimal choice of the split dimension of N is the one with the lowest r+wj

r+sj
ratio. We need to

show that the above ratio for any dimension j 2 DN is less than or equal to the ratio for every dimension
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i 62 DN . For any dimension j 2 DN , wj � sj . So for any j 2 DN and for any value of r, r+wj

r+sj
� 1. For

any dimension i 62 DN , wi = sj , hence r+wj

r+sj
= 1 for all r (worst case). Hence the proof.

The hybrid tree achieves implicit dimension elimination through the above choice. This effect is not

seen in most paginated multidimensional data structures. For example, DP-based techniques, all dimensions

are used for indexing - so nothing is eliminated. SP-based techniques which choose the split dimension

arbitrarily/round robin fashion cannot provide the above guarantee.

3.3.4 Dead Space Elimination

The hybrid tree, like other SP techniques, indexes dead space i.e. space the contains no data objects. DP-

techniques, on other other hand, does not. Dead space indexing cause unnecessary disk accesses. This

effect increases at higher dimensionality. Storage of the live space BRs would reduce the hybrid tree into

a DP-based technique, making the fanout of the node sensitive to dimensionality. Instead, we encode the

live space BR relative to the entire BR (defined by kd-tree partitioning) using a few bits as suggested in

[65]. The live space encoding is explained in Figure 3.5. More the number of bits used, the higher the

precision of the representation, lower the number of unnecessary disk accesses. We observed that using as

few as 4 bits per dimension eliminates most dead space. For 8K page, 4 bit precision and 64-d space, the

overhead is less than 1% of the database size and can be stored in memory. The overhead is even less for

lower dimensionality. During search (say range search), the overlap check is performed in 2 steps: first,

the BR defined by kd-tree is checked and if they overlap, the live space BR is decoded and checked, thus

saving any unnecessary decoding/checking costs. We performed experiments to demonstrate the effect of

ELS optimization in the hybrid tree as discussed in Section 5.

3.3.5 Tree Operations

The hybrid tree, like other disk based index structures (e.g., B-tree, R-tree) is completely dynamic i.e. inser-

tions, deletions and updates can occur interspersed with search queries without requiring any reorganization.

The tree operations in the hybrid tree are similar to the R-trees i.e. indexed subspaces are treated as BRs

but the kd-tree based organization is exploited to achieve faster intranode search. In addition to point and
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bounding-box queries (i.e. feature-based queries), the hybrid tree supports distance-based queries: both

range and nearest neighbor queries. Unlike several index structures (e.g., distance-based index structures

like SS-tree, M-tree), the hybrid tree, being a feature-based technique, can support queries with arbitrary

distance measures. This is important advantage since the distance function can vary from query to query for

the same feature or even between several iterations of the same query in a relevance feedback environment

[71, 124].

The insertion and deletion operations in the hybrid tree is also similar to that in R-trees. The insertion

algorithm recursively picks the child node in which the new object should be inserted. The best candidate

is the node that needs the minimum enlargement to accommodate the new object. Ties are broken based on

the size of the BR. The deletion operation is based on the eliminate-and-reinsert policy as in [59].

3.3.6 Summary

It is clear from the above discussion that the hybrid tree resembles both DP and SP techniques in some

aspects and differs from them in others: rather it is a “hybrid” of the two approaches. The comparison of

the hybrid tree with the two techniques is shown in Table 3.2. Now we summarize the reasons why hybrid

tree is more suitable for high dimensional indexing either DP or SP techniques. It is more suitable than

than pure DP techniques since (1) its fanout is independent of dimensionality while DP-techniques have low

fanout at high dimensionalities (2) enables faster intranode search by organizing the space partitioning as a

kd-tree instead of an array and (3) eliminates overlap from the lowest level (since data node splits are always

mutually non-overlapping) and reduces overlap at higher levels by using EDA-optimal 1-d splits instead

of k-d splits as in DP techniques. The hybrid tree performs better than other SP-based techniques using

1-d splits (e.g., KDB-trees) since unlike the latter, it provides (1) guaranteed storage utilization (2) avoids

costly cascading splits and (3) chooses EDA-optimal split dimensions instead of arbitrarily. It performs

better than SP-based techniques using multiple dimensional splits (e.g., hB-trees) since (1) 1-d splits usually

provide better search performance compared to multiple dimensional ones since the latter tends to produce

subspaces with larger surface area and hence more disk accesses [14] and (2) it does not require storage of

redundant information (e.g., posting full paths).

3.4 Experimental Evaluation

We performed extensive experimentation to (1) evaluate the various design decisions made in the hybrid tree

and (2) compare the hybrid tree with other competitive techniques. We conducted our experiments over the

following two “real world” datasets:

(1) The FOURIER dataset contains 1.2 million 16-d vectors produced by fourier transformation of

polygons. We construct 8-d, 12-d and 16-d vectors by taking the first 8, 12 and 16 fourier coefficients

respectively.
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Figure 3.6: (a) and (b) shows the effect of EDA Optimization on query performance. (c) shows the effect of
ELS Optimization on query performance. Both experiments were performed on 64-d COLHIST data.

(2) The COLHIST dataset comprises of color histograms extracted from about 70,000 color images

obtained from the Corel Database. We generate 16, 32 and 64 dimensional vectors by extracting 4x4, 8x4

and 8x8 color histograms [110] from the images.

The queries are randomly distributed in the data space with appropriately chosen ranges to get constant

selectivity. In all experiments discussed below, the selectivity is maintained constant at 0.07 % for FOURIER

and 0.2 % for COLHIST. All the experiments were conducted on a Sun Ultra Enterprise 3000 with 512MB

of physical memory and several GB of secondary storage. In all our experiments, we use a page size of 4096

bytes.

We performed experiments to evaluate (1) the impact of EDA-optimal node splitting algorithms and

(2) the effect of live space optimization in the hybrid tree. Both the experiments were performed on the

64-d COLHIST data. The performance is measured by (1) the average number of disk accesses required to

execute a query and (2) the average CPU time required to execute a query. Figure 3.6(a) and (b) show the

performance of the hybrid tree constructed using EDA-optimal node splitting algorithms compared to the

hybrid tree constructed using the VAM-split node splitting algorithm [150]. The EDA-optimal split algo-

rithms consistently outperforms the VAMSplit algorithm. The performance gap increases with the increase

in dimensionality. Figure 3.6(c) shows the effect of live space optimization. Using 4-bit ELS improves the

performance significantly compared to no ELS but using more bits does not improve it much further.

We conducted experiments to compare the performance of the hybrid tree with the following competitive

techniques: (1) SR-tree [77] (2) hB-tree [90] (3) Sequential Scan. We chose SR-tree since it is one of the

most competitive BR-based data structures proposed for high dimensional indexing. Similarly, hB-tree is

among the best known SP-based techniques for high dimensionalities. We normalize the I/O cost and the

CPU cost of each of the 3 indexing techniques against the cost of linear scan. We define the normalized

costs as follows:

� The Normalized I/O cost: the ratio of the average number of disk accesses required to execute a

query using the indexing technique to the number of disk accesses to execute a linear scan. The
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Figure 3.7: Scalability to dimensionality. (a) and (b) shows the query performance (I/O and CPU costs) for
medium dimensional data (FOURIER dataset(400K points)). (c) and (d) shows the same for high dimen-
sional data (COLHIST dataset(70K points))

latter is computed by DatabaseSize
PageSize i.e. NumberOfObjects�Dimensionality�sizeof(float)

PageSize . Note that since

sequential disk accesses are about 10 times faster compared to random accesses, the normalized I/O

cost of linear scan is 0.1 instead of 1.0. Hence, for any index mechanism, a normalized I/O cost of

more than 0.1 indicate worse I/O performance compared to linear scan.

� The Normalized CPU cost: the ratio of average CPU time required to execute a query using the index

mechanism to the average CPU time required to perform a linear scan. The normalized CPU cost of

linear scan is 1.0.

Using normalized costs instead of direct costs (1) allows us to compare each of the techniques against

linear scan as the latter is widely recognized as a competitive search technique in high dimensional feature

spaces [16] while still comparing them to each other and (2) makes the measurements independent of the

experimental settings (e.g., H/W platform, pagesize).

Figures 3.7 shows the scalability of the various techniques to medium dimensional and high dimensional

feature spaces respectively. The hybrid tree performs significantly better than any other technique including

linear scan. The hB-tree performs better compared to SR-tree since SP-based techniques are more suited for

high dimensional indexing than BR-techniques as argued in [146]. The fast intranode search in the hybrid

tree due to its kd-tree based organization account for the faster CPU times.

Figures 3.8(a) and (b) compares the different techniques in terms of their scalability to very large

databases. The hybrid tree significantly outperforms all other techniques by more than an order of mag-

nitude for all database sizes. The hybrid tree shows a decreasing normalized cost with increase in database

size indicating sublinear growth of the actual cost with database size. Figures 3.8(c) and (d) compares the

query performance of various techniques 2 for distance-based queries. As suggested in [110], we use the L1

metric. Again, the hybrid tree outperforms the other techniques.

From the experiments, we can conclude that the hybrid tree scales well to high dimensional feature
2hB-tree is not used since it does not support distance-based search.
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Figure 3.8: (a) and (b) compares the scalability of the various techniques with database size of high dimen-
sional data. (c) and (d) compares the query performance of the various techniques for distance-based queries
(Manhattan Distance). Both experiments were performed on 64-d COLHIST data.

spaces, large database sizes and efficiently supports arbitrary distance measures.

3.5 Conclusion

Feature based similarity search is emerging as an important search paradigm in database systems. Efficient

support of similarity search requires robust feature indexing techniques. In this chapter, we introduce the

hybrid tree - a multidimensional data structure for indexing high dimensional feature spaces. The hybrid tree

combines positive aspects of bounding region based and space partitioning based data structures into a single

data structure to achieve better scalability. It supports queries based on arbitrary distance functions. Our

experiments show that the hybrid tree is scalable to high dimensional feature spaces and provides efficient

support of distance based retrieval. The hybrid tree is a fully operational software and is currently being

deployed for feature indexing in MARS [111].

In the next chapter, we introduce the Local Dimensionality Reduction (LDR) technique in order to

enhance the scalability of the hybrid tree even further. LDR reduces the dimensionality of data by exploiting

local correlations in data. We describe how the reduced data can be indexed using the hybrid tree (or

any other multidimensional index structure). We show that LDR used in conjunction with the hybrid tree

provides a very scalable solution to the problem of high dimensional indexing.
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Chapter 4

Local Dimensionality Reduction for High
Dimensional Indexing

We present the local dimensionality reduction (LDR) technique in this chapter. We show that LDR used in

conjunction with the hybrid tree proposed in the previous chapter provides a very scalable solution to the

problem of high dimensional indexing.

4.1 Introduction

While designing high dimensional index trees like the hybrid tree is a big step towards providing efficient

access over high dimensional feature spaces (HDFS), it must be used in conjunction with a dimensionality

reduction technique in order to exploit the correlations in data and hence achieve further scalability. This

approach is commonly used in both multimedia retrieval ([43, 103, 76, 142]) and data mining ([47, 8, 49])

applications. The idea is to first reduce the dimensionality of the data and then index the reduced space

using a multidimensional index structure [43]. Most of the information in the dataset is condensed to a

few dimensions (the first few principal components (PCs)) by using principal component analysis (PCA).

The PCs can be arbitrarily oriented with respect to the original axes [48]. The remaining dimensions (i.e.

the later components) are eliminated and the index is built on the reduced space. To answer queries, the

query is first mapped to the reduced space and then executed on the index structure. Since the distance

in the reduced-dimensional space lower bounds the distance in the original space, the query processing

algorithm can guarantee no false dismissals [43]. The answer set returned can have false positives (i.e.

false admissions) which are eliminated before it is returned to the user. We refer to this technique as global

dimensionality reduction (GDR) i.e. dimensionality reduction over the entire dataset taken together.

GDR works well when the dataset is globally correlated i.e. most of the variation in the data can be

captured by a few orthonormal dimensions (the first few PCs). Such a case is illustrated in Figure 4.1(a)

where a single dimension (the first PC) captures the variation of data in the 2-d space. In such cases, it is

possible to eliminate most of the dimensions (the later PCs) with little or no loss of distance information.

However, in practice, the dataset may not be globally correlated (see Figure 4.1(b)). In such cases, reducing
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Figure 4.1: Global and Local Dimensionality Reduction Techniques (a) GDR(from 2-d to 1-d) on globally
correlated data (b) GDR (from 2-d to 1-d) on globally non-correlated (but locally correlated) data (c) LDR
(from 2-d to 1-d) on the same data as in (b)

the data dimensionality using GDR will cause a significant loss of distance information. Loss in distance

information is manifested by a large number of false positives and is measured by precision [76] (cf. Section

4.5). More the loss, larger the number of false positives, lower the precision. False positives increase the

cost of the query by (1) causing the query to make unnecessary accesses to nodes of the index structure and

(2) adding to the post-processing cost of the query, that of checking the objects returned by the index and

eliminating the false positives. The cost increases with the increase in the number of false positives. Note

that false positives do not affect the quality the answers as they are not returned to the user.

Even when a global correlation does not exist, there may exist subsets of data that are locally correlated

(e.g., the data in Figure 4.1(b) is not globally correlated but is locally correlated as shown in Figure 4.1(c)).

Obviously, the correlation structure (the PCs) differ from one subset to another as otherwise they would be

globally correlated. We refer to these subsets as correlated clusters or simply clusters.1 In such cases, GDR

would not be able to obtain a single reduced space of desired dimensionality for the entire dataset without

significant loss of query accuracy. If we perform dimensionality reduction on each cluster individually

(assuming we can find the clusters) rather than on the entire dataset, we can obtain a set of different reduced

spaces of desired dimensionality (as shown in Figure 4.1(c)) which together cover the entire dataset2 but

achieves it with minimal loss of query precision and hence significantly lower query cost. We refer to this

approach as local dimensionality reduction (LDR).

Contributions: In this chapter, we propose LDR as an approach to high dimensional indexing. Our

contributions can be summarized as follows:

� We develop an algorithm to discover correlated clusters in the dataset. Like any clustering problem,

the problem, in general, is NP-Hard. Hence, our algorithm is heuristic-based. Our algorithm per-

forms dimensionality reduction of each cluster individually to obtain the reduced space (referred to as

subspace) for each cluster. The data items that do not belong to any cluster are outputted as outliers.

The algorithm allows the user to control the amount of information loss incurred by dimensionality

reduction and hence the query precision/cost.
1Note that correlated clusters (formally defined in Section 4.3) differ from the usual definition of clusters i.e. a set of spatially

close points. To avoid confusion, we refer to the latter as spatial clusters in this chapter.
2The set of reduced spaces may not necessarily cover the entire dataset as there may be outliers. We account for outliers in our

algorithm.

38



� We present a technique to index the subspaces individually. We present query processing algorithms

for point, range and k-nearest neighbor (k-NN) queries that execute on the index structure. Unlike

many previous techniques [76, 142], our algorithms guarantee correctness of the result i.e. returns

exactly the same answers as if the query executed on the original space. In other words, the answer

set returned to the user has no false positives or false negatives.

� We perform extensive experiments on synthetic as well as real-life datasets to evaluate the effective-

ness of LDR as an indexing technique and compare it with other techniques, namely, GDR, index

structure on the original HDFS (referred to as the original space indexing (OSI) technique) and lin-

ear scan. Our experiments show that (1) LDR can reduce dimensionality with significantly lower

loss in query precision as compared to GDR technique. For the same reduced dimensionality, LDR

outperforms GDR by almost an order of magnitude in terms of precision. and (2) LDR performs

significantly better than other techniques, namely GDR, original space indexing and sequential scan,

in terms of query cost for both synthetic and real-life datasets.

Roadmap: The rest of the chapter is organized as follows. In Section 4.2, we provide an overview of

related work. In Section 4.3, we present the algorithm to discover the correlated clusters in the data. Section

4.4 discusses techniques to index the subspaces and support similarity queries on top of the index structure.

In Section 4.5, we present the performance results. Section 4.6 offers the final concluding remarks.

4.2 Related Work

Previous work on high dimensional indexing techniques includes development of high dimensional index

structures (e.g., X-tree[15], SR-tree [77], TV-tree [86], Hybrid-tree [23]) and global dimensionality reduc-

tion techniques [48, 43, 47, 76]. The techniques proposed in this chapter build on the above work. Our

work is also related to the clustering algorithms that have been developed recently for database mining (e.g.,

BIRCH, CLARANS, CURE algorithms) [154, 102, 58]. The algorithms most related to this chapter are

those that discover patterns in low dimensional subspaces [2, 3]. In [2], Agarwal et. al. present an algo-

rithm, called CLIQUE, to discover“dense” regions in all subspaces of the original data space. The algorithm

works from lower to higher dimensionality subspaces: it starts by discovering 1-d dense units and iteratively

discovers all dense units in each k-d subspace by building from the dense units in (k-1)-d subspaces. In [3],

Aggarwal et. al. present an algorithm, called PROCLUS, that clusters the data based on their correlation

i.e. partitions the data into disjoint groups of correlated points. The authors use the hill climbing technique,

popular in spatial cluster analysis, to determine the projected clusters. Neither CLIQUE, nor PROCLUS can

be used as an LDR technique since they cannot discover clusters when the principal components are arbi-

trarily oriented. They can discover only those clusters that are correlated along one or more of the original

dimensions. The above techniques are meant for discovering interesting patterns in the data; since correla-

tion along arbitrarily oriented components is usually not that interesting to the user, they do not attempt to

discover such correlation. On the contrary, the goal of LDR is efficient indexing; it must be able to discover
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Symbols Definitions

N Number of objects in the database
M Maximum number of clusters desired
K Actual number of clusters found (K �M )
D Dimensionality of the original feature space
Si The ith cluster
Ci Centroid of Si
ni Size of Si (number of objects)
Ai Set of points in Si
�i The principal components of Si
�
(j)
i The jth principal component of S i

di Subspace dimensionality of Si
� Neighborhood range
MaxReconDist Maximum Reconstruction distance
FracOutliers Permissible fraction of outliers
MinSize Minimum Size of a cluster
MaxDim Maximum subspace dimensionality of a cluster
O Set of outliers

Table 4.1: Summary of symbols and definitions

such correlation in order to minimize the loss of information and make indexing efficient. Also, since the

motivation of their work is pattern discovery and not indexing, they do not address the indexing and query

processing issues which we have addressed in this thesis. To the best of our knowledge, this is the first work

that proposes to exploit the local correlations in data for the purpose of indexing.

4.3 Identifying Correlated Clusters

In this section, we formally define the notion of correlated clusters and present an algorithm to discover such

clusters in the data.

4.3.1 Definitions

In developing the algorithm to identify the correlated clusters, we will need the following definitions.

Definition 1 (Cluster and Subspace) Given a set A of N points in a D-dimensional feature space, we

define a cluster S as a set AS (AS � A) of locally correlated points. Each cluster S is defined by S =

h�S ; dS ; CS ;ASi where:

� �S are the principal components of the cluster, �(i)S denoting the ith principal component.

� dS is the reduced dimensionality i.e. the number of dimensions retained. Obviously, the retained

dimensions correspond to the first dS principal components �
(i)
S ; 1 � i � dS while the eliminated

dimensions correspond to the next (D � dS) components. Hence we use the terms (principal) com-

ponents and dimensions interchangeably in the context of the transformed space.
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Figure 4.2: Centroid and Reconstruction Distance.

� CS = [C
(dS+1)
S � � �C(D)

S ] is the centroid, that stores, for each eliminated dimension �i; (dS + 1) �
i � D, a single constant which is “representative” of the position of every point in the cluster along

this unrepresented dimension (as we are not storing their unique positions along these dimensions).

� AS is the set of points in the cluster

The reduced dimensionality space defined by �
(i)
S ; 1 � i � dS is called the subspace of S. dS is called the

subspace dimensionality of S.

Definition 2 (Reconstruction Vector) Given a cluster S = h�S ; dS ; CS ;ASi, we define the reconstruction

vector ReconV ect(Q;S) of a point Q from S as follows:

ReconV ect(Q;S) = ��D
i=(dS+1)(Q � �(i)

S � C
(i)
S )�

(i)
S (4.1)

where �� denotes vector addition and � denotes scalar product (i.e. Q ��(i)S is the projection of Q on �
(i)
S as

shown in Figure 4.2). (Q ��(i)
S �C(i)

S ) is the (scalar) distance of Q from the centroid along each eliminated

dimension and ReconV ector(Q;S) is the vector of these distances.

Definition 3 (Reconstruction Distance) Given a cluster S = h�S; dS ; CS ;ASi, we now define the recon-

struction distance (scalar) ReconDist(Q;S;D) of a point Q from S. D is the distance function used to

define the similarity between points in the HDFS. Let D be an Lp metric i.e. D(P; P 0) = k P � P 0 kp =
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[�d
i=1(jP [i] � P 0[i]j)p]1=p. We define ReconDist(Q;S;D) 3 as follows:

ReconDist(Q;S;D) = ReconDist(Q;S;Lp) (4.2)

= k ReconV ect(Q;S) kp (4.3)

= [�D
i=dS+1(jQ � �(i)

S � C
(i)
S j)

p
]
1=p

(4.4)

Note that for any pointQmapped to the dS-dimensional subspace of S,ReconV ect(Q;S) (andReconDist(Q;S))

represent the error in the representation i.e. the vector (and scalar) distance between the exactD-dimensional

representation of Q and its approximate representation in the dS-dimensional subspace of S. Higher the er-

ror, more the amount of distance information lost.

4.3.2 Constraints on Correlated Clusters

Our objective in defining clusters is to identify low dimensional subspaces, one for each cluster, that can

be indexed separately. We desire each subspace to have as low dimensionality as possible without losing

too much distance information. In order to achieve the desired goal, each cluster must satisfy the following

constraints:

1. Reconstruction Distance Bound: In order to restrict the maximum representation error of any point

in the low dimensional subspace, we enforce the reconstruction distance of any point P 2 AS to

satisfy the following condition: ReconDist(P; S) � MaxReconDist where MaxReconDist is a

parameter specified by the user. This condition restricts the amount of information lost within each

cluster and hence guarantees a high precision which in turn implies lower query cost.

2. Dimensionality Bound: For efficient indexing, we want the subspace dimensionality to be as low

as possible while still maintaining high query precision. A cluster must not retain any more dimen-

sions that necessary. In other words, it must retain the minimum number of dimensions required to

accommodate the points in the dataset. Note than a cluster S can accommodate a point P only if

ReconDist(P; S) � MaxReconDist. To ensure that the subspace dimensionality dS is below the

critical dimensionality of the multidimensional index structure (i.e. the dimensionality above which a

sequential scan is better), we enforce the following condition: dS � MaxDim where MaxDim is

specified by the user.

3. Choice of Centroid: For each cluster S, we use PCA to determine the subspace i.e. �S is the set of

eigenvectors of the covariance matrix of AS sorted based on their eigenvalues. [48] shows that for

a given choice of reduced dimensionality dS , the representation error is minimized by choosing the
3Assuming that D is a fixed Lp metric, we usually omit the D in ReconDist(Q;S;D) for simplicity of notation.
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first dS components among �S and choosing CS to be the mean value of the points (i.e. the centroid)

projected on the eliminated dimensions. To minimize the information loss, we choose C(i)S = EfP �
�
(i)
S g = EfPg � �(i)

S (see Figure 4.2).

4. Size Bound: Finally, we desire each cluster to have a minimum cardinality (number of points) :

nS � MinSize where MinSize is user-specified. The clusters that are too small are considered to

be outliers.

The goal of the LDR algorithm described below is to discover the set S = S1; S2; :::; SK of K clusters

(where K � M , M being the maximum number of clusters desired) that exists in the data and that satisfy

the above constraints. The remaining points, that do not belong to any of the clusters, are placed in the

outlier set O.

4.3.3 The Clustering Algorithm

Since the LDR algorithm needs to perform local correlation analysis (i.e. PCA on subsets of points in the

dataset rather than the whole dataset), we need to first identify the right subsets to perform the analysis on.

This poses a cyclic problem: how do we identify the right subsets without doing the correlation analysis and

how do we do the analysis without knowing the subsets. We break the cycle by using spatial clusters as an

initial guess of the right subsets. Then we perform PCA on each spatial cluster individually. Finally, we

‘recluster’ the points based on the correlation information (i.e. principal components) to obtain the correlated

clusters. The clustering algorithm is shown in Table 4.2. It takes a set of points A and a set of clusters S as

input. When it is invoked for the first time,A is the entire dataset and each cluster in S is marked ‘empty’. At

the end, each identified cluster is marked ‘complete’ indicating a completely constructed cluster (no further

change); the remaining clusters remain marked ‘empty’. The points that do not belong to any of the clusters

are placed to the outlier set O. The details of each step is described below:

� Construct Spatial Clusters(Steps FC1 and FC2): The algorithm starts by constructing M spa-

tial clusters where M is the maximum number of clusters desired. We use a simple single-pass

partitioning-based spatial clustering algorithm to determine the spatial clusters [102]. We first choose

a set of C � A of well-scattered points as the centroids such that points that belong to the same spatial

cluster are not chosen to serve as centroids to different clusters. Such a set C is called a piercing

set [3]. We achieve this by ensuring that each point P 2 C in the set is sufficiently far from any

already chosen point P 0 2 C i.e. Dist(P; P 0) > threshold for a user-defined threshold. 4 This

technique, proposed by Gonzalez [54], is guaranteed to return a piercing if no outliers are present. To

avoid scanning though the whole database to choose the centroids, we first construct a random sample

of the dataset and choose the centroids from the sample [3, 58]. We choose the sample to be large
4For subsequent invocations of FindClusters procedure during the iterative algorithm (Step 2 in Table 4.3), there may exist

already completed clusters (does not exist during the initial invocation). Hence P must also be sufficiently far from all complete
clusters formed so far i.e. ReconDist(P; S) > threshold for each complete cluster S.
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Clustering Algorithm
Input: Set of Points A, Set of clusters S (each cluster is either empty or complete)
Output: Some empty clusters are completed, the remaining points form the set of outliers O
FindClusters(A;S;O)
FC1: For each empty cluster, select a random point P 2 A such that P is sufficiently far from all completed and

valid clusters. If found, make P the centroid C i and mark Si valid.

FC2: For each point P 2 A, add P to the closest valid cluster Si (i.e. i = argmin(Distance(P;Ci))) if P lies in
the �-neighborhood of Ci i.e. Distance(P;Ci) � �.

FC3: For each valid cluster Si, compute the principal components � i using PCA. Remove all points from Ai.

FC4: For each point P 2 A, find the valid cluster Si that, among all the valid clusters requires the minimum
subspace dimensionality LD(P ) to satisfy ReconDist(P; Si) � MaxReconDist (break ties arbitrarily). If
LD(P ) �MaxDim, increment Vi[j] for j = 0 to (LD(P )� 1) and ni.

FC5: For each valid cluster Si, compute the subspace dimensionality di as: di = fjjFi[j] �

FracOutliers and Fi[j � 1] > FracOutliersg where Fi[j] =
Vi[j]
ni

.

FC6: For each point P 2 A, add P to the first valid cluster Si such that ReconDist(P; Si) � MaxReconDist. If
no such Si exists, add P to O.

FC7: If a valid cluster Si violates the size constraint i.e. (jAij < MinSize), mark it empty. Remove each point P 2
Ai from Si and add it to the first succeeding cluster Sj that satisfies ReconDist(P; Sj) � MaxReconDist

or to O if there is no such cluster. Mark the other valid clusters complete. For each complete cluster S i, map
each point P 2 Ai to the subspace and store it along with ReconDist(P; S;D).

Table 4.2: Clustering Algorithm

enough (using Chernoff bounds [98]) such that the probability of missing clusters due to sampling

is low i.e. there is at least one point from each cluster present in the sample with a high probability

[58]. Once the centroids are chosen, we group each point P 2 A with the closest centroid Cclosest

if Distance(P;Cclosest) � � and update the centroid to reflect the mean position of its group. If

Distance(P;Cclosest) > �, we ignore P . The restriction of the neighborhood range to � makes the

correlation analysis localized. Smaller the value of �, the more localized the analysis. At the same

time, � has to be large enough so that we get a sufficiently large number of points in the cluster which

is necessary for the correlation analysis to be robust.

� Compute PCs(Step FC3): Once we have the spatial clusters, we perform PCA on each spatial

cluster Si individually to obtain the principal components �
(i)
S ; i = [1;D]. We do not eliminate

any components yet. We compute the mean value Mi of the points in Si so that we can compute

ReconDist(P; Si) in Steps FC4 and FC5 for any choice of subspace dimensionality di. Finally, we

remove the points from the spatial clusters so that they can be reclustered as described in Step FC6.

� Determine Subspace Dimensionality(Steps FC4 and FC5): For each cluster Si, we must retain no

more dimensions than necessary to accommodate the points in the dataset (except the outliers). To

determine the number of dimensions di to be retained for each cluster Si, we first determine, for
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each point P 2 A, the best cluster, if one exists, for placing P . Let LD(P; Si) denote the the least

dimensionality needed for the cluster Si to represent P with ReconDist(P; Si) �MaxReconDist.

Formally,

LD(P; Si) = fdjReconDist(P; Si) �MaxReconDist if di � d

and ReconDist(P; Si) > MaxReconDist otherwise g (4.5)

In other words, the first LD(P; Si) PCs are just enough to satisfy the above constraint. Note that such

a LD(P; Si) always exists for a non-negative MaxReconDist. Let LD(P ) = min f LD(P; Si)jSi
is a valid cluster g. If LD(P ) � MaxDim, there exists a cluster that can accommodate P without

violating the dimensionality bound. Let LD(P; Si) = LD(P ) (if there are multiple such clusters

Si, break ties arbitrarily). We say Si is the “best” cluster for placing P since Si is the cluster that,

among all the valid clusters, needs to retain the minimum number of dimensions to accommodate P .

P would satisfy the ReconDist(P; Si) � MaxReconDist bound if the subspace dimensionality

di of Si is such that LD(P; Si) � di � MaxDim and would violate it if 0 � di < LD(P; Si).

For each cluster Si, we maintain this information as a count array Vi[j]; j = [0;MaxDim] where

Vi[j] is the number of points that, among the points chosen to be placed in Si, would violate the

ReconDist(P; Si) � MaxReconDist constraint if the subspace dimensionality di is j: so in this

case (for point P ), we must increment Vi[j] for j = 0 to (LD(P; Si) � 1) and the total count ni of

points chosen to be placed in Si. (Vi[j] and ni is initialized to 0 before FC4 begins). On the other

hand, if LD(P ) > MaxDim, there exists no cluster in which P can be placed without violating the

dimensionality bound; so we do nothing.

At the end of the pass over the dataset, for each cluster Si, we have computed Vi[j]; j = [0;MaxDim]

and ni. We use this to compute Fi[j]; j = [0;MaxDim] where Fi[j] is the fraction of points

that, among those chosen to be placed in Si (during FC4), would violate the ReconDist(P; Si) �
MaxReconDist constraint if the subspace dimensionality di is j i.e. Fi[j] =

Vi[j]
ni

. An example of Fi

45



from one of the experiments conducted on the real life dataset (cf. Section 4.5.3) is shown in Figure

4.3. We choose di to be as low as possible without too many points violating the reconstruction dis-

tance bound i.e. not more than FracOutliers fraction of points in Si where FracOutliers is speci-

fied by the user. In other words, di is the minimum number of dimensions that must be retained so that

the fraction of points that violate the ReconDist(P; Si) � MaxReconDist constraint is no more

that FracOutliers i.e. di = fjjFi[j] � FracOutliers and Fi[j � 1] > FracOutliersg. In Figure

4.3, di is 21 for FracOutliers = 0:1, 16 for FracOutliers = 0:2 and 14 for FracOutliers = 0:3.

We now have all the subspaces formed. In the next step, we assign the points to the clusters.

� Recluster Points(Step FC6): In the reclustering step, we reassign each point P 2 A to a cluster S

that covers P i.e. ReconDist(P; S) � MaxReconDist. If there exists no such cluster, P is added

to the outlier set O. If there exists just one cluster that covers P , P is assigned to that cluster. Now

we consider the interesting case of multiple clusters covering P . In this case, there is a possibility that

some of these clusters are actually parts of the same correlated cluster but has been split due to the

initial spatial clustering. This is illustrated in Figure 4.4. Since points in a correlated cluster can be

spatially distant from each other (e.g., form an elongated cluster in Figure 4.4) and spatial clustering

only clusters spatially close points, it may end up putting correlated points in different spatial clusters,

thus breaking up a single correlated cluster into two or more clusters. Although such ‘splitting’ does

not affect the indexing cost of our technique for range queries and k-NN queries, it increases the cost

of point search and deletion as multiple clusters may need to searched in contrast to just one when

there is no ‘splitting’. (cf. Section 4.4.2). Hence, we must detect these ‘broken’ clusters and merge

them back together. We achieve this by maintaining the clusters in some fixed order (e.g., order in

which they were created). For each point P 2 P , we check each cluster sequentially in that order

and assign it to the first cluster that covers P . If two (or more) clusters are part of the same correlated

cluster, most points will be covered by all of them but will always be assigned to only one them,

whichever appears first in the order. This effectively merges the clusters into one since only the first

one will remain while the others will end up being almost empty and will be discarded due to the

violation of size bound in FC7. Note that the FracOutliers bound in Step FC5 still holds i.e. besides

the points for which LD(P ) > MaxDim, no more that FracOutliers fraction of points can become

outliers.

� Map Points(Step FC7): In the final step of the algorithm, we eliminate clusters that violate the size

constraint. We remove each point from these clusters and add it to the first succeeding valid cluster Sj

that satisfies the ReconDist(P; Sj) �MaxReconDist bound or to O otherwise. For the remaining

clusters Si, we map each point P 2 Ai to the subspace by projecting P to �
(j)
i ; 1 � j � di and refer

it as the (di-d) image Image(P; Si) of P :

Image(P; Si)[j] = P � �(j)
i for 1 � j � di (4.6)
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We refer to P as the (D-d) original Original(Image(P; Si); Si) of its image Image(P; Si). We

store the image of each point along with the reconstruction distance ReconDist(P; Si).

Since FindClusters chooses the initial centroids from a random sample, there is a risk of missing out

some clusters. One way to reduce this risk is to choose a large number of initial centroids but at the cost of

slowing down the clustering algorithm. We reduce the risk of missing clusters by trying to discover more

clusters, if there exists, among the points returned as outliers by the initial invocation of FindClusters. We

iterate the above process as long as new clusters are still being discovered as shown below:

Iterative Clustering
(1) FindClusters(A, S, O); /* initial invocation */
(2) Let O0 be an empty set. Invoke FindClusters(O, S, O 0). Make O0 the new outlier set i.e.

O  O0. If new clusters found, go to (2). Else return.

Table 4.3: Iterative Clustering Algorithm

The above iterative clustering algorithm is somewhat similar to the hill climbing technique, commonly

used in spatial clustering algorithms (especially in partitioning-based clustering algorithms like k-means,

k-medoids and CLARANS [102]). In this technique, the “bad quality” clusters (the ones that violate the

size bound) are discarded (Step FC7) and is replaced, if possible, by better quality clusters. However, unlike

the hill climbing approach where all the points are reassigned to the clusters, we do not reassign the points

already assigned to the ‘complete’ clusters. Alternatively, we can follow the hill climbing approach but it is

computationally more expensive and requires more scans of the database [102].

Cost Analysis: We conclude this section with a analysis of the cost of the clustering algorithm. Let us

first analyze the cost of the first invocation of the FindClusters procedure (where A is the whole dataset).

The centroid selection step (FC1) has a small cost since we are using a random sample and jsamplej �
jAj. Step FC2 requires one pass through the dataset A and has a time complexity of O(NKD). Step

FC3 has a complexity of O(niD2) for each cluster Si and hence an overall complexity of O(ND2) (since

�ini � N ). This step also has a memory requirement of O(niD) for each cluster and hence a maximum

of O(maxi(ni)D) which is smaller than the memory requirement of O(ND) of GDR. This is an advantage

of LDR over GDR: while the latter requires the whole dataset to fit in memory, the former requires only

the points in the cluster to fit in memory. In either case, if the memory is too small, we can perform SVD

on a sample rather than the whole data [76]. Step FC4 requires another pass through the database and has

a time complexity of O(ND2K) (assuming MaxDim is a constant). Step FC5 is a simple step with a

complexity of O(KD). Step FC6 requires a final pass through the database and has a time complexity of

O(ND2K). Also, the first invocation of FindClusters accounts for most of the cost of the algorithm since

the later invocations have much smaller sets as input and hence much smaller cost. Thus, the algorithm

requires three passes through the dataset (FC2,FC4 and FC6) and a time complexity of O(ND2K).
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4.4 Indexing Correlated Clusters

Having developed the technique to find the correlated clusters, we now shift our attention to how to use them

for indexing. Our objective is to develop a data structure that exploits the correlated clusters to efficiently

support range and k-NN queries over HDFSs. The developed data structure must also be able to handle

insertions and deletions.

