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Abstract
The Windows Vista operating system implements an interesting
model of multi-level integrity. We observe that in this model,
trusted code must participate in any information-flow attack. Thus,
it is possible to eliminate such attacks by statically restricting
trusted code. We formalize this model by designing a type system
that can efficiently enforce data-flow integrity on Windows Vista.
Typechecking guarantees that objects whose contents are statically
trusted never contain untrusted values, regardless of whatuntrusted
code runs in the environment. Some of Windows Vista’s runtime
access checks are necessary for soundness; others are redundant
and can be optimized away.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection—Access controls, Information flowcon-
trols, Verification; D.2.4 [Software Engineering]: Program Verif-
ication—Correctness proofs; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs—
Specification techniques, Invariants, Mechanical verification

General Terms Security, Verification, Languages, Theory

Keywords dynamic access control, data-flow integrity, hybrid
type system, explicit substitution

1. Introduction
Commercial operating systems are seldom designed to prevent
information-flow attacks. Not surprisingly, such attacks are the
source of many serious security problems in these systems [45].
Microsoft’s Windows Vista operating system implements an in-
tegrity model that can potentially prevent such attacks. Insome
ways, this model resembles other, classical models of multi-level
integrity [9]—every process and object1 is tagged with an integrity
label, the labels are ordered by levels of trust, and access control
is enforced across trust boundaries. In other ways, it is radically
different. While Windows Vista’s access control prevents low-
integrity processes from writing to high-integrity objects, it does
not prevent high-integrity processes from reading low-integrity
objects. Further, Windows Vista’s integrity labels are dynamic—
labels of processes and objects can change at runtime. This model

1 In this context, an object may be a file, a channel, a memory location, or
indeed any reference to data or executable code.
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allows processes at different trust levels to communicate,and al-
lows dynamic access control. At the same time, it admits various
information-flow attacks. Fortunately, it turns out that such attacks
require the participation of trusted processes, and can be eliminated
by code analysis.

In this paper, we provide a formalization of Windows Vista’sin-
tegrity model. In particular, we specify an information-flow prop-
erty calleddata-flow integrity(DFI), and present a static type sys-
tem that can enforce DFI on Windows Vista. Roughly, DFI prevents
any flow of data from the environment to objects whose contents
are trusted. Our type system relies on Windows Vista’s runtime ac-
cess checks for soundness. The key idea in the type system is to
maintain a static lower-bound labelS for each object. While the
dynamic label of an object can change at runtime, the type system
ensures that it never goes belowS, and the object never contains a
value that flows from a label lower thanS. The labelS is declared
by the programmer. Typechecking requires no other annotations,
and can be mechanized by an efficient algorithm.

By design, DFI does not prevent implicit flows [19]. Thus DFI
is weaker than noninterference [24]. Unfortunately, it is difficult
to enforce noninterference on a commercial operating system such
as Windows Vista. Implicit flows abound in such systems. Such
flows arise out of frequent, necessary interactions betweentrusted
code and the environment. They also arise out of covert control
channels which, given the scope of such systems, are impossible
to model sufficiently. Instead, DFI focuses on explicit flows[19].
This focus buys a reasonable compromise—DFI prevents a definite
class of attacks, and can be enforced efficiently on Windows Vista.
Several successful tools for malware detection follow thisapproach
[12, 54, 48, 50, 17, 38], and a similar approach guides the design
of some recent operating systems [20, 59].

Our definition of DFI is dual to standard definitions of secrecy
based on explicit flows—while secrecy prevents sensitive values
from flowing to the environment, DFI prevents the flow of values
from the environment to sensitive objects. Since there is a rich liter-
ature on type-based and logic-based analysis for such definitions of
secrecy [11, 3, 49, 13], it makes sense to adapt this analysisfor DFI.
Such an adaptation works, but requires some care. Unlike secrecy,
DFI cannot be enforced without runtime checks. In particular, ac-
cess checks play a crucial role by restricting untrusted processes
that may run in the environment. Further, while secrecy prevents
any flow of high-security information to the environment, DFI al-
lows certain flows of low-security information from the environ-
ment. We need to introduce new technical devices for this purpose,
including a technique based onexplicit substitution[4] to track pre-
cise sources of values. This device is required not only to specify
DFI precisely but also to prove that our type system enforcesDFI.

We design a simple higher-order process calculus that simulates
Windows Vista’s security environment [32, 18, 44]. (The design of
this language is discussed in detail in Section 6.) In this language,
processes can fork new processes, create new objects, change the
labels of processes and objects, and read, write, and execute ob-



jects in exactly the same ways as Windows Vista allows. Our type
system exploits Windows Vista’s runtime access checks to enforce
DFI, and can recognize many correct programs. At the same time,
our type system subsumes Windows Vista’s execution controls, al-
lowing them to be optimized away.

1.1 Summary of contributions

To sum up, we make the following main contributions in this paper:

• We propose DFI as a practical multi-level integrity property
in the setting of Windows Vista, and formalize DFI using a
semantic technique based on explicit substitution.

• We present a type system that can efficiently enforce DFI on
Windows Vista. Typechecking guarantees DFI regardless of
what untrusted code runs in the environment.

• We show that while most of Windows Vista’s runtime access
checks are required to enforce DFI, Windows Vista’s execution
controls are not necessary and can be optimized away.

1.2 Outline

The rest of this paper is organized as follows. In Section 2, we
introduce Windows Vista’s security environment, and show how
DFI may be violated in that environment. In Section 3, we design
a calculus that simulates Windows Vista’s security environment,
equip the calculus with a semantics based on explicit substitution,
and formalize DFI in the calculus. In Section 4, we present a
system of integrity types and effects for this calculus. In Section 5,
we prove soundness and other properties of typing. Finally,in
Section 6, we discuss limitations and contributions with respect
to related work and conclude. Supplementary material, including
proof details and an efficient typechecking algorithm, appear in the
full version of the paper [15] available online athttp://arxiv.
org/abs/0803.3230.

2. Windows Vista’s integrity model
In this section, we provide a brief overview of Windows Vista’s in-
tegrity model.2 In particular, we introduce Windows Vista’s secu-
rity environment [32, 18, 44], and show how DFI may be violated
in that environment. We observe that such violations require the
participation of trusted processes. Intuitively, the responsibility of
security lies with trusted users. Our type system provides away for
such users to manage this responsibility automatically.

2.1 Windows Vista’s security environment

In Windows Vista, every process and object is tagged with a dy-
namic integrity label. We indicate such labels in brackets( ) below.
Labels are related by a total order⊑, meaning “at most as trusted
as”. Leta range over processes,ω over objects, andP, O over la-
bels. Processes can fork new processes, create new objects,change
the labels of processes and objects, and read, write, and execute
objects. In particular, a process with labelP can:

(i) fork a new processa(P);

(ii) create a new objectω(P);

(iii) lower its own label;

(iv) change the label of an objectω(O) to O′ iff O ⊔ O′ ⊑ P;

(v) read an objectω(O);

(vi) write an objectω(O) iff O ⊑ P;

(vii) execute an objectω(O) by lowering its own label toP ⊓ O.

