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Abstract

The Windows Vista operating system implements an intargsti
model of multi-level integrity. We observe that in this mgde
trusted code must participate in any information-flow atadus,

it is possible to eliminate such attacks by statically iesirg
trusted code. We formalize this model by designing a typéesys
that can efficiently enforce data-flow integrity on Windowiste.
Typechecking guarantees that objects whose contentsadicaty
trusted never contain untrusted values, regardless ofwtiaisted
code runs in the environment. Some of Windows Vista’s ruatim
access checks are necessary for soundness; others aréaedun
and can be optimized away.

Categories and Subject Descriptors  D.4.6 [Operating Systenits
Security and Protection—Access controls, Information ftam-
trols, Verification; D.2.4 $oftware EngineerirjgProgram Verif-
ication—Correctness proofs; F.3.ldgics and Meanings of Pro-
gramg: Specifying and Verifying and Reasoning about Programs—
Specification techniques, Invariants, Mechanical vetifica

General Terms Security, Verification, Languages, Theory
Keywords dynamic access control, data-flow integrity, hybrid
type system, explicit substitution
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allows processes at different trust levels to communicae, al-

lows dynamic access control. At the same time, it admitsouari
information-flow attacks. Fortunately, it turns out thatlsattacks
require the participation of trusted processes, and catibmated

by code analysis.

In this paper, we provide a formalization of Windows Vistia's
tegrity model. In particular, we specify an informationvil@rop-
erty calleddata-flow integrity(DFI), and present a static type sys-
tem that can enforce DFI on Windows Vista. Roughly, DFI prese
any flow of data from the environment to objects whose costent
are trusted. Our type system relies on Windows Vista’s ni@tac-
cess checks for soundness. The key idea in the type systam is t
maintain a static lower-bound lab8lfor each object. While the
dynamic label of an object can change at runtime, the typesys
ensures that it never goes bel8wand the object never contains a
value that flows from a label lower th&h The labelS is declared
by the programmer. Typechecking requires no other anooisti
and can be mechanized by an efficient algorithm.

By design, DFI does not prevent implicit flowis]19]. Thus DFI
is weaker than noninterferende_[24]. Unfortunately, it ificllt
to enforce noninterference on a commercial operating systeh
as Windows Vista. Implicit flows abound in such systems. Such
flows arise out of frequent, necessary interactions betirested
code and the environment. They also arise out of covert abntr
channels which, given the scope of such systems, are infp@ssi
to model sufficiently. Instead, DFI focuses on explicit flofig].

Commercial operating systems are seldom designed to freven This focus buys a reasonable compromise—DFI prevents dteefin

information-flow attacks. Not surprisingly, such attacke ¢he
source of many serious security problems in these systefjs [4
Microsoft's Windows Vista operating system implements an i
tegrity model that can potentially prevent such attackssdme
ways, this model resembles other, classical models of Aaviél
integrity [9]—every process and objlds tagged with an integrity
label, the labels are ordered by levels of trust, and acoasisat
is enforced across trust boundaries. In other ways, it icaty
different. While Windows Vista's access control prevernsv
integrity processes from writing to high-integrity objectt does
not prevent high-integrity processes from reading lovegnity
objects. Further, Windows Vista’s integrity labels are akyric—
labels of processes and objects can change at runtime. Tuielm

L1n this context, an object may be a file, a channel, a memostitar, or
indeed any reference to data or executable code.
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class of attacks, and can be enforced efficiently on Windos&V
Several successful tools for malware detection follow aéipigroach
[12,[52 [48[ 5D 17.-38], and a similar approach guides thigdes
of some recent operating systernsl[20, 59].

Our definition of DFI is dual to standard definitions of segrec
based on explicit flows—while secrecy prevents sensitivaes
from flowing to the environment, DFI prevents the flow of value
from the environment to sensitive objects. Since thereidditer-
ature on type-based and logic-based analysis for such tifefimof
secrecy[[TN[13.49.713], it makes sense to adapt this andbydds-I.
Such an adaptation works, but requires some care. Unlikesgc
DFI cannot be enforced without runtime checks. In particida-
cess checks play a crucial role by restricting untrustedgsses
that may run in the environment. Further, while secrecy eméev
any flow of high-security information to the environment, IGi-
lows certain flows of low-security information from the eron-
ment. We need to introduce new technical devices for thipgae,
including a technique based erplicit substitutiorf4] to track pre-
cise sources of values. This device is required not only &zi§p
DFI precisely but also to prove that our type system enfoBifels