4.4.1 Data Structure

The data structure, referred to as the global index structure (GI) (i.e. index on entire dataset), consists

of separate multidimensional indices for each cluster, connected to a single root node. The global index

structure is shown in Figure 4.5. We explain the various components in details below:

� The Root Node R of GI contains the following information for each cluster Si: (1) a pointer to the root

node Ri (i.e. the address of disk block containing Ri) of the cluster index Ii (the multidimensional

index on Si), (2) the principal components �i (3) the subspace dimensionality di and (4) the centroid

Ci. It also contains an access pointer O to the outlier cluster O. If there is an index on O (discussed

later), O points to the root node of that index; otherwise, it points to the start of the set of blocks on

which the outlier set resides on disk. R may occupy one or more disk blocks depending on the number

of clusters K and original dimensionality D.

� The Cluster Indices: We maintain a multidimensional index Ii for each cluster Si in which we store

the reduced dimensional representation of the points in Si. However, instead of building the index

Ii on the di-d subspace of Si defined by �
(j)
i ; 1 � j � di, we build Ii on the (di + 1)-d space,

the first di dimensions of which are defined by �
(j)
i ; 1 � j � di as above while the (di + 1)th

dimension is defined by the reconstruction distance ReconDist(P; Si;D). Including reconstruction

distance as a dimension helps to improve query precision (as explained later). We redefine the image

NewImage(P; Si) of a point P 2 Ai as a (di + 1)-d point (rather than a di-d point), incorporating

the reconstruction distance as the (di + 1)th dimension:

NewImage(P; Si)[j] = Image(P; Si)[j] = P � �(j)
i for 1 � j � di (4.7)

= ReconDist(P; Si;D) for j = di + 1 (4.8)

The (di+1)-d cluster index Ii is constructed by inserting the (di+1)-d images (i.e. NewImage(P; Si))

of each point P 2 Ai into the multidimensional index structure using the insertion algorithm of the

index structure. Any disk-based multidimensional index structure (e.g., R-tree [59], X-tree [15], SR-

tree [77], Hybrid Tree [23]) can be used for this purpose. We used the hybrid tree in our experiments

since it is a space partitioning index structure (i.e. has “dimensionality-independent” fanout), is more

scalable to high dimensionalities in terms of query cost and can support arbitrary distance metrics

[23].
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Figure 4.5: The global index structure

� The Outlier Index: For the outlier set O, we may or may not build an index depending on whether the

original dimensionality D is below or above the critical dimensionality. In this chapter, we assume

that D is above the critical dimensionality of the index structure and hence choose not to index the

outlier set (i.e. use sequential scan for it).

Like other database index trees (e.g., B-tree, R-tree), the global index (GI) shown in Figure 4.5 is disk-

based. But it may not be perfectly height balanced i.e. all paths from R to leaf may not be of exactly equal

length. The reason is that the sizes and the dimensionalities may differ from one cluster to another causing

the cluster indices to have different heights. We found that GI is almost height balanced (i.e. the difference

in the lengths of any two paths from R to leaf is never more than 1 or 2) due to the size bound on the clusters.

Also, its height cannot exceed the height of the original space index by more than 1.

Lemma 2 (Height and balance of GI) GI is almost height balanced and the height cannot exceed cannot

exceed the height of the original space index by more than 1

Proof: Let hGI denote the the height of GI. Let horig denote the height of the original space index i.e.

index on the entire dataset in the D-d original space. We assume that the multidimensional index structure

used as the original space index is same as the one used to index the clusters (e.g., hybrid tree in both cases).

Then, hGI � 1 + horig. Since Ii is built on a subset of points of the entire set (i.e. ni � N ) and fewer

dimensions (i.e. di � D), its height hIi cannot be greater horig. Since hGI = 1 +maxihIi and hIi � horig

for all i, hGI � 1 + horig . The bound is a conservative one as the hGI is usually smaller than horig due to

the reduced size of the index.

We now show that GI is almost height-balanced. There are two factors that affect the height of a clus-

ter index Ii: the number of points ni and the subspace dimensionality di. Lower the value of ni, lower

the height. Also, lower the value of di, lower the height. Let Ishort be the shortest index. Note nshort �
MinSize. Let Cshort and Fshort denote the average number of entries in a leaf and index node of Ishort re-

spectively Then, as explained in [55], the minimum possible height of Ishort is (1+dlogFshort(dMinSize
Cshort

e)e)
Similarly, the maximum possible height of tallest index Itall is (1 + dlogFtall(d N

Ctall
e)e) since ntall �

N . For space partitioning index structures (which is preferred for high dimensional indexing due to its

“dimensionality-independent” fanout), Fshort � Ftall (say, F ) [23]. Cshort and Ctall depend on the respec-

tive subspace dimensionalities i.e. Cshort
Ctall

dtall
dshort

. The maximum difference lmax in the lengths of any two
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paths from R to leaf is lmax � logF (
N�Cshort

MinSize�Ctall
) i.e. lmax � logF (

N�dtall
MinSize�dshort

). Usually, the subspace

dimensionalities are close i.e. dtall � dshort. For space-partitioning indexes, F is typically around 50-100

[23]. Under the above assumptions, lmax � 1 if MinSize � N
50 and lmax � 2 if MinSize � N

2500 . In other

words, with a proper size bound, lmax is usually 1 or at most 2, implying that GI is almost height balanced.

To guarantee the correctness of our query algorithms (i.e. to ensure no false dismissals), we need to

show that the cluster index distances lower bounds the actual distances in the original D-d space [43]. In

other words, for any two D-d points P and Q,D(NewImage(P,Si), NewImage(Q,Si)) must always lower

bound D(P;Q).

Lemma 3 (Lower Bounding Lemma) D(NewImage(P; Si); NewImage(Q;Si)) always lower bounds

D(P;Q).

Proof: Let Pi denote Image(P; Si) and Qi denote Image(Q;Si). Let P 0 = ��D
j=1(P � �(j)

i ) and

Q0 = ��D
j=1(Q � �(j)

i ). Then, D(P 0; Q0) = D(P;Q) since �i is orthonormal. Now,

P 0 = Pi +ReconV ect(P; Si) + ��D
j=di+1C

(j)
i �

(j)
i (4.9)

Q0 = Qi +ReconV ect(Q;Si) + ��D
j=di+1C

(j)
i �

(j)
i (4.10)

The vector distance Dist(P 0; Q0) between P’ and Q’ is

Dist(P 0; Q0) = Dist(Pi; Qi) + (ReconV ect(P; Si)�ReconV ect(Q;Si)) (4.11)

) D(P 0; Q0) = [D(Pi; Qi)
p + k ReconV ect(P; Si) kp �ReconV ect(Q;Si))

p
]
1=p

(4.12)

Since Lp functions obey triangle inequality,

k ReconV ect(P; Si)�ReconV ect(Q;Si) kp � j(ReconDist(P; Si;D)�ReconDist(Q;Si;D))j
(4.13)

) D(P 0; Q0) � [D(Pi; Qi)
p + j(ReconDist(P; Si;D)�ReconDist(Q;Si;D))jp]1=p (4.14)

Now,

D(NewImage(P; Si); NewImage(Q;Si)) = [D(Pi; Qi)
p + j(ReconDist(P; Si;D)�ReconDist(Q;Si;D))jp]1=p

(4.15)
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Since D(P 0; Q0) = D(P;Q) and from Equations 4.14 and 4.15,

D(Q;P ) � D(NewImage(P; Si); NewImage(Q;Si)) (4.16)

Note that instead of incorporating reconstruction distance as the (di + 1)th dimension, we could have

simply constructed GI with each cluster index Ii defined on the corresponding di-d subspace �
(j)
i ; 1 � j �

di. Since the lower bounding lemma holds for the di-d subspaces (as shown in [43]), the query processing

algorithms described below would have been correct. The reason we use (di + 1)-d subspace is that the

distances in the (di + 1)-d subspace upper bounds the distances in the di-d subspace and hence provides a

tighter lower bound to distances in the original D-d space:

D(NewImage(P; Si); NewImage(Q;Si)) = [D(Image(P; Si); Image(Q;Si))p +

j(ReconDist(P; Si;D)�ReconDist(Q;Si;D))jp]1=p (4.17)

) D(NewImage(P; Si); NewImage(Q;Si)) � D(Image(P; Si); Image(Q;Si)) (4.18)

Furthermore, the difference between the two (i.e. D(NewImage(P; Si),NewImage(Q;Si)) andD(Image(P; Si),

Image(Q;Si))) is usually significant when computing the distance of the query from a point in the cluster:

Say, P is a point in Si andQ is the query point. Due to the reconstruction distance bound, ReconDist(P; Si;D)
is always a small number (� MaxReconDist). On the other hand, ReconDist(Q;Si;D) can have any

arbitrary value and is usually much larger than ReconDist(P; Si;D)), thus making the difference quite sig-

nificant. This makes the distance computations in the (di + 1)-d more optimistic than that in the di-d index

and hence a better estimate of the distances in the original D-d space. For example, for a range query, the

range condition (D(NewImage(P; Si); NewImage(Q;Si)) � �) is more optimistic (i.e. satisfies fewer

objects) than the range condition (D(Image(P; Si); Image(Q;Si)) � �), leading to fewer false positives.

The same is true for k-NN queries. Fewer false positives imply lower query cost. At the same time, adding

a new dimension also increases the cost of the query. Our experiments show that decrease in the query cost

from fewer false positives offsets the increase of the cost of the adding a dimension, reducing the overall

cost of the query significantly (cf. Section 4.5, Figure 4.12).

4.4.2 Query Processing over the Global Index

In this section, we discuss how to execute similarity queries efficiently using the index structure described

above (cf. Figure 4.5). We describe the query processing algorithm for point, range and k-NN queries. For

correctness, the query processing algorithm must guarantee that it always returns exactly the same answer as
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RangeSearch(QueryQ = hQ; �;Di)

1 for (i=1; i � K; i++)
2 Qi  NewImage(Q, Si);
3 Qi  hQi; �;Di;
4 RangeSearchOnClusterIndex(Qi; Ri; Si; result);
5 for each O 2 O
6 if D(Q;O) � � result result [O;

RangeSearchOnClusterIndex(QueryQ, Node T, Cluster S, Set result)

1 if (T is a non-leaf node)
2 foreach child N of T
3 if MINDIST (Q;N;D) � � RangeSearchOnClusterIndex(Q, N, S, result);
4 else /* T is a leaf node */
5 for each object O in T
6 if D(Q;O) � �

7 if D(Original(Q;S); Original(O;S)) � � result result [O;

Table 4.4: Range Query.

the query on the original space [43]. Often dimensionality reduction techniques do not satisfy the correctness

criteria [76, 142]. We show that all our query processing algorithms satisfy the above criteria.

Point Search

To find an object O, we first find the cluster that contains O. It is the first cluster S (in the order mentioned

in Step FC6) for which the reconstruction distance bound is satisfied. If such a cluster S exists, we compute

NewImage(O;S) and find it in the corresponding index by invoking the point search algorithm of the

index structure. The point search returns the object if it exists in the cluster, otherwise it returns null. If no

such cluster S exists, O must be, if at all, in O. So we sequentially search through O and return it if it exists

in O.

Range Queries

A range query Q = hQ; �;Di retrieves all objects O in the database that satisfies the range condition

D(Q;O) � �. The algorithm for range queries is shown in Table 4.4. For each cluster Si, we map the query

anchor Q to its (di + 1)-d image Qi (using the principal components �i and subspace dimensionality di

stored in the root node R of GI) and execute a range query (with the same range �) on the corresponding

cluster index Ii by invoking the procedure RangeSearchOnClusterIndex on the root node Ri of Ii. Range-

SearchOnClusterIndex is the standard R-tree-style recursive range search procedure that starts from the root

node and explores the tree in a depth-first fashion. It examines the current node T : if T is a non-leaf node,
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it recursively searches each child node N of T that satisfies the condition MINDIST (Q;N;D) � �

(where MINDIST (Q;N;D) denotes the minimum distance of the (di + 1)-d image of query point to the

(di + 1)-d bounding rectangle of N based on distance function D); if T is a leaf node, it retrieves each data

item O stored in T (which is the NewImage of the original D-d object) that satisfies the range condition

D(Q;O) � � in the (di + 1)-d space, accesses the full D-dimensional tuple on disk to determine whether

it is a false positive and adds it to the result set if it is not a false positive (i.e. it also satisfies the range

condition D(Q;O) � � in the original D-d space). After all the cluster indices are searched, we add all

the qualifying points from among the outliers to the result by performing a sequential scan on O. Since

the distance in the index space lower bounds the distance in the original space (cf. Lemma 3), the above

algorithm cannot have any false dismissals. The algorithm cannot have any false positives either as they are

filtered out before adding to the result set. The above algorithm thus returns exactly the same answer as the

query on the original space.

In the above discussion, we assumed that we store the reduced representation of the points (i.e. the

‘NewImage’s) in the leaf pages of the cluster indices. Another option was to store the original D-d point in

the leaf pages (although the index is built on the reduced space). With the former option, the index will have

much fewer leaf nodes than the latter due to the smaller representation. On the other hand, in the latter case,

the false positives can be eliminated at the leaf page level while the former would require an additional page

access into the relation (where the full tuple is stored) to eliminate false positives. Since the index is usually

a secondary index, we assume that for each match, we need to access the full tuple anyway (to retrieve the

additional attributes). In that case, the extra cost of the former option is that of additional page accesses for

only the false positives (see Section 4.5.1 for the details on the cost computations). Our experiments show

that our technique usually operates in a high precision zone (> 90%) i.e. has very few false positives. The

experiments also show that the smaller size of the indices in the former approach saves enough query cost to

compensate the few extra I/Os due to false positives. Hence we store just the NewImages in the leaf pages

of the index structure.

k Nearest Neighbor Queries

A k-NN query Q = hQ; k;Di retrieves a set R of k objects such that for any two objects O 2 R; O0 62
R, D(Q;O) � D(Q;O0). The algorithm for k-NN queries is shown in Table 4.5. Like the basic k-

NN algorithm, the algorithm uses a priority queue queue to navigate the nodes/objects in the database

in increasing order of their distances from Q. Note that we use a single queue to navigate the entire global

index i.e. we explore the nodes/objects of all the cluster indices in an intermixed fashion and do not require

separate queues to navigate the different clusters. Each entry in queue is either a node or an object and

stores 3 fields: the id of the node/object T it corresponds to, the cluster S it belongs to and its distance dist

from the query anchor Q. The items (i.e. nodes/objects) are prioritized based on dist i.e. the smallest item

appears at the top of the queue (min-priority queue). For nodes, the distance is defined by MINDIST

while for objects, it is the the point-to-point distance. Initially, for each cluster, we map the query anchor Q
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k-NNSearch(QueryQ = Q; k;Di)

1 for (i=1; i � K; i++)
2 QSi  NewImage(Q, Si);
3 queue.push(Si; Ri;MINDIST (Qi; Ri;D));
4 Add to temp the k closest neighbors of Q amongO (lin. scan)
5 while (not queue.IsEmpty())
6 top=queue.Top();
7 for each object O in temp such that O:dist � top:dist

8 temp temp�O;
9 result = result [ O;
10 retrieved++;
11 if (retrieved = k) return result;
12 queue.Pop();
13 if top:T is an object
14 top:dist = D(Q;Original(top:T; top:S));
15 temp = temp [ top:T ;
16 else if top:T is a leaf node
17 for each object O in top:T
18 queue.push(top.S, O, D(Qtop:S ; O));
19 else /* top:T is an index node */
20 for each child N of top:T
21 queue.push(top.S,N , MINDIST (Qtop:S; N;D));

Table 4.5: k-NN Query.

to its (di + 1)-d image Qi using the information stored in the root node R of GI (Line 2). Then, for each

cluster index Ii, we compute the distance MINDIST (Qi; Ri;D) of Qi from the root node Ri of Ii and

push Ri into queue along with the distance and the id of the cluster Si to which it belongs (Line 3). We also

fill the set temp with the k closest neighbors of Q among the outliers by sequentially scanning through O
(Line 4).

After these initialization steps, we start navigating the index by popping the item from the top of

queue at each step (Line 11). If the popped item is an object, we compute the distance of the origi-

nal D-d object (by accessing the full tuple on disk) from Q and append it to temp (Lines 12-14). If it

a node, we compute the distance of each of its children to the appropriate query image Qtop:S (where

top:S denotes the cluster which top belongs to) and push them into the queue (Lines 15-20). Note that

the image for each cluster is computed just once (in Step 2) and is reused here. We move an object O

from temp to result only when we are sure that it is among the k nearest neighbors of Q i.e. there ex-

ists no object O0 62 result such that D(O0; Q) < D(O;Q) and jresultj < k. The second condition

is ensured by the exit condition in Line 11. The condition O:dist � top:dist in Line 7 ensures that

there exists no unexplored object O0 such that D(O0; Q) < D(O;Q). The proof is simple: O:dist �
top:dist implies O:dist � D(NewImage(O0; S); NewImage(Q;S)) for any unexplored object O0 in

a cluster S (by the property of min-priority queue) which in turn implies D(O;Q) � D(O0; Q) (since

D(NewImage(O0; S); NewImage(Q;S)) lower bounds D(O0; Q), see Lemma 3). By inserting the ob-
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jects in temp (i.e. already explored items) into result in increasing order of their distances in the orig-

inal D-d space (by keeping temp sorted), we also ensure there exists no explored object O0 such that

D(O0; Q) < D(O;Q). This shows that the algorithm returns the correct answer i.e. the exact set of objects

as the query in the original D-d space. It is also easy to show that the algorithm is I/O optimal.

Lemma 4 (Optimality of k-NN algorithm) The k-NN algorithm is optimal i.e. it does not explore any

object outside the range of kth nearest neighbor.

Proof: Let � = maxO2AD(Q;O) where A is the set of final answers (the k nearest neighbors).

The algorithm is optimal if it does not explore any indexed object O (in any cluster) (13-15) such that

D(NewImage(O;S), NewImage(Q;S)) > �. Let us assume that it does explore such an object O.

When O is explored, jresultj < k because otherwise the algorithm would have terminated before reaching

this point. We will show that when O is explored, jresultj is at least k and hence prove the lemma (by con-

tradiction). Each O0 2 A has been explored before O since D(NewImage(O0; S); NewImage(Q;S)) �
� < D(NewImage(O;S); NewImage(Q;S)) (by property of min-priority queue). Now top:dist =

D(NewImage(O;S) ; NewImage(Q;S)) when O is explored i.e. top:dist > �. Since each O0 2 A
satisfies the condition D(Q;O) � �, it satisfies the condition D(Q;O) < top:dist and is hence added to

result (Line 7). So jresultj is at least k.

4.4.3 Modifications

We assume that the data is static in order to build the index. However, we must support subsequent in-

sertions/deletions of the objects to/from the index efficiently. To insert an object O, we find the first

cluster S (in the order mentioned earlier) for which the reconstruction distance bound is satisfied i.e.

ReconDist(O;S;D) � ReconError. If such a cluster exists, we compute NewImage(O;S) and in-

sert it into the corresponding index using the insertion algorithm of the index structure. Otherwise, we

append O to O.

The deletion algorithm is also simple. To delete an object O, we first find O by invoking the point search

algorithm (cf. Section 4.4.2). If it is found in a cluster, we delete it using the deletion algorithm of the index

structure; else if it is found in O, we delete it from O; else, we return not found.

If the database is dynamic (i.e. frequent insertions and deletions), the principal components need to be

updated from time to time. One option is to repeat the entire clustering algorithm and construct the index

structure from scratch. This can be done more efficiently using techniques proposed by Ravi Kanth et.

al. [76]. The idea is to use aggregate data, obtained from the cluster indices, to recompute the principal

components for each cluster and then incorporate the new components back into the cluster indices. [76]

shows that this technique improves the recomputation time significantly without degrading the quality of the

index structure. We can use their approach to handle dynamic databases. On the other hand, if the database

is more or less static (i.e. insertions and deletions are rare) as is often the case [43, 41], such recomputations

are not necessary.
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4.5 Experiments

In this section, we present the results of an extensive empirical study we have conducted to (1) evaluate the

effectiveness of LDR as a high dimensional indexing technique and (2) compare it with other techniques,

namely, GDR, original space indexing (OSI) and linear scan. We conducted our experiments on both syn-

thetic and real-life datasets. The major findings of our study can be summarized as follows:

� High Precision: LDR provides up to an order of magnitude improvement in precision over the GDR

technique at the same reduced dimensionality. This indicates that LDR can achieve the same reduction

as GDR with significantly lower loss of distance information.

� Low Query Cost: LDR consistently outperforms other indexing techniques, namely GDR, original

space indexing and sequential scan, in terms of query cost (combined I/O and CPU costs) for both

synthetic and real-life datasets.

Thus, our experimental results validate the thesis of this chapter that LDR is an effective indexing tech-

nique for high dimensional datasets. All experiments reported in this section were conducted on a Sun

Ultra Enterprise 450 machine with 1 GB of physical memory and several GB of secondary storage, running

Solaris 2.5.

4.5.1 Experimental Methodology

We conduct the following two sets of experiments to evaluate the LDR technique and compare it with other

indexing techniques.

Precision Experiments Due to dimensionality reduction, both GDR and LDR, cause loss of distance

information. More the number of dimensions eliminated, more the amount of information lost. We measure

this loss by precision defined as Precision =
jRoriginalj
jRreducedj

where Rreduced and Roriginal are the sets of

answers returned by the range query on the reduced dimensional space and the original HDFS respectively

[76]. We repeat that since our algorithms guarantee that the user always gets back the correct set Roriginal

of answers (as if the query executed in the original HDFS), precision does not measure the quality of the

answers returned to the user but just the information loss incurred by the DR technique and hence the query

cost. For a DR technique, if we fix the reduced dimensionality, the higher the precision, the lower the cost of

the query, the more efficient the technique. We compare the GDR and LDR techniques based on precision

at fixed reduced dimensionalities.

Cost Experiments We conducted experiments to measure the query cost (I/O and CPU costs) for each

of the following four indexing techniques. We describe how we compute the I/O and CPU costs of the

techniques below.

� Linear Scan: In this technique, we perform a simple linear scan on the original high dimensional

dataset. The I/O cost in terms of sequential disk accesses is N�(D�sizeof(float)+sizeof(id))
PageSize . Since
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Param. Description Default Value
n Total number of points 100000
D Original dimensionality 64
k Number of clusters 5
d Avg. subspace dimensionality 10

zdim Skew in subspace dim. across clusters 0.5
zsize Skew in size across clusters 0.5
c Number of spatial cluster per cluster 10
r Extent (from centroid) along subspace dim 0.5
p Max displacement along non-subspace dim 0.1
o Fraction outliers 0.05

Table 4.6: Input parameters to Synthetic Data Generator

sizeof(id)� (D � sizeof(float)), we will ignore the sizeof(id) henceforth. Assuming sequential

I/O is 10 times faster than random I/O, the cost in terms of the random accesses isN�sizeof(float)�D)
10�PageSize .

The CPU cost is the cost of computing the distance of the query from each point in the database.

� Original Space Indexing (OSI): In this technique, we build the index on the original HDFS itself using

a multidimensional index structure. We use the hybrid tree as the index structure. The I/O cost (in

terms of random disk accesses) of the query is the number of nodes of the index structure accessed.

The CPU cost is the CPU time (excluding I/O wait) required to navigate the index and return the

answers.

� GDR: In this technique, we peform PCA on the original dataset, retain the first few principal com-

ponents (depending on the desired reduced dimensionality) and index the reduced dimensional space

using the hybrid tree index structure. In this case, the I/O cost has 2 components: index page accesses

(discussed in OSI) and accessing the full tuples in the relation for false positive elimination (post pro-

cessing cost). The post processing cost can be one I/O per false positives in the worst case. However,

as observed in [55], this assumption is overly pessimistic (and is confirmed by our experiments). We,

therefore, assume the postprocessing I/O cost to be num false positives
2 . The total I/O cost (in number

of random disk accesses) is index page access cost+ num false positives
2 . The CPU cost is the sum

of the index CPU cost and the post processing CPU cost i.e. cost of computing the distance of the

query from each of the false positives.

� LDR: In this technique, we index each cluster using the hybrid tree multidimensional index structure

and used a linear scan for the outlier set. For LDR, the I/O cost of a query has 3 components: index

page accesses for each cluster index, linear scan on the outlier set and accessing the full tuples in the

relation (post processing cost). The total index page access cost is the total number of nodes accessed

of all the cluster indices combined. The number of sequential disk accesses for the outlier scan is
jOj�D�sizeof(float)

PageSize . The cost of outlier scan in terms of random accesses is jOj�sizeof(float)�D)
10�PageSize . The

postprocessing I/O cost is num false positives
2 (as discussed above). The total I/O cost (in number of

random disk accesses) is index page access cost+ jOj�sizeof(float)�D)
10�PageSize + num false positives

2 . Simi-
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larly, the CPU cost is the sum of the index CPU cost, outlier scan CPU cost (i.e. cost of computing the

distance of the query from each of the outliers) and the post processing cost (i.e. cost of computing

the distance of the query from each of the false positives).

We chose the hybrid tree as the index structure for our experiments since it is a space partitioning index

structure (“dimensionality-independent” fanout) and has been shown to scale to high dimensionalities [23].
5 We use a page size of 4KB for all our experiments.

4.5.2 Experimental Results - Synthetic Data Sets

Synthetic Data Sets and Queries In order to generate the synthetic data, we use a method similar to that

discussed in [154] but appropriately modified so that we can generate the different clusters in subspaces

of different orientations and dimensionalities. The generator generates k clusters with a total of n:(1 � o)

points distributed among them using a Zipfian distribution with value zsize. The subspace dimensionality

of each cluster also follows a Zipfian distribution with value zdim, the average subspace dimensionality

being d. Each cluster is generated as follows. For a cluster with size ni and subspace dimensionality di

(computed using the Zipfian distributions described above), we randomly choose di dimensions among the

D dimensions as the subspace dimensions and generate ni points in that di-d plane. Along each of the

remaining (D � di) non-subspace dimensions, we assign a randomly chosen coordinate to all the ni points

in the cluster. Let fj be the randomly chosen coordinate along the jth non-subspace dimension. In the

subspace, the points are spatially clustered into several regions (c regions on average) with each region

having a randomly chosen centroid and an extent of r from the centroid along each of the di dimensions.

After all the points in the cluster are generated, each point is displaced by a distance of at most p in either

direction along each non-subspace dimension i.e. the point is randomly placed somewhere between (fj�p)
and (fj+p) along the jth non-subspace dimension. The amount of displacement (i.e. value of p) determines

the degree of correlation (since r is fixed). Lower the value, more the correlation. To make the subspaces

arbitrarily oriented, we generate a random orthonormal rotation matrix (generated using MATLAB) and

rotate the cluster by multiplying the data matrix with the rotation matrix. After all the clusters are generated,

we randomly generate N:o points (with random values along all D dimensions) as the outliers. The default

values of the various parameters is shown in Table 4.6.

We generated 100 range queries by selecting their query anchors randomly from the dataset and choosing

a range value such that the average query selectivity is about 2%. We tested with only range queries since

the k-NN algorithm, being optimal, is identical to the range query with the range equal to the distance of the

kth nearest neighbor from the query (Lemma 3). We use L2 distance (Euclidean) as the distance metric. All

our measurements are averaged over the 100 queries.
5The performance gap between our technique and the other techniques was even greater with SR-tree [77] as the index structure

due to higher dimensionality curse [23]. We do not report those results here but can be found in the full version of the LDR paper
[25].

58



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

P
re

c
is

io
n

Skew (z)

LDR
GDR

Figure 4.6: Sensitivity of precision
to skew.
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Figure 4.8: Sensitivity of precision
to degree of correlation.

Precision Experiments In our first set of experiments, we carry out a sensitivity analysis of the GDR and

LDR techniques to parameters like skew in the size of the clusters (zsize), number of clusters (k) and degree

of correlation (p). In each experiment, we vary the parameter of interest while the remaining parameters

are fixed at their default values. We fix the reduced dimensionality of the GDR technique to 15. We fix the

average subspace dimensionality of the clusters (i.e. �Ki=1
nidi
K ) also to 15 by choosing FracOutliers and

MaxReconDist appropriately (FracOutliers = 0:1 and MaxReconDist = 0:5). Figure 4.6 compares

the precision of the LDR technique with that of GDR for various value of zsize. LDR achieves about 3 times

higher precision compared to GDR i.e. the latter has more than three times the number of false positives as

the former. The precision of neither technique changes significantly with the skew. Figure 4.7 compares the

precision of the two techniques for various values of k. As expected, for one cluster, the two techniques are

identical. As k increases, the precision of GDR deteriorates while that of LDR is independent of the number

of clusters. For k = 10, LDR is almost an order of magnitude better compared to GDR in terms of precision.

Figure 4.8 compares the two techniques for various values of p. As the degree of correlation decreases (i.e.

the value of p increases), the precision of both techniques drop but LDR outperforms GDR for all values p.

Figure 4.9 shows the variation of the precision with the reduced dimensionality. For the GDR technique, we

vary the reduced dimensionality from 15 to 60. For the LDR technique, we vary the FracOutliers from 0.2

to 0.01 (0.2, 0.15, 0.1, 0.05, 0.02, 0.01) causing the average subspace dimensionality to vary from 7 to 42

(7, 10, 12, 14, 23 and 42) (MaxDim was 64). The precision of both techniques increase with the increase

in reduced dimensionality. Once again, LDR consistently outperforms GDR at all dimensionalities. The

above experiments show that LDR is a more effective dimensionality reduction technique as it can achieve

the same reduction as GDR with significantly lower loss of information (i.e. high precision) and hence

significantly lower cost as confirmed in the cost experiments described next.

Cost Experiments We compare the 4 techniques, namely LDR, GDR, OSI and Linear Scan, in terms of

query cost for the synthetic dataset. Figure 4.10 compares the I/O cost of the 4 techniques. Both the LDR

and GDR techniques have U-shaped cost curves: when the reduced dimensionality is too low, there is a high

degree of information loss leading to a large number of false positives and hence a high post-processing cost;
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GDR, Original Space Indexing and
Linear Scan in terms of CPU cost.

when it is too high, the index page access cost becomes too high due to dimensionality curse. The optimum

points lies somewhere in the middle: it is at dimensionality 14 (about 250 random disk accesses) for LDR

and at 40 (about 1200 random disk accesses) for GDR. The I/O cost of OSI and Linear Scan is obviously

independent of the reduced dimensionality. LDR significantly outperforms all the other 3 techniques in

terms of I/O cost. The only technique that comes close to LDR in terms of I/O cost is the linear scan (but

LDR is 2.5 times better as the latter performs 6274 sequential accesses � 627 random accesses). However,

linear scan loses out mainly due to its high CPU cost shown in Figure 4.11. While LDR, GDR and OSI

techniques have similar CPU cost (at their respective optimum points), the CPU cost linear scan is almost

two orders of magnitude higher that the rest. LDR has slightly higher CPU cost compared to GDR and OSI

since it uses linear scan for the outlier set: however, the savings in the I/O cost over GDR and OSI (by a

factor of 5-6) far offsets the slightly higher CPU cost.
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4.5.3 Experimental Results - Real-Life Data Sets

Description of Dataset Our real-life data set (COLHIST dataset [23]) comprises of 8�8 color histograms

(64-d data) extracted from about 70,000 color images obtained from the Corel Database (http://corel.digitalriver.com/)

and is available online at the UCI KDD Archive web site (http://kdd.ics.uci.edu/databases/CorelFeatures).

We generated 100 range queries by selecting their query anchors randomly from the dataset and choosing a

range value such that the average query selectivity is about 0.5%. All our measurements are averaged over

the 100 queries.

Cost Experiments First, we evaluate the impact of adding ReconDist as an additional dimension of each

cluster in the LDR technique. Figure 4.12 shows that the additional dimension reduces the cost of the query

significantly. We performed the above experiment on the synthetic dataset as well and observed a similar

result. Figures 4.15 and 4.16 shows the sensitivity of the LDR technique to the MaxReconDist parameter

in terms of I/O and CPU costs respectively. The I/O cost improves with decrease in MaxReconDist due

to decrease in the information loss (i.e. fewer false positives) and hence decrease in post processing cost.

However, with the decrease in MaxReconDist, the number of outliers increase as fewer points satisfy the

reconstruction distance bound which causes the CPU cost to increase (the cost of scanning the outlier set) as

shown in the Figure 4.16. The choice of MaxReconDist must consider the combined I/O and CPU cost;

for example, MaxReconDist = 0:08 represents a good choice for this real-life dataset.

Figure 4.13 compares the 4 techniques, namely LDR, GDR, OSI and Linear Scan, in terms of I/O cost.

LDR outperforms all other techniques significantly. Again, the only technique that come close to LDR in

I/O cost (i.e. number of random disk accesses) is the linear scan. However, again, linear scan turns out

to significantly worse compared to LDR in terms of the overall cost due to its high CPU cost as shown in

Figure 4.14.
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4.6 Conclusion

With numerous emerging applications requiring efficient access to high dimensional datasets, there is a need

for scalable techniques to indexing high dimensional data. In this chapter, we proposed local dimension-

ality reduction (LDR) as an approach to indexing high dimensional spaces. We developed an algorithm

to discover the locally correlated clusters in the dataset and perform dimensionality reduction on each of

them individually. We presented an index structure that exploits the correlated clusters to efficiently support

similarity queries over high dimensional datasets. We have shown that our query processing algorithms

are correct and optimal. We conducted an extensive experimental study with synthetic as well as real-life

datasets to evaluate the effectiveness of our technique and compare it to GDR, original space indexing and

linear scan techniques. Our results demonstrate that our technique (1) reduces the dimensionality of the data

with significantly lower loss in distance information compared to GDR, outperforming GDR by almost an

order of magnitude in terms of query precision (for the same reduced dimensionality) and (2) significantly

outperforms all the other 3 techniques (namely, GDR, original space indexing and linear scan) in terms of

the query cost for both synthetic and real-life datasets.

In the next chapter, we present a new dimensionality reduction technique, called Adaptive Piecewise

Constant Approximation (APCA), for time series data. APCA goes a step further compared to LDR; while

LDR chooses a reduced-representation that is local to each cluster, APCA adapts locally to each data item in

the database and chooses the best reduced-representation for that item. We show how APCA can be indexed

using a multidimensional index structure. Such an index enables extremely fast similarity searching in time

series data.
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Chapter 5

Indexing Time Series Data

In this, we present a new locally adaptive dimensionality reduction technique for indexing large time series

databases.

5.1 Introduction

Time series account for a large proportion of the data stored in financial, medical and scientific databases.

Recently there has been much interest in the problem of similarity search (query-by-content) in time series

databases. Similarity search is useful in its own right as a tool for exploratory data analysis, and it is also

an important element of many data mining applications such as clustering [36], classification [80, 101] and

mining of association rules [35].

The similarity between two time series is typically measured with Euclidean distance, which can be cal-

culated very efficiently. However the volume of data typically encountered exasperates the problem. Multi-

gigabyte datasets are very common. As typical example, consider the MACHCO project. This database

contains more than a terabyte of data and is updated at the rate of several gigabytes a day [148].

The most promising similarity search methods are techniques that perform dimensionality reduction

on the data, then use a multidimensional index structure to index the data in the transformed space. The

technique was introduced in [5] and extended in [119, 32]. The original work by Agrawal et. al. utilizes the

Discrete Fourier Transform (DFT) to perform the dimensionality reduction, but other techniques have been

suggested, including Singular Value Decomposition (SVD) [79, 76, 81], the Discrete Wavelet Transform

(DWT) [29, 151, 75] and Piecewise Aggregate Approximation (PAA) [79, 153].

For a given index structure, the efficiency of indexing depends only on the fidelity of the approximation

in the reduced dimensionality space. However, in choosing a dimensionality reduction technique, we cannot

simply choose an arbitrary compression algorithm. What is required is a technique that produces an index-

able representation. For example, many time series can be efficiently compressed by delta encoding, but this

representation does not lend itself to indexing. In contrast SVD, DFT, DWT and PAA all lend themselves

naturally to indexing, with each eigenwave, fourier coefficient, wavelet coefficient or aggregate segment

mapping onto one dimension of an index tree.
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Figure 5.1: A visual comparison of the time series representation proposed in this work (APCA), and the
3 other representations advocated in the literature. For fair comparison, all representations have the same
compression ratio. The reconstruction error is the Euclidean distance between the original time series and
its approximation.