2 Windows Vista further implements a discretionary access control model,
which we ignore in this paper.

Rules (i) and (ii) are straightforward. Rule (iii) is guidedby the
principle of least privilege [35], and is used in Windows Vista to
implement a feature calleduser access control(UAC) [44, 53]. This
feature lets users execute commands with lower privileges when
appropriate. For example, when a system administrator opens a new
shell (typically with labelHigh), a new process is forked with label
Medium; the shell is then run by the new process. When an Internet
browser is opened, it is always run by a new process whose label
is lowered toLow; thus any code that gets run by the browser gets
the labelLow—by Rule (i)—and any file that is downloaded by the
browser gets the labelLow—by Rule (ii).

Rules (iv) and (v) facilitate dynamic access control and commu-
nication across trust boundaries, but can be dangerous if not used
carefully. (We show some attacks to illustrate this point below.) In
particular, Rule (iv) allows trusted processes to protect unprotected
objects by raising their labels. (Users are required to confirm such
protections via the user interface.) Rule (v) allows processes to read
objects at lower trust levels.

Rule (vi) protects objects from being written by processes at
lower trust levels. Thus, for example, untrusted code forked by a
browser cannot touch local user files. User code cannot modify
registry keys protected by a system administrator. Rule (vii) is
part of UAC; it prevents users from accidentally launching less
trusted executables with higher privileges. For example, avirus
downloaded from the Internet cannot run in a trusted user shell.
Neither can system code dynamically link user libraries.

2.2 Some attacks

We now show some attacks that remain possible in this environ-
ment. Basically, these attacks exploit Rules (iv) and (v) tobypass
Rules (vi) and (vii).

(Write and copy) By Rule (vi),a(P) cannot modifyω(O) if P ⊏
O. However,a(P) can modify some objectω′(P), and then
some processb(O) can copyω′(P)’s content toω(O). Thus,
Rule (iv) can be exploited to bypass Rule (vi).

(Copy and execute) By Rule (vii), a(P) cannot executeω(O) at
P if O ⊏ P. However,a(P) can copyω(O)’s content to some
objectω′(P) and then executeω′(P). Thus, Rule (iv) can be
exploited to bypass Rule (vii).

(Unprotect, write, and protect) By Rule (vi), a(P) cannot mod-
ify ω(O) if P ⊏ O. However, some processb(O) can unprotect
ω(O) to ω(P), thena(P) can modifyω(P), and thenb(O) can
protectω(P) back toω(O). Thus, Rule (v) can be exploited to
bypass Rule (vi).

(Copy, protect, and execute) By Rule (vii), a(P) cannot execute
ω(O) at P if O ⊏ P. However, some processb(O) can copy
ω(O)’s content to an objectω′(O), and thena(P) can protect
ω′(O) to ω′(P) and executeω′(P). Thus, Rules (iv) and (v) can
be exploited to bypass Rule (vii).

All of these attacks can violate DFI; however, we observe that
access control forces the participation of a trusted process (one with
the higher label) in any such attack.

• In (Write and copy) or (Unprotect, write, and protect), sup-
pose that the contents ofω(O) are trusted, andP is the label of
untrusted code, withP ⊏ O. Then data can flow froma(P) to
ω(O), violating DFI, as above. Fortunately, some processb(O)
can be blamed here.

• In (Copy and execute) or (Copy, protect, and execute), sup-
pose that the contents of some objectω′′(P) are trusted, and
O is the label of untrusted code, withO ⊏ P. Then data can
flow from some processb(O) to ω′′(P), violating DFI, as fol-
lows: b(O) packs code to modifyω′′(P) and writes the code to
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ω(O), anda(P) unpacks and executes that code atP, as above.
Fortunately,a(P) can be blamed here.

Our type system can eliminate such attacks by restricting trusted
processes (Section 4). (The type system does not restrict untrusted
code running in the environment.) Conceptually, this guarantee
can be cast as Wadler and Findler’s “well-typed programs can’t
be blamed” [52]. We rely on the fact that a trusted process can
be blamed for any violation of DFI; it follows that if all trusted
processes are well-typed, there cannot be any violation of DFI.

3. A calculus for analyzing DFI on Windows Vista
To formalize our approach, we now design a simple higher-order
process calculus that simulates Windows Vista’s security environ-
ment. We introduce the syntax and informal semantics, and present
some examples of programs and attacks in the language. We then
present a formal semantics, guided by a precise characterization of
explicit flows.

3.1 Syntax and informal semantics

Several simplifications appear in the syntax of the language. We
describe processes by their code. We use variables as objectnames,
and let objects contain packed code or names of other objects. We
enforce a mild syntactic restriction on nested packing, which makes
typechecking significantly more efficient [15] (see below).Finally,
we elide conditionals—for our purposes, the code

if condition then a else b

can be conservatively analyzed by composinga andb in parallel.
(DFI is asafety propertyin the sense of [7], and the safety of the
latter code implies that of the former. We discuss this pointin more
detail in Section 3.3.)

Values include variables,unit, and packed expressions. Expres-
sions include those for forking new processes, creating newobjects,
changing the labels of processes and objects, and reading, writing,
and executing objects. They also include standard expressions for
evaluation and returning results (see Gordon and Hankin’s concur-
rent object calculus [25]).

f, g ::= expression
f � g fork
t action
let x = f in g evaluation
r result

t ::= action
new(x # S) create object
[P] a change process label
〈O〉 ω change object label
!ω read object
ω := x write object
exec ω execute object

r ::= result
x, y, z, . . . , ω variable
unit unit

a, b ::= process
a � b fork
t action
let x = a in b evaluation
u value

u, v ::= value
r result
pack(f) packed expression

Syntactically, we distinguish between processes and expressions:
while every expression is a process, not every process is an expres-

sion. For example,pack(f) is not an expression, while[P] pack(f)
is. Only expressions can be packed. In particular, a processcannot
be of the formpack(pack(. . . )). This distinction does not reduce
expressivity, since such a process can be expressed in the language
as let x = pack(. . . ) in pack(x). The benefits of this distinction
become clear in Section 5, where we discuss an algorithm for type-
checking. However, for the bulk of the paper, the reader may over-
look this distinction—neither the semantics nor the type system
depend on it.

Processes have the following informal meanings.

• a � b forks a new processa with the current process label and
continues asb (see Rule (i)).

• new(x # S) creates a new objectω with the current process
label, initializesω with x, and returnsω (see Rule (ii)); the
annotationS is used by the type system (Section 4) and has
no runtime significance.

• [P] a changes the current process label toP and continues as
a; it blocks if the current process label is lower thanP (see
Rule (iii)).

• 〈O〉 ω changesω’s label toO and returnsunit; it blocks if ω is
not bound to an object at runtime, or the current process label
is lower thanω’s label orO (see Rule (iv)).

• !ω returns the value stored inω; it blocks if ω is not bound to
an object at runtime (see Rule (v)).

• ω := x writes the valuex to ω and returnsunit; it blocks if ω is
not bound to an object at runtime, or if the current process label
is lower thanω’s label (see Rule (vi)).

• exec ω unpacks the value stored inω to a processf , lowers the
current process label withω’s label, and executesf ; it blocks if
ω is not bound to an object at runtime or if the value stored in
ω is not a packed expression (see Rule (vii)).

• let x = a in b executesa, binds the value returned bya to x,
and continues asb with x bound.

• u returns itself.

3.2 Programming examples

We now consider some programming examples in the language.
We assume thatLow, Medium, High, and⊤ are labels, ordered in
the obvious way. We assume that the top-level process alwaysruns
with ⊤, which is the most trusted label.