We design a simple higher-order process calculus that ates|
Windows Vista’s security environmenit [32.118] 44]. (Theigasof
this language is discussed in detail in Secfibn 6.) In thiglage,
processes can fork new processes, create new objects ectiang
labels of processes and objects, and read, write, and exebut



jects in exactly the same ways as Windows Vista allows. Ope ty
system exploits Windows Vista’s runtime access checks ftores
DFI, and can recognize many correct programs. At the sames tim
our type system subsumes Windows Vista’'s execution cantabl
lowing them to be optimized away.

1.1 Summary of contributions
To sum up, we make the following main contributions in thipgra

e We propose DFI as a practical multi-level integrity progert
in the setting of Windows Vista, and formalize DFI using a
semantic technique based on explicit substitution.

e We present a type system that can efficiently enforce DFI on
Windows Vista. Typechecking guarantees DFI regardless of
what untrusted code runs in the environment.

e We show that while most of Windows Vista’s runtime access
checks are required to enforce DFI, Windows Vista’s executi
controls are not necessary and can be optimized away.

1.2 Outline

The rest of this paper is organized as follows. In Sedfibn &, w
introduce Windows Vista’s security environment, and shaw h
DFI may be violated in that environment. In Sectfdn 3, we glesi
a calculus that simulates Windows Vista’s security envinent,
equip the calculus with a semantics based on explicit sulisti,
and formalize DFI in the calculus. In Sectifh 4, we present a
system of integrity types and effects for this calculus. éet®r,
we prove soundness and other properties of typing. Finally,
Section[®, we discuss limitations and contributions witBpest
to related work and conclude. Supplementary materialuifing
proof details and an efficient typechecking algorithm, appe the
full version of the papef]15] available onlinelett p: /7 ar xi v.

or g/ abs/ 080U3. 3230.

2. Windows Vista’s integrity model

In this section, we provide a brief overview of Windows Vistia-
tegrity modef In particular, we introduce Windows Vista’s secu-
rity environment [[3RL_1d,44], and show how DFI may be viatate
in that environment. We observe that such violations reqgthe
participation of trusted processes. Intuitively, the mesgbility of
security lies with trusted users. Our type system provideayafor
such users to manage this responsibility automatically.

2.1 Windows Vista’'s security environment

In Windows Vista, every process and object is tagged with-a dy
namic integrity label. We indicate such labels in bracketdelow.
Labels are related by a total order, meaning “at most as trusted
as”. Leta range over processes,over objects, and, O over la-
bels. Processes can fork new processes, create new objeatge
the labels of processes and objects, and read, write, arulitexe
objects. In particular, a process with latfetan:

(i) fork a new process(P);

(i) create a new object(P);

(iii) lower its own label;

(iv) change the label of an objegtO) to O’ iff O O’ C P;
(v) read an object(0);

(vi) write an objectw(O) iff O C P;

(vii) execute an object(O) by lowering its own label t& M O.

2Wwindows Vista further implements a discretionary accesgrobmodel,
which we ignore in this paper.

Rules (i) and (ii) are straightforward. Rule (iii) is guidéy the
principle of least privilege[[35], and is used in Windows tdiso
implement a feature callagser access contrgUAC) [44,[53]. This
feature lets users execute commands with lower privilegesnw
appropriate. For example, when a system administratorsopasw
shell (typically with labeHigh), a new process is forked with label
Medium; the shell is then run by the new process. When an Internet
browser is opened, it is always run by a new process whosé labe
is lowered toLow; thus any code that gets run by the browser gets
the labelLow—by Rule (i)—and any file that is downloaded by the
browser gets the lab&low—by Rule (ii).

Rules (iv) and (v) facilitate dynamic access control and com
nication across trust boundaries, but can be dangeroug ifseal
carefully. (We show some attacks to illustrate this poiribwe In
particular, Rule (iv) allows trusted processes to protegratected
objects by raising their labels. (Users are required to oorguch
protections via the user interface.) Rule (v) allows preesgo read
objects at lower trust levels.