The main contribution of this chapter is to propose a simple, but highly effective compression technique,

Adaptive Piecewise Constant Approximation (APCA), and show that it can be indexed using a multidimen-

sional index structure. This representation was considered by other researchers, but they suggested it ”does

not allow for indexing due to its irregularity” [153]. We will show that indexing APCA is possible, and,

using APCA is up to one to two orders of magnitude more efficient than alternative techniques on real world

datasets. We will show that our distance measure in the APCA space lower bounds the true distance (i.e.,

Euclidean distance in the original space); hence our APCA index always returns exact results. We will

define the APCA representation in detail in Section 5.3, however an intuitive understanding can be gleaned

from Figure 5.1.

The rest of the chapter is organized as follows. In Section 5.2 we provide background on and review

related work in time series similarity search. In Section 5.3 we introduce the APCA representation, an

algorithm to compute it efficiently and two distance measures defined on it. In Section 5.4 we demonstrate

how to index the APCA representation. Section 5.5 contains a comprehensive experimental comparison of

APCA with all the competing techniques. In section 5.8 we discuss several advantages APCA has over the

competing techniques, in addition to being faster. Section 5.9 offers the conclusions.

Figure 5.2: The intuition behind the Euclidean distance. The Euclidean distance can be visualized as the
square root of the sum of the squared lengths of the gray lines.
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5.2 Background and Related Work

Given two time series Q= fq1; : : : ; qng and C= fc1; : : : ; cng, the Euclidean distance D(Q,C) between Q

and C is defined as:

D(Q;C) =

vuut nX
i=1

(qi � ci)
2 (5.1)

Figure 5.2 shows the intuition behind the Euclidean distance.

There are essentially two ways the data might be organized [46]:

� Whole Matching: Here it assumed that all sequences to be compared are the same length n.

� Subsequence Matching: Here we have a query sequence Q (of length n), and a longer sequence C (of

length m). The task is to find the subsequence in C of length n, beginning at ci, which best matches

Q, and report its offset within C.

Whole matching requires comparing the query sequence to each candidate sequence by evaluating the

distance function and keeping track of the sequence with the lowest distance. Subsequence matching re-

quires that the query Q be placed at every possible offset within the longer sequence C. Note it is possible to

convert subsequence matching to whole matching by sliding a “window” of length n across C, and making

copies of the (m� n) windows. Figure 5.3 illustrates the idea. Although this causes storage redundancy it

simplifies the notation and algorithms so we will adopt this policy for the rest of this chapter.

There are two important kinds of queries that we would like to support in time series database, range

queries (e.g., return all sequences within an epsilon of the query sequence) and nearest neighbor (e.g., return

the K closest sequences to the query sequence). The brute force approach to answering these queries,

sequential scanning, requires comparing every time series ci to Q. Clearly this approach is unrealistic for

large datasets.

Any indexing scheme that does not examine the entire dataset could potentially suffer from two prob-

lems, false alarms and false dismissals. False alarms occur when objects that appear to be close in the

index are actually distant. Because false alarms can be removed in a post-processing stage (by confirming

distance estimates on the original data), they can be tolerated so long as they are relatively infrequent. A

Figure 5.3: The subsequence matching problem can be converted into the whole matching problem by
sliding a “window” of length n across the long sequence and making copies of the data falling within the
windows.
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false dismissal is when qualifying objects are missed because they appear distant in index space. Similarity-

searching techniques that guarantee no false dismissals are referred to as exact while techniques that do

not have this guarantee are called approximate. Although approximate techniques can sometimes be useful

for exploring large databases, we do not consider them in this thesis. We devote the rest of this section in

reviewing exact techniques for similarity search in time series data.

A time series C = fc1; : : : ; cng with n datapoints can be considered as a point in n-dimensional space.

This immediately suggests that time series could be indexed by multidimensional index structure such as

the R-tree and its many variants [59]. Since realistic queries typically contain 20 to 1,000 datapoints (i.e., n

varies from 20 to 1000) and most multidimensional index structures have poor performance at dimension-

alities greater than 8-12 [23], we need to first perform dimensionality reduction in order to exploit multidi-

mensional index structures to index time series data. In [46], the authors introduced GEneric Multimedia

INdexIng method (GEMINI) which can exploit any dimensionality reduction method to allow efficient in-

dexing. The technique was originally introduced for time series, but has been successfully extend to many

other types of data [81].

An important result in [46] is that the authors proved that in order to guarantee no false dismissals, the

distance measure in the index space must satisfy the following condition:

Dindex space(A;B) � Dtrue(A;B) (5.2)

This theorem is known as the lower bounding lemma or the contractive property. Given the lower

bounding lemma, and the ready availability of off-the-shelf multidimensional index structures, GEMINI

requires just the following three steps:

� Establish a distance metric Dtrue from a domain expert (in this case Euclidean distance).

� Produce a dimensionality reduction technique that reduces the dimensionality of the data from n to N,

where N can be efficiently handled by your favorite index structure.

� Produce a distance measure Dindex space defined on the N dimensional representation of the data, and

prove that it obeys Equation 5.2

Table 5.1 contains an outline of the GEMINI indexing algorithm. All sequences in the dataset C are

transformed by some dimensionality reduction technique and then indexed by the index structure of choice.

The indexing tree represents the transformed sequences as points in N dimensional space. Each point con-

tains a pointer to the corresponding original sequence on disk.

Algorithm BuildIndex(C,n) // C is the dataset, n is the size of the window
for each object Ci 2 C
Ci  Ci �Mean(Ci); // Optional: remove the mean of Ci
�Ci  SomeTransformation(Ci); // �Ci is any dimensionality reduced representation

Insert �Ci into Spatial Access Method with a pointer to Ci on disk from leaf page;

Table 5.1: An outline of the GEMINI index building algorithm.
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Note that each sequence has its mean subtracted before indexing. This has the effect of shifting the

sequence in the y-axis such that its mean is zero, removing information about its offset. This step is included

because for most applications the offset is irrelevant when computing similarity.

Table 5.2 below contains an outline of the GEMINI range query algorithm.

Algorithm RangeQuery(Q,�)
Project the query Q into the same feature space as the index.
Find all candidate objects in the index within � of the query.
Retrieve from disk the actual sequences pointed to by the candidates.
Compute the actual distances, and discard false alarms.

Table 5.2: The GEMINI range query algorithm.

The range query algorithm is called as a subroutine in the K Nearest Neighbor algorithm outlined in

Table 5.3. There are several optimizations to this basic K Nearest Neighbor algorithm that we utilize in this

chapter [131]. We will discuss them in more detail in Section 5.4.

Algorithm K NearestNeighbor(Q,K)
Project the query Q into the same feature space as the index.
Find the K nearest candidate objects in the index.
Retrieve from disk the actual sequences pointed to by the candidates.
Compute the actual distances and record the maximum, call it �max.
Issue the range query, RangeQuery(Q,�max).
Compute the actual distances, and choose the nearest K.

Table 5.3: The GEMINI nearest neighbor algorithm.

The efficiency of the GEMINI query algorithms depends only on the quality of the transformation used

to build the index. The tighter the bound in Equation 5.2 the better, as tighter bounds imply fewer false

alarms hence lower query cost [24]. Time series are usually good candidates for dimensionality reduction

because they tend to contain highly correlated features. For brevity, we will not describe the three main

dimensionality reduction techniques, SVD, DFT and DWT, in detail. Instead we refer the interested reader

to the relevant papers or to [79] which contains a survey of all the techniques. We will briefly revisit related

work in Section 5.8 when the reader has developed more intuition about our approach.

5.3 Adaptive Resolution Representation

In recent work Keogh et. al. [79] and Yi and Faloutsos [153] independently suggested approximating a

time series by dividing it into equal-length segments and recording the mean value of the datapoints that fall

within the segment. The authors use different names for this representation, for clarity we will refer to it

as Piecewise Aggregate Approximation (PAA). This simple technique is surprisingly competitive with the

more sophisticated transforms.
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Figure 5.4: A comparison of the reconstruction errors of the equal-size segment approach (PAA) and the
variable length segment approach (APCA), on a collection of miscellaneous datasets. A) INTERBALL
Plasma processes. B) Darwin sea level pressures. C) Space Shuttle telemetry. D) Electrocardiogram. E)
Manufacturing. F) Exchange rate.

The fact that each segment in PAA is the same length facilitates indexing of this representation. Suppose

however we relaxed this requirement and allowed the segments to have arbitrary lengths, does this improve

the quality of the approximation? Before we consider this question, we must remember that the approach

that allows arbitrary length segments, which we call Adaptive Piecewise Constant Approximation (APCA),

requires two numbers per segment. The first number records the mean value of all the datapoints in segment,

the second number records the length. So a fair comparison is N PAA segments to M APCA segments,

were M = bN2 c.
It is difficult to make any intuitive guess about the relative performance of the two techniques. On one

hand PAA has the advantage of having twice as many approximating segments. On the other hand APCA

has the advantage of being able to place a single segment in an area of low activity and many segments in

areas of high activity. In addition one has to consider the structure of the data in question. It is possible to

construct artificial datasets where one approach has an arbitrarily large reconstruction error, while the other

approach has reconstruction error of zero.

Figure 5.4 illustrates a fair comparison between the two techniques on several real datasets. Note that for

the task of indexing, subjective feelings about which technique “looks better” are irrelevant. All that matters

is the quality of the approximation, which is given by the reconstruction error (because lower reconstruction

errors result in tighter bounds on Dindex space(A;B) � Dtrue(A;B)).

On five of the six time series APCA outperforms PAA significantly. Only on the Exchange Rate data

are they essentially the same. In fact, we repeated similar experiments for more than 40 different time series

datasets, over a range of sequence lengths and compression ratios and we found that APCA is always at

least as good as PAA, and usually much better. This comparison motivates our approach. If the APCA

representation can be indexed, its high fidelity to the original signal should allow very efficient pruning of

the index space (i.e., few false alarms, hence low query cost). We will show how APCA can be indexed
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Symbols Definitions
S The number of objects in the database
n The length of a time series (also called query length, original dimen-

sionality)
C = fc1; : : : ; cng A time series in a database, stored a vector of length n
Q = fq1; : : : ; qng The user specified query, represented as a vector of length n

N The dimensionality of an index structure, with N � n

M The number of segments in a APCA representation, with M = b N2 c
C = fhcv1; cr1i; : : : ; hcvM ; crM ig An adaptive piecewise constant approximation of C, with c i the value

of the ith segment and cri the right endpoint of the ith segment
Q0 = fhqv1; qr1i; : : : ; hqvM ; qrM ig Also an adaptive piecewise constant approximation, but obtained using

a special algorithm as describe in Equation 5.4
D The Euclidean distance, defined for Q and C

DLB An approximation of the Euclidean distance, defined for Q’ and C

Table 5.4: The notation used in this chapter.

in the next section (Section 5.4). In the rest of this section, we define the APCA representation formally,

describe the algorithm to obtain the APCA representation of a time series and discuss the distance measures

for APCA.

5.3.1 The APCA representation

Given a time series C = fc1; : : : ; cng, we need to be able to produce an APCA representation, which we

will represent as:

C = fhcv1; cr1i; : : : ; hcvM ; crM ig; cr0 = 0 (5.3)

where cvi is the mean value of datapoints in the ith segment (i.e., cvi = mean(ccri�1+1; : : : ; ccri)) and cri the

right endpoint of the ith segment. We do not represent the length of the segments but record the locations of

their right endpoints instead for indexing reasons as will be discussed in Section 5.4. The length of the ith

segment can be calculated as (cri � cri� 1). Figure 5.5 illustrates this notation.

Figure 5.5: A time series C and its APCA representation C, with M = 4
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5.3.2 Obtaining the APCA representation

As mentioned before, the performance of the index structure built on the APCA representation defined in

Equation 5.3 depends on how closely the APCA representation approximates the original signal. Closer

the approximation, fewer the number of false alarms, better the performance of the index. We say that an

M-segment APCA representation C of a time series C is optimal (in terms of the quality of approximation)

iff C has the least reconstruction error among all possible M-segment APCA representations of C. Finding

the optimal piecewise polynomial representation of a time series requires a O(Mn2) dynamic programming

algorithm [15, 35]. This is too slow for high dimensional data. In this chapter, we propose a new algorithm to

produce almost optimal APCA representations in O(nlog(n)) time. The algorithm works by first converting

the problem into a wavelet compression problem, for which there are well known optimal solutions, then

converting the solution back to the ACPA representation and (possibly) making minor modifications. The

algorithm leverages off the fact that the Haar wavelet transformation of a time series signal can be calculated

in O(n), and that an optimal reconstruction of the signal for any level of compression can be obtained

by sorting the normalized coefficients in order of decreasing magnitude, then truncating off the smaller

coefficients [136]. Note that such a reconstruction is equivalent to an APCA representation. There are,

however, two issues we must address before utilizing this approach.

1. The DWT is defined only for time series with a length that is an integer power of two while n may not

necessarily be a power of two. This problem can be solved easily by padding those time series with

zeros, then truncating the corresponding segment after performing the DWT.

2. There is no direct mapping between the number of Haar coefficients retained and the number of seg-

ments in the APCA representation resulting from the reconstruction. For example a single coefficient

Haar approximation could produce a 1, 2 or 3-segment APCA representation. Our solution is to keep

the largest M coefficients, and if this results in an APCA representation with more than M segments,

adjacent pairs of segments are merged until exactly M segments remain. The segment pairs targeted

for merging are those that can be fused into a single segment with the minimum increase in recon-

struction error.

Table 5.5 contains the outline of the algorithm, and Figure 5.6 illustrates the working of the algorithm

on real world data.

We experimentally compared this algorithm with several of the heuristic, merging algorithms [45, 114,

133] and found it is faster (at least 5 times faster for any length time series) and slightly superior in terms of

reconstruction error.

5.3.3 Lower Bounding Distance measure for the APCA representation

Suppose we have a time series C, which we convert to the APCA representation C , and a query time series Q.

Clearly, no distance measure defined between Q and C can be exactly equivalent to the Euclidean distance
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Algorithm Compute APCA(C,M)
if length(C) is not a power of two, pad it with zeros to make it so.
Perform the Haar Discrete Wavelet Transform on C.
Sort coefficients in order of decreasing magnitude, truncate after M.
Reconstruct approximation (APCA representation) of C from retained coeffs.
If C was padded with zeros, truncate it to the original length.
while the number of segments is greater than M

Merge the pair of segments that can be merged with the least rise in error.

Table 5.5: An algorithm to produce the APCA.

Figure 5.6: A visualization of the algorithm used to produce the APCA representation. The original time
series (A) is padded with zeros up to the next power of two (B). The optimal Haar compression for M
coefficients is obtained (C), it consists of slightly more than M segments. The sequence is truncated back to
the original length (D) and segments are merged until exactly M remain (E).

D(Q,C) (defined in Equation 5.1) because C generally contains less information than C. We need to define

a distance measures DLB(Q,C) between Q and C that lower bounds the Euclidean distance D(Q,C) so that

we can utilize the GEMINI framework. To define DLB(Q,C), we must first introduce a special version of

the APCA. Normally the algorithm mentioned in Section 5.3.2 is used to obtain the APCA representation

of any time series. However we can also obtain the APCA representation of the query time series Q by

“projecting” the endpoints of C onto Q, and finding the mean value of the sections of Q that fall within the

projected intervals. A time series Q converted into the APCA representation this way is denoted as Q’. The

idea can be visualized in Figure 5.7(a). Q’ is defined as:

Q0 = fhqv1; qr1i; : : : ; hqvM ; qrM ig where qri = cri and qvi = mean(qcri�1+1; : : : ; qcri) (5.4)

DLB(Q’,C) is defined as (see Figure 5.7(b)):

DLB(Q
0; C) =

vuut MX
i=1

(cri � cri�1)(qvi � cvi)2 (5.5)

Lemma 5 (Lower Bounding Lemma) DLB(Q’,C) lower bounds the Euclidean Distance D(Q,C).
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Figure 5.7: A visualization of the lower bounding distance measure DLB(Q
0; C) defined on the APCA

representation. (a) Q0 is obtained by projecting the endpoints of C onto Q and calculating the mean values
of the sections falling within the projected lines. (b) DLB(Q0; C) can be visualized as the square root of the
sum of the product of squared length of the gray lines with the length of the segments they join.

Proof: We present a proof for the case where there is a single segment in the APCA representation. The

more general proof for the M segment case can be obtained by applying the proof to each of the M segments.

Let W = fw1; w2; : : : ; wpg be a vector of p real numbers. Let �W denote the arithmetic mean of W ,

i.e., �W =
P

wi

p . We define a vector �W of real numbers where �wi = �W � wi. It is easy to see thatP
�wi = 0. The definition of �wi allows us to substitute wi by �W ��wi, a fact which we will utilize in

the proof below.

Let Q and C be the query and data time series respectively, with jQj = jCj = n. Let Q0 and C be the

corresponding APCA vectors as defined in Equations 5.4 and 5.3 respectively.

We want to prove

vuut nX
i=1

(qi � ci)2 �
vuut MX

i=1

(cri � cri�1)(qvi � cvi)2 (5.6)

We start the proof with the assumption that the above is true. Since we are considering just the single

segment case, we can remove summation over M segments and rewrite the inequality as:

vuut nX
i=1

(qi � ci)2 �
p
(cri � cri�1)(qvi � cvi)2 (5.7)

Since (cri � cri�1) = n,

vuut nX
i=1

(qi � ci)2 �
p
n(qvi � cvi)2 (5.8)
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Squaring both sides,

nX
i=1

(qi � ci)
2 � n(qvi � cvi)

2 (5.9)

Since qvi = �Q and cvi = �C ,

nX
i=1

(qi � ci)
2 � n( �Q� �C)2 (5.10)

Substituting qi by �Q��qi and ci by �C ��ci,

nX
i=1

�
( �Q��qi)� ( �C ��ci)

�2 � n( �Q� �C)2 (5.11)

Rearranging terms,

nX
i=1

�
( �Q� �C)� (�qi ��ci)

�2 � n( �Q� �C)2 (5.12)

nX
i=1

�
( �Q� �C)2 � 2( �Q� �C)(�qi ��ci) + (�qi ��ci)

2
� � n( �Q� �C)2 (5.13)

nX
i=1

( �Q� �C)2 �
nX
i=1

2( �Q� �C)(�qi ��ci) +
nX
i=1

(�qi ��ci)
2 � n( �Q� �C)2 (5.14)

n( �Q� �C)2 � 2( �Q� �C)

nX
i=1

(�qi ��ci) +

nX
i=1

(�qi ��ci)
2 � n( �Q� �C)2 (5.15)

n( �Q� �C)2 � 2( �Q� �C)(

nX
i=1

�qi �
nX
i=1

�ci) +

nX
i=1

(�qi ��ci)
2 � n( �Q� �C)2 (5.16)

Since
P

�wi = 0,

n( �Q� �C)2 � 2( �Q� �C)(0� 0) +
nX
i=1

(�qi ��ci)
2 � n( �Q� �C)2 (5.17)

n( �Q� �C)2 +

nX
i=1

(�qi ��ci)
2 � n( �Q� �C)2 (5.18)

nX
i=1

(�qi ��ci)
2 � 0 (5.19)

The sum of squares must be nonnegative, so our assumption was true. Hence the proof.
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Algorithm ExactKNNSearch(Q,K)
Variable queue: MinPriorityQueue;
Variable temp: List;

1. queue.push(root node of index, 0);
2. while not queue.IsEmpty() do
3. top = queue.Top();
4. for each time series C in temp such that D(Q,C) � top.dist
5. Remove C from temp;
6. Add C to result;
7. if jresultj = K return result;
8. queue.Pop();
9. if top is an APCA point C
10. Retrieve full time series C from database;
11. temp.insert(C, D(Q,C));
12. else if top is a leaf node
13. for each data item C in top
14. queue.push(C , DLB(Q

0; C));
15. else // top is a non-leaf node
16. for each child node U in top
17. queue.push(U, MINDIST(Q,R)) // R is MBR associated with U

Table 5.6: K-NN algorithm to compute the exact K nearest neighbors of a query time series Q using a
multidimensional index structure

5.4 Indexing the APCA representation

The APCA representation proposed in Section 5.3.1 defines a N-dimensional feature space (N = 2M ).

In other words, the proposed representation maps each time series C = fc1; : : : ; cng to a point C =

fcv1; cr1; : : : ; cvM ; crMg in a N -dimensional space. We refer to the N -dimensional space as the APCA

space and the points in the APCA space as APCA points. In this section, we discuss how we can index

the APCA points using a multidimensional index structure (e.g., R-tree) and use the index to answer range

and K nearest neighbors (K-NN) queries efficiently. We will concentrate on K-NN queries in this section;

range queries will be discussed briefly at the end of the section.

A K-NN query (Q;K) with query time series Q and desired number of neighbors K retrieves a set C
of K time series such that for any two time series C 2 C, E 62 C, D(Q, C) � D(Q, E). The algorithm for

answering K-NN queries using a multidimensional index structure is shown in Table 5.6. 1 The above
1In this chapter, we restrict our discussion to only feature-based index structures i.e. multidimensional index structures that

recursively cluster points using minimum bounding rectangles (MBRs). Examples of such index structures are R-tree, X-tree and
Hybrid Tree . Note that the MBR-based clustering can be logical i.e. the index structure need not store the MBRs physically as long
as they can be derived from the physically stored information. For example, space partitioning index structures like the hB-tree and
the Hybrid Tree store the partitioning information inside the index nodes as kd-trees [90, 23]. Since the MBRs can be derived from
the kd-trees, the techniques discussed here are applicable to such index structures [23].
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algorithm is an optimization on the GEMINI K-NN algorithm described in Table 5.3 and was proposed

in [131]. Like the basic K-NN algorithm [121, 66], the algorithm uses a priority queue queue to navigate

nodes/objects in the index in the increasing order of their distances from Q in the indexed (i.e., APCA)

space. The distance of an object (i.e., APCA point) C from Q is defined by DLB(Q0; C) (cf. Section 5.3.3)

while the distance of a node U from Q is defined by the minimum distance MINDIST(Q,R) of the minimum

bounding rectangle (MBR) R associated with U from Q (definition of MINDIST will be discussed later).

Initially, we push the root node of the index into the queue (Line 1). Subsequently, the algorithm navigates

the index by popping out the item from the top of queue at each step (Line 8). If the popped item is an

APCA point C, we retrieve the original time series C from the database, compute its exact distance D(Q,C)

from the query and insert it into a temporary list temp (Lines 9-11). If the popped item is a node of the index

structure, we compute the distance of each of its children from Q and push them into queue (Lines 12-17).

We move a time series C from temp to result only when we are sure that it is among the K nearest neighbors

of Q, i.e., there exists no object E 62 result such that D(Q,E) < D(Q,C) and jresultj < K . The second

condition is ensured by the exit condition in Line 7. The first condition can be guaranteed as follows. Let I
be the set of APCA points retrieved so far using the index (i.e., I = temp[result). If we can guarantee that

8C 2 I;8E 62 I;DLB(Q
0; C) � D(Q,E), then the condition “D(Q,C) � top.dist” in Line 4 would ensure

that there exists no unexplored time series E such that D(Q, E) < D(Q,C). By inserting the time series in

temp (i.e., already explored objects) into result in increasing order of their distances D(Q,C) (by keeping

temp sorted by D(Q,C)), we can ensure that there exists no explored object E such that D(Q, E) < D(Q,C).

In other words, if 8C 2 I;8E 62 I; DLB(Q
0; C) � D(Q,E), the above algorithm would return the correct

answer.

Before we can use the above algorithm, we need to describe how to compute MINDIST(Q,R) such that

the correctness requirement is satisfied, i.e., 8C 2 I;8E 62 I;DLB(Q0; C) � D(Q,E). We now discuss how

the MBRs are computed and how to compute MINDIST(Q,R) based on the MBRs. We start by revisiting

the traditional definition of an MBR [17]. Let us assume we have built an index of the APCA points by

simply inserting the APCA points C = fcv1; cr1; : : : ; cvM ; crMg into a MBR-based multidimensional

index structure (using the insert function of the index structure). Let U be a leaf node of the above index.

Let R = (L;H) be the MBR associated with U where L = fl1; l2; : : : ; lNg and H = fh1; h2; : : : ; hNg are

the lower and higher endpoints of the major diagonal of R. By definition, R is the smallest rectangle that

spatially contains each APCA point C = fcv1; cr1; : : : ; cvM ; crMg stored in U . Formally, R = (L;H) is

defined as:
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Figure 5.8: Definition of cmaxi and cmini for computing MBRs

Definition 4 (Old definition of MBR)

li = minC in Ucv(i+1)=2 if i is odd (5.20)

= minC in Ucri=2 if i is even (5.21)

hi = maxC in Ucv(i+1)=2 if i is odd (5.22)

= maxC in Ucri=2 if i is even (5.23)

The MBR associated with a non-leaf node would be the smallest rectangle that spatially contains the

MBRs associated with its immediate children [59].

However, if we build the index as above (i.e., the MBRs are computed as in Definition 4), it is not

possible to define a MINDIST(Q,R) that satisfies the correctness criteria. To overcome the problem, we

define the MBRs are follows. Let us consider the MBR R of a leaf node U . For any APCA point C =

fcv1; cr1; : : : ; cvM ; crMg stored in node U, let cmaxi and cmini denote the maximum and minimum values

of the corresponding time series C among the datapoints in the ith segment, i.e.,

cmaxi = maxcrit=cri�1+1ct (5.24)

cmini = mincrit=cri�1+1ct (5.25)

(5.26)

The cmaxi and cmini of a simple time series with 4 segments is shown in Figure 5.8. We define the

MBR R = (L;H) associated with U as follows:

Definition 5 (New definition of MBR)

li = minC in Ucmin(i+1)=2 if i is odd (5.27)

= minC in Ucri=2 if i is even (5.28)

hi = maxC in Ucmax(i+1)=2 if i is odd (5.29)

= maxC in Ucri=2 if i is even (5.30)
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As before, the MBR associated with a non-leaf node is defined as the smallest rectangle that spatially

contains the MBRs associated with its immediate children.

How do we build the index such that the MBRs satisfy Definition 5. We insert rectangles instead of the

APCA points. In order to insert an APCA point C = fcv1; cr1; : : : ; cvM ; crMg, we insert a rectangle �C =

(fcmin1; cr1; : : : ; cminM ; crMg; fcmax1; cr1; : : : ; cmaxM ; crMg) (i.e., fcmin1; cr1; : : : ; cminM ; crMg
and fcmax1; cr1; : : : ; cmaxM ; crMg) are the lower and higher endpoints of the major diagonal of �C) into

the multidimensional index structure (using the insert function of the index structure). Since the insertion

algorithm ensures that the MBR R of a leaf node U spatially contains all the �C’s stored in U , R satisfies

definition 5. The same is true for MBRs associated with non-leaf nodes. Since we use one of the existing

multidimensional index structures for this purpose, the storage organization of the nodes follows that of the

index structure (e.g., hMBR; child ptri array if R-tree is used, kd-tree if hybrid tree is used). For the leaf

nodes, we need to store the cvi’s of each data point (in addition to the cmaxi’s, cmini’s and cri’s) since

they are needed to compute DLB (Line 14 of the K-NN algorithm in Table 5.6). The index can be optimized

(in terms of leaf node fanout) by not storing the cmaxi’s and cmini’s of the data points at the leaf nodes,

i.e., just storing the cvi’s and cri’s (a total of 2M numbers) per data point in addition to the tuple identifier.

The reason is that the cmaxi’s and cmini’s are not required for computing DLB , and hence are not used

by the K-NN algorithm. They are needed just to compute the MBRs properly (according to definition 5) at

the time of insertion. The only time they are needed later (after the time of insertion) is during the recom-

putation of the MBR of the leaf node containing the data point after a node split. The insert function of the

index structure can be easily modified to fetch the cmaxi’s and cmini’s of the necessary data points from

the database (using the tuple identifiers) on such occasions. The small extra cost of such fetches during node

splits is worth the improvement in search performance due to higher leaf node fanout. We have applied this

optimization in the index structure for our experiments but we believe the APCA index would work well

even without this optimization.

Once we have built the index as above (i.e., the MBRs satisfy Definition 5), we define the minimum

distance MINDIST(Q,R) of the MBR R associated with a node U of the index structure from the query time

series Q. For correctness, 8C 2 I;8E 62 I;DLB(Q
0; C) � D(Q,E) (where I denotes the set of APCA

points retrieved using the index at any stage of the algorithm). We show that the above correctness criteria is

satisfied if MINDIST(Q,R) lower bounds the Euclidean distance D(Q,C) of Q from any time series C placed

under U in the index. 2

Lemma 6 If MINDIST(Q,R) � D(Q,C) for any time series C placed under U , the algorithm in Table 5.6 is

correct, i.e., 8C 2 I;8E 62 I;DLB(Q
0; C) � D(Q,E) where I denotes the set of APCA points retrieved

using the index at any stage of the algorithm.
2Note that MINDIST (Q,R) does not have to lower bound the lower bounding distance DLB(Q;C) for any APCA point C

under U ; it just has to lower bound the Euclidean distance D(Q,C) for any time-series C under U .
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Figure 5.9: The M Regions associated with a 2M-dimensional MBR. The boundary of a region G is denoted
by G = G[1], G[2], G[3], G[4]

Proof: According to the K-NN algorithm, any item E 62 I must satisfy one of the following conditions:

1. E has been inserted into the queue but has not been popped yet, i.e., 8C 2 I , DLB(Q0; C) �
DLB(Q

0; E)

2. E has not yet been inserted into the queue, i.e., there exists a parent node U of E whose MBR R

satisfies the following condition: 8C 2 I , DLB(Q
0; C) �MINDIST(Q,R).

Since DLB(Q
0; E) � D(Q,E) (Lemma 5), (1) implies 8C 2 I , DLB(Q

0; C) � D(Q,E). If MINDIST(Q,R)

� D(Q,E) for any time series E under U , (2) implies that 8C 2 I , DLB(Q
0; C) � D(Q,E). Since either (1)

or (2) must be true for any item E 62 I , 8C 2 I , DLB(Q
0; C) � D(Q,E).

A trivial definition MINDIST(Q,R) that lower bounds D(Q,C) for any time series C under U is MINDIST(Q,R)

= 0 for all Q and R. However, this definition is too conservative and would cause the K-NN algorithm to

visit all nodes of the index structure before returning any answer (thus defeating the purpose of indexing).

The larger the MINDIST, the more the number of nodes the K-NN algorithm can prune, the better the

performance. We provide such a definition of MINDIST below 3.

Let us consider a node U with MBR R = (L;H). We can view the MBR as two APCA representations

L = fl1; l2; : : : ; lNg andH = fh1; h2; : : : ; hNg. The view of a 6-dimensional MBR (fl1; l2; : : : ; l6g; fh1; h2; : : : ; h6g)
as two APCA representations fl1; l2; : : : ; l6g and fh1; h2; : : : ; h6g is shown in Figure 5.9. Any time se-

ries C = fc1; c2; : : : ; cng under the node U is “contained” within the two bounding time series L and H

(as shown in Figure 5.9). In order to formalize this notion of containment, we define a set of M regions

associated with R. The ith region GRi ( i = 1; : : : ;M) associated with R is defined as the 2-dimensional
3Index structures can allow external applications to plug in domain-specific MINDIST functions and point-to-point distance

functions and retrieve nearest neighbors based on those functions (e.g., Consistent function in GiST).
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rectangular region in the value-time space that fully contains the ith segment of all time series stored under

U. The boundary of a region G, being a 2-d rectangle, is defined by 4 numbers: the low bounds G[1] and

G[2] and the high bounds G[3] and G[4] along the value and time axes respectively.

By definition,

GR
i [1] = minC under U(cmini) (5.31)

GR
i [2] = minC under U(cri�1 + 1) (5.32)

GR
i [3] = maxC under U(cmaxi) (5.33)

GR
i [4] = maxC under U(cri) (5.34)

Based the definition of MBR in Definition 5, GRi can be defined in terms of the MBR R as follows:

Definition 6 (Definition of regions associated with MBR)

GR
i [1] = l2i�1 (5.35)

GR
i [2] = l2i�2 + 1 (5.36)

GR
i [3] = h2i�1 (5.37)

GR
i [4] = h2i (5.38)

Figure 5.9 shows the 3 regions associated with the 6-dimensional MBR (fl1; l2; : : : ; l6g; fh1; h2; : : : ; h6g).
At time instance t (t = 1; : : : ; n), we say a region GRi is active iff GR

i [2] � t � GR
i [4]. For example, in

Figure 5.9, only regions 1 and 2 are active at time instant t1 while regions 1, 2 and 3 are active at time instant

t2. The value ct of a time series C under U at time instant t must lie within one of the regions active at t,

i.e., _GR
i is activeG

R
i [1] � ct � GR

i [3].

Lemma 7 The value ct of a time series C under U at time instant t must lie within one of the regions active

at t.

Proof: Let us consider a region GRi that is not active at time instant t, i.e., either GRi [2] > t orGR
i [4] < t.

First, let us consider the case GRi [2] > t. By definition, GR
i [2] � cri�1 + 1 for any C under U . Since

GR
i [2] > t, t < cri�1 + 1, i.e., ct is not in segment i.

Now let us consider the case GRi [4] < t. By definition, GR
i [4] � cri for any C under U. Since GR

i [4] < t,

t > cri, i.e., ct is not in segment i.

Hence, if region GR
i is not active at t, ct cannot lie in segment i, i.e., ct can lie in segment i only if GRi is

active. By definition of regions, ct must lie within one of the regions active at t, i.e., _GR
i is activeG

R
i [1] �

ct � GR
i [3].
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Figure 5.10: Computation of MINDIST

Given a query time series Q = fq1; q2; : : : ; qng, the minimum distance MINDIST(Q,R,t) of Q from R

at time instant t (cf. Figure 5.10) is given by MINDIST(Q,G,t) where

MINDIST (Q;G; t) = (G[1] � qt)
2 if qt < G[1] (5.39)

= (qt �G[3])2 if G[3] < qt (5.40)

= 0 otherwise: (5.41)

(5.42)

MINDIST(Q,R) is defined as follows:

MINDIST (Q;R) =

vuut nX
t=1

MINDIST (Q;R; t) (5.43)

Lemma 8 MINDIST(Q,R) lower bounds D(Q,C) for any time series C under U.

Proof: We will first show MINDIST(Q,R,t) lower bounds D(Q;C; t) = (qt� ct)2 for any time series C

under U. We know that ct must lie in one of the active regions (Lemma 7). Without loss of generality, let us

assume that ct lies in an active region G, i.e.,G[1] � ct � G[3]. HenceMINDIST (Q;G; t) � D(Q;C; t).

Also, MINDIST (Q;R; t) � MINDIST (Q;G; t) (by definition of MINDIST (Q;R; t)). Hence

MINDIST (Q;R; t) lower bounds D(Q;C; t). SinceMINDIST (Q;R) =
pPn

t=1MINDIST (Q;R; t)

andD(Q;C) =
pPn

t=1MINDIST (Q;C; t),MINDIST (Q;R; t) � D(Q;C; t) impliesMINDIST (Q;R) �
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Algorithm ExactRangeSearch(Q, �, T)

1. if T is a non-leaf node
2. for each child U of T
3. if MINDIST (Q;R) � � ExactRangeSearch(Q, �, U); // R is MBR of U
4. else // T is a leaf node
5. for each APCA point C in T
6. if DLB(Q

0; C) � �
7. Retrieve full time series C from database;
8. if D(Q,C) � epsilon Add C to result;

Table 5.7: Range search algorithm to retrieve all the time series within a range of � from query time series
Q. The function is invoked as ExactRangeSearch(Q, �, root node of index).

D(Q;C).

Note that, in general, lower the number of active regions at any instant of time, higher the MINDIST,

better the performance of the K-NN algorithm. Also, narrower the regions along the value dimension,

higher the MINDIST. The above two principles justify our choice of the dimensions of the APCA space.

The odd dimensions help clustering APCA points with similar cvi’s, thus keeping the regions narrow along

the value dimension. The even dimensions help clustering APCA points that are approximately aligned at

the segment end points, thus ensuring only one region (minimum possible) is active for most instants of

time.

Although we have focussed on K-NN search in this section, the definitions of DLB and MINDIST pro-

posed in this chapter are also needed for answering range queries using a multidimensional index structure.

The range search algorithm is shown in Table 5.7. It is a straightforward R-tree-style recursive search algo-

rithm combined with the GEMINI range query algorithm shown in Table 5.2. Since both MINDIST(Q,R)

and DLB(Q’,C) lower bound D(Q,C), the above algorithm is correct [46].

5.5 Experimental Evaluation

In this section we will experimentally demonstrate the superiority of APCA in terms of query response

time. We will also demonstrate that the APCA index can be built in reasonable time. For completeness

we experimentally compare all the state of the art indexing techniques with our proposed method. We

have taken great care to create high quality implementations of all competing techniques. For example we

utilized the symmetric properties of the DFT as suggested in [119]. Additionally when taking the DFT

of a real signal, the first imaginary coefficient is zero, and because all objects in our database have had

their mean value subtracted, the first real coefficient is also zero. We do not include these constants in the

index, making room instead for two additional coefficients that carry information. All other approaches are
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similarly optimized.