Example 3.1. Suppose that aMedium user opens an Internet
browserie.exe with Low privileges (recall UAC), and clicks on a
url that containsvirus.exe; the virus contains code to overwrite
the command shell executablecmd.exe, which has label⊤.

p1 , let cmd.exe = new(. . . #⊤) in

let url = [Low] new(. . . # Low) in

let binIE = pack(let x = !url in exec x) in

let ie.exe = new(binIE #⊤) in

[Medium] (. . . � [Low] exec ie.exe) �

[Low] (let binVirus = pack(cmd.exe := . . . ) in

let virus.exe = new(binVirus # Low) in

url := virus.exe �

. . . )

This code may eventually reduce to

q1 , [Medium] (. . . � [Low] cmd.exe := . . . ) �

[Low] (. . . )



However, at this point the write tocmd.exe blocks due to access
control. (Recall that a process with labelLow cannot write to an
object with label⊤.)

Example 3.2. Next, consider the following attack, based on the
(Copy, protect, and execute) attack in Section 2.2. AMedium user
downloads a virus from the Internet that contains code to erase the
user’s home directory (home), and saves it by default insetup.exe.
A High administrator protects and executessetup.exe.

p2 , let url = [Low] new(. . . # Low) in

let setup.exe = [Low] new(. . . # Low) in

let binIE = pack(let z = !url in

let x = !z in setup.exe := x) in

let ie.exe = new(binIE #⊤) in

let home = [Medium] new(. . . # Medium) in

let empty = unit in

[High] (· · · �

let = 〈High〉 setup.exe in

exec setup.exe) �

[Medium] (. . . � [Low] exec ie.exe) �

[Low] (let binVirus = pack(home := empty) in

let virus.exe = new(binVirus # Low) in

url := virus.exe �

. . . )

This code may eventually reduce to

q2 , [High] (. . . � home := empty) �

[Medium] (. . . ) �

[Low] (. . . )

The user’s home directory may be erased at this point. (Recall that
access control does not prevent a process with labelHigh from
writing to an object with labelMedium.)

Here the administrator is required to confirm the protectionof
setup.exe via the user interface. Our type system can detect that
this protection is dangerous, and warn the administrator.

3.3 An overview of DFI

Informally, DFI requires that objects whose contents are trusted at
some labelS never contain values that flow from labels lower than
S. In Example 3.1, we trust the contents ofcmd.exe at label⊤,
as declared by the static annotation⊤. DFI is not violated in this
example, since access control prevents the flow of data fromLow to
cmd.exe. On the other hand, in Example 3.2, we trust the contents
of home at labelMedium. DFI is violated in this example, since the
valueempty flows fromLow to home.

By design, DFI is a safety property [7]—roughly, it can be
defined as a set of behaviors such that for any behavior that isnot in
that set, there is some finite prefix of that behavior that is not in that
set. To that end, DFI considers onlyexplicit flows of data. Denning
and Denning characterize explicit flows [19] roughly as follows: a
flow of x is explicit if and only if the flow depends abstractly on
x (that is, it depends on the existence ofx, but not on the value
x). Thus, for example, the violation of DFI in Example 3.2 does
not depend on the valueempty—anyother value causes the same
violation. Conversely,empty is not dangerous in itself. Consider
the reduced processq2 in Example 3.2. Without any knowledge of
execution history, we cannot conclude that DFI is violated in q2.
Indeed, it is perfectly legitimate for aHigh-process to execute the
codehome := empty intentionally, say as part of administration.

However, in Example 3.2, we know that this code is executed by
unpacking some code designed by aLow-process. The violation of
DFI is due to this history.

It follows that in order to detect violations of DFI, we must dis-
tinguish between various instances of a value, and track thesources
of those instances during execution. We maintain this execution
history in the operational semantics (Section 3.4), by a technique
based on explicit substitution [4].

Before we move on, let us ease the tension between DFI and
conditionals. In general, conditionals can cause implicitflows [19];
a flow ofx can depend on the valuex if x appears in the condition
of some code that causes that flow. For example, the code

if x = zero then ω := zero else ω := one

causes an implicit flow ofx to ω that depends on the valuex.
We can abstract away this dependency by interpreting the code
if condition then a else b as the parallel composition ofa and
b. Recall that DFI is a safety property. Following [34], the safety of
this parallel composition can be expressed by the logical formula
F , Fa ∧ Fb, whereFa is the formula that expresses the safety of
a, andFb is the formula that expresses the safety ofb. Likewise, the
safety ofif condition then a else b can be expressed by the for-
mulaF ′ , (condition ⇒ Fa) ∧ (¬condition ⇒ Fb). Clearly,
we haveF ⇒ F ′, so that the codeif condition then a else b is a
refinement of the parallel composition ofa andb. It is well-known
that safety is preserved under refinement [34].

But implicit flows are of serious concern in many applications;
one may wonder whether focusing on explicit flows is even desir-
able. Consider the code above; the implicit flow fromx to ω vio-
lates noninterference, ifx is an untrusted value and the contents of
ω are trusted. In contrast, DFI isnot violated in the code

ω := zero � ω := one

if zero andone are trusted values. Clearly, DFI ignores the implicit
flow from x to ω. But this may be fine—DFI can be used to prove
an invariant such as “the contents ofω are eitherzero or one”.
Note that the code

ω := x

does not maintain this invariant, sincex may be an arbitrary value.
Thankfully, DFI is violated in this code.

3.4 An operational semantics that tracks explicit flows

We now present a chemical-style operational semantics for the
language, that tracks explicit flows.3 We begin by extending the
syntax with some auxiliary forms.

a, b ::= process
· · · source process

ω
O
7→ x store

(νx/µ@P) a explicit substitution
µ ::= substituted value

u value
new(x # S) object initialization

The processω
O
7→ x asserts that the objectω containsx and is

protected with labelO. A key feature of the semantics is that objects
store values “by instance”—only variables may appear in stores.
We use explicit substitution to track and distinguish between the
sources of various instances of a substituted value. Specifically, the
process(νx/µ@P) a creates a fresh variablex, records thatx is
bound toµ by a process with labelP, and continues asa with x

3 This presentation is particularly convenient for defining and proving DFI;
a concrete implementation of the language may rely on a lighter semantics
that does not track explicit flows.



Local reduction a
P;σ
−→ bp

(Reduct evaluate)

let x = u in a
P;σ
−→ (νx/u@P) a

(Reduct new)

new(x # S)
P;σ
−→ (νω/new(x # S)@P) (ω

P
7→ x � ω)

(Reduct read)
ω

σ
= ω′

ω
O
7→ x � !ω′ P;σ

−→ ω
O
7→ x � x

(Reduct write)

ω
σ
= ω′

O ⊑ P

ω
O
7→ � ω′ := x

P;σ
−→ ω

O
7→ x � unit

(Reduct execute)

ω
σ
= ω′

pack(f) ∈ σ(x) P
′ = P ⊓ O

ω
O
7→ x � exec ω′ P;σ

−→ ω
O
7→ x � [P′] f

(Reduct un/protect)

ω
σ
= ω′

O ⊔ O
′ ⊑ P

ω
O
7→ x � 〈O′〉 ω′ P;σ

−→ ω
O′

7→ x � unit

Structural equivalence a ≡ b

(Struct bind )
EP;σJa{x/y}KP′,σ′ ≡ EP;σJ(νx/y@P

′) aKP′,σ′

(Struct substitution)

x /∈ fv(EP,σ) ∪ bv(EP,σ) fv(µ) ∩ bv(EP,σ) = ∅

EP;σJ(νx/µ@P
′′) aKP′,σ′ ≡ (νx/µ@P

′′) EP,{x/µ@P′′}∪σJaKP′,σ′

(Struct fork )
fv(a) ∩ bv(EP,σ) = ∅

EP;σJa � bKP,σ′ ≡ a � EP;σJbKP,σ′

(Struct store)