Rule (vi) protects objects from being written by processes a
lower trust levels. Thus, for example, untrusted code forkg a
browser cannot touch local user files. User code cannot modif
registry keys protected by a system administrator. Rulg {si
part of UAC; it prevents users from accidentally launchiegsl
trusted executables with higher privileges. For exampleiras
downloaded from the Internet cannot run in a trusted uselt. she
Neither can system code dynamically link user libraries.

2.2 Some attacks

We now show some attacks that remain possible in this environ
ment. Basically, these attacks exploit Rules (iv) and (Wypass
Rules (vi) and (vii).

(Write and copy) By Rule (vi), a(P) cannot modifyw(O) if P C
0. However,a(P) can modify some objeat’(P), and then
some process(0) can copyw’(P)'s content tow(O). Thus,
Rule (iv) can be exploited to bypass Rule (vi).

(Copy and executg By Rule (vii), a(P) cannot executey(O) at
P if O C P. However,a(P) can copyw(O)’'s content to some
objectw’(P) and then execute’(P). Thus, Rule (iv) can be
exploited to bypass Rule (vii).

(Unprotect, write, and protect) By Rule (vi), a(P) cannot mod-
ify w(0) if P C O. However, some proce$$O) can unprotect
w(0) to w(P), thena(P) can modifyw(P), and therb(O) can
protectw(P) back tow(O). Thus, Rule (v) can be exploited to
bypass Rule (vi).

(Copy, protect, and executg By Rule (vii), a(P) cannot execute
w(0) atP if O C P. However, some proce$gO) can copy
w(0)’s content to an object’ (0), and themu(P) can protect
w'(0) tow’(P) and execute)’(P). Thus, Rules (iv) and (v) can
be exploited to bypass Rule (vii).

All of these attacks can violate DFI; however, we observe tha
access control forces the participation of a trusted pso@ase with
the higher label) in any such attack.

e In (Write and copy) or (Unprotect, write, and protect), sup-
pose that the contents of O) are trusted, an& is the label of
untrusted code, wit? C O. Then data can flow from(P) to
w(0), violating DFI, as above. Fortunately, some prodgs)
can be blamed here.

¢ In (Copy and executé or (Copy, protect, and executg sup-
pose that the contents of some objett(P) are trusted, and
O is the label of untrusted code, with — P. Then data can
flow from some process(O) to w”(P), violating DFI, as fol-
lows: b(0O) packs code to modify” (P) and writes the code to
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w(0), anda(P) unpacks and executes that cod® aas above.
Fortunatelya(P) can be blamed here.

Our type system can eliminate such attacks by restrictingted
processes (Sectidh 4). (The type system does not restticisted
code running in the environment.) Conceptually, this goiea
can be cast as Wadler and Findleris€ll-typed programs can't
be blamed [6Z]. We rely on the fact that a trusted process can
be blamed for any violation of DFI; it follows that if all tried
processes are well-typed, there cannot be any violatiorFof D

3. Acalculus for analyzing DFI on Windows Vista

To formalize our approach, we now design a simple higheetword
process calculus that simulates Windows Vista’s securityren-
ment. We introduce the syntax and informal semantics, agskmt
some examples of programs and attacks in the language. \We the
present a formal semantics, guided by a precise charaatierizof
explicit flows.

3.1 Syntax and informal semantics

Several simplifications appear in the syntax of the langusige
describe processes by their code. We use variables as objaes,
and let objects contain packed code or names of other obj&fets
enforce a mild syntactic restriction on nested packingcWwiiakes
typechecking significantly more efficient]15] (see beloRinally,
we elide conditionals—for our purposes, the code

if condition then a else b

can be conservatively analyzed by composingndb in parallel.
(DFI is asafety propertyin the sense of]7], and the safety of the
latter code implies that of the former. We discuss this poimiore
detail in Sectiofi.313.)