5.5.1 Experiment methodology

We performed all tests over a range of reduced dimensionalities (N ) and query lengths (i.e., original di-

mensionalities, n). Because we wanted to include the DWT in our experiments, we are limited to query

lengths that are an integer power of two. We consider a length of 1024 to be the longest query likely to be

encountered (by analogy, one might query a text database with a word, a phrase or a complete sentence, but

the would be little utility in a paragraph-length text query. A time series query of length 1024 corresponds

approximately with sentence length text query). We tested on two datasets, one chosen because it is very

heterogeneous and one chosen because it is very homogeneous.

� Homogeneous Data:Electrocardiogram: This dataset is taken from the MIT Research Resource for

Complex Physiologic Signals [32]. It is a “relatively clean and uncomplicated” electrocardiogram.

The total size of the data is 100,000 objects.

� Heterogeneous Data: Mixed Bag: This dataset we created by combining 7 datasets with widely

varying properties of shape, structure, noise etc. The only preprocessing performed was to insure that

each time series had a mean of zero and a standard deviation of one (otherwise many queries become

pathologically easy). The 7 datasets are, Space Shuttle STS-57 [80], Arrhythmia [97], Random Walk

[79, 153], INTERBALL Plasma processes (Figure 5.4) [134], Astrophysical data (Figure 5.1) [147],

Pseudo Periodic Synthetic Time Series [10], Exchange rate (Figure 5.4) [147]. The total size of the

data is 100,000 objects.

To perform realistic testing we need queries that do not have exact matches in the database but have

similar properties of shape, structure, spectral signature, variance etc. To achieve this we used cross vali-

dation. We removed 10% of the dataset, and build the index with the remaining 90%. The queries are then

randomly taken from the withheld subsection. For each result reported for a particular dimensionality and

query length, we averaged the results of 50 experiments.

For simplicity we only show results for nearest neighbor queries, however we obtained similar results

for range queries.

5.5.2 Experimental results: Computing the dimensionality reduced representation

We begin our experiments by measuring the time taken to compute the reduced dimensionality representa-

tion for each of the suggested approaches. We did this for query lengths from 32 to 1024 and database sizes

of 40 to 640 kilobytes. 4 The relatively small databases were necessary to include SVD in the experiments.

We used a Pentium PC 400 with 256 megs of ram. Experimental runs requiring more than 1,000 seconds

were abandoned as indicated by the black-topped histogram bars in Figure 5.11.
4We wish to reemphasize that a small database is only used in this experiment. All other experiments use 100,000-item datasets.
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Figure 5.11: The time taken (in seconds) to build an index using various transformations over a range of
query lengths and database sizes. The black topped histogram bars indicate that an experimental run was
abandoned at 1,000 seconds.

We can see that SVD, being O(Sn2), is simply intractable for even moderately sized databases with

long queries. We extrapolated from these experiments that it would take several months of CPU time to

include SVD in all the experiments in this chapter. For this reason we shall exclude SVD from the rest of

the experiments (in Section 5.8 we will discuss more reasons why SVD is not a practical approach). The

results for DWT and APCA are virtually indistinguishable, which is to be expected given that the algorithm

used to create the APCA spends most of its time in a subroutine call to the DWT. The main conclusion of

this experiment is that APCA is tractable for indexing.

5.6 Experimental results: Pruning power

In comparing the four competing techniques there exists a danger of implementation bias. That is, con-

sciously or unconsciously implementing the code such that some approach is favored. As an example of

the potential for implementation bias in this work consider the following. At query time DFT must do a

Fourier transform of the query. We could use the nave algorithm which is O(n2) or the faster radix-2 algo-

rithm (padding the query with zeros for n 6= 2integer) which is O(nlogn). If we implemented the simple

algorithm it would make the other indexing methods appear to perform better relative to DFT. While we

do present detailed experimental evaluation of an implemented system in the next section, we also present

experiments in this section which are free of the possibility of implementation basis. We achieve this by

comparing the pruning power of the various approaches.

To compare the pruning power of the four techniques under consideration we measure P , the fraction

of the database that must be examined before we can guarantee that we have found the nearest match to a

1-NN query.

P =
Number of objects that must be examined

Number of objects in database
(5.44)

To calculate P we do the following. Random queries are generated (as described above). Objects in the

database are examined in order of increasing (feature space) distance from the query until the distance in

feature space of the next unexamined object is greater than minimum actual distance of the best match so

far. The number of objects examined at this point is the absolute minimum in order to guarantee no false
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Figure 5.12: The fraction P , of the Mixed Bag database that must be examined by the four dimensionality
reduction techniques being compared, over a range of query lengths (256-1024) and dimensionalities (16-
64).

Figure 5.13: The fraction P, of the Electrocardiogram database that must be examined by the three dimen-
sionality reduction techniques being compared over a range of query lengths (256-1024) and dimensionali-
ties (16-64).

dismissals.

Note the value of P for any transformation depends only on the data and is completely independent of

any implementation choices, including spatial access method, page size, computer language or hardware. A

similar idea for evaluating indexing schemes appears in [62].

Figure 5.12 shows the value of P over a range of query lengths and dimensionalities for the experiments

that were conducted the Mixed Bag dataset.

Note that the results for PAA and DWT are identical. This because the pruning power of DWT and PAA

are identical when N = 2integer [79]. Having empirically shown this fact which was proved in [79, 153],

we have excluded PAA from future experiments for clarity.

We repeated the experiment for the Electrocardiogram data, the results are shown in Figure 5.13.

In both Figure 5.12 and Figure 5.13 we can see that APCA outperforms DFT and DWT significantly,

generally by an order of magnitude. These experiments indicate that the APCA technique has fewer false

alarms, hence lower query cost as confirmed by the experiments below.

5.7 Experimental results: Implemented system

Although the pruning power experiments are powerful predictors of the (relative) performance of indexing

systems using the various dimensionality reduction schemes, we include a comparison of implemented

systems for completeness. We implemented four indexing techniques: linear scan, DFT-index, DWT-index

and APCA-index. We compare the four techniques in terms of the I/O and CPU costs incurred to retrieve the
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exact nearest neighbor of a query time series. All the experiments reported in this subsection were conducted

on a Sun Ultra Enterprise 450 machine with 1 GB of physical memory and several GB of secondary storage,

running Solaris 2.6.

Cost Measurements: We measured the I/O and CPU costs of the four techniques as follows:

1. Linear Scan (LS): In this technique, we perform a simple linear scan on the original n-dimensional

dataset and determine the exact nearest neighbor of the query. The I/O cost in terms of sequential disk

accesses is (S�(n�sizeof(float)+sizeof(id)))
PageSize . Since sizeof(id) � (n � sizeof(float)), we will ignore

the sizeof(id) henceforth. Assuming sequential I/O is about 10 times faster than random I/O, the

cost in terms of random accesses is (S�sizeof(float)�n)
(PageSize�10) . The CPU cost is the cost of computing the

distance D(Q,C) of the query Q from each time series C = fc1; : : : ; cng in the database.

2. DFT-index (DFT): In this technique, we reduce the dimensionality of the data from n to N using DFT

and build an index on the reduced space using a multidimensional index structure. We use the hybrid

tree as the index structure. The I/O cost of a query has two components: (1) the cost of accessing the

nodes of the index structure and (2) the cost of accessing the pages to retrieve the full time series from

the database for each indexed item retrieved (cf. Table 5.6). For the second component, we assume

that a full time series access costs one random disk access. The total I/O cost (in terms of random disk

accesses) is the number of index nodes accessed plus the number of indexed items retrieved by the

K-NN algorithm before the algorithm stopped (i.e. before the distance of the next unexamined object

in the indexed space is greater than the minimum of the actual distances of items retrieved so far). The

CPU cost also has two components: (1) the CPU time (excluding the I/O wait) taken by the K-NN

algorithm to navigate the index and retrieve the indexed items and (2) the CPU time to compute the

exact distance D(Q,C) of the query Q from the original time series C of each indexed item C retrieved

(Line 11 in Table 5.6). The total CPU cost is the sum of the two costs.

3. DWT-index (DWT): In this technique, we reduce the dimensionality of the data from n to N using

DWT and build the index on the reduced space using the hybrid tree index structure. The I/O and

CPU costs are computed in the same way as in DFT.

4. APCA-index (APCA): In this technique, we reduce the dimensionality of the data from n to N using

APCA and build the index on the reduced space using the hybrid tree index structure. The I/O and

CPU costs are computed in the same way as in DFT and DWT.

We chose the hybrid tree as the index structure for our experiments since it is a space partitioning

index structure (“dimensionality-independent” fanout) and has been shown to scale to high dimension-

alities [23, 79, 118]. Since we had access to the source code of the index structure (http://www-

db.ics.uci.edu), we implemented the optimization discussed in Section 5.4 (i.e., to increase leaf node

fanout) for our experiments. We used a page size of 4KB for all our experiments.
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Figure 5.14: Comparison of LS, DFT, DWT and APCA techniques in terms of I/O cost (number of random
disk accesses). For LS, the cost is computed as number sequential diskaccesses

10 .

Dataset: We used the Electrocardiogram (ECG) database for these experiments. We created 3 datasets

from the ECG database by choosing 3 different values of query length n (256, 512 and 1024). For each

dataset, we reduced the dimensionality to N = 16, N = 32 and N = 64 using each of the 3 dimension-

ality reduction techniques (DFT, DWT and APCA) and built the hybrid tree indices on the reduced spaces

(resulting a total of 9 indices for each technique). As mentioned before, the queries were chosen randomly

from the withheld section of the dataset. All our measurements are averaged over 50 queries.

Figure 5.14 compares the LS, DFT, DWT and APCA techniques in terms of I/O cost (measured by the

number of random disk accesses) for the 3 datasets (n = 256, 512 and 1024) and 3 different dimensionalities

of the index (N = 16, 32 and 64). The APCA technique significantly outperforms the other 3 techniques

in terms of I/O cost. The LS technique suffers due to the large database size (e.g., 100,000 sequential disk

accesses for n = 1024 which is equivalent to 10,000 random disk accesses). Although LS is not considerably

worse than APCA in terms of I/O cost, it is significantly worse in terms of the overall cost due to its high

CPU cost component (see Figure 5.15). The DFT and DWT suffer mainly due to low pruning power (cf.

Figure 5.13). Since DFT and DWT retrieve a large number of indexed items before it can guaranteed that the

exact nearest neighbor is among the retrieved items, the second component of the I/O cost (that of retrieving

full time series from the database) tends to be high. The DFT and DWT costs are the highest for large n and

small N (e.g., n = 1024, N = 16) as the pruning power is the lowest for those values (cf. Figure 5.13). The

DWT technique shows a U-shaped curve for n = 1024: when the reduced dimensionality is low (N = 16),

the second component of the I/O cost is high due to low pruning power, while when N is high (N = 64), the

first component of the I/O cost (index node accesses) becomes large due to dimensionality curse. We did

not observe such U-shaped behavior in the other techniques as their costs were either dominated entirely by

the first component (e.g., n = 256 and n = 512 cases of APCA) or by the second component (all of DFT

and n = 1024 case of APCA).

Figure 5.15 compares the LS, DFT, DWT and APCA techniques in terms of CPU cost (measured in

seconds) for the 3 datasets (n = 256, 512 and 1024) and 3 different dimensionalities of the index (N =

16, 32 and 64). Once again, the APCA technique significantly outperforms the other 3 techniques in terms

of CPU cost. The LS technique is the worst in terms of CPU cost as it computes the exact (n-dimensional)

distance D(Q,C) of the query Q from every time series C in the database. The DFT and DWT techniques

suffer again due to their low pruning power (cf. Figure 5.13), causing the second component of the CPU
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Figure 5.15: Comparison of LS, DFT, DWT and APCA techniques in terms of CPU cost (seconds).

cost (i.e. the time to compute the exact distances D(Q,C) of the original time series of the retrieved APCA

points from the query) to become high.

5.8 Discussion

Now that the reader is more familiar with the contribution of this chapter we will briefly revisit related work.

We believe that this thesis is the first to suggest locally adaptive indexing time series indexing. A locally

adaptive representation for 2-dimensional shapes was suggested in [26] but no indexing technique was pro-

posed. Also in the context of images, it was noted by [152] that the use of the first N Fourier coefficients

does not guarantee the optimal pruning power. They introduced a technique where they adaptively choose

which coefficients to keep after looking at the data. However, the choice of coefficients was based upon a

global view of the data. Later work [151] in the context of time series noted that the policy of using the

first N wavelet coefficients [29, 151] is not generally optimal, but “keeping the largest coefficients needs

additional indexing space and (more complex) indexing structures”. Singular value decomposition is also a

data adaptive technique used for time series [79, 81, 76], but it is globally, not locally, adaptive. Recent work

[24] has suggested first clustering a multi-dimensional space and then doing SVD on local clusters, making

it a semi-local approach. It is not clear however that this approach can be made work for time series. Finally

a representation similar to APCA was introduced in [45] (under the name “piecewise flat approximation”)

but no indexing technique was suggested.

5.8.1 Other factors in choosing a representation to support indexing.

Although we have experimentally demonstrated that the APCA representation is superior to other ap-

proaches in terms of query response time, there are other factors which one may wish to consider when

choosing a representation to support indexing. We will briefly consider some of these issues here.

One important issue is the length of queries allowed. For example the wavelet approach only allows

queries with lengths that are an integer power of two [79]. This problem could be addressed by having the

system pad in zeros up to the next power of two, then filter out the additional false hits. However this will

severely degrade performance. The APCA approach, in contrast, allows arbitrary length queries.

Another important point to consider are the set of distance measures supported by a representation. It
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has been argued that for many applications, distance measures other than Euclidean distance are required.

For example in [153], the authors noted that the PAA representation can support queries where the distance

measure is an arbitrary Lp norm (i.e., p = 1; 2; : : : ;1). We refer the interested reader to that paper for a

discussion of the utility of these distance metrics, but note that the APCA representation can easily handle

such queries by trivial generalizations of Equation 5.5 to Equation 5.45.

DLB(Q
0; C) = p

vuut MX
i=1

cli(qi � ci)p (5.45)

Note that as with the approach of [153] we can reuse the same index for any Lp norm.

Almost all time series databases are dynamic. For example, NASA updates its archive of Space Shuttle

telemetry data after each mission. Some databases are updated continuously, for example financial datasets

are updated (at least) at the end of each business day. It is therefore important that any indexing technique be

able to support dynamic inserts. Our proposed approach (along with DWT, DFT and PAA) has this property.

However dynamic insertion is the Achilles heel of SVD, a single insertion requires recomputing the entire

index. Faster methods do exist for incremental updates, but they introduce the possibility of false dismissals

[30].

5.9 Conclusions

The main contribution of this chapter is to show that a simple, novel dimensionality reduction technique,

namely APCA, can outperform more sophisticated transforms by one to two orders of magnitude. In contrast

to popular belief [153, 45], we have shown that the APCA representation can be indexed using a multidi-

mensional index structure. We have also shown that our approach can support arbitrary Lp norms, using the

same index.

So far in this thesis, we have focussed on developing index structures and dimensionality reduction

techniques to handle high dimensional data. In the next chapter, we address the challenge of integration of

multidimensional index structures as access methods in a DBMS. One of the main issues there is providing

transactional access to data via multidimensional index structures. We develop efficient concurrency control

techniques for multidimensional access methods in the next chapter.
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Chapter 6

Integration of Multidimensional Index
Structures into DBMSs

In this chapter, we develop efficient concurrency control techniques for multidimensional access methods.

This is one of the key challenges in integrating multidimensional index structures as access methods in a

DBMS.

6.1 Introduction

Modern database applications like computer-aided design (CAD), geographical information systems (GIS),

multimedia retrieval systems etc., require database systems to allow the application developer (1) define

their own data types and operations on those data types, and (2) define their own indexing mechanisms

on the stored data which the database query optimizer can exploit to access the data efficiently. While

object relational DBMS (ORDBMSs) have addressed the first problem effectively [139], the ability to allow

application developers to easily define their own access methods (AMs) still remains an elusive goal.

The Generalized Search Tree (GiST) [63] addresses the above problem. GiST is an index structure that

is extensible “both” in the data types it can index and in the queries it can support. It is like a “template”

– the application developer can implement her own AM using GiST by simply registering a few extension

methods with the DBMS. GiST solves two problems:

� Over the last few years, several multidimensional data structures have been developed for specific

application domains. Implementing these data structures from scratch every time requires a signifi-

cant coding effort. GiST can be adapted to work like these data structures, a much easier task than

implementing the tree package from scratch.

� Since GiST is extensible, if it is supported in a DBMS, the DBMS can allow application developers

to define their own AM, a task that was not possible before.

Although GiST considerably reduces the effort of integrating new AMs in DBMSs, before it can be

supported in a “commercial strength” DBMS, efficient techniques to support concurrent access to data via

the GiST must be developed. Developing concurrency control (CC) techniques for GiST have several im-
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Figure 6.1: A GiST for a key set comprising of rectangles in 2 dimensional space. O11 is a new object being
inserted in node N5. R is a search region. Predicates P1 through P6 are the BPs of the nodes N2 through
N7 respectively.

portant benefits. (1) Since a wide variety of index structures can be implemented using GiST, developing

CC techniques in the context of GiST would solve the CC problem for multidimensional index structures in

general. (2) Experience with B-trees has shown that the implementation of CC protocols requires writing

complex code and accounts for a major fraction of the effort for the AM implementation [55]. Developing

the protocols for GiST is particularly beneficial since it would need writing the code only once and would

allow concurrent access to the database via any index structure implemented in the DBMS using GiST, thus

avoiding the need to write the code for each index structure separately.

Concurrent access to data via a general index structure introduces two independent concurrency control

problems:

� Preserving consistency of the data structure in presence of concurrent insertions, deletions and up-

dates.

� Protecting search regions from phantoms

This chapter addresses the problem of phantom protection in GiSTs. In our previous research, we

had studied a granular locking (GL) solution for phantom protection in R-trees [28]. We refer to it as the

GL/R-tree protocol. Due to fundamental differences between R-tree and GiST in the notion of a search

key, the approach developed for R-trees is not a feasible solution for GiST. Specifically, the GL/R-tree

protocol needs several modifications for making it applicable to GiSTs and the modified algorithms, when

applied to GiSTs, impose a significant overhead, both in terms of disk I/O as well as computational cost, on

the tree operations. To overcome this problem, we develop a new granular locking approach for phantom

protection in GiSTs in this chapter. We refer to it as the GL/GiST protocol. The GL/GiST protocol differs

from the GL/R-tree protocol in its strategy to partition the predicate space and hence defines a new set

of lockable resource granules. Based on the set of granules defined, lock protocols are developed for the

various operations on GiSTs. For an R-tree implemented using GiST, GL/GiST protocol provides similar

performance as the GL/R-tree protocol. On the other hand, for index structures where the search keys do not
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satisfy the “containment hierarchy” constraint, the GL/GiST protocol performs significantly better than the

GL/R-tree protocol. Examples of such index structures include distance-based (centroid-radius based) index

structures (e.g., M-tree, SS-tree). In summary, GL/GiST provides a general solution to concurrency control

in multidimensional AMs rather than a specific solution for a particular index structure (e.g., GL/R-tree),

without any compromise in performance.

The problem of phantom protection in GiSTs has previously been addressed in [83] where the authors

develop a solution based on predicate locking (PL). As discussed in [55], although predicate locking offers

potentially higher concurrency, typically granular locking is preferred since the lock overhead of predicate

locking is much higher compared to that of granular locking. The reason is while granular locks can be

set and cleared as efficiently as object locks (� 200 RISC instructions), setting of a predicate lock requires

checking for predicate satisfiability against the predicates of all concurrently executing transactions. For this

reason, all existing commercial DBMSs implement granular locking in preference to the predicate based

approach. Our experiments on various “real” multidimensional data sets show that (1) GL/GiST scales well

under various system loads and (2) Similar to the B-tree case, GL provides a significantly more efficient

implementation compared to PL for multidimensional AMs as well.

The rest of the chapter is developed as follows. Section 6.2 reviews the preliminaries. Section 6.3 de-

scribes the space partitioning strategy for GiSTs and discusses the difficulty in applying the R-tree approach

to GiSTs. Section 6.4 presents the dynamic granular locking approach to phantom protection in GiSTs. The

experimental results are presented in Section 6.5. Finally, Section 6.6 offers the conclusions.

6.2 Preliminaries

In this section, we first review the basic GiST structure. Next we describe the phantom problem, its so-

lutions for B-trees and why they cannot be applied to multidimensional data structures. Finally, we state

the desiderata of a granular locking solution to the phantom problem in multidimensional index structures

followed by the terminology used in presenting the algorithms.

Generalized Search Trees GiST is a height balanced multiway tree. Each tree node contains a number

of node entries, E = hp; ptri, where E:p is a predicate that describes the subtree pointed by E:ptr. If N

is the node pointed by E:ptr, E:p is defined to be the bounding predicate (BP) of N , denoted by BP (N).

The BP of the root node is the entire key space S. Figure 6.1 shows a GiST for a key space comprising of

2-d rectangles.

A key in GiST can be any arbitrary predicate. The application developer can implement her own AM

by specifying the key structure via a key class. The design of the key class involves providing a set of six

extension methods which are used to implement the standard search, insert and delete operations over the

AM. A more detailed description can be found in [63].
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LOCK MODE           PURPOSE

S Shared Access

X Exclusive Access

IX Intention to set shared or
exclusive locks at finer
granularity

IS Intention to set shared 
locks at finer granularity

SIX A course granularity shared 
lock with intention to set 
finer-granularity exclusive
locks (union of S and IX)

Lock Mode IS IX S SIX

IS

IX

S

SIX

X

X

Table 6.1: Lock mode compatibility matrix for granular locks. The purpose of the various lock modes are
shown alongside.

Serializability Concepts and the Phantom Problem Transactions, locking and serializability concepts

are well documented in the literature [112, 113, 55]. The phantom problem is defined as follows (from

the ANSI/ISO SQL-92 specifications [93, 7]): Transaction T1 reads a set of data items satisfying some

<search condition>. Transaction T2 then creates data items that satisfy T1’s <search condi-

tion> and commits. If T1 then repeats its scan with the same <search condition>, it gets a set of

data items (known as “phantoms”) different from the first read. Phantoms must be prevented to guarantee

serializable execution. Object level locking does not prevent phantoms since even if all objects currently in

the database that satisfy the search predicate are locked, concurrent insertions into the search range cannot

be prevented. These insertions may be a result of insertion of new objects, updates to existing objects or

rolling-back deletions made by other concurrent transactions.

Approaches to Phantom Protection There are two general strategies to solve the phantom problem,

namely predicate locking and its engineering approximation, granular locking. In predicate locking, trans-

actions acquire locks on predicates rather than individual objects. Although predicate locking is a complete

solution to the phantom problem, the cost of setting and clearing predicate locks can be high since (1)

the predicates can be complex and hence checking for predicate satisfiability can be costly and (2) even

if predicate satisfiability can be checked in constant time, the complexity of acquiring a predicate lock is

proportional in the number of concurrent transactions which is an order of magnitude costlier compared to

acquiring object locks that can be set and released in constant time [55]. In contrast, in granular locking, the

predicate space is divided into a set of lockable resource granules. Transactions acquire locks on granules

instead of on predicates. The locking protocol guarantees that if two transactions request conflicting mode

locks on predicates p and p0 such that p ^ p0 is satisfiable, then the two transactions will request conflicting

locks on at least one granule in common. Granular locks can be set and released as efficiently as object

locks. For this reasons, all existing commercial DBMSs use granular locking in preference to predicate

locking. A more detailed comparison between the two approaches can be found in [55].

An example of the granular locking approach is the multi-granularity locking protocol (MGL) [89].

MGL exploits additional lock modes called intention mode locks which represent the intention to set locks

at finer granularity (see Table 6.1). Application of MGL to the key space associated with a B-tree is referred
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to as key range locking(KRL) [89, 95]. KRL cannot be applied for phantom protection in multidimensional

data structures since it relies on the total order over the underlying objects based on their key values which

does not exist for multidimensional data. Imposing an artificial total order (say a Z-order [108]) over mul-

tidimensional data to adapt KRL would result in a scheme with low concurrency and high lock overhead

since protecting a multidimensional region query from phantom insertions and deletions will require ac-

cessing and locking objects which may not be in the region specified by the query (since an object will be

accessed as long as it is within the upper and the lower bounds in the region according to the superimposed

total order). It would severely limit the usefulness of the multidimensional AM, essentially reducing it to a

1-d AM with the dimension being the total order.

Desiderata of the Solution Since KRL cannot be used in multidimensional index structures, new tech-

niques need to be devised to prevent phantoms in such data structures. The principal challenges in develop-

ing a solution based on granular locking are:

� Defining a set of lockable resource granules 1 over the multidimensional key space such that they

(1) dynamically adapt to key distribution (2) fully cover the entire embedded space and (3) are fine

enough to afford high concurrency. The importance of these factors in the choice of granules has been

discussed in [55]. The lock granules (i.e. key ranges) in KRL satisfy these 3 criteria.

� Easy mapping of a given predicate onto a set of granules that needs to be locked to scan the predicate.

Subsequently, the granular locks can be set or cleared as efficiently as object locks using a standard

lock manager (LM).

� Ensuring low lock overhead for each operation.

� Handling overlap among granules effectively. This problem does not arise in KRL since the key

ranges are always mutually disjoint. In multidimensional key space partitioning, the set of granules

defined may be, in GiST terminology, “mutually consistent”. For example, there may be spatial over-

lap among R-tree granules. This complicates the locking protocol since a lock on a granule may not

provide an “exclusive coverage” on the entire space covered by the granule. For correctness, the gran-

ular locking protocols must guarantee that any two conflicting operations will request conflicting locks

on at least one granule in common. This implies that at least one of the conflicting operations must

acquire locks on all granules that overlap with its predicate while the other must acquire conflicting

locks on enough granules to fully cover its predicate [28]. This leads to two alternative strategies:

� Overlap-for-Search and Cover-for-Insert Strategy (OSCI) in which the searchers acquire shared

mode locks on all granules consistent with its search predicate whereas the inserters, deleters

and updators acquire IX locks on a minimal set of granules sufficient to fully cover the object

being inserted, deleted or updated.

� Cover-for-Search and Overlap-for-Insert Strategy (CSOI) in which the searchers acquire shared

mode locks on a minimal set of granules sufficient to fully cover its search predicate whereas the
1In this chapter, we use the term “granules” to mean lock units – resources that are locked to insure isolation and not in the sense

of granules in “granule graph” of MGL [55]. This is discussed in further detail in Section 4.1.
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inserters, deleters and updators acquire IX locks on all granules consistent with the object being

inserted, deleted or updated.

While the former strategy favors the insert and delete operations by requiring them to do minimal

tree traversal and disfavors the search operation by requiring them to traverse all consistent paths, the

latter strategy does exactly the reverse. Intermediate strategies are also possible. For GL/GiST, we

choose the OSCI strategy in preference to the rest. The OSCI strategy effectively does not impose

any additional overhead on any operation as far as tree traversal is concerned since searchers in GiST

anyway follow all consistent paths. The CSOI strategy may be better for index structures where

inserters follow all overlapping paths and searchers follow only enough paths to cover its predicate.

The R+-tree is an example of such an index structure [132]. We assume that the OSCI strategy is

followed for all discussions in the rest of the chapter.

Terminology In developing the algorithms, we assume, as in [89], that a transaction may request the fol-

lowing types of operations on GiST: Search, Insert, Delete, ReadSingle, UpdateSingle and UpdateScan. In

presenting the solution to the phantom problem, we describe the lock requirements of each of these and

present the algorithms used to acquire the necessary locks. The lock protocols assumes the presence of a

standard LM which supports all the MGL locks modes (as shown in Table 6.1) as well as conditional and

unconditional lock options [96]. Furthermore, locks can be held for different durations, namely, instant,

short and commit durations [96]. While describing the lock requirements of various operations for phan-

tom protection, we assume the presence of some protocol for preserving the physical consistency of the

tree structure in presence of concurrent operations. The lock protocol presented in this chapter guarantees

phantom protection independent of the specific algorithm used to preserve tree consistency. In our imple-

mentation, we have combined the GL/GiST protocol with the latching protocol proposed in [83]. We do

not describe the combined algorithms in this chapter due to space limitations but can be found in the longer

version of this paper [27].

6.3 Why the R-tree protocol cannot be applied to GiSTs?

The most obvious solution to the phantom problem in GiSTs is to treat GiSTs as extensible R-trees and apply

the GL/R-tree protocol we developed in [28] to GiSTs. In this section, we argue that GL/R-tree protocol is

not a feasible solution for GiSTs. We first briefly review the approach developed for phantom protection in

R-trees [28]. We do this for two main reasons: (1) it builds the context for the solution developed for GiSTs

and (2) it enables us to illustrate why GL/R-tree cannot be applied to GiSTs. Subsequently, we define the

resource granules in GiST. We conclude the section by discussing why GL/R-tree is inapplicable to GiSTs.

6.3.1 The R-tree granular locking protocol

In GL/R-tree, we define the following two types of lockable granules:
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Figure 6.2: Insertion causes growth of tree gran-
ules that are outside the insertion path.
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(1) A leaf granule associated with each leaf level index node L of the R-tree. We denote it by TG(L)

i.e. the tree granule associated with the leaf node L. The bounding rectangle (BR) associated with L

defines the lock coverage of TG(L).

(2) An external granule associated with each non-leaf node N of the R-tree. We denote it by ext(N)

i.e. the external granule associated with the non-leaf node N . The lock coverage of ext(N) is defined

to be the space covered by the BR of N which is not covered by the BRs of any of its children.

The search operation acquires locks on all leaf granules and external granules overlapping with the

search predicate (referred to as SP/R-tree).

To prevent insertion of objects into search ranges of uncommitted searchers, we follow the OSCI policy.

Although the plain OSCI policy guarantees phantom protection when the operations do not change the gran-

ules, phantoms may arise when the granule boundaries dynamically change due to insertions and deletions.

To prevent phantoms, inserters in GL/R-tree follows the following protocol (referred to as IP/R-tree):

Let g be the granule corresponding to the leaf node in which the insertion takes place (referred to as the

target granule) and O be the object being inserted. IP/R-tree handles the following 2 cases separately:

� Case 1 - Insertion does not cause g to grow: In this case, the inserter acquires (1) a commit duration

IX lock on g and (2) a commit duration X lock on O.

� Case 2 - Insertion causes g to grow (to say, g0): In this case, it acquires (1) a commit duration IX lock

on g (2) a commit duration X lock on O and (3) short duration IX locks on all granules into which it

grew i.e. all granules overlapping with (g0 � g). (3) ensures that there exists no old searchers which

could lose their lock coverage due to the growth of g. Note that acquiring the extra locks of (3) may

cause the inserter to perform additional disk accesses.

A detailed discussion of the lock requirements for other tree operations and the protocols followed to

acquire the locks can be found in [28].

6.3.2 Space partitioning strategy for GiSTs

The first task in developing a granular locking solution to the phantom problem is to develop a strategy to

partition the key space. Note that the BPs in GiST, unlike the BRs in R-tree, cannot be used to define the

granules since the BPs, unlike the BRs, are not arranged in a “containment hierarchy” i.e. given a node T ,
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for any node N under (i.e. reachable from) T , BP (N) ! BP (T ) is not necessarily true. So, for a search

with predicate P , there might exist a leaf (or external) granule that is consistent with the search predicate P

under a non-leaf node N whose BP is not consistent with P . For example, in Figure 6.1, the search predicate

R is not consistent with BP (N2) (i.e. P1) but is consistent with TG(N5) (i.e. P4) where N5 lies under

N2 in the tree. This means that to follow the OSCI policy (i.e. get locks on all consistent granules), the

searcher cannot “prune” its search below N2 as it would normally do. This is impractical since the searcher

would have to access extra nodes (and possibly extra disk accesses) for the purpose of getting locks.

It is clear from the above discussion that we must define granules such that their lock coverage satisfy the

“containment hierarchy” constraint even if the BPs do not. For that purpose, we define a granule predicate

associated with every index node of a GiST.

Definition 1(Granule Predicate): Let N be an index node and P be the parent of N. The granule

predicate of N , denoted by GP (N), is defined as:

GP (N) = BP (N) if N is the root (6.1)

= BP (N) ^GP (P ) otherwise (6.2)

Note that GPs, unlike BPs, are guaranteed to satisfy the “containment hierarchy” property.

Using GPs, we define the following two types of granules:

(1) A leaf granule TG(L) associated with each leaf node L whose coverage is defined by GP(L). For

example, in Figure 6.1, there are 4 leaf granules: TG(N4), TG(N5), TG(N6) and TG(N7) with lock

coverage s lock coverage s P1 ^ P3, P1 ^ P4, P2 ^ P5 and P2 ^ P6 respectively

(2) An external granule ext(N) associated with each non-leaf node N whose coverage defined as

(GP (N)^: (Wn
i=1GP (Qi))). where Q1; Q2; :::Qn are the children of N. For example, in Figure 6.1,

there are 3 external granules: ext(N1), ext(N2) and ext(N3) will have lock coverages S^:(P1_P2),
P1 ^ :((P1 ^ P3) _ (P1 ^ P4)) and P2 ^ :((P2 ^ P5) _ (P2 ^ P6)) respectively.

Apart from the fact that the granules obey “containment hierarchy”, the above definition has another

motivation. In GiST, for any index node N , BP (N) holds for each object in the subtree rooted at N . For

example, in Figure 6.1, P1 holds for objects O1; O2; O3; O4 andO5 while both P1 and P3 holds for objects

O1, O2 and O3. This implies that if an insertion does not change the BP of any node, it is guaranteed to be

covered by the BP of each node in the path from the root to the leaf in which the object is being inserted.

For example, in Figure 6.1, the object O11 (being inserted in node N5) is covered by both P1 and P4. So

the leaf granule TG(N5) should have lock coverage of P1 ^ P4 since that is what the inserter needs for

covering the object. This is exactly the definition of GP.

Having defined the new set of granules, we next try to apply GL/R-tree on GiST.
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6.3.3 Problems in Applying GL/R-tree to GiSTs

Let us consider the GiST shown in Figure 6.2. There are 4 leaf granules G1, G2, G3 and G4 corresponding

to nodes N4; N5; N6 and N7 with GPs P1 ^ P3, P1 ^ P4, P2 ^ P5 and P2 ^ P6 respectively. For

simplicity, the partitioning of the space has been so chosen that all the external granules are empty.

Let ts be a transaction searching region R1. Let tins be a new transaction that arrives to insert R2 into

N4. After the insertion, tins updates P1 from x � 2 to x � 3. This causes ts to lose it lock coverage.

GL/R-tree prevents this by requiring tins to acquire locks on all granules which the target granule G1 has

grown into. This is not sufficient for GiSTs since, unlike in R-trees, the target granule is not the only granule

that can grow due to an insertion. For example, in Figure 6.2, both G1 and G2 grow due to the insertion.

Assuming that only the target granule can grow can lead to phantoms. Under that assumption, tins would

request a short duration IX lock on only G3 since that is the only granule into which G1 has grown, get the

lock and commit. Now if tnewins arrives to insert R3 into N2, it would get the IX lock on G2 and proceed

with insertion. Now if ts repeats its scan, it would find R3 has arrived from nowhere. Growing of multiple

leaf granules can happen in GiSTs because the lock coverage of the leaf granules, due to the definition of

GP, depend of the BPs of the parents. So if an inserter modifies a node, the lock coverage of any granule

under that node can possibly change. This is not possible in GL/R-tree since the lock coverage of a granule

is independent of the BRs of its parent nodes.

To prevent phantoms, if the insertion changes any granule, it must acquire the following locks:

Let HC-node (Highest Changed Node) denote the the highest node in the insertion path path from root to

leaf in which insertion takes place) whose BP (hence GP) changes due to the insertion. In Figure 6.2, N2 is

the HC-node for the insertion of R2. Let G0 be the new GP of HC-node after the insertion (e.g., x � 3 is

the new GP of N2). Since any granule that grows due to the insertion is fully covered by G0, short duration

IX locks on all granules consistent with G0 would ensure that no searcher loses its lock. In Figure 6.2, since

all the 4 leaf granules are consistent with the predicate x � 3, tins would need to acquire short duration

IX locks on G2, G3 and G4 in addition to the commit duration lock on G1 and X lock on R2. This would

prevent tins(by the conflicting lock on G4) till ts commits, thus preventing the phantom.