[P] (ω
O
7→ x � a) ≡ ω

O
7→ x � [P] a

(Struct equiv)
≡ is an equivalence

Global reduction a
P;σ
−→ bp

(Reduct context)

a
P′;σ′

−→ b

EP;σJaKP′;σ′

P;σ
−→ EP;σJbKP′;σ′

(Reduct congruence)

a ≡ a′ a′ P;σ
−→ b′ b′ ≡ b

a
P;σ
−→ b

bound. Herex is an instanceof µ andP is thesourceof x. If µ
is a value, then this process is behaviorally equivalent toa with x
substituted byµ. For example, in Example 3.2 the source of the
instance ofempty in binVirus is Low; this fact is described by
rewriting the processq2 as

(νx/empty@Low) [High] (· · · � home := x) � . . .

DFI prevents this particular instance (x) of empty from being
written to home; but it allows other instances whose sources are
at least as trusted asMedium. The rewriting follows a structural
equivalence rule (Struct bind ), explained later in the section.

While explicit substitution has been previously used in language
implementations, we seem to be the first to adapt this device to
track data flow in a concurrent language. In particular, we use
explicit substitution both to specify DFI (in Definitions 3.3 and 3.4)
and to verify it statically (in proofs of Theorems 5.4 and 5.7). We
defer a more detailed discussion on this technique to Section 6.

We call sets of the form{x1/µ1@P1, . . . , xk/µk@Pk} substi-
tution environments.

Definition 3.3 (Explicit flows). A variable x flows from a label

P or lower in a substitution environmentσ, written x
σ
H P, if

x/µ@P′ ∈ σ for someµ and P′ such that eitherP′ ⊑ P, or µ

is a variable and (inductively)µ
σ
H P.

In other words,x flows from a labelP or lower if x is an
instance of a value substituted atP or lower. In Definition 3.4
below, we formalize DFI as a property of objects, as follows:an
object is protected from labelL if it never contains instances that
flow from L or lower. We defineσ(x) to be the set of values
in σ that x is an instance of:x ∈ σ(x), and if (inductively)
y ∈ σ(x) andy/u@ ∈ σ for somey andu, thenu ∈ σ(x).
The operational semantics ensures that substitution environments
accurately associate instances of values with their runtime sources.

We now present rules for local reduction, structural equivalence,

and global reduction. Reductions are of the forma
P;σ
−→ b, mean-

ing that “processa may reduce to processb with label P in sub-
stitution environmentσ”. Structural equivalences are of the form
a ≡ b, meaning that “processa may be rewritten as processb”.
The notions of free and bound variables (fv andbv) are standard.
We writex

σ
= y if σ(x) ∩ σ(y) 6= ∅, that is, there is a value that

bothx andy are instances of.
We first look at the local reduction rules. In (Reduct evaluate),

a substitution bindsx to the intermediate valueu and associates
x with its runtime sourceP. (Reduct new) creates a new store
denoted by a fresh variableω, initializes the store, and returns
ω; a substitution bindsω to the initialization of the new object
and associatesω with its runtime sourceP. The valuex and the
trust annotationS in the initialization are used by the type system
(Section 4). The remaining local reduction rules describe reactions
with a store, following the informal semantics.

Next, we define evaluation contexts [21]. An evaluation context
is of the formEP;σ, and contains a hole of the form•P′;σ′ ; the
context yields a process that executes with labelP in substitution
environmentσ, if the hole is plugged by a process that executes
with labelP′ in substitution environmentσ′.

EP;σ ::= evaluation context
•P;σ hole
let x = EP;σ in b sequential evaluation
EP;σ � b fork left
a � EP;σ fork right
(νx/µ@P′) EP;{x/µ@P′}∪σ explicit substitution
[P′] EP′;σ (P′ ⊑ P) lowering of process label



Evaluation can proceed sequentially insidelet processes, and in
parallel under forks [25]; it can also proceed under explicit sub-
stitutions and lowering of process labels. In particular, note how
evaluation contexts build substitution environments fromexplicit
substitutions, and labels from changes of process labels. We denote
by EP;σJaKP′;σ′ the process obtained by plugging the hole•P′;σ′ in
EP;σ with a.

Next, we look at the structural equivalence and global reduction
rules. In (Struct bind ), a{x/y} is the process obtained froma
by the usual capture-avoiding substitution ofx by y. The rule
states that explicit substitution mayinvert usual substitution to
create instances as required. In particular, variables that appear in
packed code can be associated with the label of the process that
packs that code, even though those variables may be bound later—
by (Reduct evaluate)—when that code is eventually unpacked at
some other label. For example, the instance ofempty in binVirus

may be correctly associated withLow (the label at which it is
packed) instead ofHigh (the label at which it is unpacked). In
combination, the rules (Reduct evaluate) and (Struct bind ) track
precise sources of values by explicit substitution.

By (Struct substitution), substitutions can float across contexts
under standard scoping restrictions. By (Struct fork ), forked pro-
cesses can float across contexts [25], but must remain under the
same process label. By (Struct store), stores can be shared across
further contexts.

Reduction is extended with contexts and structural equivalence
in the natural way.

Finally, we formalize DFI in our language, as promised.

Definition 3.4 (DFI). The objectω is protected from labelL by
processa if there is no processb, substitution environmentσ, and

instancex such thata � [L] b
⊤,∅
−→⋆ E⊤,∅Jω 7→ xK⊤,σ andx

σ
H L.

4. A type system to enforce DFI
We now show a type system to enforce DFI in the language. (The
formal protection guarantee for well-typed code appears inSec-
tion 5.) We begin by introducing types and typing judgments.We
then present typing rules and informally explain their properties.
Finally, we consider some examples of typechecking. An efficient
algorithm for typechecking is outlined in [15].

4.1 Types and effects

The core grammar of types is shown below. Here effects are simply
labels; these labels belong to the same ordering⊑ as in the opera-
tional semantics.

τ ::= type
Obj(T ) object
∇P. Bin(T ) packed code
Unit unit

T ::= static approximation
τE type and effect

• The typeObj(τ S) is given to an object that contains values of
typeτ . Such contents may not flow from labels lower thanS; in
other words,S indicates the trust on the contents of this object.
DFI follows from the soundness of object types.

• The type∇P. Bin(τE) is given to packed code that can be run
with labelP. Values returned by the code must be of typeτ and
may not flow from labels lower thanE. In fact, our type system
admits a subtyping rule that allows such code to be run in a
typesafe manner with any label that is at mostP.

• The effectE is given to a value that does not flow from labels
lower thanE.