Values include variablesinit, and packed expressions. Expres-
sions include those for forking new processes, creatingaigects,
changing the labels of processes and objects, and readiiigngy
and executing objects. They also include standard exjpres$or
evaluation and returning results (see Gordon and Hankarisur-
rent object calculug125]).

f,g = expression
frg fork
t action
letz = fing evaluation
T result
to= action
new(z #S) create object
[P] a change process label
(O) w change object label
lw read object
w:i=1x write object
exec w execute object
ro= result
TyYy Zy e e W variable
unit unit
a,b = process
alb fork
t action
letz=ainb evaluation
u value
U,V = value
r result
pack(f) packed expression

Syntactically, we distinguish between processes and sgjures:
while every expression is a process, not every process isaae

sion. For examplepack( f) is not an expression, whi[@] pack(f)
is. Only expressions can be packed. In particular, a prozassot
be of the formpack(pack(...)). This distinction does not reduce
expressivity, since such a process can be expressed imtjgaige
aslet x = pack(...) in pack(z). The benefits of this distinction
become clear in Sectidih 5, where we discuss an algorithnyfer t
checking. However, for the bulk of the paper, the reader may-o
look this distinction—neither the semantics nor the typstem
depend on it.

Processes have the following informal meanings.

e a ' bforks a new process with the current process label and
continues a$ (see Rule (i)).

e new(z #S) creates a new object with the current process
label, initializesw with z, and returnsv (see Rule (ii)); the
annotationS is used by the type system (Sectidn 4) and has
no runtime significance.

[P] a changes the current process labePtand continues as

a; it blocks if the current process label is lower thBn(see
Rule (iii)).

(O) w changesv’s label toO and returnsinit; it blocks if w is
not bound to an object at runtime, or the current procesd labe
is lower thanw’s label orO (see Rule (iv)).

lw returns the value stored in; it blocks if w is not bound to
an object at runtime (see Rule (v)).

w := x writes the valuer to w and returnanit; it blocks if w is
not bound to an object at runtime, or if the current procelsslla
is lower thanw’s label (see Rule (vi)).

exec w unpacks the value storeddnto a procesy, lowers the
current process label with's label, and executeg; it blocks if

w is not bound to an object at runtime or if the value stored in
w is not a packed expression (see Rule (vii)).

let z = a in b executes:, binds the value returned hyto z,
and continues alswith = bound.

e 1 returns itself.

3.2 Programming examples

We now consider some programming examples in the language.
We assume thdtow, Medium, High, and T are labels, ordered in
the obvious way. We assume that the top-level process alwags
with T, which is the most trusted label.

Example 3.1. Suppose that aMedium user opens an Internet
browserie.exe with Low privileges (recall UAC), and clicks on a
url that containsrirus.exe; the virus contains code to overwrite
the command shell executakigd.exe, which has labell .
p1 £ let cmd.exe = new(... #T)in
let url = [Low] new(... #Low) in
let binIE = pack(let z =lurl in exec ) in

let ie.exe = new(binIE# T)in

[Medium] (... T [Low] exec ie.exe) T
[Low] (let binVirus = pack(cmd.exe :=...) in
let virus.exe = new(binVirus #Low) in

url := virus.exe I

.2)
This code may eventually reduce to
@1 2 [Medium] (... P [Low] cmd.exe :=...) I
[Low] (...)



However, at this point the write temd.exe blocks due to access
control. (Recall that a process with laHedw cannot write to an
object with labelT.)

Example 3.2. Next, consider the following attack, based on the
(Copy, protect, and executgattack in Sectiof2]2. Medium user
downloads a virus from the Internet that contains code teectiae
user's home directoryhpme), and saves it by default isetup.exe.
A High administrator protects and executggup.exe.
p2 2 leturl = [Low] new(... #Low) in
let setup.exe = [Low] new(... #Low) in
let binIE = pack(let z = lurlin
let z = !z in setup.exe := z)in

let ie.exe = new(binIE# T)in
let home = [Medium] new(. .. # Medium) in

let empty = unitin

[High] (--- 7
let - = (High) setup.exe in
exec setup.exe) I
[Medium] (...
[Low] (let binVirus = pack(home := empty) in

I [Low] exec ie.exe) T

let virus.exe = new(binVirus # Low) in

url := virus.exe I

)
This code may eventually reduce to
g2 2 [High] (... T home := empty) T
[Medium] (...) T
[Low] (...)

The user’s home directory may be erased at this point. (Rebel
access control does not prevent a process with lalygh from
writing to an object with labeMedium.)

Here the administrator is required to confirm the protectibn

However, in Exampl&3]2, we know that this code is executed by
unpacking some code designed blyaav-process. The violation of
DFl is due to this history

It follows that in order to detect violations of DFI, we muss-d
tinguish between various instances of a value, and trackateces
of those instances during execution. We maintain this di@tu
history in the operational semantics (Secfiad 3.4), by artiepie
based on explicit substitutiofl[4].