The above solution involves additional disk accesses to acquire those extra locks. In our experiments,

we found that the number of disk accesses involved is significant and increases exponentially with the level

of the HC-node. as shown in Figure 6.3. In general, the HC-node can be at any level of the GiST: all

levels are equally likely. For the above experiment, performed on a 5-level GiST with fanout of about 100

and containing 400,000 2-d point objects, an insertion that causes a BP-change (about 6% of all insertions

caused BP change) may need upto 1000 additional disk accesses to get all the locks (when the HC-node is

at height 3 i.e. 3 levels above the leaf). This indicates that GL/R-tree can impose significant I/O cost for

index structures where BPs do not obey “containment hierarchy” (e.g., distance-based index structures like

M-tree).

Besides high cost, GL/R-tree has some other limitations for GiSTs: (1) It requires checking consistency

with external granules during search, an extra task not performed by the regular GiST algorithm. This check
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can be computationally expensive in GiSTs. (2) It cannot allow an insertion or deletion to take place at an

arbitrary level of the tree, a situation that can arise in GiSTs.

6.4 Phantom Protection in GiSTs

In this section, we present a dynamic granular locking approach to phantom protection in GiST. In the

following subsections, we define the set of lockable resource granules for GiSTs and present lock protocols

for various operations on GiSTs.

6.4.1 Resource granules in GiSTs

In GL/GiST, we define two types of granules:

(1) Leaf granules: This is the same as the previous GP-based definition of leaf granules. A leaf

granule TG(L) is associated with each leaf node L whose lock coverage is defined by GP(L).

(2) Non-leaf granules: This is a new set of granules. A non-leaf granule TG(N) is associated with

each non-leaf node N whose lock coverage, like leaf granules, is defined by GP (N). In Figure 6.1,

there are 3 non-leaf granules associated with the 3 non-leaf nodes N1, N2 and N3 with GPs S (entire

key space), P1 and P2 respectively.

For both types of granules, the page ids of the index nodes are the resource ids used to lock the granules.

Thus, GL/GiST defines a different set of lock granules compared to those in the GL/R-tree protocol

developed in [28]. External granules are no longer used as lockable granules. Non-leaf granules are used

instead. There are several reasons for this choice: (1) it allows us to develop protocols that imposes ab-

solutely no overhead (in terms of extra node accesses) on any tree operation (2) it causes almost no loss

in concurrency since all commit duration locks held on non-leaf granules are shared mode locks (3) it has

no extra computational cost since checking for consistency with non-leaf granules, unlike that with exter-

nal granules, does not involve any extra checking other than what is performed anyway during the regular

GiST search algorithm and (4) it allows the protocols to work even when insertions/deletions take place at

arbitrary levels of the tree.

It is important to note that although non-leaf granules are introduced as lockable units, the GiST/GL

protocol is completely different from and should not be confused with MGL. First, in MGL, the granules

are hierarchically arranged to form a “granule graph” over which it follows the DAG protocol. In a granule

graph, each node represents or “covers” a “logical” predicate. Since they are “logical”, operations cannot

dynamically change the predicate covered by any node in the graph. On the other hand, in GL/GiST, each

node in a GiST represents a “physical” predicate: the GP of the node. Since GP is “physical” (i.e. defined

based on the structure of the tree), operations (like insertions, deletions and updates) can dynamically change

their lock coverages which complicates the protocol. Second, in MGL, a lock on a coarse (higher level)

granule grants a certain lock coverage on the finer (lower level) granules under it. In GiST/GL, that is not
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Algorithm Search(R, q, t)
Input: GiST rooted at R, predicate q, transaction t
Output: All tuples that satisfy q
S1: If R is root, request an S mode unconditional commit duration lock on R.
S2: If R is non-leaf, check each entry E on R to determine whether Consistent(E,q). For each

entry that is consistent, request an S mode unconditional commit duration lock on the node
N referenced by E:ptr and Search is invoked on the subtree rooted at N .

S3: If R is a leaf, check each entry E on R to determine whether Consistent(E,q). If E is Consis-
tent, it is a qualifying entry that can be returned to the calling process.

Table 6.2: Concurrent Search Algorithm

the case: the higher level (non-leaf) granules are introduced in order to cover the entire embedded space

and a lock on does not grant coverage on any granule under it. In summary, DAG locking and GL/GiST

are fundamentally different protocols and serve different purposes. We believe that the idea of defining lock

granules associated with non-leaf nodes is novel and, to the best of our knowledge, has been discussed

before only in the context of bulk insertions in B-trees as an open problem in [55].

6.4.2 Search

In this section, we describe the lock protocol followed by the search operation in GiST. According to the

OSCI policy, a searcher with search predicate Q acquires commit duration S mode locks on all granules

consistent with Q. The concurrent search algorithm is described is Table 6.2.

We refer to the above lock protocol as SP/GiST (Search Protocol for GiST). SP/GiST is a straightforward

protocol and does not require any modification to the basic tree-navigation algorithm of GiST. This gives

rise to a possible discrepancy. Like the regular GiST search algorithm, SP/GiST uses the BPs to do the

“Consistency(E,q)” check during tree navigation. But the granules in GiST are defined in terms of the GPs.

To show that SP/GiST is correct, we need to show that it guarantees that a searcher acquires locks on all the

necessary granules i.e. for any index node T , if GP (T ) ^ Q is satisfiable, then the searcher acquires an S

lock on TG(T ).

To prove it, let us assume that P0; P1; :::; Pm are the nodes in the path from the root to T where P0 is

the root and Pm is T . Since a searcher acquires a shared lock on TG(T ) iff it is consistent with with the

BPs of all Pi; i = [1;m], we need to prove that if GP (T ) ^Q is satisfiable, Q is consistent with the BP of

Pi;8i = [1;m]. In other words, we need to prove that

GP (T ) ^Q is satisfiable )
m̂

i=0

Consistent(BP (Pi); Q) (6.3)
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Using the definition of GP (T ),

GP (T ) ^Q is satisfiable ,
 

m̂

i=1

BP (Pi)

!
^Qis satisfiable (6.4)

Since ^ is idempotent,

 
m̂

i=1

BP (Pi)

!
^Q is satisfiable ,

m̂

i=1

(BP (Pi) ^Q)is satisfiable (6.5)

Since p ^ q is satisfiable) Consistent(p; q), so 8i; i = [1;m]

(BP (Pi) ^Q) is satisfiable ) Consistent(BP (Pi); Q) (6.6)

Since (A) B ^ C ) D)) (A ^ C ) C ^D),

m̂

i=1

(BP (Pi) ^Q) is satisfiable )
m̂

i=0

Consistent(BP (Pi); Q) (6.7)

Equations (4) and (7) together implies (3).

6.4.3 Insertion

The locking protocol for an insert operation must guarantee:

� Full Coverage of the object being inserted till the time of transaction commit/rollback: We say an

object O being inserted (deleted) is fully covered by a set of granules G iff O )Sg2G g. An insertion

(as well as a deletion or an update) operation must acquire commit duration IX locks on G such that G
fully covers O. Full coverage guarantees that an insertion is permitted only if O does not conflict with

the predicate of any uncommitted searcher assuming that each searcher hold commit duration locks

on all consistent granules.

� Prevent Phantoms due to Loss of Lock Coverage: Since insertions (as well deletions and updates) can

dynamically modify one or more granules which in turn can affect the lock coverage of transactions

holding locks on other granules, full coverage is not sufficient to prevent phantoms. For example, the

insertion of an object O into a leaf node L of a GiST may cause the granule TG(L) to grow into the

search range of an old uncommitted searcher, resulting in the searcher losing its lock. This loss of

lock coverage may cause future insertions, in spite of satisfying the full coverage condition, giving

rise to phantoms as illustrated in Figure 6.4. The insertion lock protocol must prevent such phantoms

from arising.
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1. t1 arrives to scan R3; acquires S lock on R1.

and X lock on R4

3. R2 grows to R2’

4. t2 commits; releases all locks

5. t3 arrives to insert R5; acquires IX lock on R2’ and X lock on R5

6. t1 repeats its scan; R4 has appeared from nowhere

2. t2 arrives to insert R4; acquires IX locks on R2 and ext(R)

R1

R

R5
R4

R2

R2’
R3

Figure 6.4: Loss of lock coverage can cause phantoms.

To ensure full coverage and prevention of phantoms due to loss of lock coverage, the following protocol,

referred to as IP/GiST (Insert Protocol for GiST), is used.

Let O be the object being inserted and g be the target granule. We consider the following two cases:

� Case 1 - Insertion does not cause g to grow: In this case, the inserter acquires (1) a commit duration

IX lock on g and (2) a commit duration X lock on O.

� Case 2 - Insertion causes g to grow: Let LU -node (Lowest Unchanged Node) denote the lowest node

in the insertion path whose GP does not change due to the insertion. For example, in Figure 6.2, N1

is the LU -node for the insertion operation of R2. The insertion acquires (1) a commit duration IX

lock on g (2) a commit duration X lock on O and (3) a short duration IX lock on TG(LU-node).2 For

example, in Figure 6.2, tins would need to acquire a short duration IX lock on TG(N1) in addition to

the IX lock on TG(N4) and X lock on R2.

The concurrent insert algorithm is described in Table 6.3.

IP/GiST is a simple and efficient protocol since it, unlike the IP/R-tree, does not impose any I/O or

computational overhead on the insertion operation. As a result, IP/GiST is more efficient that IP/R-tree even

on R-trees. Second, unlike IP/R-tree, IP/GiST works even if the target granule is a non-leaf granule i.e.

when insertion takes place at a higher level of the tree.

Now we show that IP/GiST satisfy the above requirements of correctness. First, we prove full coverage.

In Case 1, g fully covers O, so commit duration IX lock on g ensures full coverage. In Case 2, at the start of

the operation, g does not fully cover O but TG(LU-node) does. So full coverage is provided by the sequence

of 2 locks: (1) the short duration IX lock on TG(LU-node) from the beginning of the operation till the end

of the operation 3 (2) the commit duration IX lock on g from the end of the operation till the end of the

transaction (since g has already grown to accommodate O).

Next we show prevention of phantoms due to loss of lock coverage. In Case 1, there can be no loss of

lock coverage of any searcher. In Case 2, the short duration IX lock on TG(LU-node) guarantees that no

searcher can lose it lock coverage. Let us first consider a searcher ts already executing when the inserter

tins arrives to insert O. Let Q be the search predicate of ts. Let h be a granule that grows to h0 due to the

insertion of O. ts can lose its lock iff h ^ Q is not satisfiable but h0 ^ Q is satisfiable. From the definition

of LU-node, h0 ) TG(LU-node). (h0 ^ Q) is satisfiable and (h0 ) TG(LU-node)) imply (TG(LU-node)
2The short duration IX lock can be released immediately if the AdjustKeys operation is performed right away i.e. in a top-down

fashion rather than bottom-up as is done in GiSTs. This would avoid holding the lock across I/O operations.
3Note that this the best we can do since, at this point of time, TG(LU-node) is the smallest granule in the insertion path that fully

covers O.
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Algorithm Insert(R, E, l, t)
Input: GiST rooted at R, entry E=(p, ptr) (where p is a predicate such that p holds for all tuples

reachable from ptr), level l, transaction t.
Output: New GiST resulting from insert of E at level l
Variables: root is global variable (const) pointing to the root node of the GiST. L is a lock initialized

to NULL.
I1: If R is not at level l, check all entries Ei = (pi; ptri) in R and evaluate Penalty(Ei,E) for

each i. Let m be argmini (Penalty(Ei; E)). If ((L == NULL) ^ (Union(E.p, Em:pm)
6= Em:pm)), request a unconditional IX mode lock L on R (for short duration). Insert is
invoked on the subtree rooted at the node referenced by Em:ptrm.

I2: Otherwise (level of insertion reached), request a commit duration unconditional IX lock
on R and a commit duration unconditional X lock on E:ptr. If there is room for E on R,
install E on R. Otherwise invoke Split(root, R, E, t).

I3: AdjustKeys(root, R, t).
I4: If L 6= NULL, release L.

Table 6.3: Concurrent Insert Algorithm

^Q) is satisfiable which in turn implies Consistent(TG(LU-node), Q). This means that ts can lose it’s lock

coverage iff it has an S lock on TG(LU-node) (since searcher acquires S locks on all consistent granules).

Thus, the IX lock requirement on TG(LU-node) prevents any searcher from losing its lock coverage. The IX

lock on TG(LU-node), being a short duration lock, would prevent any loss of lock by even those searchers

that arrive during the operation. Any searcher that arrives after the completion of the insertion operation

cannot lose its lock coverage due to the insertion.

6.4.4 Node Split

We now consider the special case where the insertion by a transaction t into an already full node causes the

target granule g to split into granules g1 and g2. Insertions causing node splits follow the IP/GiST except

that it needs to acquire some additional locks when it causes the splits.

If the insertion by t causes g to split, since the IX lock held by t on g is lost after the split, t needs to

acquire IX locks on g1 and g2 to protect the inserted object. Since t acquires an IX lock on g before the

insertion, no other transaction, besides t itself, can be holding an S lock on g. If t itself holds an S lock on

g, it needs to inherit its S lock on g to g1 and g2. This is because g1 and g2 are the only additional granules

that may become consistent with the search predicate of t due to the split.

Since before the split the inserter acquires an IX lock on g, other inserters and deleters may also be

holding IX locks on g. When g splits, all transactions holding IX locks on g must acquire IX locks on g1 and

g2 after the split. This is sufficient as all the insert and/or delete ranges (logical deletion) is guaranteed to be

protected by the IX locks on g1 and g2 since all objects in g will be either in g1 or g2. It may not possible for

t to change lock requests of other transactions using a standard lock manager. The problem can be avoided

if the inserter acquires a instant duration SIX lock on g in case it causes g to split. After the split, the inserter
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Operation Lock Requirements Other Actions

Insertion(no granule
change /no node split)

Commit dur. IX on g; Commit dur. X on O None

Insertion (granule
change)

Short dur. IX on TG(LU-node); IX on g; X on O None

Insert (node split) If T is leaf : Instant dur. SIX on TG(T ) before split; IX
on either TG(T ) or TG(TT ), whichever contains O after
split
If T is non-leaf : Instant dur. SIX on TG(T );

Inherit S locks to
TG(TT ) if itself
holding S lock on
TG(T )

Search S on all consistent leaf and non-leaf granules None
Delete (Logical) IX on g; X on O Mark O deleted; Re-

move O from page
Delete (Deferred) If node is not empty: Short dur. IX on TG(HC-node); IX

on g; X on O.
If becomes empty: If T is leaf, Short dur. SIX on TG(T);
If T is non-leaf , Short dur. IX on TG(T)

Eliminate node if
empty

ReadSingle S on O None
UpdateSingle If no indexed attribute changed: IX on g; X on O

Otherwise: Delete O; Insert modified O
None

UpdateScan S on all consistent granules; For every individual object
updated, same requirement as UpdateSingle

None

Table 6.4: Lock requirements for various operations in the dynamic granular locking approach. g is the
target granule for insertion/deletion, O is the object being inserted/deleted/updated.

acquires a commit duration IX lock on either g1 or g2, whichever contains O.

The splitting of the granule may propagate upwards causing the non-leaf nodes to split. As in the case

of leaf node split, the transaction causing a non-leaf node N to split acquires a instant duration SIX lock on

TG(N) to prevent any other transaction losing its lock. If t itself was holding an S lock on TG(N), it needs

to inherit its S lock on the two granules formed after split.

The node split operation can be allowed to be carried out “asynchronously”. This requires maintaining

the information of an “outstanding split” in the node - the transaction can subsequently commit while a

separate transaction executes the split operation later by checking the “outstanding split” flags. The lock

requirements remain the same as in the “synchronous” case.

6.4.5 Deletion

Similar to insertion, to delete an object O, the deleter requires an IX lock on the region that covers O.

However, unlike insertion, (in which the granule where the object is inserted grows and covers the inserted

object), the granule g from which O is deleted may shrink due to the deletion and may not cover O. To

protect the delete region, the deleter would need a commit duration IX lock on TG(LU-node) (here it is

the LU-node of the deletion of operation) since TG(LU-node) is the smallest granule to fully cover O at

the completion of the deletion operation. This would result in low concurrency since a large number of
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searchers may be unnecessarily prevented till the deleter commits. For this reason, we do not consider this

approach any further. Instead, deletes are performed logically. We present the lock needs of the logical and

physical deletions in the following subsections.

Logical Deletion

The logical deleter needs to acquire a commit duration IX lock on only the leaf granule g that contains the

object and an X lock on O itself. The IX lock on g is sufficient to cover O since even if the GP of g changes

due to other insertions and deletions (physical) since g would still cover O. Subsequently, it removes the

object from the page and marks it as deleted. If the transaction aborts, the changes are undone, the delete

mark is removed and the locks are released. On the other hand, if it commits, the physical deletion of O

from the GiST is executed as a separate operation.

If the transaction requests deletion of an object O that does not exist, other transactions wishing to insert

the same object should be prevented as long as the deleter is active. For this purpose, the deleter acquires S

locks on all consistent granules just like a search operation with O as the search predicate.

Deferred (Physical) Deletion

The deferred delete operation removes the logically deleted object from the GiST and adjusts the BPs of

the ancestors. To physically delete an object from a granule g, a short duration IX lock on g is acquired

to prevent other searchers having S locks on g from losing their lock coverage. The IX lock is sufficient

as inserters and other deleters holding locks on g would not lose the necessary lock coverage even after g

shrinks due to the physical deletion. Deletion of an entry from the node may also result in the node becoming

empty in which case it is eliminated from the GiST. Since a node is eliminated only when it becomes empty,

no transaction can lose its IX lock due to elimination of g as g does not cover any object. So the IX lock on

g is sufficient even if the deletion causes the elimination of the node.

In either case, since the change of g may propagate upwards causing BPs of the ancestor nodes to

change, the non-leaf granules associated with the ancestors may shrink. Since only searchers hold locks on

non-leaf granules (inserters request only instant-duration locks), only searchers can lose their lock coverage

due to this shrinkage. Note that only the searchers whose predicates are consistent with the HC-node (i.e.

the highest index node in the deletion path whose BP changes due to the deletion) can lose lock coverage,

possibly giving rise to phantoms. The loss of lock coverage of the searchers can be prevented by acquiring

a short duration IX lock on TG(HC-node). Note that for insertion, it was the TG(LU-node) on which the

short duration IX lock had to be acquired. The difference comes from the fact that insertion causes granules

to grow while deletion causes them to shrink.

6.4.6 Other Operations

The locks needs for the other operations are:
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Parameters Meaning

MPL multiprogramming level
Transaction
Size

the number of operations per transaction

Write Proba-
bility

the fraction of operations in a transaction that are writes (i.e.
inserts)

Query Size the average selectivity of a search operation
External
Think Time

mean time between transactions

Restart De-
lay

mean time after which an aborted transaction is restarted

Table 6.5: Workload Parameters

� The ReadSingle operation just acquires an S lock on the object.

� The UpdateSingle operation, if none of the attributes indexed by GiST are changed, just needs an IX

lock on the granule containing the object and an X lock on the object. Otherwise, it first executes a

deletion operation of the object to be updated followed by the insertion of the updated object obeying

the respective lock protocols.

� The UpdateScan operation acquires S locks on all consistent granules just like a Search operation.

For every individual object O updated, it requires the same locks as an UpdateSingle operation on O.

The lock requirements for the various operations is shown in the Table 6.4.

6.5 Experimental Evaluation

We performed several experiments to (1) evaluate the performance of the GL/GiST protocol under various

degrees of system loads and (2) compare it with other protocols in terms of concurrency and lock overhead.

In this section, we discuss our implementation of the protocols followed by the performance results.

6.5.1 Implementation

Implementation of the Protocols We implemented the complete GL/GiST protocol as described in this

chapter. To evaluate the performance of the GL/GiST protocol, we also implemented the pure predicate

locking (referred to as the PurePL protocol) to serve as the baseline case. In PurePL, each search operation

checks its predicate against the objects of the insert/delete/update operations of all currently executing trans-

actions. If there is any conflict, it blocks on that transaction by requesting an S lock on that transaction ID,

assuming that every transaction acquires an X lock on its own ID when it starts up. Otherwise it proceeds

with the search. Similarly, each insert/delete/update operation checks its object against the predicates of the

search operations of all currently executing transactions and in case of a conflict, blocks on the conflicting

transaction.
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Construction of GiST We conducted our experiments on two different GiSTs constructed over the fol-

lowing two datasets:

� The 2-d dataset: is the 2-d point data set of the Sequoia 2000 benchmark [138]. It contains lo-

cations(easting and northing values) of 62,556 California places extracted from the US Geological

Survey’s Geographic Names Information System (GNIS)). The points are geographically distributed

over a 1046km by 1317km area.

� The 3-d dataset: is derived from the FOURIER dataset [23]. The FOURIER dataset data set com-

prises of 1.2 million vectors of fourier coefficients produced by fourier transformation of polygons.

We constructed the 3-d dataset by taking the first 3 fourier coefficients of each vector.

We set aside some points (by random choice) from the above data files for insertion into the GiST during

the run of transactions. The searches to be executed during the run are generated by randomly choosing the

query anchor from the data file and generating a bounding box by choosing a proper side length needed to

obtain desired search selectivity. The set-aside points and the queries are stored in two separate files which

are used by the workload generator.

We created the GiSTs by bulkloading the remaining points. The two GiSTs are described below:

� 2-d GiST: constructed on 56,655 2-d points with 2K page size (fanout 102, 821 nodes). Since the size

of the data set is small, we use a comparatively small page size to make the GiST of significant size.

� 3-d GiST: constructed on 480,471 3-d points with 8K page size (fanout 292, 2360 nodes)

In both cases, we configured the GiST to behave as an R-tree by specifying the extension methods appropri-

ately.

Workload Generator and the Lock Manager The workload generator (WG) generates a workload based

on the input parameters shown in Table 6.5. The WG assigns some search operations (from the bounding box

query file) and some insertion operations (from the set-aside point file) to each transaction. Each transaction

executes as a separate thread. We use the Pthread library (Solaris 2.6 implementation) for creating and

managing the threads [104]. One thread only executes one transaction: it is created at the beginning of

the transaction and is terminated when the latter commits. The WG maintains the MPL at the specified

value by using an array of flags (MPL number of them): when a thread finishes, it sets a flag. The main

WG thread constantly polls on this array and when it detects the setting of a flag, it starts a new thread and

assigns the next transaction to it. The thread waits for some time (external think time) and starts executing

the transaction: it executes one operation after another on the GiST following the lock protocols. If any

lock request returns an error (due to a deadlock or a timeout), the transaction aborts. If it aborts, it is re-

executed within the same thread after a certain restart delay (each transaction remembers its constituent

operations till it commits for possible re-execution). Our implementation of the WG consists of 3 main C++

classes (TransactionManager, Transaction and Operation). The TransactionManager class also maintains

the global statistics of the run (e.g., throughput, conflict-ratio, number of locks acquired, number of aborts

etc.) which are used to measure the performance of the various protocols. Although the other 4 simulation
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parameters are varied, we fix the external think time to 3 seconds and the restart delay to 3 seconds for all

our experiments. Also, for the two GiSTs, the buffer sizes are set such that about 75% of the pages fit in

memory.

For the lock manager (LM) implementation, we reused most of the LM code of MiniRel system obtained

from the University of Maryland. The LM code closely follows the description in [55].

All experiments were performed on a Sun Ultra Enterprise 3000 Server running Solaris 2.6 with two

167MHz CPU, 512MB of physical memory and several GB of secondary storage.

6.5.2 Experimental Results

Evaluation of the GL/GiST protocol We conducted experiments to evaluate the performance of the

GL/GiST protocol under various system loads. Performance is measured using throughput i.e. the ratio

of the total number of transactions that completed during the period when the transactions ran at full MPL

(ignoring the starting phase and the dying phase when the MPLs are lower) to the total duration of the full-

MPL phase [4]. Figures 6.5 shows the throughput of GL/GiST and PurePL protocols at various MPLs for

the 2d dataset. Initially, the throughput increases with the MPL as the system resources were underutilized

at low MPLs. For GL/GiST, the throughput reaches a peak (� 14 tps) at an MPL of 50 while for PurePL,

the peak (� 6 tps) is reached at an MPL of 60. Beyond that point, the throughput starts decreasing as the

system starts thrashing. Figures 6.6 shows the performance of the two protocols for the 3d dataset. Like the

2-d dataset, the GL/GiST achieves significantly higher throughput compared to PurePL.

We also varied the system load by tweaking the other parameters like write probability, transaction size

and size of search [4]. These experiments were conducted on the 2-d dataset. Figure 6.7 shows the per-

formance of the two protocols under various mixes of read(search) and write(insert) operations. GL/GiST

significantly outperforms PurePL under all workloads. Figure 6.8 shows the throughputs at various transac-

tion sizes. Again, GL/GiST mostly outperforms PurePL. At an MPL of 50, for transactions with 20 or more

107



2

4

6

8

10

12

14

16

4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

tp
s)

Size of Transaction (# GiST operations)

GL/GiST
Predicate Locking

Figure 6.8: Throughput at vari-
ous transaction sizes (MPL=50,
write probability=0.1, query se-
lectivity=0.1%)

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t (

tp
s)

Selectivity of Search (in %age of database size)

GL/GiST
Predicate Locking

Figure 6.9: Throughput at vari-
ous query sizes (MPL=50, trans-
action size=10, write probabil-
ity=0.1)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 20 40 60 80 100

C
on

fli
ct

 R
at

io

Multiprogramming Level

GL/GiST
Predicate Locking

Figure 6.10: Conflict Ratio
(transaction size=10, write
probability=0.2, query selectiv-
ity=0.1%)

operations, since a large portion of the GiST is locked by some transaction or the other, GL/GiST starts

thrashing due to high lock contention leading to decrease in throughput. Figure 6.9 shows the performance

for various query sizes. Once again, GL/GiST performs better than PL for all workloads.

Comparison to other techniques In this section, we compare GL/GiST protocol with the predicate lock-

ing protocol presented in [83]. We refer to the above protocol as the PL/GiST protocol. In PL/GiST, a

searcher attaches its search predicate Q to all the index nodes whose BPs are consistent with Q. Subse-

quently, the searcher acquires S locks on all objects consistent with Q. An inserter checks the object to

be inserted against all the predicates attached to the node in which the insertion takes place. If it conflicts

with any of them, the inserter also attaches its predicate to the node (to prevent starvation) and waits for the

conflicting transactions to commit. If the insertion causes a BP of a node N to grow, the predicate attach-

ments of the parent of N is checked with new BP of N and are replicated at N if necessary. The process is

carried out top-down over the entire path where node BP adjustments take place. Similar predicate checking

and replication is done between sibling nodes during split propagation. The details of the protocol can be

found in [83]. A complete performance study would require a full fledged implementation of the PL/GiST

protocol (including implementation of the Predicate Manager, augment GiST with data structures to be able

to attach/detach predicates to tree nodes etc.). Due to the complexity of the this task, we only compare the

two protocols in terms of the degrees of concurrency offered and their lock overheads. Again PurePL is used

to serve as the baseline case. All the experiments were conducted on the 2-d dataset.

Figure 6.10 compares the concurrency offered by the GL/GiST and the PL protocols. Concurrency is

measured using conflict ratio i.e. the average number of times some transaction blocked on a lock request

per committed transaction [4]. Lower the conflict ratio, higher the concurrency. Both PL/GiST and PurePL

protocols offer the maximum permissible concurrency since transactions are blocked only when they truly

conflict. On the other hand, GL/GiST offers lower concurrency due to “false conflicts” i.e. a situation

where although the predicates do not conflict with each other, they end up requesting conflicting locks on

the same granule (e.g., in R-trees, a search predicate and an object being inserted do not overlap with each
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other but they overlap with the BR of the same leaf node). More the number of false conflicts, higher the

loss of concurrency. Figure 6.10 shows that false conflicts do not cause a significant loss of concurrency in

GL/GiST compared to PL. This is an outcome of the “fineness” of the chosen granules.

Figure 6.11 and 6.12 shows the lock overheads imposed by the GL/GiST, PL/GiST and PurePL protocols

for the search and insert operations respectively. The lock overhead is measured by the average number of

locks acquired or the average number of predicate checks performed, as the case may be, measured on the

same scale. Although the two costs (i.e. acquiring a lock and performing a predicate check) are within the

same order of magnitude (between 50-200 RISC instructions) for 2d data, the costs would differ for higher

dimensional data (predicate checking becomes costlier while the cost of acquiring a lock remains the same).

While the lock overhead of predicate locking increases linearly with MPL, that of GL is independent of

MPL. The figures show that for both search and insert operations, GL/GiST imposes considerably lower

lock overhead compared to PL protocols.

To study the performance of GL at higher dimensionalities, we also conducted experiments on 5-d

data. The 5-d dataset is derived from the FOURIER dataset and is constructed by taking the first 5 fourier

coefficients of each vector. We built the GiST on 480,471 points of the 5-d dataset with 8K page size(fanout

136, 5186 nodes). The buffer size was set to about 10% of the size of the GiST. Figure 6.13 shows the

performance the two approaches at various MPLs for 5-d data. Like 2-d and 3-d datasets, granular locking

outperforms predicate locking for 5-d data as well.

In summary, there is a tradeoff between GL and PL – while GL enjoys lower lock overhead, it has

lower concurrency compared to PL. Our experiments confirm that similar to granule based protocols for 1-d

datasets, the GL protocol performs significantly better than PL for multidimensional datasets as well.

6.6 Conclusions and Future Work

Numerous emerging applications (e.g., GIS, multimedia, CAD) need support of multidimensional AMs

in DBMSs. The Generalized Search Tree (GiST) is an important step to meet that need. GiST, being an
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extensible index structure, when supported in a DBMS, will allow application developers to define their own

AMs by supplying a set of extension methods. However, before GiSTs can be supported by any commercial

strength DBMSs, efficient techniques to support concurrent access to data via the GiST must be developed.

Concurrent access to data via a general index structure introduces two independent concurrency control

problems. First, techniques must be developed to ensure the consistency of the data structure in presence of

concurrent insertions, deletions and updates. Second, mechanisms to protect search regions from phantom

insertions and deletions must be developed. Developing such mechanisms to guarantee transactional access

to data via multidimensional data structures has been identified as one of the key challenges to transaction

management in future database systems [55].

This chapter presents a dynamic granular locking approach to phantom protection in GiSTs. The chapter

builds on our previous work on a dynamic granular locking strategy for R-trees [28]. Due to some funda-

mental differences between R-tree and GiST in the notion of a search key, the algorithms developed for

R-trees do not provide a feasible solution for phantom protection in GiST. Motivated by the limitations of

the previous approach in the context of GiSTs, we develop a new granular locking approach suited for con-

currency control in GiSTs. The developed protocols provide a high degree of concurrency and have low lock

overhead. Our experiments have shown that the granular locking technique (1) scales well under various

system loads and (2) significantly outperforms predicate locking for low to medium dimensional datasets

(2d, 3d and 5d). While most applications that involve dynamic datasets and require highly concurrent ac-

cesses to the data deal with low to medium dimensional spaces, 4 it is nevertheless interesting to explore

approaches that provide good performance for high dimensional datasets as well. Although the granular

locking proposed in this chapter provides almost as high concurrency as the predicate locking approach

for low to medium dimensionalities (see Figure 6.10), the loss of concurrency increases with the increase

in dimensionality. The reason is that at high dimensionalities, the data space gets increasingly sparse (a

phenomenon commonly known as the “dimensionality curse” [12]), resulting in coarser leaf granules which

causes more “false conflicts” and hence a higher loss in concurrency. While at low to medium dimensional-

ities the efficiency of granular locking far outweighs the loss of concurrency resulting in better performance

compared to predicate locking, it may not be the case at high dimensionalities. This is evidenced by the fact

that for 5-d data, though granular locking still outperforms predicate locking, the performance gap between

them is less compared to the 2-d and 3-d datasets. A simple approach to improve the concurrency offered

by granular locking is to define finer granules. The benefit of such an approach is not clear since while the

finer granules will improve concurrency, it will also increase the lock overhead of each operation. A hybrid

strategy between the granular and predicate locking techniques may be a more suitable solution for high

dimensional datasets.

So far in this thesis, we have concentrated on multidimensional access methods as the primary weapon

to deal with large volumes of highly multidimensional data. In the next chapter, we explore approximate
4For example, GIS and CAD systems deals with spatial data which is either 2-d or 3-d. Spatio-temporal applications (e.g.,

management of moving objects) deals with 3-d or 4-d data. Multimedia retrieval systems like QBIC index images using 3-d feature
vectors [44].

110



query answering as a technique to deal with the large data volumes and stringent access time requirements in

DSS/OLAP systems. We develop a wavelet-based approximate query answering tool for high dimensional

DSS applications.
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Chapter 7

Approximate Query Processing

In this chapter, we explore approximate query answering as a technique to deal with the large data volumes

and stringent response time requirements in DSS/OLAP systems. We develop a wavelet-based approximate

query answering tool for high dimensional DSS applications.

7.1 Introduction

Approximate query processing has recently emerged as a viable solution for dealing with the huge amounts

of data, the high query complexities, and the increasingly stringent response-time requirements that char-

acterize today’s Decision Support Systems (DSS) applications. Typically, DSS users pose very complex

queries to the underlying Database Management System (DBMS) that require complex operations over Gi-

gabytes or Terabytes of disk-resident data and, thus, take a very long time to execute to completion and

produce exact answers. Due to the exploratory nature of many DSS applications, there are a number of

scenarios in which an exact answer may not be required, and a user may prefer a fast, approximate answer.

For example, during a drill-down query sequence in ad-hoc data mining, initial queries in the sequence fre-

quently have the sole purpose of determining the truly interesting queries and regions of the database [64].

Providing (reasonably accurate) approximate answers to these initial queries gives users the ability to fo-

cus their explorations quickly and effectively, without consuming inordinate amounts of valuable system

resources. An approximate answer can also provide useful feedback on how well-posed a query is, allowing

DSS users to make an informed decision on whether they would like to invest more time and resources to

execute their query to completion. Moreover, approximate answers obtained from appropriate synopses of

the data may be the only available option when the base data is remote and unavailable [6]. Finally, for DSS

queries requesting a numerical answer (e.g., total revenues or annual percentage), it is often the case that

the full precision of the exact answer is not needed and the first few digits of precision will suffice (e.g., the

leading few digits of a total in the millions or the nearest percentile of a percentage) [1].

Prior Work. The strong incentive for approximate answers has spurred a flurry of research activity on

approximate query processing techniques in recent years [1, 51, 53, 61, 64, 70, 115, 144, 145]. The majority
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of the proposed techniques, however, have been somewhat limited in their query processing scope, typically

focusing on specific forms of aggregate queries. Besides the type of queries supported, another crucial

aspect of an approximate query processing technique is the employed data reduction mechanism; that is,

the method used to obtain synopses of the data on which the approximate query execution engine can then

operate [9]. The methods explored in this context include sampling and, more recently, histograms and

wavelets.

� Sampling-based techniques are based on the use of random samples as synopses for large data sets. Sam-

ple synopses can be either precomputed and incrementally maintained (e.g., [1, 51]) or they can be obtained

progressively at run-time by accessing the base data using appropriate access methods (e.g., [61, 64]). Ran-

dom samples of a data collection typically provide accurate estimates for aggregate quantities (e.g., counts

or averages), as witnessed by the long history of successful applications of random sampling in popula-

tion surveys [34, 130] and selectivity estimation [87]. An additional benefit of random samples is that they

can provide probabilistic guarantees on the quality of the estimated aggregate [60]. Sampling, however,

suffers from two inherent limitations that restrict its applicability as an approximate query processing tool.

First, a join operator applied on two uniform random samples results in a non-uniform sample of the join

result that typically contains very few tuples, even when the join selectivity is fairly high [1]. Thus, join

operations typically lead to significant degradations in the quality of an approximate aggregate. (“Join syn-

opses” [1] provide a solution, but only for foreign-key joins that are known beforehand; that is, they cannot

support arbitrary join queries over any schema.) Second, for a non-aggregate query, execution over random

samples of the data is guaranteed to always produce a small subset of the exact answer which is often empty

when joins are involved [1, 70].