Core typing judgments Γ ⊢P a : T

(Typ unit )
Γ ⊢P unit : Unit

P

(Typ variable)
x : τE ∈ Γ

Γ ⊢P x : τE⊓P

(Typ fork )

Γ ⊢P a : Γ ⊢P b : T

Γ ⊢P a � b : T

(Typ limit )
Γ ⊢P′ a : T

Γ ⊢P [P′] a : T

(Typ evaluate)

Γ ⊢P a : T ′ Γ, x : T ′ ⊢P b : T

Γ ⊢P let x = a in b : T

(Typ substitute)

Γ ⊢P′ µ : T ′ Γ, x : T ′ ⊢P a : T

Γ ⊢P (νx/µ@P
′) a : T

(Typ store)

{ω : Obj(τ S) , x : τE} ⊆ Γ S ⊑ O ⊓ E

Γ ⊢P ω
O
7→ x : P

(Typ new)
Γ ⊢P x : τE

S ⊑ E

Γ ⊢P new(x # S) : Obj(τ S)P

(Typ pack)

Γ ⊢P′ f : T �f

Γ ⊢P pack(f) : ∇P′ . Bin(T )P

(Typ un/protect)

Γ ⊢P ω : Obj( S)E
S ⊑ O

Γ ⊢P 〈O〉 ω : Unit
P

∗P ⇒ ∗E

(Typ write )

Γ ⊢P ω : Obj(τ S)E Γ ⊢P x : τE′

S ⊑ E
′

Γ ⊢P ω := x : Unit
P

∗P ⇒ ∗E

(Typ read)

ω : Obj(τ S)E ∈ Γ

Γ ⊢P !ω : τ S⊓P
∗(P ⊓ S) ⇒ ∗E

(Typ execute)

ω : Obj((∇P′ . Bin(τE′

)) S)E ∈ Γ P ⊑ P
′ ⊓ S

Γ ⊢P exec ω : τE′⊓P
∗P ⇒ ∗E



When creating an object, the programmer declares the trust on the
contents of that object. Roughly, an object returned bynew( # S)
gets a typeObj( S). For example, in Examples 3.1 and 3.2, we de-
clare the trust⊤ on the contents ofcmd.exe and the trustMedium
on the contents ofhome.

A typing environmentΓ contains typing hypotheses of the form
x : T . We assume that any variable has at most one typing hypothe-
sis inΓ, and definedom(Γ) as the set of variables that have typing
hypotheses inΓ. A typing judgment is of the formΓ ⊢P a : T ,
whereP is the label of the processa, T is the type and effect of
values returned bya, andfv(a) ⊆ dom(Γ).

4.2 Core typing rules

We now present typing rules that enforce the core static discipline
required for our protection guarantee. Some of these rules have side
conditions that involve a predicate∗ on labels. These conditions,
which are marked inshaded boxes , are ignored in our first read-
ing of these rules. (The predicate∗ is true everywhere in the ab-
sence of a special label⊥, introduced in Section 4.4.) One of the
rules has a condition that involves a predicate� on expressions; we
introduce that predicate in the discussion below. The typing rules
preserve several invariants.

(1) Code that runs with a labelP cannot return values that have
effects higher thanP.

(2) The contents of an object of typeObj( S) cannot have effects
lower thanS.

(3) The dynamic label that protects an object of typeObj( S)
cannot be lower thanS.

(4) An object of typeObj( S) cannot be created at a label lower
thanS.

(5) Packed code of type∇P. Bin( ) must remain well-typed
when unpacked at any label lower thanP.

Invariant (1) follows from our interpretation of effects. To preserve
this invariant in (Typ variable), for example, the effect ofx atP is
obtained by loweringx’s effect in the typing environment withP.

In (Typ store), typechecking is independent of the process
label, that is, a store is well-typed if and only if it is so at any
process label; recall that by (Struct store) stores can float across
contexts, and typing must be preserved by structural equivalence.
Further, (Typ store) introduces Invariants (2) and (3). Invariant
(2) follows from our interpretation of static trust annotations. To
preserve this invariant we require Invariant (3), which ensures that
access control prevents code running with labels less trusted thanS
from writing to objects whose contents are trusted atS.

By (Typ new), the effectE of the initial content of a new
object cannot be lower thanS. Recall that by (Reduct new), the
new object is protected with the process labelP; sinceP ⊒ E
by Invariant (1), we haveP ⊒ S, so that both Invariants (2) and
(3) are preserved. Conversely, ifP ⊏ S then the process does not
typecheck; Invariant (4) follows.

Let us now look carefully at the other rules relevant to Invari-
ants (2) and (3); these rules—combined with access control—are
the crux of enforcing DFI. (Typ write ) preserves Invariant (2), re-
stricting trusted code from writing values toω that may flow from
labels lower thanS. (Such code may not be restricted by access
control.) Conversely, access control prevents code with labels lower
thanS from writing toω, since by Invariant (3),ω’s label is at least
as trusted asS. (Typ un/protect) preserves Invariant (3), allowing
ω’s label to be either raised or lowered without falling belowS.
In (Typ read), the effect of a value read fromω at P is approxi-
mated byS—the least trusted label from whichω’s contents may
flow—and further lowered withP to preserve Invariant (1).

In (Typ pack), packing code requires work akin to proof-
carrying code [40]. Type safety for the code is proved and “carried”
in its type∇P′ . Bin(T ), independently of the current process la-
bel. Specifically, it is proved that when the packed code is unpacked
by a process with labelP′, the value of executing that code has type
and effectT . In Section 5, we show that such a proof in fact allows
the packed code to be unpacked by any process with labelP ⊑ P′,
and the type and effect of the value of executing that code canbe
related toT (Invariant (5)). This invariant is key to decidable and
efficient typechecking [15]. Of course, code may be packed torun
only at specific process labels, by requiring the appropriate label
changes.

Preserving Invariant (5) entails, in particular, preserving Invari-
ant (4) at all labelsP ⊑ P′. Since anew expression that is not
guarded by a change of the process label may be run with any label
P, that expression must place the least possible trust on the contents
of the object it creates. This condition is enforced by predicate�:

�new(x # S) , ∀P. S ⊑ P

�(f � g) , �f ∧ �g

�(let x = f in g) , �f ∧ �g

�(. . . ) , true

(Typ execute) relies on Invariant (5); further, it checks that the
label at which the code is unpacked (P) is at most as trusted as
the label at which the code may have been packed (approximated
by S). This check prevents privilege escalation—code that would
perhaps block if run with a lower label cannot be packed to run
with a higher label. For example, recall that in Example 3.2,the
codebinVirus is packed atLow and then copied intosetup.exe.
While a High-process can legitimately executehome := empty

(so that the code is typed and is not blocked by access control), it
should not run that code by unpackingbinVirus fromsetup.exe.
The type system prevents this violation. Letsetup.exe be of type
Obj((∇ . Bin( ))S). Then (Typ store) requires thatS ⊑ Low,
and (Typ execute) requires thatHigh ⊑ S (contradiction).

Because we do not maintain an upper bound on the dynamic
label of an executable, we cannot rely on the lowering of the
process label in (Reduct execute) to prevent privilege escalation.
(While it is possible to extend our type system to maintain such
upper bounds, such an extension does not let us typecheck anymore
correct programs than we already do.) In Section 5, we show that
the lowering of the process label can in fact be safely eliminated.

In (Typ evaluate), typing proceeds sequentially, propagating
the type and effect of the intermediate process to the continuation.
(Typ substitution) is similar, except that the substituted value is
typed under the process label recorded in the substitution,rather
than under the current process label. In (Typ limit ), the continua-
tion is typed under the changed process label. In (Typ fork ), the
forked process is typed under the current process label.