Before we move on, let us ease the tension between DFI and
conditionals. In general, conditionals can cause imgiioits [19];
a flow of z can depend on the valueif = appears in the condition
of some code that causes that flow. For example, the code

if x = zero then w := zero else w := one

causes an implicit flow of: to w that depends on the value
We can abstract away this dependency by interpreting the cod
if condition then a else b as the parallel composition af and

b. Recall that DFI is a safety property. Followirig134], théetq of
this parallel composition can be expressed by the logiaahdda

F £ F, A Fy, whereF, is the formula that expresses the safety of
a, andFy is the formula that expresses the safety.dfikewise, the
safety ofif condition then a else b can be expressed by the for-
mulaF’ £ (condition = F,) A (-~condition = F}). Clearly,
we haveF' = F’, so that the cod# condition then a else bis a
refinement of the parallel composition @fandb. It is well-known
that safety is preserved under refinemEnt [34].

But implicit flows are of serious concern in many applicasipn
one may wonder whether focusing on explicit flows is evenreesi
able. Consider the code above; the implicit flow franto w vio-
lates noninterference, if is an untrusted value and the contents of
w are trusted. In contrast, DFI it violated in the code

w:=zero I w:= one

if zero andone are trusted values. Clearly, DFIl ignores the implicit
flow from x to w. But this may be fine—DFI can be used to prove
an invariant such as “the contents wfare eitherzero or one”.
Note that the code

W=
does not maintain this invariant, sincenay be an arbitrary value.

setup.exe Via the user interface. Our type system can detect that Thankfully, DFIis violated in this code.

this protection is dangerous, and warn the administrator.

3.3 An overview of DFI

Informally, DFI requires that objects whose contents austéd at
some labeb never contain values that flow from labels lower than
S. In Example330L, we trust the contents @fd.exe at label T,

as declared by the static annotation DFI is not violated in this
example, since access control prevents the flow of data framto
cmd.exe. On the other hand, in ExamdIeB.2, we trust the contents
of home at labelMedium. DFIis violated in this example, since the
valueempty flows from Low to home.

By design, DFI is a safety propertzl[7]—roughly, it can be
defined as a set of behaviors such that for any behavior that ia
that set, there is some finite prefix of that behavior that tSmthat
set. To that end, DFI considers orgyplicitflows of data. Denning
and Denning characterize explicit flowis[19] roughly asdais: a
flow of z is explicit if and only if the flow depends abstractly on
x (that is, it depends on the existenceagfbut not on the value
z). Thus, for example, the violation of DFI in Exam@lE]3.2 does
not depend on the valusnpty—any other value causes the same
violation. Converselyempty is not dangerous in itself. Consider
the reduced procesg in Exampld3.R. Without any knowledge of
execution history, we cannot conclude that DFI is violatedxi.
Indeed, it is perfectly legitimate for igh-process to execute the
codehome := empty intentionally, say as part of administration.

3.4 An operational semantics that tracks explicit flows

We now present a chemical-style operational semanticshier t
language, that tracks explicit flofiswe begin by extending the
syntax with some auxiliary forms.

a, b= process
source process
wS store
(vx/uQP) a explicit substitution
o= substituted value
u value
new(z #S) object initialization

The processv 2, 2 asserts that the object containsz and is
protected with labeD. A key feature of the semantics is that objects
store values “by instance”—only variables may appear imesto
We use explicit substitution to track and distinguish betwé¢he
sources of various instances of a substituted value. Sgaltjfithe
process(vz/u@P) a creates a fresh variable records thate is
bound toyu by a process with labd?, and continues ag with «

3This presentation is particularly convenient for definimgl @roving DFI;
a concrete implementation of the language may rely on adigfemantics
that does not track explicit flows.