� Histogram-based techniques have been studied extensively in the context of query selectivity estima-

tion [52, 68, 69, 99, 116, 117] and, more recently, as a tool for providing approximate query answers [70,

115]. The very recent work of Ioannidis and Poosala [70] is the first to address the issue of obtaining practi-

cal approximations to non-aggregate query answers, making two important contributions. First, it proposes

a novel error metric for quantifying the quality of an approximate set-valued answer (in general, a multiset

of tuples). Second, it demonstrates how standard relational operators (like join and select) can be pro-

cessed directly over histogram synopses of the data. The experimental results given in [70] prove that certain

classes of histograms can provide higher-quality approximate answers compared to random sampling, when

considering simple queries over low-dimensional data (one or two dimensions). It is a well-known fact,

however, that histogram-based approaches become problematic when dealing with the high-dimensional

data sets that are typical of modern DSS applications. As the dimensionality of the data increases, both

the storage overhead (i.e., number of buckets) and the construction cost of histograms that can achieve

reasonable error rates increase in an explosive manner [85, 144]. The dimensionality problem is further

exacerbated by join operations that can cause the dimensionality of intermediate query results (and the

corresponding histograms) to explode.
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� Wavelet-based techniques provide a mathematical tool for the hierarchical decomposition of functions,

with a long history of successful applications in signal and image processing [74, 100, 137]. Recent stud-

ies have demonstrated the applicability of wavelets to selectivity estimation [91] and the approximation of

range-sum queries over OLAP data cubes [144, 145]. The idea is to apply wavelet decomposition to the

input data collection (attribute column(s) or OLAP cube) and retain the best few wavelet coefficients as a

compact synopsis of the input data. The results of Vitter et al. [144, 145] have shown that wavelets are

effective in handling aggregates over high-dimensional OLAP cubes, while avoiding the high construction

costs and storage overheads of histograming techniques. Their wavelet decomposition requires only a log-

arithmically small number of passes over the data (regardless of the dimensionality) and their experiments

prove that a few wavelet coefficients suffice to produce surprisingly accurate results for summation aggre-

gates. Nevertheless, the focus of these earlier studies has always been on a very specific form of queries

(i.e., range-sums) over a single OLAP table. Thus, the problem of whether wavelets can provide a solid

foundation for general-purpose approximate query processing has hitherto been left unanswered.

Our Contributions. In this chapter, we significantly extend the scope of earlier work on approximate

query answers, establishing the viability and effectiveness of wavelets as a generic approximate query

processing tool for modern, high-dimensional DSS applications. More specifically, we propose a novel

approach to general-purpose approximate query processing that consists of two basic steps. First, multi-

dimensional Haar wavelets are used to efficiently construct compact synopses of general relational ta-

bles. Second, using novel query processing algorithms, standard SQL operators (both aggregate and non-

aggregate) are evaluated directly over the wavelet-coefficient synopses of the data to obtain fast and accurate

approximate query answers. The crucial observation here is that, as we demonstrate in this work, our ap-

proximate query execution engine can do all of its processing entirely in the wavelet-coefficient domain; that

is, both the input(s) and the output of our query processing operators are compact collections of wavelet

coefficients capturing the underlying relational data. This implies that, for any arbitrarily complex query,

we can defer expanding the wavelet-coefficient synopses back into relational tuples till the very end of the

query, thus allowing for extremely fast approximate query processing. 1 The contributions of our work are

summarized as follows.

� New, I/O-Efficient Wavelet Decomposition Algorithm for Relational Tables. The methodology

developed in this chapter is based on a different form of the multi-dimensional Haar transform than

that employed by Vitter et al. [144, 145]. As a consequence, the decomposition algorithms proposed

by Vitter and Wang [144] are not applicable. We address this problem by developing a novel, I/O-

efficient algorithm for building the wavelet-coefficient synopsis of a relational table. The worst-case

I/O complexity of our algorithm matches that of the best algorithms of Vitter and Wang, requiring
1Note that the join processing algorithm of Ioannidis and Poosala [70], on the other hand, requires each histogram to be

partially expanded to generate the tuple-value distribution for the corresponding approximate relation. As our results demonstrate,
this requirement can slow down join processing over histograms significantly, since the partially expanded histogram can give rise
to large numbers of tuples, especially for high-dimensional data (cf. Figure 7.15).
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only a logarithmically small number of passes over the data. Furthermore, there exist scenarios (e.g.,

when the table is stored in chunks [37, 129]) under which our decomposition algorithm can work in a

single pass over the input table.

� Novel Query Processing Algebra for Wavelet-Coefficient Data Synopses. We propose a new al-

gebra for approximate query processing that operates directly over the wavelet-coefficient synopses

of relations, while guaranteeing the correct relational operator semantics. Our algebra operators in-

clude the conventional aggregate and non-aggregate SQL operators, like select, project, join,

count, sum, and average. Based on the semantics of Haar wavelet coefficients, we develop novel

query processing algorithms for these operators that work entirely in the wavelet-coefficient domain.

This allows for extremely fast response times, since our approximate query execution engine can do

the bulk of its processing over compact wavelet-coefficient synopses, essentially postponing the ex-

pansion into relational tuples until the end-result of the query. We also propose an efficient algorithm

for this final rendering step, i.e., for expanding a set of multi-dimensional Haar coefficients into an

approximate relation which is returned to the user as the final (approximate) answer of the query.

� Extensive Experiments Validating our Approach. We have conducted an extensive experimental

study with synthetic as well as real-life data sets to determine the effectiveness of our wavelet-based

approach compared to sampling and histograms. Our results demonstrate that (1) the quality of ap-

proximate answers obtained from our wavelet-based query processor is, in general, better than that

obtained by either sampling or histograms for a wide range of select, project, join, and ag-

gregate queries, (2) query execution-time speedups of more than two orders of magnitude are made

possible by our approximate query processing algorithms; and (3) our wavelet decomposition algo-

rithm is extremely fast and scales linearly with the size of the data.

Roadmap. The remainder of this chapter is organized as follows. After reviewing some necessary back-

ground material on the Haar wavelet decomposition, Section 7.2 presents our I/O-efficient wavelet decom-

position algorithm for multi-attribute relational tables. In Section 7.3, we develop our query algebra and

operator processing algorithms for wavelet-coefficient data synopses. Section 7.3 also proposes an efficient

rendering algorithm for multi-dimensional Haar coefficients. In Section 7.4, we discuss the findings of an

extensive experimental study of our wavelet-based approximate query processor using both synthetic and

real-life data sets. Section 7.5 concludes the chapter.
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7.2 Building Synopses of Relational Tables Using Multi-Dimensional

Wavelets

7.2.1 Background: The Wavelet Decomposition

Wavelets are a useful mathematical tool to hierarchically decompose functions in a manner that is both

efficient to compute and theoretically sound. Broadly speaking, the wavelet decomposition of a function

consists of a coarse overall approximation together with detail coefficients that influence the function at

various resolutions [137]. The wavelet decomposition has excellent energy compaction and de-correlation

properties, which can be used to effectively generate compact representations that exploit the structure of

data. Furthermore, wavelet transforms can generally be computed in linear time, thus allowing for very

efficient algorithms.

The work in this chapter is based on the multi-dimensional Haar wavelet decomposition. Haar wavelets

are conceptually simple, very fast to compute, and have been found to perform well in practice for a variety

of applications ranging from image editing and querying [100, 137] to selectivity estimation and OLAP ap-

proximations [91, 144]. Recent work has also investigated methods for dynamically maintaining Haar-based

data representations [92]. In this section, we discuss Haar wavelets in both one and multiple dimensions.

One-Dimensional Haar Wavelets. Suppose we are given a one-dimensional data vector A containing the

following four values A = [2; 2; 5; 7]. The Haar wavelet transform of A is computed as follows. We first

perform pairwise averaging of the values to get the following “lower-resolution” representation of the data

vector: [2; 6]. In other words, the average of the first two values (that is, 2 and 2) is 2 and that of the next

two values (that is, 5 and 7) is 6. Obviously, some information has been lost in this averaging process. To

be able to restore the original four values of the data array, we need to store some detail coefficients, that

capture the missing information. In Haar wavelets, these detail coefficients are simply the differences of the

second element of the pairs being averaged from the average value.

In our example, for the first pair of averaged values, the detail coefficient is 0 since 2-2 =0, while for

the second we need to store �1 since 6 � 7 = �1. Note that it is possible to reconstruct the four values

[2; 2; 5; 7] of the original data array from the lower-resolution array containing the two averages [2; 6] and the

two detail coefficients [0;�1]. Recursively applying the above pairwise averaging and differencing process

on the lower-resolution array containing the averages, we get the following full decomposition.

Resolution Averages Detail Coefficients
2 [2, 2, 5, 7] –
1 [2, 6] [0, -1]
0 [4] [-2]

We define the wavelet transform (also known as the wavelet decomposition) of A to be the single coef-

ficient representing the overall average of the data values (i.e. [4]) followed by the detail coefficients in the
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order of increasing resolution (i.e. [�2] at the lowest resolution and [0;�1] at the next higher resolution as

there are only two resolutions of detail coefficients of A). The one-dimensional Haar wavelet transform of

A is therefore given by WA = [4;�2; 0;�1]. Each entry in WA is called a wavelet coefficient. The main

advantage of using WA instead of the original data vector A is that for vectors containing similar values in

neighboring positions (i.e. having locality), most of the detail coefficients would have very small values.

Eliminating such small coefficients from the wavelet transform (i.e., treating them as zeros) introduces only

small errors when reconstructing the original data, giving an effective form of lossy data compression.

Note that, intuitively, wavelet coefficients carry different weights with respect to their importance in

rebuilding the original data values. For example, the overall average is obviously more important than any

detail coefficient since it affects the reconstruction of all entries in the data array. In order to equalize the

importance of all wavelet coefficients while determining which coefficients to retain and which to eliminate

(i.e. during thresholding), we need to normalize the final entries of WA appropriately. This is achieved by

dividing each wavelet coefficient by
p
2l, where l denotes the level of resolution at which the coefficient

appears (with l = 0 corresponding to the “coarsest” resolution level). Thus, the normalized wavelet trans-

form for our example data array becomes WA = [4;�2; 0;�1=p2]. Note that the unnormalized transform

is used for the reconstruction of the original vector; the normalized version is used only for thresholding (cf.

Section 7.2.2).

Multi-Dimensional Haar Wavelets. There are two common methods to compute the Haar wavelet trans-

form of a multi-dimensional array. Each of these transformations is a generalization of the one-dimensional

decomposition process described above. To simplify the exposition to the basic ideas of multi-dimensional

wavelets, we assume that the input array is of equal size along all dimensions.

The first method is known as standard decomposition. In this method, we first fix an ordering of the

dimensions of the input array A (say, 1; 2; : : : ; d) and then proceed to apply the complete one-dimensional

wavelet transform for each one-dimensional “row” of array cells along dimension k, for all k = 1; : : : ; d.

The standard Haar decomposition forms the basis of the recent results of Vitter et al. on OLAP data cube

approximations [144, 145].

The work presented in this chapter is based on the second method of extending Haar wavelets to multiple

dimensions, namely the nonstandard decomposition. Instead of performing one-dimensional wavelet trans-

form on all one-dimensional rows along dimension 1 followed by transform on all rows along dimension

2 and so on as in standard decomposition, the nonstandard Haar decomposition alternates between the the

one-dimensional rows along different dimensions i.e. at each step, it performs a one-dimensional wavelet

transform on one row along dimension 1 followed by transform on one row along dimension 2 and so on

till dimension k. The steps are repeated till each row along each dimension has been transformed. Note

that the transform of A is performed “in place”: i.e. the results of a transform is used as the input data for

subsequent transforms. The above process is then repeated recursively on the quadrant containing averages

across all dimensions. One way of to conceptualize (and implement [100]) the above process is sliding a
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2 � 2 � � � � � 2 d-dimensional hyper-box across the data array, performing pairwise averaging and differ-

encing of the cells in A falling inside the hyper-box, distributing the results to the appropriate locations of

the wavelet transform array WA (with the averages for each box going to the “lower-left” quadrant of WA)

and, finally, recursing the computation on the lower-left quadrant of WA. This procedure is demonstrated

pictorially for a 2-dimensional data array A in Figure 7.1(a). A is 2m � 2m in size. The figure shows the

pairwise averaging and differencing step for one positioning of the 2� 2 box with its “root”(i.e., lower-left

corner) located at the coordinates [2i1; 2i2] of A followed by the distribution of the results in the wavelet

transform array. The above step is repeated for every possible combination of ij’s, ij 2 f0; : : : ; 2m�1� 1g.
A detailed description of the nonstandard Haar decomposition can be found in any standard reference on the

subject (e.g., [74, 137]).
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Figure 7.1: Non-standard decomposition in two dimensions. (a) Computing pairwise averages and differ-
ences and distributing them in the wavelet transform array. (b) Example decomposition of a 4� 4 array.

Example 7.2.1: Consider the 4 � 4 array A shown in Figure 7.1(b.1). In the first level of recursion, the

2 � 2 sliding hyper-box is placed at the 4 possible “root” positions on A, namely [0; 0], [0; 2], [2; 0] and

[2; 2], and pairwise averaging and differencing is performed on each of them individually. The result is

shown in Figure 7.1(b.2). For example, the pairwise averaging and differencing on the hyper-box with root

position [2; 0] (containing values A[2; 0] = 2, A[3; 0] = 4, A[2; 1] = 6, and A[3; 1] = 8) produces the

average coefficient A[2;0]+A[3;0]+A[2;1]+A[3;1]
4 = 5 and detail coefficients A[2;0]+A[2;1]�A[3;0]�A[3;1]

4 = �1,
A[2;0]+A[3;0]�A[2;1]�A[3;1]

4 = �2 and A[2;0]+A[3;1]�A[3;0]�A[2;1]
4 = 0 (shown in the same positions (A[2; 0],

A[3; 0], A[2; 1] and A[3; 1]). Figure 7.1(b.3) shows the array after the results are distributed in the right
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positions in WA. For the hyper-box with root position [2; 0] (i.e. i1 = 1, i2 = 0 and m = 2 according to

the notation in Figure 7.1(a)), the results 5;�1;�2 and 0 are placed at positions [i1; i2] = [1; 0], [2m�1 +

i1; i2] = [3; 0], [i1; 2m�1 + i2] = [1; 2] and [2m�1 + i1; 2
m�1 + i2] = [3; 2] respectively. The process is

then recursed on the lower-left quadrant of WA (which contains the average values 2:5; 7:5; 5 and 10 of the

4 boxes), resulting in the average coefficient 6:25 and detail coefficients �1:25, �2:5 and 0. That ends the

recursion, producing the final wavelet transform array WA shown in Figure 7.1(b.4).

As noted in the wavelet literature, both methods for extending one-dimensional Haar wavelets to higher

dimensionalities have been used in a wide variety of application domains and, to the best of our knowledge,

neither has been shown to be uniformly superior. Our choice of the nonstandard method was mostly moti-

vated by our earlier experience with nonstandard two-dimensional Haar wavelets in the context of effective

image retrieval [100]. An advantage of using the nonstandard transform is that, as we explain later in the

chapter, it allows for an efficient representation of the sign information for wavelet coefficients. This effi-

cient representation stems directly from the construction process for a nonstandard Haar basis [137]. Using

nonstandard Haar wavelets, however, also implies that the standard decomposition algorithms of Vitter and

Wang [144] are no longer applicable. We address this problem by proposing a novel I/O-efficient algorithm

for constructing the nonstandard wavelet decomposition of a relational table (Section 7.2.2). (We often omit

the “nonstandard” qualification in the rest of the chapter.)

Multi-Dimensional Haar Coefficients: Semantics and Representation. Consider a wavelet coefficient

W generated during the multi-dimensional Haar decomposition of a d-dimensional data array A. Mathe-

matically, the coefficient is a multiplicative factor for an appropriate Haar basis function when the data in A

is expressed using the d-dimensional Haar basis [137]. The d-dimensional Haar basis function correspond-

ing to W is defined by (1) a d-dimensional rectangular support region in A that captures the region of A’s

cells that W contributes to during reconstruction; and (2) the quadrant sign information that defines the sign

(+ or �) of W ’s contribution (i.e., +W or �W ) to any cell contained in a given quadrant of its support

rectangle. The wavelet decomposition process guarantees that (1) W can contribute only to a rectangular

regions of A’s cells i.e. the support region is always a d-dimensional rectangle and (2) the signs of W ’s

contribution to those cells can change only across quadrants of the support region i.e. we need to store at

most one sign per quadrant. For example, the overall average coefficient WA[0; 0] = 6:25 in Figure 7.1(b)

contributes positively (i.e.,“+6:25”) to the reconstruction of all the cells in A, so its support region in the

whole array A and its sign is + for all quadrants of the support region. On the other hand, the detail coeffi-

cient WA[1; 2] = �2 contributes only the cells in the lower-right quadrant of A (i.e. A[2; 0]; A[3; 0]; A[2; 1]

and A[3; 1]) and the signs are + for the lower left and lower right quadrants of the support region and � for

the other two quadrants (i.e. contributes +(�2) = �2 to A[2,0] and A[3,0] and �(�2) = +2 to A[2,1]

and A[3,1]). The support regions and signs of all the sixteen coefficients in Figure 7.1(b.4) are shown in

Figure 7.2(a). The support regions are superimposed on the entire array A: the white areas for each coeffi-

cient correspond to regions of A which it does not contribute to i.e. whose reconstruction is independent of
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the coefficient (e.g., WA[1; 2] is white for all cells except A[2; 0]; A[3; 0]; A[2; 1] and A[3; 1]). Figure 7.2(a)

also depicts the two levels of resolution (l = 0; 1) for our example two-dimensional Haar coefficients; as

in the one-dimensional case, these levels define the appropriate constants for normalizing coefficient values

(see, e.g., [137]).

Example 7.2.2: Since the support region represents the cells in A which a wavelet coefficient contributes to,

the value of a cell in A can be reconstructed by adding up the contributions (with the appropriate signs) of

those coefficients who support regions include the cell. For example, the coefficients whose support regions

include A[0,1] are WA[0; 0](+), WA[0; 1](+), WA[1; 0](+), WA[1; 1](+), WA[0; 2](�), WA[2; 0](+) and

WA[2; 2](�), so A[0; 1] can be reconstructed using the following formula:

A[0; 1] = +WA[0; 0]+WA[0; 1]+WA[1; 0]+WA[1; 1]�WA[0; 2]+WA[2; 0]�WA[2; 2] = 2:5�(�1)+(�:5) = 3:
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Figure 7.2: (a) Support regions and signs for the sixteen nonstandard two-dimensional Haar basis functions.
The coefficient magnitudes are multiplied by +1 (�1) where a sign of + (resp., �) appears, and 0 in blank
areas. (b) Representing quadrant sign information for coefficients using “per-dimension” sign vectors.

To simplify the discussion in this chapter, we abstract away the distinction between a coefficient and

its corresponding basis function by representing a Haar wavelet coefficient with the triple W = hR;S; vi,
where:

1. W:R is the d-dimensional support hyper-rectangle of W enclosing all the cells in the data array A

which W contributes to (i.e., the support of the corresponding basis function). We represent this

hyper-rectangle by its low and high boundary values (i.e., starting and ending array cells) along each

dimension j, 1 � j � d; these are denoted by W:R:boundary[j]:lo and W:R:boundary[j]:hi, re-

spectively. Thus, the coefficient W contributes to each data cell A[i1; : : : ; id] satisfying the condition
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W:R:boundary[j]:lo � ij �W:R:boundary[j]:hi for all dimensions j, 1 � j � d. For example, for

the detail coefficient WA[1; 2] in Figure 7.1(b), W:R:boundary[0]:lo = 2, W:R:boundary[0]:hi = 3,

W:R:boundary[1]:lo = 0 and W:R:boundary[1]:hi = 1. The space required to store the support

hyper-rectangle of a coefficient is 2 logN bits, where N denotes the total number of cells of A.

2. W:S stores the sign information for all d-dimensional quadrants of W.R. Storing the quadrant sign

information directly (i.e. a sign per quadrant) would mean a space requirement of O(2d) as there

are 2d quadrants in d-dimensional hyper-rectangle. Instead, we use a more space-efficient repre-

sentation of the quadrant sign information (using only 2d bits) that exploits the regularity of the

nonstandard Haar transform. The basic observation here is that a nonstandard d-dimensional Haar ba-

sis is formed by scaled and translated products of d one-dimensional Haar basis functions [137].

Thus, our idea is to store a 2-bit sign vector for each dimension j that captures the sign varia-

tion of the corresponding one-dimensional basis function. The two elements of the sign vector of

coefficient W along dimension j are denoted by W:S:sign[j]:lo and W:S:sign[j]:hi, and contain

the signs that correspond to the lower and upper half of W:R’s extent along dimension j, respec-

tively. Given the sign vectors along each dimension and treating a sign of + (�) as being equivalent

to +1 (resp., �1), the sign of any d-dimensional quadrant can be computed by taking the prod-

uct of the d sign-vector entries that map to that quadrant; that is, following exactly the basis con-

struction process. (Note that we will continue to make use of this “+1/-1” interpretation of signs

throughout the chapter.) Figure 7.2(b) shows the sign-computation methodology for two example

coefficient hyper-rectangles from Figure 7.2(a). For example, the upper example in Figure 7.2(b)

shows a coefficient with sign vectors W:S:sign[0]:lo = +1 and W:S:sign[0]:hi = �1 along di-

mension 0 (x-axis) and W:S:sign[1]:lo = +1 and W:S:sign[1]:hi = �1 along dimension 1 (y-

axis); the signs of the lower left, lower right, upper left and upper right quadrants of its support

region are therefore W:S:sign[0]:lo �W:S:sign[1]:lo = +1, W:S:sign[0]:hi �W:S:sign[1]:lo = �1,

W:S:sign[0]:lo �W:S:sign[1]:hi = �1, and W:S:sign[0]:hi �W:S:sign[1]:hi = +1 respectively.

3. W:v is the (scalar) magnitude of coefficient W. This is exactly the quantity that W contributes (either

positively or negatively, depending on W:S) to all data array cells enclosed in W:R. For example, the

magnitude of WA[0; 0] in Figure 7.1(b) is 6:25 and that of WA[1; 2] is �2.

Thus, our view of a d-dimensional Haar wavelet coefficient is that of a d-dimensional hyper-rectangle

with a magnitude and a sign that may change across quadrants. Note that, by the properties of the nonstan-

dard Haar decomposition, given any pair of coefficients, their hyper-rectangles are either completely disjoint

or one is completely contained in the other; that is, coefficient hyper-rectangles cannot partially overlap. As

will be seen later, it is precisely these containment properties coupled with our sign-vector representation

of quadrant signs that enable us to efficiently perform join operations directly over wavelet-coefficient

synopses.
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7.2.2 Building and Rendering Wavelet-Coefficient Synopses

Consider a relational table Rwith d attributes X1; X2; : : : Xd. A straightforward way of obtaining a wavelet-

based synopsis of R would be to take the traditional two-dimensional array view of a relational table (with

attributes on the x-axis and tuples on the y-axis), apply a two-dimensional wavelet decomposition on R, and

retain a few large coefficients. It is highly unlikely, however, that this solution will produce a high-quality

compression of the underlying data. The reason is that wavelets (like most compression mechanisms) work

by exploiting locality (i.e., clusters of constant or similar values), which is almost impossible when group-

ing together attributes that can have vastly different domains (e.g., consider an age attribute adjacent to a

salary attribute). Similar problems occur in the vertical grouping as well, since even sorting by some at-

tribute(s) cannot eliminate large “spikes” for others. We address these problems by taking a slightly different

view of the d-attribute relational table R. We can represent the information in R as a d-dimensional array

AR, whose jth dimension is indexed by the values of attribute Xj and whose cells contain the count of tuples

in R having the corresponding combination of attribute values. AR is essentially the joint frequency distri-

bution (JFD) of all the attributes of R. Figure 7.3 shows an example relation with 2 attributes (Figure 7.3(a))

and the corresponding JFD array (Figure 7.3(b)). We obtain the wavelet synopsis of R by performing non-

standard multi-dimensional wavelet decomposition (denoted by WR) of AR and then retaining only some of

the coefficients (based on the desired size of the synopsis) using a thresholding scheme. In this section, we

propose a novel, I/O-efficient algorithm for constructing WR. Note that, even though our algorithm com-

putes the decomposition of AR, it in fact works off the “set-of-tuples” (ROLAP) representation of R. (As

noted by Vitter and Wang [144], this is a requirement for computational efficiency since the JFD array AR is

typically very sparse, especially for the high-dimensional data sets that are typical of DSS applications.) We

also briefly describe our thresholding scheme for controlling the size of a wavelet-coefficient synopsis. We

have also developed a time- and space-efficient algorithm (termed render) for rendering (i.e., expanding)

a synopsis into an approximate “set-of tuples” relation (which is used during query processing as the final

step). We begin by summarizing the notational conventions used throughout the chapter.

Notation. Let D = fD1; D2; : : : ;Ddg denote the set of dimensions of AR, where dimension Dj cor-

responds to the value domain of attribute Xj . Without loss of generality, we assume that each dimension

Dj is indexed by the set of integers f0; 1; � � � ; jDj j � 1g, where jDj j denotes the size of dimension Dj . 2

The d-dimensional JFD array AR comprises N =
Qd

i=1 jDij cells with cell AR[i1; i2; : : : ; id] containing

the count of tuples in R having Xj = ij for each attribute 1 � j � d. We define Nz to be the number of

populated (i.e., non-zero) cells of AR (typically, Nz << N ). Table 7.1 outlines the notation used in this
2We assume that the attributes fX1; : : : ; Xdg are ordinal in nature i.e. their domain are ordered. This includes all numeric

attributes (e.g., age, income) and some categorical attributes (e.g., education). Such domains can always be mapped to the set of
integers mentioned above while preserving the order and hence the locality of the distribution. It is also possible to map unordered
to domains to the set of integers; however, such mappings do not always preserve the locality of the data. For example, mapping
countries to integers using alphabetic ordering does not preserve locality. There may be alternate mappings that are more locality
preserving, e.g., assigning neighboring integers to neighboring countries. Such mapping techniques based on concept hierarchies
are discussed in [40].
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chapter with a brief description of its semantics. We provide detailed definitions of some of these parameters

in the text. Additional notation will be introduced when necessary.

Symbol Semantics
d Number of attributes (i.e., dimensionality) of the input relational table
R, AR Relational table and corresponding d-dimensional joint frequency array
Xj , Dj jth attribute of relation R and corresponding domain of values (1 � j � d)
D = fD1; : : : ; Ddg Set of all data dimensions of the array AR

AR[i1; i2; � � � ; id] Count of tuples in R with Xj = ij (ij 2 f0; : : : ; jDj j � 1g) , 81 � j � d

N =
Q

j jDj j Size (i.e., number of cells) of AR

Nz Number of non-zero cells of AR (Nz << N )
WR[i1; i2; � � � ; id] Coefficient located at coordinates [i1; i2; � � � ; id] of the wavelet transform array WR

W:R:boundary[j]:flo; hig Support hyper-rectangle boundaries along dimension D j for coefficient W (1 � j � d)
W:S:sign[j]:flo; hig Sign vector information along dimension D j for the wavelet coefficient W (1 � j � d)
W:S:signchange[j] Sign-change value along dimension Dj for the wavelet coefficient W (1 � j � d)
W:v Scalar magnitude of the wavelet coefficient W
l Current level of resolution of the wavelet decomposition

Table 7.1: Notation

Most of the notation pertaining to wavelet coefficients W has already been described in Section 7.2.1.

The only exception is the sign-change value vector W:S:signchange[j] that captures the value along di-

mension j (between W:R:boundary[j]:lo and W:R:boundary[j]:hi) at which a transition in the value of

the sign vector W:S:sign[j] occurs, for each 1 � j � d. That is, the sign W:S:sign[j]:lo (W:S:sign[j]:hi)

applies to the range [W:R:boundary[j]:lo; : : : ;W:S:signchange[j]� 1] (resp., [W:S:signchange[j]; : : : ;

W:R:boundary[j]:hi]). As a convention, we set W:S:signchange[j] equal to W:R:boundary[j]:lo when

there is no “true” sign change along dimension j, i.e., W:S:sign[j] contains [+;+] or [�;�]. Note that,

for base Haar coefficients with a true sign change along dimension j, W:S:signchange[j] is simply the

midpoint between W:R:boundary[j]:lo and W:R:boundary[j]:hi (Figure 7.2). This property, however, no

longer holds when arbitrary selections and joins are executed over the wavelet coefficients. As a conse-

quence, we need to store sign-change values explicitly in order to support general query processing opera-

tions in an efficient manner.

The COMPUTEWAVELET Decomposition Algorithm. We now present our I/O-efficient algorithm (called

COMPUTEWAVELET) for constructing the wavelet decomposition of R. Our algorithm exploits the interac-

tion of nonstandard wavelet decomposition and “chunk-based” organizations of relational tables [129, 37].

In chunk-based organizations, the JFD array AR is split into d-dimensional chunks and tuples of R be-

longing to the same chunk are stored contiguously on disk. Figure 7.3 shows an example chunking of AR

(Figure 7.3(c)) and the corresponding organization of R (Figure 7.3(d)). If R is organized in chunks, COM-

PUTEWAVELET can perform the decomposition in a single pass over the tuples of R. Note that such data

organizations have already been proposed in earlier work (e.g., the chunked-file organization of Deshpande

et al. [37] and Orenstein’s z-order linearization [73, 109]), where they have been shown to have significant
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Figure 7.3: (a) An example relation Rwith 2 attributes (b) The corresponding JFD array AR (c) One possible
chunking of AR: all cells inside a chunk are stored contiguously on disk. The chunk size is assumed to be
2 i.e. 2 cells (or tuples) fit in one chunk. (d) The corresponding chunked organization of R: all tuples
belonging to the same chunk are stored contiguously.

performance benefits for DSS applications due to their excellent multi-dimensional clustering properties.

We present our I/O-efficient COMPUTEWAVELET algorithm below assuming that R’s tuples are or-

ganized in d-dimensional chunks. If R is not chunked, then an extra preprocessing step is required to

reorganize R on disk (e.g., to reorganize the relation shown in Figure 7.3(a) as that in Figure 7.3(d)).

This preprocessing is no more expensive than a sorting step (e.g., in z-order) which requires a logarith-

mic number of passes over R. Thus, while the wavelet decomposition requires just a single pass when R

is chunked, in the worst-case (i.e., when R is not “chunked”), the I/O complexity of COMPUTEWAVELET

matches that of Vitter and Wang’s I/O-efficient algorithm for standard Haar wavelet decomposition [144].

We also assume that each chunk can individually fit in memory. We show that the extra memory required

by our wavelet decomposition algorithm (in addition to the memory needed to store the chunk itself) is at

most O(2d � log(maxjfjDj jg)). Finally, our implementation of COMPUTEWAVELET also employs several

of the improvements suggested by Vitter and Wang [144], including a dynamic coefficient thresholding

scheme to ensure that the density of the data remains approximately constant across successive averaging

and differencing steps. We do not discuss the dynamic thresholding step below to keep the presentation of

COMPUTEWAVELET simple.

Our I/O-efficient decomposition algorithm is based on the following observation:

The decomposition of a d-dimensional array AR can be computed by independently computing

the decomposition for each of the 2d d-dimensional subarrays corresponding toAR’s quadrants

and then performing pairwise averaging and differencing on the computed 2d averages of AR’s

quadrants.

Due to the above property, when a chunk is loaded from the disk for the first time, COMPUTEWAVELET
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can perform the entire computation required for decomposing the chunk right away (hence no chunk is read

twice). Lower resolution coefficients are computed by first accumulating, in main memory, averages from

the 2d quadrants (generated from the previous level of resolution) followed by pairwise averaging and dif-

ferencing, thus requiring no extra I/O. Due to the depth first nature of the algorithm, the pairwise averaging

and differencing is performed as soon as all the 2d averages are accumulated, making the algorithm memory

efficient (as, at no point of computation, there can be more than one “active” subarray (whose averages are

still being accumulated) for each level of resolution).

The outline of our I/O-efficient wavelet decomposition algorithm COMPUTEWAVELET is depicted in

Figure 7.4. To simplify the presentation, the COMPUTEWAVELET pseudo-code assumes that all dimensions

of the data arrayAR are of equal size, i.e., jD1j = jD2j = : : : = jDdj = 2m. We discuss handling of unequal

sizes later in this section. Besides the input JFD array (AR) and the logarithm of the dimension size (m),

COMPUTEWAVELET takes two additional arguments: (a) the root (i.e., “lower-left” endpoint) coordinates

of the d-dimensional subarray for which the wavelet transform is to be computed (i1; i2; : : : ; id), and (b)

the current level of resolution for the wavelet coefficients (l). Note that, for a given level of resolution l, the

extent (along each dimension) of the d-dimensional array rooted at (i1; i2; : : : ; id) being processed is exactly

2m�l. The procedure computes the wavelet coefficients of the input subarray and returns the overall average

to the caller (Step 14). It does so by: (1) performing wavelet decomposition recursively on each of the 2d

quadrants of the input array and collecting the averages returned in a 2� � � � � 2 = 2d temporary hyper-box

T (Steps 2–4), (2) performing pairwise averaging and differencing on T to produce the average and detail

coefficients for the level-l decomposition of the input subarray (Step 5), and finally, (3) distributing these

level-l wavelet coefficients to the appropriate locations of the wavelet transform array WR (computing their

support hyper-rectangles and dimension sign vectors at the same time) (Steps 6–12). The initial invocation

of COMPUTEWAVELET is done with parameters (A; 3; (0; 0); 0).

Example 7.2.3: Figures 7.5 illustrates the working on the COMPUTEWAVELET algorithm on the 8 � 8

data array AR (corresponding to the relation shown in Figure 7.3). The recursive invocations of COM-

PUTEWAVELET form a depth-first invocation tree: the root corresponds to the initial invocation COMPUTE-

WAVELET (A, 3, (0,0), 0) with the entire AR as the input subarray. The root then invokes COMPUTE-

WAVELET on its four quadrants: COMPUTEWAVELET (A, 3, (0,0), 1), COMPUTEWAVELET (A, 3, (0,4), 1),

COMPUTEWAVELET (A, 3, (4,0), 1) and COMPUTEWAVELET (A, 3, (4,4), 1) with the lower left, upper left,

lower right and upper right quadrants as the input subarrays respectively. COMPUTEWAVELET (A, 3, (0,0),

1) in turn invokes COMPUTEWAVELET on its four quadrants: COMPUTEWAVELET (A, 3, (0,0), 2), COM-

PUTEWAVELET (A, 3, (0,2), 2), COMPUTEWAVELET (A, 3, (2,0), 2) and COMPUTEWAVELET (A, 3, (2,2),

2). COMPUTEWAVELET (A, 3, (0,0), 2) then invokes COMPUTEWAVELET on its four quadrants: COM-

PUTEWAVELET (A, 3, (0,0), 3), COMPUTEWAVELET (A, 3, (0,1), 3), COMPUTEWAVELET (A, 3, (1,0), 3)

and COMPUTEWAVELET (A, 3, (1,1), 3). Each of these 4 invocation satisfy the terminating condition in

Line 1 of Figure 7.4: so they simply return the respective input 1-cell subarrays (3, 0, 0 and 1 respectively).

The caller i.e. COMPUTEWAVELET (A, 3, (0,0), 2) collects those returned values (i.e. 3, 0, 0 and 1) in the
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“quadrant averages array” T, performs pairwise averaging and differencing, distributes the results in WR

and returns the average (i.e. 1) to its caller (i.e. the COMPUTEWAVELET (A, 3, (0,0), 1) invocation). The

other three invocations by COMPUTEWAVELET (A, 3, (0,0), 1), namely, COMPUTEWAVELET (A, 3, (0,2),

2), COMPUTEWAVELET (A, 3, (2,0), 2) and COMPUTEWAVELET (A, 3, (2,2), 2) are processed in the same

way. The caller i.e. COMPUTEWAVELET (A, 3, (0,0), 1) then collects those returned values (i.e. 1, 0, 0 and

3) in the “quadrant averages array” T, performs pairwise averaging and differencing, distributes the results

in WR and returns the average (i.e. 1) to its caller (i.e. the COMPUTEWAVELET (A, 3, (0,0), 0) invocation).

The other three invocations by COMPUTEWAVELET (A, 3, (0,0), 0), namely, COMPUTEWAVELET (A, 3,

(0,4), 1), COMPUTEWAVELET (A, 3, (4,0), 1) and COMPUTEWAVELET (A, 3, (4,4), 1) are processed in the

same way. The caller i.e. COMPUTEWAVELET (A, 3, (0,0), 0) then collects those returned values (i.e. 1,

0, 0.5 and 0.5) in the “quadrant averages array” T, performs pairwise averaging and differencing, distributes

the results in WR and returns the average (i.e. 0.5).

procedure COMPUTEWAVELET(AR, m, (i1; i2; : : : ; id), l)
begin
1. if l � m return AR[i1; : : : ; id]
2. for t1 := 0,1 � � � for td := 0,1
3. T [t1; : : : ; td] := COMPUTEWAVELET(AR, m, (i1 + t1 � 2m�l�1; i2 + t2 � 2m�l�1; : : : ; id + td � 2m�l�1); l + 1)
4. end � � � end
5. perform pairwise averaging and differencing on the 2� : : :� 2 = 2d hyper-box T
6. for t1 := 0,1 � � � for td := 0,1
7. WR[t1 � 2l +

i1
2m�l ; : : : ; td � 2

l + id
2m�l ]:v := T [t1; : : : ; td]

8. for j := 1; : : : ; d
9. WR[t1 � 2l +

i1
2m�l ; : : : ; td � 2

l + id
2m�l ]:R:boundary[j] := [ij ; ij + 2m�l � 1]

10. WR[t1 � 2l +
i1

2m�l ; : : : ; td � 2
l + id

2m�l ]:S:sign[j] := (tj == 0) ? [+;+] : [+;�]
11. WR[t1 � 2l +

i1
2m�l ; : : : ; td � 2

l + id
2m�l ]:S:signchange[j] := (tj == 0) ? ij : ij + 2m�l

12. end
13. end � � � end
14. return T [0; : : : ; 0]
end

Figure 7.4: COMPUTEWAVELET: An I/O-efficient wavelet decomposition algorithm.