4.3 Typing rules for stuck code

While the rules above rely on access control for soundness, they do
not exploit runtime protection provided by access control to type-
check more programs. For example, the reduced processq1 in Ex-
ample 3.1 cannot yet be typed, although we have checked that DFI
is not violated inq1. Below, we introducestuck typingto identify
processes that provably block by access control at runtime.Stuck
typing allows us to soundly type more programs by composition.
(The general principle that is followed here is that narrowing the
set of possible execution paths improves the precision of the anal-
ysis.) This powerful technique of combining static typing and dy-
namic access control for runtime protection is quite close to hybrid
typechecking [22]. We defer a more detailed discussion of this tech-
nique to Section 6.



Stuck typing judgments Γ ⊢P a : Stuck

(Typ escalate stuck)
P ⊏ P

′

Γ ⊢P [P′] a : Stuck

(Typ write stuck )

ω : Obj( S)E ∈ Γ P ⊏ S

Γ ⊢P ω := x : Stuck
∗E

(Typ un/protect stuck)

ω : Obj( S)E ∈ Γ P ⊏ S ⊔ O

Γ ⊢P 〈O〉 ω : Stuck
∗E

(Typ subsumption stuck-I)
: Stuck ∈ Γ

Γ ⊢P a : Stuck

(Typ subsumption stuck-II)

Γ ⊢P a : Stuck

Γ ⊢P a : T

We introduce the static approximationStuck for processes that
do not return values, but may have side effects.

T ::= static approximation
· · · code
Stuck stuck process

We now present rules for stuck-typing. As before, in our firstread-

ing of these rules we ignore the side conditions inshaded boxes
(which involve the predicate∗). (Typ write stuck ) identifies code
that tries to write to an object whose static trust annotation S is
higher than the current process labelP. By Invariant (3), the la-
bel O that protects the object must be at least as high asS; thus
P ⊏ O and the code must block at runtime due to access control.
For example, letcmd.exe be of typeObj( ⊤) in Example 3.1. By
(Typ write stuck ), the codeq1 is well-typed sinceLow ⊏ ⊤. (Typ
un/protect stuck) is similar to (Typ write stuck ); it further identi-
fies code that tries to raise the label of an object beyond the current
process label. (Typ escalate stuck) identifies code that tries to raise
the current process label. All such processes block at runtime due
to access control.

By (Typ subsumption stuck-I), processes that are typed under
stuck hypotheses are considered stuck as well. For example,this
rule combines with (Typ evaluate) to trivially type a continuation
b if the intermediate processa is identified as stuck. Finally, by
(Typ subsumption stuck-II), stuck processes can have any type
and effect, since they cannot return values.

4.4 Typing rules for untrusted code

Typing must guarantee protection in arbitrary environments. Since
the protection guarantee is derived via a type preservationtheorem,
arbitrary untrusted code needs to be accommodated by the type
system. We assume that untrusted code runs with a special label
⊥, introduced into the total order by assuming⊥ ⊑ L for all L. We
now present rules that allow arbitrary interpretation of types at⊥.
By (Typ subsumption ⊥-I ), placing the static trust⊥ on the
contents of an object amounts to assuming any type for those
contents as required. By (Typ subsumption ⊥-II ), a value that

Typing rules for untrusted code

(Typ subsumption⊥-I )

Γ, ω : Obj( ⊥)E ⊢P a : T

Γ, ω : Obj(τ⊥)E ⊢P a : T

(Typ subsumption⊥-II )

Γ, x : ⊥ ⊢P a : T

Γ, x : τ⊥ ⊢P a : T

has effect⊥ may be assumed to have any type as required. These
rules provide the necessary flexibility for typing any untrusted code
using the other typing rules. On the other hand, arbitrary subtyping
with objects can in general be unsound—we now need to be careful
when typing trusted code. For example, consider the code

ω2
High
7→ x � ω1

Low
7→ ω2 � [High] let z = !ω1 in z := u

A High-process reads the name of an object (ω2) from aLow-object
(ω1), and then writesu to that object (ω2). DFI is violated if ω2

has typeObj( High) andu flows fromLow. Unfortunately, it turns
out that this code can be typed under process label⊤ and typing
hypotheses

ω2 : Obj(τHigh
2 )⊤, ω1 : Obj(Obj(τHigh

2 )⊥)⊤, x : τHigh
2 , u : τ Low

1

Specifically, the intermediate judgment

z : Obj(τHigh
2 )⊥, . . . , u : τ Low

1 ⊢High z := u :

can be derived by adjusting the type ofz in the typing environment
to Obj(τ Low

1 ) with (Typ subsumption⊥-II ).
This source of unsoundness is eliminated if some of the effects

in our typing rules are required to be trusted, that is, to be higher
than⊥. Accordingly we introduce the predicate∗, such that for
any labelL, ∗L simply meansL ⊐ ⊥. We now revisit the typ-
ing rules earlier in the section and focus on the side conditions in
shaded boxes (which involve∗). In some of those conditions, we

care about trusted effects only if the process label is itself trusted.
With these conditions, (Typ write ) prevents typechecking the of-
fending write above, since the effect ofz in the typing environment
is untrusted.

4.5 Compromise

The label⊥ introduced above is an artificial construct to tolerate
a degree of “anarchy” in the type system. We may want to specify
that a certain label (such asLow) acts like⊥, i.e., is compromised.
The typing judgmentΓ ⊢P a : T despite C allows us to type
arbitrary codea running at a compromised labelC by assuming that
C is the same as⊥, i.e., by extending the total order withC ⊑ ⊥
(so that all labels that are at most as trusted asC collapse to⊥).
We do not consider labels compromised at runtime (as in Gordon
and Jeffrey’s type system for conditional secrecy [27]); however
we do not anticipate any technical difficulty in including runtime
compromise in our type system.

4.6 Typechecking examples

We now show some examples of typechecking.
We begin with the programp2 in Example 3.2. Recall that DFI

is violated inp2. Suppose that we try to derive the typing judgment

· · · ⊢⊤ p2 : despite Low

This amounts to deriving· · · ⊢⊤ p2 : by assumingLow ⊑ ⊥.



As a first step, we apply (Typ new), (Typ read), (Typ write ),
(Typ pack), and (Typ evaluate), directed by syntax, until we have
the following typing environment.

Γ = . . . ,

url : Obj( Low)⊤,

setup.exe : Obj( Low)⊤,

binIE : (∇Low. Bin(Unit))⊤,

ie.exe : Obj((∇Low. Bin(Unit))⊤)⊤,

home : Obj( Medium)⊤

empty : Unit
⊤

The only complication that may arise is in this step is in deriving
an intermediate judgment

. . . , z : Low ⊢⊤ !z :

Here, we can apply (Typ subsumption⊥-II ) to adjust the typing
hypothesis ofz to Obj( )⊥, so that (Typ read) may apply.

After this step, we need to derive a judgment of the form:

Γ ⊢⊤ [High] (. . . ) � [Medium] (. . . ) � [Low] (. . . )

Now, we apply (Typ fork ). We first check that the code[Low] (. . . )
is well-typed. (In fact, untrusted code is always well-typed, as we
show in Section 5.) The judgment

Γ ⊢Low home := empty : Unit

typechecks by (Typ write stuck ). Thus, by (Typ pack) and (Typ
evaluate), we add the following hypothesis to the typing environ-
ment.

binVirus : (∇Low. Bin(Unit))Low

Let TbinVirus = (∇Low. Bin(Unit))Low. Next, by (Typ new) and
(Typ evaluate), we add the following hypothesis to the typing
environment.

virus.exe : Obj(TbinVirus)
Low

Finally, the judgment

Γ, . . . , virus.exe : Obj(TbinVirus)
Low ⊢Low url := virus.exe

can be derived by (Typ write ), after massaging the typing hypothe-
sis forvirus.exe to the requiredLow by (Typ subsumption⊥-II ).