. P;
Local reduction ¢ —% b

(Reduct evaluatg

let z = uina —% (v /u@P) a

(Reduct new)

new(z #S) 2% (vw/new(z #S)QP) (w > = I w)

(Reduct read) .
w=w
wSzr w2 wSara
(Reduct write)
wZ W OCP
w& P =2 0% 0 e unit

(Reduct executg

wZ W pack(f) € o(x)

PP=PnoO

P
w S TP execw =% w»g:rf’[P']f

(Reduct un/protect)

[ /
w=w

ouo'CP

P;o

w»g:rF’<O/)w/—>

o’ .
w [ unit

Structural equivalence a = b

(Struct bind)
Epiola{z/y}pr o0

(Struct substitution)

z ¢ fv(Ep,s) Ubv(Ep,s)

fv(pu) Nbv(Ep,s) =2

Er.o[(va/yQP") a]pr o

gP;UII(IJZZ’/,U,@PN) a]]p/yc/ = (V{I}/M@P”) gpy{z/u@p//}u,:,.[a]]p/’o./

(Struct fork )

fv(a) Nbv(Ep,s) = @

gPH’IIa P b]]P,o" =a ’-) EP;UIIb]]P’O-/

(Struct store)

Plw2ra)=wSzr [Pla

(Struct equiv)

= is an equivalence

Global reduction a =% b

(Reduct contex)

a

s
Po
—

b

Eriolalprior —% Epiolb]pr o

(Reduct congruencg

_
a=a

a

1 Pso
—

bl

b/

b

P;o

a —

b

bound. Herer is aninstanceof . and P is the sourceof . If

is a value, then this process is behaviorally equivalent wath x
substituted byu. For example, in Example—3.2 the source of the
instance ofempty in binVirus is Low; this fact is described by
rewriting the procesg. as

(va/empty@Low) [High] (--- T home :=x) [ ...

DFI prevents this particular instance)(of empty from being
written to home; but it allows other instances whose sources are
at least as trusted ddedium. The rewriting follows a structural
equivalence ruleStruct bind), explained later in the section.

While explicit substitution has been previously used irglzege
implementations, we seem to be the first to adapt this dewice t
track data flow in a concurrent language. In particular, we us
explicit substitution both to specify DFI (in DefinitioRSBand3.})
and to verify it statically (in proofs of Theorerish.4 dnd)5We
defer a more detailed discussion on this technique to Sd8tio

We call sets of the forrfx1 /u1 QP+, ...,z /i QP } substi-
tution environments

Definition 3.3 (Explicit flows). A variable = flows from a label

P or lower in a substitution environment, written x v P, if
x/p@QP’ € o for somep and P’ such that eitheP’ C P, or p

is a variable and (inductively) VP

In other words,z flows from a labelP or lower if = is an
instance of a value substituted Btor lower. In Definition[3H
below, we formalize DFI as a property of objects, as folloas:
object is protected from labd! if it never contains instances that
flow from L or lower. We definec(x) to be the set of values
in o that z is an instance ofr € o(x), and if (inductively)
y € o(z) andy/u@ _ € o for somey andu, thenu € o(x).
The operational semantics ensures that substitution @mwients
accurately associate instances of values with their riensiources.

We now present rules for local reduction, structural edaivee,

and global reduction. Reductions are of the farm% b, mean-
ing that “process: may reduce to procedswith label P in sub-
stitution environment”. Structural equivalences are of the form
a = b, meaning that “process may be rewritten as proce$s
The notions of free and bound variablés @ndbv) are standard.
We writex < y if o(x) No(y) # @, that is, there is a value that
bothz andy are instances of.

We first look at the local reduction rules. IRéduct evaluats,

a substitution bindg: to the intermediate value and associates
2 with its runtime sourceP. (Reduct new) creates a new store
denoted by a fresh variable, initializes the store, and returns
w; a substitution bindsv to the initialization of the new object
and associates with its runtime sourcé®. The valuex and the
trust annotatiors in the initialization are used by the type system
(Sectiorl}). The remaining local reduction rules descréaetions
with a store, following the informal semantics.

Next, we define evaluation contexfs]21]. An evaluation eznt
is of the formé&p,,, and contains a hole of the forep. ,/; the
context yields a process that executes with ldb@h substitution
environmento, if the hole is plugged by a process that executes
with label P’ in substitution environment’.

Epio = evaluation context
op., hole
letz =Ep;sind sequential evaluation
Epio T b fork left
al Epo fork right

(va/u@P") Ep.1o/papriue explicit substitution
P&, (P'CP) lowering of process label



Evaluation can proceed sequentially inside processes, and in
parallel under forks[I25]; it can also proceed under expkcib-
stitutions and lowering of process labels. In particulatenhow
evaluation contexts build substitution environments frexplicit
substitutions, and labels from changes of process laba& slaiote
by Ep;»[alr,, the process obtained by plugging the hele,, in
gP;o‘ with a.