Assuming we can to store the temporary quadrant averages arrays T in memory, COMPUTEWAVELET

can load the d-dimensional chunks of AR into memory one at a time and compute the wavelet coefficients at

all levels for each chunk with no additional I/O’s. This property guarantees that all computation is completed

in a single pass over the chunks of AR i.e. the time complexity of COMPUTEWAVELET is O(Nz). 3 If

AR is not chunked, the complexity of O(Nz:log(Nz)) due to the preprocessing step as discussed before.

The memory requirement of the algorithm is that of storing those temporary hyper-boxes (in addition to

that needed to store the data chunk itself). Each such hyper-box consists of exactly 2d entries and the
3For simplicity, the COMPUTEWAVELET algorithm shown in Figure 7.4 works on AR and hence has a complexity of O(N).

Our implementation, as mentioned before, works on R itself and hence has a time complexity of O(Nz).
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Figure 7.5: Execution of the COMPUTEWAVELET algorithm of a 8 � 8 data array. Each invocation of
the COMPUTEWAVELET procedure is shown in a dotted box labeled with the procedure call with the right
parameters.

number of distinct hyper-boxes that can be “active” at any given point in time during the operation of

COMPUTEWAVELET is bounded by the depth of the recursion, or equivalently, the number of distinct levels

of coefficient resolution. Thus, the extra memory required by COMPUTEWAVELET is at most O(2d � m)

(when jD1j = : : : = jDdj = 2m) or O(2d � log(maxjfjDj jg)) (for the general case of unequal dimension

extents).

We should note here that both the hyper-rectangle and the sign information for any coefficient generated

during the execution of COMPUTEWAVELET over a base relation R can easily be derived from the location

of the coefficient in the wavelet transform array WR, based on the regular recursive structure of the de-

composition process. Thus, in order to conserve space, hyper-rectangle boundaries and sign vectors are not

explicitly stored in the wavelet-coefficient synopses of base relations. (All that we need are the coefficients’
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coordinates in WR.) As we will see later, however, this information does need to be stored explicitly for

intermediate collections of wavelet coefficients generated during query processing,

Handling Unequal Dimension Extents If the sizes of the dimensions of AR are not equal, then the recur-

sive invocation of COMPUTEWAVELET for quadrant [t1; : : : ; td] (Step 3) takes place only if the inequality

ij+ tj �2m�l�1 < jDj j is satisfied, for each j = 1; : : : ; d. This means that, initially, quadrants along certain

“smaller” dimensions are not considered by COMPUTEWAVELET; however, once quadrant sizes become

smaller than the dimension size, computation of coefficients in quadrants for such smaller dimensions is ini-

tiated. Consequently, the pairwise averaging and differencing computation (Step 5) is performed only along

those dimensions that are “active” in the current level of the wavelet decomposition. The support hyper-

rectangles and dimension sign vectors for such active dimensions are computed as described in Steps 8–10,

whereas for an “inactive” dimension j the hyper-rectangle boundaries are set at boundary[j] := (0; jDj j�1)
(the entire dimension extent) and the sign vector is set at sign[j] = [+;+].

As mentioned in Section 7.2.1, the coefficient values computed by COMPUTEWAVELET need to be

properly normalized in order to ensure that the Haar basis functions are orthonormal and the coefficients are

appropriately weighted according to their importance in reconstructing the original data. This is obviously

crucial when thresholding coefficients based on a given (limited) amount of storage space. When all dimen-

sions are of equal extents (i.e., jD1j = jD2j = : : : = jDdj = 2m), we can normalize coefficient values by

simply dividing each coefficient with
p
2l
d
, where l is the level of resolution for the coefficient. As for one-

dimensional wavelets, this normalization ensures the orthonormality of the Haar basis [137]. The following

lemma shows how to extend the normalization process for nonstandard Haar coefficients to the important

case of unequal dimension extents. (The proof follows by a simple verification of the orthonormality prop-

erty for the constructed coefficients.)

Lemma 7.2.4: Let W be any wavelet coefficient generated by pairwise averaging and differencing during

the nonstandard d-dimensional Haar decomposition of A = jD1j � � � � � jDdj. Also, let W:R:length[j] :=

W:R:boundary[j]:hi �W:R:boundary[j]:lo + 1 denote the extent of W along dimension j, for each 1 �
j � d. Then, dividing the value W:v of each coefficient W by the factor

Q
j

q
jDj j

W:R:length[j] gives an

orthonormal basis.

Coefficient Thresholding. Given a limited amount of storage for maintaining the wavelet-coefficient syn-

opsis of R, we can only retain a certain number C of the coefficients stored in WR. (The remaining co-

efficients are implicitly set to 0.) Typically, we have C << Nz , which implies that the chosen C wavelet

coefficients form a highly compressed approximate representation of the original relational data. The goal

of coefficient thresholding is to determine the “best” subset of C coefficients to retain, so that the error in

the approximation is minimized.

The thresholding scheme that we have employed for the purposes of this study is to retain the C largest

wavelet coefficients in absolute normalized value. It is a well-known fact that (for any orthonormal wavelet
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basis) this thresholding method is in fact provably optimal with respect to minimizing the overall mean

squared error (i.e., L2 error norm) in the data compression [137]. Given that our goal in this work is to

support effective and accurate general query processing over such wavelet-compressed relational tables, we

felt that the L2 error norm would provide a reasonable aggregate metric of the accuracy of the approximation

over all the individual tuples of R. Our thresholding approach is also validated by earlier results, where it has

been proven that minimizing the L2 approximation error is in fact optimal (on the average) for estimating

the sizes of join query results [69]. 4 For the remainder of the chapter, we use the symbol WR to denote

the set of wavelet coefficients retained from the decomposition of relation R (i.e., the wavelet-coefficient

synopsis of R).

Rendering a Wavelet-Coefficient Synopsis. A crucial requirement for any lossy data-compression scheme

is the ability to reconstruct an approximate version of the original data from a given compressed rep-

resentation. In our context, this requirement translates to rendering a given set of wavelet coefficients

WT = fWi = hRi; Si; viig corresponding to a relational table T , to produce an “approximate version” of T

that we denote by render(WT ). It is important to note that T can correspond to either a base relation or the

result of an arbitrarily complex SQL query on base relations. As we show in Section 7.3, our approximate

query execution engine does the bulk of its processing directly over the wavelet coefficient domain. This

means that producing the final approximate query answer in “human-readable” form can always be done by

placing a render() operator at the root of the query plan or as a post-processing step.

Abstractly, the approximate relation render(WT ) can be constructed by summing up the contributions

of every coefficient Wi in WT to the appropriate cells of the (approximate) MOLAP array AT . Consider

a cell in AT with coordinates (i1; : : : ; id) that is contained in the Wi’s support hyper-rectangle Wi:R.

Then, the contribution of Wi to AT [i1; : : : ; id] is exactly Wi:v �
Q

1�j�d sj , where sj = W:S:sign[j]:lo

if ij < W:S:signchange[j]; otherwise, sj = W:S:sign[j]:hi. Once the counts for all the cells in the

approximate MOLAP array AT have been computed, the non-zero cells can be used to generate the tuples

in the approximate relation render(WT ). In Section 7.3.5, we present an efficient algorithm for rendering

a set of wavelet coefficients WT to an approximate MOLAP representation. (The tuple generation step is

then trivial.)

7.3 Processing Relational Queries in the Wavelet-Coefficient Domain

In this section, we propose a novel query algebra for wavelet-coefficient synopses. The basic operators of

our algebra correspond directly to conventional relational algebra and SQL operators, including the (non-

aggregate) select, project, and join, as well as aggregate operators like count, sum, and av-
4Note that it is possible to optimize the COMPUTEWAVELET algorithm for this thresholding scheme (e.g, do not perform Steps

6-12 for coefficients with absolute normalized value less than the C best coefficients found so far). We do not incorporate those
optimizations into COMPUTEWAVELET in order to keep it independent of the thresholding scheme. This will allow us to try out
new thresholding approaches in the future without having to change COMPUTEWAVELET .
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erage. There is, however, one crucial difference: our operators are defined over the wavelet-coefficient

domain; that is, their input(s) and output are sets of wavelet coefficients (rather than relational tables). The

motivation for defining a query algebra for wavelet coefficients comes directly from the need for efficient

approximate query processing. To see this, consider an n-ary relational query Q over R1; : : : ; Rn and as-

sume that each relation Ri has been reduced to a (truncated) set of wavelet coefficients WRi
. A simplistic

way of processing Q would be to render each synopsis WRi
into the corresponding approximate relation

(denoted render(WRi
)) and process the relational operators in Q over the resulting sets of tuples. This

strategy, however, is clearly inefficient: the approximate relation render(WRi
) may contain just as many

tuples as the original Ri itself, which implies that query execution costs may also be just as high as those

of the original query. Therefore, such a “render-then-process” strategy essentially defeats one of the main

motivations behind approximate query processing.

On the other hand, the synopsis WRi
is a highly-compressed representation of render(WRi

) that is

typically orders of magnitude smaller than Ri. Executing Q in the compressed wavelet-coefficient domain

(essentially, postponing render-ing until the final query result) can offer tremendous speedups in query ex-

ecution cost. We therefore define the operators op of our query processing algebra over wavelet-coefficient

synopses, while guaranteeing the valid semantics depicted pictorially in the transition diagram of Figure 7.6.

(These semantics can be translated to the equivalence render(op(T1; : : : ; Tk))� op(render(T1; : : : ; Tk)),

for each operator op.) Our algebra allows the fast execution of any relational query Q entirely over the

wavelet-coefficient domain, while guaranteeing that the final (rendered) result is identical to that obtained

by executing Q on the approximate input relations.
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Figure 7.6: Valid semantics for processing query operators over the wavelet-coefficient domain.

In the following subsections, we describe our algorithms for processing the SQL operators in the

wavelet-coefficient domain. Each operator takes as input one or more set(s) of multi-dimensional wavelet

coefficients and appropriately combines and/or updates the components (i.e., hyper-rectangle, sign infor-

mation, and magnitude) of these coefficients to produce a “valid” set of output coefficients (Figure 7.6).

Note that, while the wavelet coefficients (generated by COMPUTEWAVELET) for base relational tables have
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a very regular structure, the same is not necessarily true for the set of coefficients output by an arbitrary

select or join operator. Nevertheless, we loosely continue to refer to the intermediate results of our

algebra operators as “wavelet coefficients” since they are characterized by the exact same components as

base-relation coefficients (e.g., hyper-rectangle, sign-vectors) and maintain the exact same semantics with

respect to the underlying intermediate relation (i.e., the rendering process remains unchanged).

7.3.1 Selection Operator (select)

Our selection operator has the general form selectpred(WT ), where pred represents a generic conjunctive

predicate on a subset of the d attributes in T ; that is, pred = (li1 � Xi1 � hi1) ^ : : : ^ (lik � Xik � hik),

where lij and hij denote the low and high boundaries of the selected range along each selection dimension

Dij , j = 1; 2; � � � ; k, k � d. This is essentially a k-dimensional range selection, where the queried range is

specified along k dimensions D0 = fDi1 ;Di2 ; : : : ;Dikg and left unspecified along the remaining (d � k)

dimensions (D � D0). (D = fD1;D2; : : : ; Ddg denotes the set of all dimensions of T .) Thus, for each

unspecified dimension Dj , the selection range spans the full index domain along the dimension; that is,

lj = 0 and hj = jDj j � 1, for each Dj 2 (D �D0).
The select operator effectively filters out the portions of the wavelet coefficients in the synopsis WT

that do not overlap with the k-dimensional selection range, and thus do not contribute to cells in the selected

hyper-rectangle. This process is illustrated pictorially in Figure 7.7. More formally, let W 2 WT denote

any wavelet coefficient in the input set of our select operator. Our approximate query execution engine

processes the selection over W as follows. If W ’s support hyper-rectangle W:R overlaps the k-dimensional

selection hyper-rectangle; that is, if for every dimension Dij 2 D0, the following condition is satisfied:

lij �W:R:boundary[ij ]:lo � hij or W:R:boundary[ij ]:lo � lij �W:R:boundary[ij ]:hi;

then

1. For all dimensions Dij 2 D
0 do

1.1. Set W:R:boundary[ij ]:lo := maxflij ;W:R:boundary[ij ]:log and W:R:boundary[ij ]:hi :=
minfhij ;W:R:boundary[ij ]:hig.

1.2. If W:R:boundary[ij ]:hi < W:S:signchange[ij] then set W:S:signchange[ij] := W:R:boundary[ij ]:lo
and W:S:sign[ij ] := [W:S:sign[ij ]:lo;W:S:sign[ij ]:lo].

1.3. Else if W:R:boundary[ij ]:lo �W:S:signchange[ij] then set W:S:signchange[ij] := W:R:boundary[ij ]:lo
and W:S:sign[ij ] := [W:S:sign[ij ]:hi;W:S:sign[ij ]:hi].

2. Add the (updated)W to the set of output coefficients; that is, set WS :=WS[fWg, whereS = selectpred(T ).

Our select processing algorithm chooses (and appropriately updates) only the coefficients in WT

that overlap with the k-dimensional selection hyper-rectangle. For each such coefficient, our algorithm (a)

updates the hyper-rectangle boundaries according to the specified selection range (Step 1.1), and (b) updates
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Figure 7.7: (a) Processing selection operation in the relation domain. (b) Processing selection operation in
the wavelet-coefficient domain.

the sign information, if such an update is necessary (Steps 1.2-1.3). Briefly, the sign information along the

queried dimension Dij needs to be updated only if the selection range along Dij is completely contained

in either the low (1.2) or the high (1.3) sign-vector range of the coefficient along Dij . In both cases, the

sign-vector of the coefficient is updated to contain only the single sign present in the selection range and

the coefficient’s sign-change is set to its leftmost boundary value (since there is no change of sign along

Dij after the selection). The sign-vector and sign-change of the result coefficient remain untouched (i.e.,

identical to those of the input coefficient) if the selection range spans the original sign-change value.

Example 7.3.1: Figure 7.7(a) shows the semantics of the selection operation in the relation domain. A

relation T with 2 dimensions (jD1j = 16; jD2j = 16) is shown in its JFD representation AT . The select

operator is a 2-dimensional selection hyper-rectangle with boundaries [l1; h1] = [4; 13] and [l2; h2] = [5; 10]

along dimensions D1 and D2 respectively. The output of the operation consists of only those tuples that fall

inside the selection hyperrectangle.

Figure 7.7(b) shows the semantics of the same selection operation in the wavelet domain. We illustrate

the processing for one of the wavelet coefficients: the others are processed similarly. Consider the wavelet

coefficient W3 having hyper-rectangle ranges W3:R:boundary[1] = [9; 15] and W3:R:boundary[2] =

[2; 7]. The sign information for W3 is W3:S:sign[1] = [+;�], W3:S:sign[2] = [+;�] (Figure 7.2(b)),

W3:S:signchange[1] = 12, and W3:S:signchange[2] = 4. Since W3’s hyper-rectangle overlaps with the

selection hyper-rectangle, it is processed by the select operator as follows. First, in Step 1.1, the hyper-

rectangle boundaries of W3 are updated to W3:R:boundary[1] := [9; 13] and W3:R:boundary[2] := [5; 7]

(i.e., the region that overlaps with the select ranges along D1 and D2). Since W3:S:signchange[1] = 12

which is between 9 and 13 (the new boundaries along D1), the sign information along D1 is not updated.

Along dimension D2, however, we haveW3:S:signchange[2] = 4 which is less thanW3:R:boundary[2]:lo =

5, and so Step 1.3 updates the sign information alongD2 toW3:S:sign[2] := [�;�] andW3:S:signchange[2] :=
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7.3.2 Projection Operator (project)

Our projection operator has the general form projectXi1
;::: ;Xik

(WT ), where the k projection attributes

Xi1 ; : : : ;Xik form a subset of the d attributes of T . Letting D0 = fDi1 ; : : : ;Dikg denote the k � d

projection dimensions, we are interested in projecting out the d � k dimensions in (D � D0). We give

a general method for projecting out a single dimension Dj 2 D �D0. This method can then be applied

repeatedly to project out all the dimensions in (D �D0), one dimension at a time.

Consider T ’s corresponding multi-dimensional array AT . Projecting a dimension Dj out of AT is equiv-

alent to summing up the counts for all the array cells in each one-dimensional row of AT along dimension

Dj and then assigning this aggregated count to the single cell corresponding to that row in the remaining

dimensions (D � fDjg). The above process is illustrated with an example 2-dimensional array AT in Fig-

ure 7.8(a). Consider any d-dimensional wavelet coefficient W in the project operator’s input set WT .

Remember that W contributes a value of W:v to every cell in its support hyper-rectangle W:R. Further-

more, the sign of this contribution for every one-dimensional row along dimension Dj is determined as

either W:S:sign[j]:hi (if the cell lies above W:S:signchange[j]) or W:S:sign[j]:lo (otherwise). Thus, we

can work directly on the coefficient W to project out dimension Dj by simply adjusting the coefficient’s

magnitude with an appropriate multiplicative constant W:v :=W:v � pj , where:

pj = (W:R:boundary[j]:hi �W:S:signchange[j] + 1) �W:S:sign[j]:hi +

(W:S:signchange[j] �W:R:boundary[j]:lo) �W:S:sign[j]:lo: (7.1)

A two-dimensional example of projecting out a dimension in the wavelet-coefficient domain is depicted in
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Figure 7.8(b). Multiplying W:v with pj (Equation (7.1)) effectively projects out dimension Dj from W

by summing up W ’s contribution on each one-dimensional row along dimension Dj . Of course, besides

adjusting W:v, we also need to discard dimension Dj from the hyper-rectangle and sign information for W ,

since it is now a (d�1)-dimensional coefficient (on dimensionsD�fDjg). Note that if the coefficient’s sign-

change lies in the middle of its support range along dimension Dj (e.g., see Figure 7.2(a)), then its adjusted

magnitude will be 0, which means that it can safely be discarded from the output set of the projection

operation.

Repeating the above process for each wavelet coefficient W 2 WT and each dimension Dj 2 D �D0

gives the set of output wavelet coefficients WS , where S = projectD0(T ). Equivalently, given a coef-

ficient W , we can simply set W:v := W:v �QDj2D�D0 pj (where pj is as defined in Equation (7.1)) and

discard dimensions D �D0 from W ’s representation.

Example 7.3.2: Figure 7.8(a) shows the semantics of the projection operation in the relation domain. It

shows the same 2-dimensional relation (jD1j = 16; jD2j = 16) from Example 7.3.1 and the result of its

projection on dimension D1.

Figure 7.8(b) shows the semantics of the projection operation in the wavelet domain. Consider the

wavelet coefficient W whose hyper-rectangle and sign information along dimension D2 are as follows:

W:R:boundary[2] = [4; 11], W:S:sign[2] = [�;+], and W:S:signchange[2] = 10. Also, let the mag-

nitude of W be W:v = 2. Then, projecting W on dimension D1 causes W:v to be updated to W:v :=

2 � ((11 � 10 + 1)� (10� 4)) = �8.

7.3.3 Join Operator (join)

Our join operator has the general form joinpred(WT1 ;WT2), where T1 and T2 are (approximate) relations

of arity d1 and d2, respectively, and pred is a conjunctive k-ary equi-join predicate of the form (X1
1 =

X2
1 ) ^ : : : ^ (X1

k = X2
k), where Xi

j (Di
j) (j = 1; : : : ; di) denotes the jth attribute (resp., dimension) of

Ti (i = 1; 2). (Without loss of generality, we assume that the join attributes are the first k � minfd1; d2g
attributes of each joining relation.) Note that the result of the join operation WS is a set of (d1 + d2 � k)-

dimensional wavelet coefficients; that is, the join operation returns coefficients of (possibly) different arity

than any of its inputs.

To see how our join processing algorithm works, consider the multi-dimensional arrays AT1 and AT2

corresponding to the join operator’s input arguments. Let (i11; : : : ; i
1
d1
) and (i21; : : : ; i

2
d2
) denote the co-

ordinates of two cells belonging to AT1 and AT2 , respectively. If the indexes of the two cells match on

the join dimensions, i.e., i11 = i21; : : : ; i
1
k = i2k, then the cell in the join result array AS with coordinates

(i11; : : : ; i
1
d1
; i2k+1; : : : ; i

2
d2
) is populated with the product of the count values contained in the two joined

cells. Figure 7.9(a) illustrates the above process with two example 2-dimensional arrays AT1 (having di-

mensions D1 and D2, jD1j = jD2j = 16) and AT2 (having dimensions D1 and D3, jD1j = jD3j = 16)

and join dimension D1. For example, the cells (9; 6) in AT1 (count value 2) and (9; 2) in AT2 (count value
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6) match on join dimension D1 (both 9); hence the output is populated with the cell (9; 6; 2) (count value

= 2 � 6 = 12). Since the cell counts for ATi are derived by appropriately summing the contributions of the

wavelet coefficients in WTi and, of course, a numeric product can always be distributed over summation,

we can process the join operator entirely in the wavelet-coefficient domain by considering all pairs of

coefficients from WT1 and WT2 . Briefly, for any two coefficients from WT1 and WT2 that overlap in the join

dimensions and, therefore, contribute to joining data cells, we define an output coefficient with magnitude

equal to the product of the two joining coefficients and a support hyper-rectangle with ranges that are (a)

equal to the overlap of the two coefficients for the k (common) join dimensions, and (b) equal to the original

coefficient ranges along any of the d1 + d2 � 2k remaining dimensions. The sign information for an output

coefficient along any of the k join dimensions is derived by appropriately multiplying the sign-vectors of the

joining coefficients along that dimension, taking care to ensure that only signs along the overlapping portion

are taken into account. (The sign information along non-join dimensions remains unchanged.) An example

of this process in two dimensions (d1 = d2 = 2, k = 1) is depicted in Figure 7.9(b).

More formally, our approximate query execution strategy for joins can be described as follows. (To

simplify the notation, we ignore the “1/2” superscripts and denote the join dimensions as D1; : : : ;Dk, and

the remaining d1 + d2 � 2k dimensions as Dk+1; : : : ;Dd1+d2�k.) For each pair of wavelet coefficients

W1 2 WT1 and W2 2 WT2 , if the coefficients’ support hyper-rectangles overlap in the k join dimensions;

that is, if for every dimension Di, i = 1 : : : ; k, the following condition is satisfied:

W1:R:boundary:lo[i] � W2:R:boundary:lo[i] � W1:R:boundary:hi[i] or

W2:R:boundary:lo[i] � W1:R:boundary:lo[i] � W2:R:boundary:hi[i];

then the corresponding output coefficient W 2WS is defined in the following steps.

1. For all join dimensions Di, i = 1; : : : ; k do

1.1. Set W:R:boundary[i]:lo := maxfW1:R:boundary[i]:lo;W2:R:boundary[i]:log and W:R:boundary[i]:hi :=
minfW1:R:boundary[i]:hi;W2:R:boundary[i]:hig.

1.2. For j = 1; 2 /* let sj be a temporary sign-vector variable */

1.2.1. IfW:R:boundary[i]:hi < Wj :S:signchange[i] then set sj := [Wj :S:sign[i]:lo;Wj :S:sign[i]:lo].

1.2.2. Else ifW:R:boundary[i]:lo �Wj :S:signchange[i] then set sj := [Wj :S:sign[i]:hi;Wj:S:sign[i]:hi].

1.2.3. Else set sj := Wj :S:sign[i].

1.3. Set W:S:sign[i] := [s1:lo � s2:lo ; s1:hi � s2:hi].

1.4. If W:S:sign[i]:lo == W:S:sign[i]:hi then set W:S:signchange[i] := W:R:boundary[i]:lo.

1.5 Else set W:S:signchange[i] := maxj=1;2 fWj :S:signchange[i] : Wj :S:signchange[i] 2 [W:R:boundary[i]:lo;
W:R:boundary[i]:hi]g.

2. For each (non-join) dimension D i, i = k + 1; : : : ; d1 do: Set W:R:boundary[i] := W1:R:boundary[i],
W:S:sign[i] := W1:S:sign[i] , and W:S:signchange[i] := W1:S:signchange[i].

3. For each (non-join) dimensionD i, i = d1+1; : : : ; d1+d2�k do: Set W:R:boundary[i] := W2:R:boundary[i�
d1+k], W:S:sign[i] :=W2:S:sign[i�d1+k] , and W:S:signchange[i] := W2:S:signchange[i�d1+k].
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4. Set W:v := W1:v �W2:v and WS :=WS [ fWg, where S = joinpred(T1; T2).

Note that the bulk of our join processing algorithm concentrates on the correct settings for the output

coefficient W along the k join dimensions (Step 1), since the problem becomes trivial for the d1 + d2 � 2k

remaining dimensions (Steps 2-3). Given a pair of joining input coefficients and a join dimension Di, our

algorithm starts out by setting the hyper-rectangle range of the output coefficient W along Di equal to the

overlap of the two input coefficients along Di (Step 1.1). We then proceed to compute W ’s sign information

along join dimension Di (Steps 1.2-1.3) , which is slightly more involved. (Remember that T1 and T2 are

(possibly) the results of earlier select and/or join operators, which means that their rectangle boundaries

and signs along Di can be arbitrary.) The basic idea is to determine, for each of the two input coefficients W1

and W2, where the boundaries of the join range lie with respect to the coefficient’s sign-change value along

dimension Di. Given an input coefficient Wj (j = 1; 2), if the join range along Di is completely contained

in either the low (1.2.1) or the high (1.2.2) sign-vector range of Wj along Di, then a temporary sign-vector
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sj is appropriately set (with the same sign in both entries). Otherwise, i.e., if the join range spans Wj’s sign-

change (1.2.3), then sj is simply set to Wj’s sign-vector along Di. Thus, sj captures the sign of coefficient

Wj in the joining range, and multiplying s1 and s2 (element-wise) yields the sign-vector for the output

coefficient W along dimension Di (Step 1.3). If the resulting sign vector for W does not contain a true sign

change (i.e., the low and high components of W:S:sign[i] are the same), then W ’s sign-change value along

dimension Di is set equal to the low boundary of W:R along Di, according to our convention (Step 1.4).

Otherwise, the sign-change value for the output coefficient W along Di is set equal to the maximum of the

input coefficients’ sign-change values that are contained in the join range (i.e., W:R’s boundaries) along Di

(Step 1.5).

In Figure 7.9(c), we illustrate three common scenarios for the computation of W ’s sign information

along the join dimension Di. The left-hand side of the figure shows three possibilities for the sign infor-

mation of the input coefficients W1 and W2 along the join range of dimension Di (with crosses denoting

sign changes). The right-hand side depicts the resulting sign information for the output coefficient W along

the same range. The important thing to observe with respect to our sign-information computation in Steps

1.3–1.5 is that the join range along any join dimension Di can contain at most one true sign change. By

this, we mean that if the sign for input coefficient Wj actually changes in the join range along Di, then

this sign-change value is unique; that is, the two input coefficients cannot have true sign changes at distinct

points of the join range. This follows from the complete containment property of the base coefficient ranges

along dimension Di (Section 7.2.1). (Note that our algorithm for select retains the value of a true sign

change for a base coefficient if it is contained in the selection range, and sets it equal to the value of the

left boundary otherwise.) This range containment along Di ensures that if W1 and W2 both contain a true

sign change in the join range (i.e., their overlap) along Di, then that will occur at exactly the same value for

both (as illustrated in Figure 7.9(c.1)). Thus, in Step 1.3, W1’s and W2’s sign vectors in the join range can

be multiplied to derive W ’s sign-vector. If, on the other hand, one of W1 and W2 has a true sign change

in the join range (as shown in Figure 7.9(c.2)), then the max operation of Step 1.5 will always set the sign

change of W along Di correctly to the true sign-change value (since the other sign change will either be at

the left boundary or outside the join range). Finally, if neither W1 nor W2 have a true sign change in the

join range, then the high and low components of W ’s sign vector will be identical and Step 1.4 will set W ’s

sign-change value correctly.

Example 7.3.3: Figure 7.9(a) shows the semantics of join operation in the relation domain as explained be-

fore. Figure 7.9(b) and (c) shows the semantics of the operation in the wavelet domain. Consider the wavelet

coefficients W1 and W2. Let the boundaries and sign information of W1 and W2 along the join dimension

D1 be as follows: W1:R:boundary[1] = [4; 15], W2:R:boundary[1] = [8; 15], W1:S:sign[1] = [�;+],
W2:S:sign[1] = [�;+], W1:S:signchange[1] = 8, and W2:S:signchange[1] = 12. In the following,

we illustrate the computation of the hyper-rectangle and sign information for join dimension D1 for the

coefficient W that is output by our algorithm when W1 and W2 are “joined”. Note that for the non-join

dimensions D2 and D3, this information for W is identical to that of W1 and W2 (respectively), so we focus
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solely on the join dimension D1.

First, in Step 1.1, W:R:boundary[1] is set to [8; 15], i.e., the overlap range between W1 and W2 along

D1. In Step 1.2.2, since W:R:boundary[1]:lo = 8 is greater than or equal to W1:S:signchange[1] = 8,

we set s1 = [+;+]. In Step 1.2.3, since W2:S:signchange[1] = 12 lies in between W:R’s boundaries, we

set s2 = [�;+]. Thus, in Step 1.3, W:S:sign[1] is set to the product of s1 and s2 which is [�;+]. Finally,

in Step 1.5, W:S:signchange[1] is set to the maximum of the sign change values for W1 and W2 along

dimension D1, or W:S:signchange[1] := maxf8; 12g = 12.

7.3.4 Aggregate Operators

In this section, we show how conventional aggregation operators, like count, sum, and average, are

realized by our approximate query execution engine in the wavelet-coefficient domain5. As before, the

input to each aggregate operator is a set of wavelet coefficients WT . If the aggregation is not qualified

with a GROUP-BY clause, then the output of the operator is a simple scalar value for the aggregate. In the

more general case, where a GROUP-BY clause over dimensions D0 = fD1; : : : ;Dkg has been specified,

the output of the aggregate operator consists of a k-dimensional array spanning the dimensions inD0, whose

entries contain the computed aggregate value for each cell.

Note that, unlike our earlier query operators, we define our aggregate operators to provide output that is

essentially a rendered data array, rather than a set of (un-rendered) wavelet coefficients. This is because there

is no clean, general method to map the computed aggregate values (e.g., attribute sums or averages) onto

the semantics and structure of wavelet coefficients. We believe, however, that exiting the coefficient domain

after aggregation has no negative implications for the effectiveness of our query execution algorithms. The

reason is that, for most DSS queries containing aggregation, the aggregate operator is the final operator at

the root of the query execution plan, which means that its result would have to be rendered anyway.

While the earlier work of Vitter and Wang [144] has addressed the computation of aggregates over a

wavelet-compressed relational table, their approach is significantly different from ours. Vitter and Wang

focus on a very specific form of aggregate queries, namely range-sum queries, where the range(s) are spec-

ified over one or more functional attribute and the summation is done over a prespecified measure attribute.

Their wavelet decomposition and aggregation algorithm are both geared towards this specific type of queries

that essentially treats the relation’s attributes in an “asymmetric” manner (by distinguishing the single mea-

sure attribute). Our approach, on the other hand, has a much broader query processing scope. As a result,

all attributes are treated in a completely symmetric fashion, thus enabling us to perform a broad range of

aggregate (and non-aggregate) operations over any attribute(s).
5Like most conventional data reduction and approximate querying techniques (e.g., sampling and histograms), wavelets are

inherently limited to “trivial answers” when it comes to min or max aggregate functions (see, for example, [70]). In our case,
this would amount to selecting the non-zero cell in the reconstructed array with minimum/maximum coordinate along the specified
query range. We do not consider min or max aggregates further in this chapter.
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Count Operator (count). Our count operator has the general form countD0(WT ), where the k GROUP-

BY dimensions D0 = fDi1 ; : : : ;Dikg form a (possibly empty) subset of the d attributes of T . Counting is the

most straightforward aggregate operation to implement in our framework, since each cell in our approximate

multi-dimensional array already stores the count information for that cell. Thus, processing countD0(WT )

is done by simply projecting each input coefficient onto the GROUP-BY dimensions D0 and rendering the

result into a multi-dimensional array of counts, as follows.

1. Let WS := projectD0(WT ) (see Section 7.3.2).

2. Let AS := render(WS) and output the cells in the jD0j-dimensional array AS with non-zero counts.

Sum Operator (sum). The general form of our summation operator is sumD0(WT ;Dj), where D0 =
fDi1 ; : : : ; Dikg denotes the set of GROUP-BY dimensions and Dj 62 D0 corresponds to the attribute of T

whose values are summed. The sum operator is implemented in three steps. First, we project the input

coefficients WT on dimensions D0 [ fDjg. Second, for each coefficient W output by the first step and for

each row of cells along the summation attribute Dj , we compute the sum of the product of the coefficient’s

magnitude W:v and the index of the cell along Dj
6. This sum (essentially, an integral along Dj) is then

assigned to the coefficient’s magnitude W:v and the summing dimension Dj is discarded. Thus, at the end of

this step, W:v stores the contribution of W to the summation value for every jD0j-dimensional cell in W:R.

Third, the resulting set of wavelet coefficients is rendered to produce the output multi-dimensional array on

dimensions D0. More formally, our sumD0(WT ;Dj) query processing algorithm comprises the following

steps.

1. Let WS := projectD0[fDjg(WT ) (Section 7.3.2).

2. For each wavelet coefficient W 2 WS do

2.1. Set W:v according to the following equation:

W:v := W:v �

0
@W:S:sign[j]:lo �

W:S:signchange[j]�1X
k=W:R:boundary[j]:lo

k + W:S:sign[j]:hi �

W:R:boundary[j]:hiX
k=W:S:signchange[j]

k

1
A :

Note that, the summations of the index values along D j in the above formula can be expressed in closed
form using straightforward algebraic methods.

2.2. Discard dimension Dj from the hyper-rectangle and sign information for W .

3. Let AS := render(WS) and output the cells in the jD 0j-dimensional array AS with non-zero values for the
summation.

6To simplify the exposition, we assume that the (integer) cell index values along dimension Dj are identical to the domain
values for the corresponding attribute Xj of T . If that is not the case, then a reverse mapping from the Dj index values to the
corresponding values of Xj is needed to sum the attribute values along the boundaries of a coefficient.
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Average Operator (average). The averaging operator averageD0(WT ;Dj) (where D0 is the set of

GROUP-BY dimensions and Dj 62 D0 corresponds to the averaged attribute of T ) is implemented by com-

bining the computation of sumD0(WT ;Dj) and countD0(WT ). The idea is to compute the attribute sums

and tuple counts for every cell over the data dimensions in the GROUP-BY attributes D0, as described earlier

in this section. We then render the resulting coefficients and output the average value (i.e., the ratio of sum

over count) for every cell with non-zero sum and count.

7.3.5 Rendering a Set of Wavelet Coefficients

Since our approximate query execution engine does the bulk of its processing in the wavelet coefficient do-

main, an essential final step for every user query is to render an output set WS of d-dimensional wavelet co-

efficients (over, say, D = fD1; : : : ;Ddg) to produce the approximate query answer in a “human-readable”

form. (Note that rendering is required as a final step even for the aggregate processing algorithms described

in the previous section.) The main challenge in the rendering step is how to efficiently expand the input

set of d-dimensional wavelet coefficients WS into the corresponding (approximate) d-dimensional array of

counts AS .

A naive approach to rendering WS would be to simply consider each cell in the multi-dimensional array

AS and sum the contributions of every coefficient W 2WS to that cell in order to obtain the corresponding

tuple count. However, the number of cells in AS is potentially huge, which implies that such a naive render-

ing algorithm could be extremely inefficient and computationally expensive (typically, of order O(N �jWS j),
where N =

Qd
i=1 jDij is the number of array cells). Instead of following this naive and expensive strategy,

we propose a more efficient algorithm (termed render) for rendering an input set of multi-dimensional

wavelet coefficients. (Note that render can be seen either as a (final) query processing operator or as a

post-processing step for the query.) Our algorithm exploits the fact that the number of coefficients in WS

is typically much smaller than the number of array cells N . This implies that we can expect AS to consist

of large, contiguous multi-dimensional regions, where all the cells in each region contain exactly the same

count. (In fact, because of the sparsity of the data, many of these regions will have counts of 0.) Further-

more, the total number of such “uniform-count” regions in AS is typically considerably smaller that N .