On the other hand, the process[High] (. . . ) does not typecheck;
as seen above, an intermediate judgment

Γ ⊢High exec setup.exe :

cannot be derived, since (Typ execute) does not apply.
To understand this situation further, let us consider some varia-

tions where (Typ execute) does apply. Suppose that the codeexec z
is forked in a new process whose label is lowered toLow. Thenp2

typechecks. In particular, the following judgment can be derived by
applying (Typ execute).

Γ ⊢High [Low] exec setup.exe :

Fortunately, the erasure ofhome now blocks by access control at
runtime, so DFI is not violated.

Next, suppose that the static annotation forsetup.exe is High
instead ofLow, and setup.exe is initialized by a process with
label High instead ofLow. Thenp2 typechecks. In particular, the
type ofsetup.exe in Γ becomesObj( High). We need to derive an
intermediate judgment

Γ, . . . , x : ⊢Low setup.exe := x : Unit

This judgment can be derived by applying (Typ write stuck ) in-
stead of (Typ write ). Fortunately, the overwrite ofsetup.exe now
blocks by access control at runtime, so DFI is not violated.

Finally, we sketch how typechecking fails for the violations of
DFI described in Section 2.2.

(Write and copy) Let the type ofω beObj( S), whereO ⊒ S ⊐

P. Then the write toω(O) does not typecheck, since the value
to be written is read fromω′(P) and thus has some effectE such
thatE ⊑ P, so thatE ⊏ S.

(Copy and execute) Let the type ofω′ be Obj( S′). If S′ ⊑ O
then the execution ofω′(P) by a(P) does not typecheck, since
S′ ⊏ P. If S′ ⊐ O then the write toω′(P) does not typecheck,
since the value to be written is read fromω(O) and thus has
some effectE such thatE ⊑ O, so thatE ⊏ S′.

(Unprotect, write, and protect) Let the type ofω be Obj( S),
whereO ⊒ S ⊐ P. Then the unprotection ofω(O) does not
typecheck, sinceP ⊏ S.

(Copy, protect, and execute) Let the type ofω′ be Obj( S′),
whereS′ ⊑ O. Then the execution ofω′(P) does not type-
check, sinceS′ ⊏ P.

5. Properties of typing
In this section we show several properties of typing, and prove
that DFI is preserved by well-typed code under arbitrary untrusted
environments. All proof details appear in [15].

We begin with the proposition that untrusted code can always
be accommodated by the type system.

Definition 5.1 (Adversary). A C-adversary is any process of the
form [C] that does not contain stores, explicit substitutions, and
static trust annotations that are higher thanC.

Proposition 5.2 (Adversary completeness). Let Γ be any typing
environment andc be anyC-adversary such thatfv(c) ⊆ dom(Γ).
ThenΓ ⊢⊤ c : despite C.

Proposition 5.2 provides a simple way to quantify over arbi-
trary environments. By (Typ fork ) the composition of a well-typed
process with any such environment remains well-typed, and thus
enjoys all the properties of typing.

Next, we present a monotonicity property of typing that is key
to decidable and efficient typechecking [15].

Proposition 5.3 (Monotonicity). The following inference rule is
admissible.

Γ ⊢P′ f : τE
�f P ⊑ P

′

Γ ⊢P f : τE⊓P

This rule formalizes Invariant (5), and allows inference of“most
general” types for packed code [15]. Further, it implies an intuitive
proof principle—code that is proved safe to run with higher priv-
ileges remains safe to run with lower privileges, and conversely,
code that is proved safe against a more powerful adversary remains
safe against a less powerful adversary.

The key property of typing is that it is preserved by structural
equivalence and reduction. Preservation depends delicately on the
design of the typing rules, relying on the systematic maintenance of
typing invariants. We writeΓ ⊢ σ, meaning that “the substitution
environmentσ is consistent with the typing environmentΓ”, if for
all x/µ@ P ∈ σ there existsT such thatx : T ∈ Γ andΓ ⊢P µ : T .

Theorem 5.4(Preservation). Suppose thatΓ ⊢ σ andΓ ⊢P a : .
Then

• if a ≡ b thenΓ ⊢P b : ;

• if a
P;σ
−→ b thenΓ ⊢P b : .

We now present our formal protection guarantee for well-typed
code. We begin by strengthening the definition of DFI in Section 3.



In particular, we assume that part of the adversary is known and part
of it is unknown. This assumption allows the analysis to exploit any
sound typing information that may be obtained from the knownpart
of the adversary. (As a special case, the adversary may be entirely
unknown, of course. In this case, we recover Definition 3.4; see
below.) LetΩ be the set of objects that require protection from
labelsL or lower. We let the unknown part of the adversary execute
with some process labelC (⊑ L). We say thatΩ is protected if no
such adversary can write any instance that flows fromL or lower,
to any object inΩ.

Definition 5.5 (Strong DFI). A set of objectsΩ is protected by
codea from label L despiteC (⊑ L) if there is noω ∈ Ω, C-
adversaryc, substitution environmentσ, and instancex such that

a � c
⊤,∅
−→⋆ E⊤,∅Jω 7→ xK⊤,σ andx

σ
H L.

For example, we may want to prove that some code protects a
set ofHigh-objects fromMedium despite (the compromised label)
Low; then we need to show that no instance may flow fromMedium
or lower to any of thoseHigh-objects under anyLow-adversary.

We pick objects that require protection based on their typesand
effects in the typing environment.

Definition 5.6 (Trusted objects). The set of objects whose contents
are trusted beyond the labelL in the typing environmentΓ is
{ω | ω : Obj( S)E ∈ Γ andS ⊓ E ⊐ L}.

Suppose that in some typing environment,Ω is the set of ob-
jects whose contents are trusted beyond labelL, andC (⊑ L) is
compromised; we guarantee thatΩ is protected by any well-typed
code fromL despiteC.

Theorem 5.7 (Enforcement of strong DFI). Let Ω be the set of
objects whose contents are trusted beyondL in Γ. Suppose that
Γ ⊢⊤ a : despite C, whereC ⊑ L. Thena protectsΩ from L
despiteC.

In the special case where the adversary is entirely unknown,we
simply considerL andC to be the same label.

The type system further enforces DFI for new objects, as can
be verified by applying Theorem 5.4, (Typ substitute), and The-
orem 5.7. Finally, the type system suggests a sound runtime opti-
mization: whenever a well-typed process executes packed code in
a trusted context, the current process label is already appropriately
lowered for execution.

Theorem 5.8 (Redundancy of execution control). Suppose that

Γ ⊢⊤ a : despite C and a
⊤;∅
−→⋆ E⊤;∅Jω

O
7→ � exec ω′KP;σ

such thatω
σ
= ω′ andP ⊐ C. ThenP ⊑ O.

It follows that the rule (Reduct execute) can be safely opti-
mized as follows.

ω
σ
= ω′

pack(f) ∈ σ(x)

ω
O
7→ x � exec ω′ P;σ

−→ ω
O
7→ x � f

This optimization should not be surprising. Lowering the process
label for execution aims to prevent trusted code from executing
untrusted code in trusted contexts; our core static discipline on
trusted code effectively subsumes this runtime control. Onthe other
hand, write-access control cannot be eliminated by any discipline
on trusted code, since that control is required to restrict untrusted
code.