Next, we look at the structural equivalence and global rédnc
rules. In Struct bind), a{z/y} is the process obtained from
by the usual capture-avoiding substitution ofby y. The rule
states that explicit substitution magvert usual substitution to
create instances as required. In particular, variablesatgear in

packed code can be associated with the label of the procass th

packs that code, even though those variables may be bowreHat

Core typing judgments T'Fp a : T

(Typ unit)

by (Reduct evaluatg—when that code is eventually unpacked at (Typ limit )

some other label. For example, the instancengfty in binVirus
may be correctly associated wittow (the label at which it is
packed) instead oHigh (the label at which it is unpacked). In
combination, the rulesReduct evaluatg and Struct bind) track
precise sources of values by explicit substitution.

By (Struct substitution), substitutions can float across contexts

under standard scoping restrictions. Btr{ct fork ), forked pro-

cesses can float across contekfd [25], but must remain uheer t

I Fp unit : Unit®
(Typ variable)
z:7mEeT
I'Fpux: TENP
(Typ fork)
I'Fpa:_ I'kpb: T
I l—p arlb: T
T'rpra:T
I'kp [Pla:T
(Typ evaluate)
Trpa:T R:c:T'pr:T

I'kpletz=ainb: T

same process label. B${fuct store), stores can be shared across (Typ substitute)

further contexts.

Reduction is extended with contexts and structural eceined
in the natural way.

Finally, we formalize DFI in our language, as promised.

Definition 3.4 (DFI). The objectw is protected from labelL by
processu if there is no process, substitution environmerat, and
instancer such thata " [L] b T2 Erowr 2]t andz ¥V L.

—

4. Atype system to enforce DFI

We now show a type system to enforce DFI in the language. (The

formal protection guarantee for well-typed code appearSen-
tion[H.) We begin by introducing types and typing judgmebits.
then present typing rules and informally explain their nties.
Finally, we consider some examples of typechecking. Anieffic
algorithm for typechecking is outlined i JiL5].

4.1 Types and effects

The core grammar of types is shown below. Here effects anglgim
labels; these labels belong to the same ordefirgs in the opera-
tional semantics.

T = type
Obj(T) object
Vp. Bin(T) packed code
Unit unit

T ::= static approximation
rE type and effect

typer. Such contents may not flow from labels lower ti$atn

other wordsS indicates the trust on the contents of this object.

DFI follows from the soundness of object types.

with labelP. Values returned by the code must be of typend
may not flow from labels lower thak. In fact, our type system

admits a subtyping rule that allows such code to be run in a

typesafe manner with any label that is at m@st

e The effectE is given to a value that does not flow from labels

lower thanE.

The typeVp. Bin(rF) is given to packed code that can be run

FFp/p,:T' Rx:T'h:a:T

I'kp (vz/u@P')a:T

(Typ store)
{w:0bj(r*),z: 75} CT SCOnMnE
I'Fpw o, z:F

(Typ new)

Thpax:7t SCE

I kp new(z #S) : Obj(r°)"

(Typ pack)

Che f:T  Of
I bp pack(f) : Vpr. Bin(T)"

(Typ un/protect)

Ikpw:Obj(>)F S
I'kp (O) w: Unit®

(Typ write)

Fpr:Obj(TS)E FFPI:TE/
I'Fpwi=ux: Unit"

The typeObj(7°) is given to an object that contains values of (Typ read)

w:0bj(r)F el

T P x(PMS) = «E
p lw:

(Typ executg

w: Obj((Ver. Bin(rF))%)F e T

E'MP

I'Fpexecw: 7




When creating an object, the programmer declares the truteo
contents of that object. Roughly, an object returnechéy(_#S)
gets a typedbj(_®). For example, in Exampl€S3.1 dndl3.2, we de-
clare the trusil” on the contents ofmd.exe and the trusMedium
on the contents diome.