Thus, the basic idea of our efficient rendering algorithm is to partition the multi-dimensional array AS , one

dimension at a time, into such uniform-count data regions and output the (single) count value corresponding

to each such region (the same for all enclosed cells).

Our render algorithm (depicted in Figure 7.10) recursively partitions the d-dimensional data array

AS , one dimension at a time and in the dimension order D1; : : : ; Dd. Algorithm render takes two input

arguments: (a) the index (i) of the next dimension Di along which the array AS is to be partitioned, and (b)

the set of wavelet coefficients (COEFF) in the currently processed partition of AS (generated by the earlier

partitionings along dimensions D1; : : : ;Di�1). The initial invocation of render is done with i = 1 and

COEFF =WS .
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procedure render(COEFF, i)
begin
1. if (i > d) f
2. count := 0
3. for each coefficient W in COEFF

4. sign :=
Q

Dj2D
signj

/* signj := W:S:sign[j]:lo if W:R:boundary[j]:lo < W:S:signchange[j]; else, signj :=W:S:sign[j]:hi */
5. count := count+ sign �W:v

6. output (W:R:boundary, count) /* W is any coefficient in COEFF */
7. return
8. g
9. Q := ; /* elements e in priority queue Q are sorted in increasing order of e:key */
10. for each coefficient W in COEFF

11. insert element e into Q where e:key := W:R:boundary[i]:lo� 1 and e:val :=W

12. insert element e into Q where e:key := W:R:boundary[i]:hi and e:val := W

13. if (W:R:boundary[i]:lo < W:S:signchange[i] �W:R:boundary[i]:hi)
14. insert element e into Q where e:key := W:S:signchange[i]� 1 and e:val := W

15. prev := �1, TEMP1 := ;
16. while (Q is not empty) do f
17. TEMP2 := ;, topkey := e:key for element e at head of Q
18. dequeue all elements e with e:key = topkey at the head of Q and insert e:val into TEMP1
19. for each coefficient W in TEMP1
20. delete W from TEMP1 if W:R:boundary[i]:hi < prev + 1
21. if W:R:boundary[i] overlaps with the interval [prev + 1; topkey] along dimension D i

22. W 0 :=W

23. W 0:R:boundary[i]:lo := prev + 1, W 0:R:boundary[i]:hi := topkey

24. insert W 0 into TEMP2
25. render(TEMP2; i+ 1)
26. prev := topkey

27. g
end

Figure 7.10: render: An efficient algorithm for rendering multi-dimensional wavelet coefficients.

When partitioning AS into uniform-count ranges along dimension Di, the only points that should be

considered are those where the cell counts along Di could potentially change. These are precisely the points

where a new coefficient W starts contributing (W:R:boundary[i]:lo), stops contributing (W:R:boundary[i]:hi),

or the sign of its contribution changes (W:S:signchange[i]). Algorithm render identifies these points

along dimension Di for each coefficient in COEFF and stores them in sorted order in a priority queue Q

(Steps 10–14). Note that, for any pair of consecutive partitioning points along Di, the contribution of each

coefficient in COEFF (and, therefore, their sum) is guaranteed to be constant for any row of cells along Di

between the two points. Thus, abstractly, our partitioning generates one-dimensional uniform-count ranges

along Di. Once the partitioning points along dimension Di have been determined, they are used to partition

the hyper-rectangles of the wavelet coefficients in COEFF along Di (Steps 16–27). Algorithm render is

then recursively invoked with the set of (partial) coefficients in each partition of Di to further partition the

coefficients along the remaining dimensions Di+1; : : : ;Dd. Once the array has been partitioned along all
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Figure 7.11: Partitioning a two-dimensional array by procedure render.

dimensions in D (i.e., render is invoked with parameter i > d), a coefficient W in the input set of coeffi-

cients COEFF is guaranteed to have a constant contribution to every cell in the corresponding d-dimensional

partition. This essentially means that we have discovered a d-dimensional uniform-count partition in AS ,

and we can output the partition boundaries and the corresponding tuple count (Steps 2–6).

Figure 7.11(b) depicts the partitioning of a two-dimensional data array generated by render for the

input set consisting of the four wavelet coefficients shown in Figure 7.11(a). The time complexity of our

render algorithm can be shown to be O(jWS j � P ), where P is the number of uniform-count partitions in

AS . As we have already observed, P is typically much smaller than the number of array cells N . Also, note

that render requires only O(jWS j � d) of memory, since it only needs to keep track of the coefficients in

the partition currently being processed for each dimension.

7.4 Experimental Study

In this section, we present the results of an extensive empirical study that we have conducted using the novel

query processing tools developed in this chapter. The objective of this study is twofold: (1) to establish

the effectiveness of our wavelet-based approach to approximate query processing, and (2) to demonstrate

the benefits of our methodology compared to earlier approaches based on sampling and histograms. Our

experiments consider a wide range of queries executed on both synthetic and real-life data sets. The major

findings of our study can be summarized as follows.

� Improved Answer Quality. The quality/accuracy of the approximate answers obtained from our

wavelet-based query processor is, in general, better than that obtained by either sampling or his-

tograms for a wide range of data sets and select, project, join, and aggregate queries.

� Low Synopsis Construction Costs. Our I/O-efficient wavelet decomposition algorithm is extremely

fast and scales linearly with the size of the data (i.e., the number of cells in the MOLAP array). In

contrast, histogram construction costs increase explosively with the dimensionality of the data.
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� Fast Query Execution. Query execution-time speedups of more than two orders of magnitude are

made possible by our approximate query processing algorithms. Furthermore, our query execution

times are competitive with those obtained by the histogram-based methods of Ioannidis and Poos-

ala [70], and sometimes significantly faster (e.g., for joins).

Thus, our experimental results validate the thesis of this chapter that wavelets are a viable, effective tool

for general-purpose approximate query processing in DSS environments. All experiments reported in this

section were performed on a Sun Ultra-2/200 machine with 512 MB of main memory, running Solaris 2.5.

7.4.1 Experimental Testbed and Methodology

Techniques. We consider three approximate query answering techniques in our study.

� Sampling. A random sample of the non-zero cells in the multi-dimensional array representation for each

base relation is selected , and the counts for the cells are appropriately scaled. Thus, if the total count of all

cells in the array is t and the sum of the counts of cells in the sample is s, then the count of every cell in

the sample is multiplied by t
s . These scaled counts give the tuple counts for the corresponding approximate

relation.

� Histograms. Each base relation is approximated by a multi-dimensional MaxDiff(V,A) histogram. Our

choice of this histogram class is motivated by the recent work of Ioannidis and Poosala [70], where it is

shown that MaxDiff(V,A) histograms result in higher-quality approximate query answers compared to other

histogram classes (e.g., EquiDepth or EquiWidth). We process selects, joins, and aggregate operators

on histograms as described in [70]. For instance, while selects are applied directly to the histogram for

a relation, a join between two relations is done by first partially expanding their histograms to generate

the tuple-value distribution of the each relation. An indexed nested-loop join is then performed on the

resulting tuples.

�Wavelets. Wavelet-coefficient synopses are constructed on the base relations (using algorithm COMPUTE-

WAVELET) and query processing is performed entirely in the wavelet-coefficient domain, as described in

Section 7.3. In our join implementation, overlapping pairs of coefficients are determined using a sim-

ple nested-loop join. Furthermore, during the rendering step for non-aggregate queries, cells with negative

counts are not included in the final answer to the query.

Since we assume d dimensions in the multi-dimensional array for a d-attribute relation, c random sam-

ples require c � (d+ 1) units of space; d units are needed to store the index of the cell and 1 unit is required

to store the cell count. Storing c wavelet coefficients also requires the same amount of space, since we

need d units to specify the position of the coefficient in the wavelet transform array and 1 unit to specify

the value for the coefficient. (Note that the hyper-rectangle and sign information for a base coefficient can

easily be derived from its location in the wavelet transform array.) On the other hand, each histogram bucket

requires 3 � d + 1 units of space; 2 � d units to specify the low and high boundaries for the bucket along

each of the d dimensions, d units to specify the number of distinct values along each dimension, and 1 unit
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to specify the average frequency for the bucket [116]. Thus, for a given amount of space corresponding to

c samples/wavelet coefficients, we store b � c
3 histogram buckets to ensure a fair comparison between the

methods.

Queries. The workload used to evaluate the various approximation techniques consists of four main query

types: (1) SELECT Queries: ranges are specified for (a subset of) the attributes in a relation and all tu-

ples that satisfy the conjunctive range predicate are returned as part of the query result, (2) SELECT-SUM

Queries: the total sum of a particular attribute’s values is computed for all tuples that satisfy a conjunctive

range predicate over (a subset of) the attributes, (3) SELECT-JOINQueries: after performing selections on

two input relations, an equi-join on a single join dimension is performed and the resulting tuples are output;

and, (4) SELECT-JOIN-SUMQueries: the total sum of an attribute’s values is computed over all the tuples

resulting from a SELECT-JOIN.

For each of the above query types, we have conducted experiments with multiple different choices for

(a) select ranges, and (b) select, join, and sum attributes. The results presented in the next section

are indicative of the overall observed behavior of the schemes. Furthermore, the queries presented in this

chapter are fairly representative of typical queries over our data sets.

Answer-Quality Metrics. In our experiments with aggregate queries (e.g., SELECT-SUM queries), we

use the absolute relative error in the aggregate value as a measure of the accuracy of the approximate

query answer. That is, if actual aggr is the result of executing the aggregation query on the actual base

relations, while approx aggr is the result of running it on the corresponding synopses, then the accuracy of

the approximate answer is given by jactual aggr�approx aggrj
actual aggr .

Deciding on an error metric for non-aggregate queries is slightly more involved. The problem here is

that non-aggregate queries do not return a single value, but rather a set of tuples (with associated counts).

Capturing the “distance” between such an answer and the actual query result requires that we take into

account how these two (multi)sets of tuples differ in both (a) the tuple frequencies, and (b) the actual values

in the tuples [70]. (Thus, simplistic solutions like “symmetric difference” are insufficient.) When deciding

on an error metric for non-aggregate results, we considered both the Match And Compare (MAC) error of

Ioannidis and Poosala [70] and the network-flow-based Earth Mover’s Distance (EMD) error of Rubner et

al. [123]. We eventually chose a variant of the EMD error metric, since it offers a number of advantages

over MAC error (e.g., computational efficiency, natural handling of non-integral counts) and, furthermore,

we found that MAC error can show unstable behavior under certain circumstances [67]. We briefly describe

the MAC and EMD error metrics below and explain why we chose the EMD metric.

The EMD and MAC Set-Error Metrics One of the main observations of Ioannidis and Poosala [70] was

that a correct error metric for capturing the distance between two set-valued query answers (i.e., multisets of

tuples) should take into account how these two (multi)sets of tuples differ in both (a) the tuple frequencies,
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and (b) the actual values in the tuples. A naive option is to simply define the distance between two sets of

elements S1 and S2 as j(S1 � S2) [ (S2 � S1)j. However, as discussed in [70], this measure does not take

into account the frequencies of occurrences of elements or their values. For example, by the above measure,

the two sets f5g and f5; 5; 5g would be considered to be at a distance of 0 from each other, while the set f5g
would be at the same distance from both f5:1g and f100g.

In [70], the authors define the notion of Match And Compare (MAC) distance to measure the error

between two multisets S1 and S2. Let dist(e1; e2) denote the distance between elements e1 2 S1 and e2 2
S2 (in this chapter, we use the euclidean distance between elements). The MAC error involves matching

pairs of elements from S1 and S2 such that each element appears in at least one matching pair, and the sum

of the distances between the matching pairs is minimum. The sum of the matching pair distances, each

weighted by the maximum number of matches an element in the pair is involved in, yields the MAC error.

Though the MAC error has a number of nice properties and takes both frequency and value of elements in

the sets into account, in some cases, it may be unstable [67]. Also, the MAC error, as defined in [70], could

become computationally expensive, since multiple copies of a cell need to be treated separately, thus making

set sizes potentially large.

Due to the stability and computational problems of the MAC error, in our experiments, we use the

Earth Mover’s Distance EMD error instead, which we have found to solve the above-mentioned problems.

The EMD error metric was proposed by Rubner et al. [123] for computing the dissimilarity between two

distributions of points and was applied to computing distances between images in a database. The main idea

is to formulate the distance between two (multi)sets as a bipartite network flow problem, where the objective

function incorporates the distance in the values of matched elements and the flow captures the distribution of

element counts. More formally, the EMD error involves solving the bipartite network flow problem which

can be formalized as the following linear programming problem. Let S1 and S2 be two sets of elements and

let ci denote the count of element ei. Without loss of generality, let the sum of the counts of elements in S1

be greater than or equal to the sum of counts of elements in S2. Consider an assignment of non-negative

flows f(ei; ej) such that the following sum is minimized:

X
ei2S1

X
ej2S2

f(ei; ej) � dist(ei; ej) (7.2)

subject to the following constraints:

X
ei2S1

f(ei; ej) = cj (7.3)

X
ej2S2

f(ei; ej) � ci (7.4)
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The EMD error, that we employ in this chapter7 is as follows:

EMD(S1; S2) =
X
ei2S1

X
ej2S2

f(ei; ej) � dist(ei; ej) � (
P

ei2S1
ciP

ej2S2
cj
)

Thus, intuitively, the flows f(ei; ej) distribute the counts of elements in S1 across elements in S2 in a manner

that the sum of the distances over the flows is minimum. Note that since S2 has a smaller count than S1, we

require that the inflow into each element ej of S2 is equal to cj (Constraint 7.3). Also, the outflow out of

each element ei in S1 cannot exceed ci (Constraint 7.4). Also, observe that since the count of S1 could be

much larger than that of S2, we scale the sum in Equation 7.2 by the ratio of the sum of counts of S1 and

S2. This ensures that counts for elements in S1 that are not covered as part of the flows get accounted for in

the EMD error computation.

Thus, the EMD naturally extends the notion of distance between single elements to distance between

sets of elements. Also, the EMD has the nice property that if the counts of S1 and S2 are equal, then the

EMD is a true metric. There are efficient algorithms available to compute the flows f(ei; ej) such that

constraints (7.2), (7.3) and (7.4) are satisfied. Another added benefit of the EMD error is that it is naturally

applicable to the cases when elements in the sets have non-integral counts. Since in a number of cases, the

number of tuples computed by the approximation techniques can be fractions, this is an advantage. Hence

we chose EMD as the error metric for non-aggregate queries.

7.4.2 Experimental Results – Synthetic Data Sets

The synthetic data sets we use in our experiments are similar to those employed in the study of Vitter

and Wang [144]. More specifically, our synthetic data generator works by populating randomly-selected

rectangular regions of cells in the multi-dimensional array. The input parameters to the generator along with

their description and default values are as illustrated in Table 7.2. The generator assigns non-zero counts to

cells in r rectangular regions each of whose volume is randomly chosen between vmin and vmax (the volume

of a region is the number of cells contained in it). The regions themselves are uniformly distributed in the

multi-dimensional array. The sum of the counts for all the cells in the array is specified by the parameter t.

Portion t � (1� nc) of the count is partitioned across the r regions using a Zipfian distribution with value z.

Within each region, each cell is assigned a count using a Zipfian distribution with value between zmin and

zmax, and based on the L1 distance of the cell from the center of the region. Thus, the closer a cell is to the

center of its region, the larger is its count value. Finally, we introduce noise into the data set by randomly

choosing cells such that these noise cells constitute a fraction nv of the total number of non-zero cells. The

noise count t � nc is then uniformly distributed across these noise cells.

Note that with the default parameter settings described in Table 7.2, there are a total of a million cells of

7Rubner et al. [123] define the EMD error as the ratio
P
ei2S1

P
ej2S2

f(ei;ej)�dist(ei;ej)
P
ej2S2

cj
.
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which about 25000 have non-zero counts. Thus, the density of the multi-dimensional array is approximately

2.5%. Further, in the default case, the approximate representations of the relations occupy only 5% of the

space occupied by the original relation – this is because we retain 1250 samples/coefficients out of 25000

non zero cells which translates to a compression ratio of 20. The same is true for histograms. Finally, we set

the default selectivity of range queries on the multi-dimensional array to be 4% – the SELECT query range

along each dimension was set to (512,720).

Parameter Description Default Value
d Number of dimensions 2
s Size of each dimension (equal for all dimensions) 1024
r Number of regions 10
vmin, vmax Minimum and maximum volume of each region 2500, 2500
z Skew across regions 0.5
zmin, zmax Minimum and maximum skew within each region 1.0, 1.0
nv ; nc Noise volume and noise count 0.05, 0.05
t Total count 1000000
c Number of coefficients/samples retained 1250
b Number of histogram buckets 420
sel Selectivity in terms of volume 4%

Table 7.2: Input Parameters to Synthetic Data Generator

Time to Compute the Wavelet Transform. In order to demonstrate the efficiency of our algorithm for

computing the wavelet transform of a multi-dimensional array, in Table 7.3, we present the running times

of COMPUTEWAVELET as the number of cells in the multi-dimensional array is increased from 250,000 to

16 million. The density of the multi-dimensional array is kept constant at 2.5% by appropriately scaling the

number of cells with non-zero counts in the array. From the table, it follows that the computation time of our

COMPUTEWAVELET algorithm scales linearly with the total number of cells in the array. We should note that

the times depicted in Table 7.3 are actually dominated by CPU-computation costs – COMPUTEWAVELET

required a single pass over the data in all cases.

Number of Cells in Multi-dimensional Array
250,000 1000,000 4000,000 16,000,000

Execution Time (in seconds) 6.3 26.3 109.9 445.4

Table 7.3: Wavelet Transform Computation Times

SELECT Queries. In our first set of experiments, we carry out a sensitivity analysis of the EMD error

for SELECT queries to parameters like storage space, skew in cell counts within a region, cell density, and

query selectivity. In each experiment, we vary the parameter of interest while the remaining parameters
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Figure 7.12: SELECT Queries: Sensitivity to (a) allocated space and (b) skew within regions.
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Figure 7.13: SELECT Queries: Sensitivity to (a) cell density and (b) query selectivity.

are fixed at their default values. Our results indicate that for a broad range of parameter settings, wavelets

outperform both sampling and histograms – in some cases, by more than an order of magnitude.

� Storage Space. Figure 7.12(a) depicts the behavior of the EMD error for the three approximation methods

as the space (i.e., number of retained coefficients) allocated to each is increased from 2% to 20% of the

relation. For a given value of the number of wavelet coefficients c along the x-axis, histograms are allocated

space for � c
3 buckets. As expected, the EMD error for all the cases reduces as the amount of space is

increased. Note that for 500 coefficients, the EMD error for histograms is almost five times worse that the

corresponding error for wavelets. This is because the few histogram buckets are unable to accurately capture

the skew within each region (in our default parameter settings, the Zipfian parameter for the skew within a

region is 1).

� Skew Within Regions. In Figure 7.12(b), we plot the EMD error as the Zipfian parameter zmax that controls

the maximum skew within each region is increased from 0 to 2.0. Histograms perform the best for values
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Figure 7.14: Effect of allocated space on (a) SELECT-SUM, and (b) SELECT-JOIN-SUM queries.

of zmax between 0 and 0.5 when the cell counts within each region are more or less uniformly distributed.

However, once the maximum skew increases beyond 0.5, the histogram buckets can no longer capture the

data distribution in each region accurately. As a consequence, we observe a spike in the EMD error for region

skew corresponding to a value of zmax = 1:5. Incidentally, a similar behavior for MaxDiff histograms has

been reported earlier in [70].

� Cell Density. In Figure 7.13(a), we plot the graphs for EMD error as vmax, the maximum volume of

regions is varied between 1000 (1% density) and 5000 (5% density) (vmin is fixed at 1000). As the number

of non-zero cells in the multi-dimensional array increases, the number of coefficients, samples and histogram

buckets needed to approximate the underlying data also increases. As a consequence, in general, the EMD

error is more when regions have larger volumes. Note the sudden jump in the EMD error for histograms

when the volume becomes 5000. This is because the histogram buckets overestimate the total of the cell

counts in the query region by almost 50%. In contrast, the error in the sum of the cell counts within the

query range with wavelets is less than 0.1%.

� Selectivity of Query. Figure 7.13(b) illustrates the EMD errors for the techniques as the selectivity of

range queries is increased from 2% to 25%. Since the number of tuples in both the accurate as well as the

approximate answer increase, the EMD error increases as the selectivity of the query is increased (recall that

the EMD error is the sum of the pairwise distances between elements in the two sets of answers weighted

by the flows between them).

SELECT-SUM Queries. Figure 7.14(a) depicts the performance of the various techniques for SELECT-

SUM queries as the allocated space is increased from 2% to 20% of the relation. Both wavelets and his-

tograms exhibit excellent performance compared to random sampling; the relative errors are extremely low

for both techniques – 0.2% and 0.6%, respectively. These results are quite different from the EMD error

curves for the three schemes (see Figure 7.12(a)). We can thus conclude that although histograms are excel-
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Technique Number of Coefficients
500 1000 2000 5000

Wavelets 0.01 0.02 0.04 0.08
Histograms 9.8 1.48 0.43 1.26
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Figure 7.15: (a) SELECT-JOIN-SUM query execution times. (b) SELECT query errors on real-life data.

lent at approximating aggregate frequencies, they are not as good as wavelets at capturing the distribution

of values accurately. In [144], wavelets were shown to be superior to sampling for aggregation queries –

however, the work in [144] did not consider histograms.

SELECT-JOIN and SELECT-JOIN-SUM Queries. For join queries, in Figure 7.14(b), we do not show

the errors for sampling since in almost all cases, the final result contained zero tuples. Also, we only plot

the relative error results for SELECT-JOIN-SUM queries, since the EMD error graphs for SELECT-JOIN

queries were similar.

When the number of coefficients retained is 500, the relative error with wavelets is more than four times

better than the error for histograms – this is because the few histogram buckets are not as accurate as wavelets

in approximating the underlying data distribution. For histograms, the relative error decreases for 1000 and

2000 coefficients, but shows an abrupt increase when the number of coefficients is 5000. This is because at

5000 coefficients, when we visualized the histogram buckets, we found that a large bucket appeared in the

query region (that was previously absent), in order to capture the underlying noise in the data set. Cells in

this bucket contributed to the dramatic increase in the join result size, and subsequently, the relative error.

We must point out that although the performance of histograms is erratic for the query region in Fig-

ure 7.14(b), we have found histogram errors to be more stable on other query regions. Even for such regions,

however, the errors observed for histograms were, in most cases, more than an order of magnitude worse

than those for wavelets. Note that the relative error for wavelets is extremely low (less than 1%) even when

the coefficients take up space that is about 4% of the relation.

Query Execution Times. In order to compare the query processing times for the various approaches,

we measured the time (in seconds) for executing a SELECT-JOIN-SUM query using each approach. We

do not consider the time for random sampling since the join results with samples did not generate any

tuples, except for very large sample sizes. The running time of the join query on the original base relations
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(using an indexed nested-loop join) to produce an exact answer was 3.6 seconds. In practice, we expect

that this time will be much higher since in our case, the entire relations fit in main memory. As is evident

from Figure 7.15(a), our wavelet-based technique is more than two orders of magnitude faster compared to

running the queries on the entire base relations.

Also, note that the performance of histograms is much worse than that of wavelets. The explanation lies

in the fact that the join processing algorithm of Ioannidis and Poosala [70] requires joining histograms to

be partially expanded to generate the tuple-value distribution for the corresponding approximate relations.

The problem with this approach is that the intermediate relations can become fairly large and may even

contain more tuples than the original relations. For example, with 500 coefficients, the expanded histogram

contains almost 5 times as many tuples as the base relations. The sizes of the approximate relations de-

crease as the number of buckets increase, and thus execution times for histograms drop for larger numbers

of buckets. In contrast, in our wavelet approach, join processing is carried out exclusively in the compressed

domain, that is, joins are performed directly on the wavelet coefficients without ever materializing interme-

diate relations. The tuples in the final query answer are generated at the very end as part of the rendering

step and this is the primary reason for the superior performance of the wavelet approach.

7.4.3 Experimental Results – Real-life Data Sets

We obtained our real-life data set from the US Census Bureau (www.census.gov). We employed the

Current Population Survey (CPS) data source and within it the Person Data Files of the March Questionnaire

Supplement. We used the 1992 data file for the select and select sum queries, and the 1992 and 1994 data

files for the join and join sum queries. For both files, we projected the data on the following four attributes

whose domain values were previously coded: age (with value domain 0 to 17), educational attainment (with

value domain 0 to 46), income (with value domain 0 to 41) and hours per week (with value domain 0 to 13).

Along with each tuple in the projection, we stored a count which is the number of times it appears in the

file. We rounded the maximum domain values off to the nearest power of 2 resulting in domain sizes of 32,

64, 64 and 16 for the four dimensions, and a total of 2 million cells in the array. The 1992 and the 1994

collections had 16271 and 16024 cells with non-zero counts, respectively, resulting in a density of � 0.001.

However, even though the density is very low, we did observe large dense regions within the arrays when

we visualized the data – these dense regions spanned the entire domains of the age and income dimensions.

For all the queries, we used the following select range: 5 � age < 10 and 10 � income < 15 that we

found to be representative of several select ranges that we considered (the remaining two dimensions were

left unspecified). The selectivity of the query was 1056/16271= 6%. For sum queries, the sum operation

was performed on the age dimension. For join queries, the join was performed on the age dimension

between the 1992 and 1994 data files.

SELECT Queries. In figures 7.15(b) and 7.16(a), we plot the EMD error and relative error for SELECT

and SELECT-SUM queries, respectively, as the space allocated for the approximations is increased from
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Figure 7.16: (a) SELECT-SUM and (b) SELECT-JOIN-SUM queries on real-life data.

3% to 25% of the relation. From the graphs, it follows that wavelets result in the least value for the EMD

error, while sampling has the highest EMD error. For SELECT-SUM queries, wavelets exhibit more than an

order of magnitude improvement in relative error compared to both histograms and sampling (the relative

error for wavelets is between 0.5% and 3%). Thus, the results for the select queries indicate that wavelets

are effective at accurately capturing both the value as well as the frequency distribution of the underlying

real-life data set.

Note that unlike the EMD error and the synthetic data cases, the relative error for sampling is better than

for histograms. We conjecture that one of the reasons for this is the higher dimensionality of the real-life

data sets, where histograms are less effective.

JOIN Queries. We only plot the results of the SELECT-JOIN-SUM queries in Figure 7.16(b), since the

EMD error graphs for SELECT-JOIN queries were similar. Over the entire range of coefficients, wavelets

outperform sampling and histograms, in most cases by more than an order of magnitude. With the real-life

data set, even after the join, the relative aggregate error using wavelets is very low and ranges between 1%

to 6%. The relative error of all the techniques improve as the amount of allocated space is increased. Note

that compared to the synthetic data sets, where the result of a join over samples contained zero tuples in

most cases, for the real-life data sets, sampling performs quite well. This is because the size of the domain

of the age attribute on which the join is performed is only 18, which is quite small. Consequently, the result

of the join query over the samples is no longer empty.

In summary, our wavelet-based approach consistently outperforms the sampling and histograms ap-

proaches. Sampling suffers mainly for non-aggregate queries as it always produces a small subset of the

exact answer. This problem is extreme when joins are involved as the results often contain zero tuples.

Histograms perform poorly for non-uniform and high dimensional datasets as such data distributions cannot

be accurately captured with a small number of rectangular regions containing uniformly distributed points.

The wavelet approach do not suffer from the above problems. As mentioned before, wavelets are effective
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as long as the data distribution exhibits the locality property i.e. tuples corresponding to neighboring cells

in the multidimensional representation have similar counts. They may not work well for “spiky” data dis-

tributions. Our experience shows that most datasets in real-life DSS applications do exhibit locality; hence

the wavelet-based approach proposed in this chapter is an effective approximate query answering solution

for such applications.

7.5 Conclusions

Approximate query processing is slowly emerging as an essential tool for numerous data-intensive applica-

tions requiring interactive response times. Most work in this area, however, has so far been limited in its

scope and conventional approaches based on sampling or histograms appear to be inherently limited when it

comes to complex approximate queries over high-dimensional data sets. In this chapter, we have proposed

the use of multi-dimensional wavelets as an effective tool for general-purpose approximate query processing

in modern, high-dimensional applications. Our approach is based on building wavelet-coefficient synopses

of the data and using these synopses to provide approximate answers to queries. We have developed novel

query processing algorithms that operate directly on the wavelet-coefficient synopses of relational data, al-

lowing us to process arbitrarily complex queries entirely in the wavelet-coefficient domain. This guarantees

extremely fast response times since our approximate query execution engine can do the bulk of its processing

over compact sets of wavelet coefficients, essentially postponing the expansion into relational tuples until

the end-result of the query. We have also proposed a novel I/O-efficient wavelet decomposition algorithm for

building the synopses of relational data. Finally, we have conducted an extensive experimental study with

synthetic as well as real-life data sets to determine the effectiveness of our wavelet-based approach compared

to sampling and histograms. Our results demonstrate that our wavelet-based query processor (a) provides

approximate answers of better quality than either sampling or histograms, (b) offers query execution-time

speedups of more than two orders of magnitude, and (c) guarantee fast synopsis construction times that scale

linearly to the size of the relation.
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Chapter 8

Conclusion and Future Work

We conclude this dissertation with a summary of our contributions and directions for future work.

8.1 Summary

In this thesis, we identified some of the main challenges in managing large, complex multidimensional

datasets inside a database system:

� High Dimensional Index Structures: High dimensional similarity search is common in many mod-

ern database applications like multimedia retrieval (e.g., 64-d color histograms), data mining/OLAP

(e.g., 52-d bank data in clustering) and time series/scientific/medical applications (e.g., 20-d Space

Shuttle data, 100-d astronomy data in SDSS, 64-dimensional ECG data). Sequential scanning and

1-dimensional index structures are not effective solutions; we need multidimensional index struc-

tures. Existing multidimensional index structures do not scale beyond 10-15 dimensions. We need

multidimensional index structures that would scale to high dimensionalities (50-100 dimensions).

� Dimensionality Reduction Techniques: While a scalable index structure would be a big step towards

enabling DBMSs to efficiently support queries over high dimensional data, we can achieve further

scalability by first reducing the dimensionality of data and then building the index on the reduced data.

Existing dimensionality reduction techniques work well only when the data set is globally correlated.

In practice, datasets are often not globally correlated. We need dimensionality reduction techniques

that would work well even when the data is not globally correlated.

� Time Series Indexing Techniques: Similarity search in time series databases is a difficult problem

due to the typically high dimensionality of the raw data. The most promising solution involves per-

forming dimensionality reduction on the data, then indexing the reduced data with a multidimensional

index structure. Existing dimensionality reduction techniques choose a common representation for all

the items in the database; this causes loss of fidelity of the reduced-representation to the original signal

which in turn degrades the search performance. We need a dimensionality reduction technique where
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the reduced representation always closely approximates the original signal. The representation has to

be indexable using a multidimensional index structure.

� Integration of Multidimensional Index Structures to DBMSs: One of the most important practical

challenges in multidimensional data management is that of integration of multidimensional index

structures as access methods in a DBMS. The Generalized Search Tree (GiST) provides an elegant

solution to the above problem. However, before it can be supported in a “commercial strength”

DBMS, efficient techniques to support transactional access to data via the GiST must be developed.

� Approximate Query Answering for Decision Support Applications: Approximate query answer-

ing has emerged as a viable approach for dealing with the huge data volumes and stringent response

time requirements in decision support/OLAP systems. The general approach is to first construct com-

pact synopses of interesting relations in the database and then answering the queries by using just the

synopses (which usually fit in memory). Approximate query answering techniques proposed so far

either suffer from high error rates or are severely limited in their query processing scope. We need

to develop approximate query answering techniques that are accurate, efficient and general in their

query processing scope.

This dissertation addresses the above challenges as follows:

� Index Structure for High Dimensional Spaces: We have designed an index structure, namely the

hybrid tree, that scales to high dimensional feature spaces. The key idea is to combine the positive

aspects of the two types of index structures, namely data partitioning and space partitioning index

structures, into a single data structure to achieve scalable search performance. The details of the

hybrid tree can be found in Chapter 3.

� Local Dimensionality Reduction for High Dimensional Indexing: We have developed the local

dimensionality reduction (LDR) technique which reduces the dimensionality of data with significantly

lower loss of information compared to global dimensionality reduction. The main idea here is to

exploit local, as opposed to global, correlations in the data for dimensionality reduction. The details

of LDR can be found in Chapter 4.

� Locally Adaptive Dimensionality Reduction for Time Series Data: We have introduced a new

dimensionality reduction technique for time series called Adaptive Piecewise Constant Approximation

(APCA). APCA adapts locally to each data item and thereby achieves high fidelity to the original

signal. The details can be found in Chapter 5.

� Concurrency Control in Generalized Search Trees: In order to facilitate integration of multidi-

mensional index structures as access methods in DBMSs, we have developed techniques to provide

transactional access to data via multidimensional index structures. The details can be found in Chapter

6.
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� Wavelet-based Approximate Query Processing Tool: We have developed a wavelet-based approx-

imate query answering tool for high-dimensional DSS applications. We showed how we can process

any SQL query entirely in the wavelet domain, thereby guaranteeing extremely fast response times.

The details can be found in Chapter 7.

8.2 Software

The softwares developed during this dissertation include:

� Hybrid Tree: We have implemented the hybrid tree as described in Chapter 3 (about 6000 lines of

C++ code) and distributed the software via our web site http://www-db.ics.uci.edu/pages/software.

The software is being used by at least 3 companies and 8 universities for research and teaching pur-

poses.

� LDR: We have also implemented LDR as described in Chapter 4 (about 2100 lines of C++ code)

and distributed it via our web site http://www-db.ics.uci.edu/pages/software. The

software is being used by at least 4 universities for research purposes.

� Wavelet-based Approximate Query Answering Tool: We implemented a wavelet-based approxi-

mate query answering engine as described in Chapter 7 (about 3200 lines of C++ code).

� Integration of developed techniques to MARS: We have integrated the hybrid tree into the MARS

database system. An application in MARS can create a hybrid tree index of desired dimensionality

on one or more attributes of a relation. The hybrid tree nodes can be striped across multiple disks

(for parallel I/O). Similarity queries on a relation can then be answered by running an appropriate

range query or k-NN query on the index. Besides the hybrid tree, the MARS index manager supports

B+-tree, R-tree and text indices.

8.3 Future Directions

There are several interesting directions of future work based on the work described in this thesis. Some of

these are extensions of our work, while some others are motivated by the general problems of managing

multidimensional data.

� Indexing and Mining Sequence Data: In this thesis, we proposed dimensionality reduction and index-

ing techniques for time series data. Some of these techniques can be applied to sequence data as well,

both one-dimensional and multidimensional sequences. Examples of one-dimensional sequences in-

clude gene/protein sequences and clickstream data generated by web sites; examples of multidimen-
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sional sequences include 2-dimensional shapes 1 . Developing new search and mining techniques for

such types of data based on adaptive representations is an interesting direction of research.

� High Dimensional Data Mining: In Chapter 4, we introduced local dimensionality reduction (LDR)

as a technique for high dimensional indexing. LDR has applications beyond indexing; it can be used

to discover patterns in high dimensional data. Current efforts based on LDR include using LDR for

selectivity estimation in high dimensional datasets [57] and text data mining [17].

� Data Visualization and Visual Data Mining: Data Visualization has been proven to be of high value

for exploratory data analysis and database mining. The idea is to present the data in some visual form,

allowing a human to get insight into the data, draw conclusions and interact directly with the data.

Techniques proposed in this thesis can be applied to improve current data visualization techniques. For

example, LDR can be used to handle the high dimensionality of the data to be visualized. Approximate

query answering techniques like the wavelet-based technique proposed in Chapter 7 can be used to

achieve tradeoff between the resolution of the display and speed.

� Approximate Query Answering with Error Guarantees: In Chapter 7, we developed an approximate

query answering tool for OLAP data. Although our technique offers high accuracy and low response

times, we do not provide guaranteed error bounds. Recent work suggests a trend toward approximate

answering with error bounds [84, 106].

� Location-dependent Querying from wireless/mobile devices: One of most common types of multi-

dimensional data is spatial or geographic data. With the advent of global positioning system (GPS)

technology, all users/devices in the future will have knowledge of their locations. This information can

be used to query location-sensitive information and/or obtain location-dependent service. Developing

an infrastructure for such applications is an active area of research, with the potential of significant

commercial impact [94, 143].

1We proposed a locally adaptive representation for 2-d shapes in [26].
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