Lastly, typechecking can be efficiently mechanized thanks to
Proposition 5.3 and our syntactic restriction on nested packing.

Theorem 5.9(Typechecking). Given a typing environmentΓ and
codea with L distinct labels, the problem of whether there existsT
such thatΓ ⊢⊤ a : T , is decidable in timeO(L|a|), where|a| is
the size ofa.

A typechecking algorithm is outlined in [15]. As usual, the algo-
rithm builds constraints and then checks whether those constraints
are satisfiable. The only complication is due topack processes,
which require “most general” types.

Briefly, the grammar of types is extended with type variables,
and a distinguished label? is introduced to denote an “unknown”
label. Let atypechecking environment∆ be a typing environment
augmented by simple type constraints, and alabel constraint(a
boolean formula with propositions of the formL1 ⊑ L2). The fol-
lowing typechecking judgments are defined, with mutually recur-
sive rules:

• ∆ ⊢P a : T ⊲ ∆′, where the label constraint in∆′ is true.

• ∆ ⊢ f : T ⊲ ∆′, where∆′ contains a label constraint over?.

The rules for∆ ⊢P a : T ⊲ ∆′ build simple type constraints in
∆′, following the original typing rules. To derive a judgment of
the form∆ ⊢P pack(f) : ⊲ , we need to derive a judgment of
the form∆ ⊢ f : ⊲ . The rules for∆ ⊢ f : T ⊲ ∆′ build
label constraints from conditions on labels in the originaltyping
rules; here, the implicit (unknown) process label is taken to be?.
To derive a judgment of the form∆ ⊢ [P] a : ⊲ , we need to
derive a judgment of the form∆ ⊢P a : ⊲ . On the other hand,
the syntactic restriction on expressions ensures that we donot need
to consider judgments of the form∆ ⊢ pack(f) : ⊲ .

Solving the simple type constraints built by a judgment of the
form ∆ ⊢P a : ⊲ takes timeO(|a|); solving the label constraint
built by a judgment of the form∆ ⊢ f : ⊲ takes time
O(L|f |). The running time of the typechecking algorithm follows
by a straightforward inductive argument.

6. Limitations, related work, and discussion
In this paper we formalize DFI—a multi-level integrity property
based on explicit flows—and present a type system that can effi-
ciently enforce DFI in a language that simulates Windows Vista’s
security environment.

Not surprisingly, our type system is only a conservative tech-
nique to enforce DFI—while every program that typechecks is
guaranteed to satisfy DFI (as stated in Theorem 5.7), well-typedness
is not necessary for DFI.

By design, our analysis is control-insensitive—it does nottrack
implicit flows. In many applications, implicit flows are of serious
concern. It remains possible to extend our analysis to account for
such flows, following the ideas of [51, 56, 39, 37]. However, we
believe that it is more practical to enforce a weaker property like
DFI at the level of an operating system, and enforce stronger,
control-sensitive properties like noninterference at thelevel of the
application, with specific assumptions.

Our core security calculus is simplified, although we take care
to include all aspects that require conceptual modeling forreason-
ing about DFI. In particular, we model threads, mutable references,
binaries, and data and code pointers; other features of x86 binaries,
such as recursion, control flow, and parameterized procedures, can
be encoded in the core calculus. We also model all details of Win-
dows Vista that are relevant for mandatory integrity control with
dynamic labels. On the other hand, we do not model details such as
discretionary access control, file virtualization, and secure autho-
rization of privilege escalation [32], which can improve the preci-
sion of our analysis. Building a typechecker that works at the level
of x86 binaries and handles all details of Windows Vista requires
more work. At the same time, we believe that our analysis can be
applied to more concrete programming models by translation.

Our work is closely related to that of Tse and Zdancewic [49]
and Zheng and Myers [61] on noninterference in lambda calculi
with dynamic security levels. While Tse and Zdancewic do not



consider mutable references in their language, it is possible to
encode the sequential fragment of our calculus in the language of
Zheng and Myers; however, well-typed programs in that fragment
that rely on access control for DFI do not remain well-typed via
such an encoding. Specifically, any restrictive access check for
integrity in the presence of dynamically changing labels seems to
let the adversary influence trusted computations in their system,
violating noninterference [60].

Noninterference is known to be problematic for concurrent lan-
guages. In this context, Zdancewic and Myers study the notion of
observational determinism [58]; Abadi, Hennessy and Riely, and
others study information flow using testing equivalence [1,29]; and
Boudol and Castellani, Honda and Yoshida, and others use stronger
notions based on observational equivalence [10, 30]. Sophisticated
techniques that involve linearity, race analysis, behavior types, and
liveness analysis also appear in the literature [30, 58, 29,33]. While
most of these techniques are developed in the setting of the pi cal-
culus, other works consider distributed and higher-order settings to
study mobile code [28, 55, 46] (as in this work).

DFI being a safety property [7] gets around some of the dif-
ficulties posed by noninterference. A related approach guides the
design of the operating systems Asbestos [20] and HiStar [59], and
dates back to the Clark-Wilson approach to security in commercial
computer systems [16, 47]. In comparison with generic models of
trace-based integrity that appear in protocol analysis, such as cor-
respondence assertions [26, 23], our integrity model is farmore
specialized; as a consequence, our type system requires farless an-
notations than type systems for proving correspondence assertions.

Our definition of DFI relies on an operational semantics based
on explicit substitution. Explicit substitution, as introduced by
Abadiet al.[4], has been primarily applied to study the correctness
of abstract machines for programming languages (whose semantics
rely on substitution as a rather inefficient meta-operation), and in
proof environments. It also appears in the applied pi calculus [5] to
facilitate an elegant formulation of indistinguishability for security
analysis. However, we seem to be the first to use explicit substitu-
tions to track explicit flows in a concurrent language. Previously,
dependency analysis [36, 6] has been applied to information-flow
analysis [2, 42, 57]. These analyses track stronger dependencies
than those induced by explicit flows; in particular, the dependen-
cies are sensitive to control flows. In contrast, the use of explicit
substitutions to track explicit flows seems rather obvious and ap-
propriate in hindsight. We believe that this technique should be
useful in other contexts as well.

Our analysis manifests a genuine interplay between static typ-
ing and dynamic access control for runtime protection. We seem to
be the first to study this interaction in a concurrent system with dy-
namic labels for multi-level integrity. This approach of combining
static and dynamic protection mechanisms is reflected in previous
work on typing,e.g., for noninterference in a Java-like language
with stack inspection and other extensions [8, 41], for noninter-
ference in lambda calculi with runtime principals and dynamic la-
bels [49, 61], and for secrecy in concurrent storage calculiwith
discretionary access control mechanisms [14, 13]. A verification
technique based on this approach is developed by Flanagan [22]
for a lambda calculus with arbitrary base refinement types. In these
studies and ours, dynamic checks complement static analysis where
possible or as required, so that safety violations that are not caught
statically are always caught at runtime. Moreover, static typing
sometimes subsumes certain dynamic checks (as in our analysis),
suggesting sound runtime optimizations. This approach is reflected
in previous work on static access control [29, 43, 31].

In most real-world systems, striking the right balance between
security and practice is a delicate task that is never far from con-
troversy. It is reassuring to discover that perhaps, such a balance

can be enforced formally in a contemporary operating system, and
possibly improved in future ones.
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