A typing environment” contains typing hypotheses of the form

In (Typ pack), packing code requires work akin to proof-
carrying codel[4D]. Type safety for the code is proved andried”
in its type Vp,. Bin(T'), independently of the current process la-
bel. Specifically, itis proved that when the packed code moked
by a process with labé¥’, the value of executing that code has type
and effect. In Sectiorb, we show that such a proof in fact allows

z : T. We assume that any variable has at most one typing hypothe-the packed code to be unpacked by any process with RibelP’,

sis inT", and definelom(T") as the set of variables that have typing
hypotheses il". A typing judgment is of the forni" Fp a : T,
whereP is the label of the process T is the type and effect of
values returned by, andfv(a) C dom(T").

4.2 Core typing rules

We now present typing rules that enforce the core statigalise
required for our protection guarantee. Some of these rales side
conditions that involve a predicateon labels. These conditions,

which are marked i , are ignored in our first read-
ing of these rules. (The predicateis true everywhere in the ab-
sence of a special label, introduced in Sectioh4.4.) One of the
rules has a condition that involves a predidaten expressions; we
introduce that predicate in the discussion below. The typiies

preserve several invariants.

(1) Code that runs with a lab@l cannot return values that have
effects higher tha®.

(2) The contents of an object of ty@bj(_°) cannot have effects
lower thanS.

(3) The dynamic label that protects an object of tyP®j(_>)
cannot be lower tha8.

(4) An object of typeObj(_°) cannot be created at a label lower
thans.

(5) Packed code of typ&p. Bin(.) must remain well-typed
when unpacked at any label lower th@n

Invariant (1) follows from our interpretation of effect preserve
this invariant in Typ variable), for example, the effect of atP is
obtained by lowering:’s effect in the typing environment with.

and the type and effect of the value of executing that codebean
related toT" (Invariant (5)). This invariant is key to decidable and
efficient typecheckind[15]. Of course, code may be packediio
only at specific process labels, by requiring the approprialbel
changes.

Preserving Invariant (5) entails, in particular, presegvinvari-
ant (4) at all label® C P’. Since anew expression that is not
guarded by a change of the process label may be run with aaly lab
P, that expression must place the least possible trust orotiterts
of the object it creates. This condition is enforced by pratil:

Onew(z #S) £ VP.SCP

O(frg) = OfAOg

O(letz = fing) = OfAOg
O(...) = true

(Typ executg relies on Invariant (5); further, it checks that the
label at which the code is unpackeH)(is at most as trusted as
the label at which the code may have been packed (approxdmate
by S). This check prevents privilege escalation—code that doul
perhaps block if run with a lower label cannot be packed to run
with a higher label. For example, recall that in Exanipld 22,
codebinVirus is packed atow and then copied inteetup.exe.
While a High-process can legitimately execuiéme := empty
(so that the code is typed and is not blocked by access cpritrol
should not run that code by unpackibgnVirus from setup.exe.
The type system prevents this violation. lsettup.exe be of type
Obj((V.. Bin(.))®). Then (Typ store) requires thaS C Low,
and (Typ executg requires thaHigh C S (contradiction).

Because we do not maintain an upper bound on the dynamic
label of an executable, we cannot rely on the lowering of the

In (Typ store), typechecking is independent of the process Process label inReduct executg to prevent privilege escalation.

label, that is, a store is well-typed if and only if it is so atya
process label; recall that by{ruct store) stores can float across
contexts, and typing must be preserved by structural elguea.
Further, Typ store) introduces Invariants (2) and (3). Invariant
(2) follows from our interpretation of static trust anndadat. To
preserve this invariant we require Invariant (3), whichugas that
access control prevents code running with labels lessstlubanS
from writing to objects whose contents are trustefl.at

By (Typ new), the effectE of the initial content of a new
object cannot be lower tha®. Recall that by Reduct new), the
new object is protected with the process laBelsinceP I E
by Invariant (1), we hav® 3 S, so that both Invariants (2) and
(3) are preserved. Conversely,AfC S then the process does not
typecheck; Invariant (4) follows.

Let us now look carefully at the other rules relevant to Iivar
ants (2) and (3); these rules—combined with access conag—
the crux of enforcing DFI.Typ write) preserves Invariant (2), re-
stricting trusted code from writing values dothat may flow from

(While it is possible to extend our type system to maintaichsu
upper bounds, such an extension does not let us typecheckary
correct programs than we already do.) In Sedfbn 5, we shatv th
the lowering of the process label can in fact be safely elatdd.

In (Typ evaluate), typing proceeds sequentially, propagating
the type and effect of the intermediate process to the caation.
(Typ substitution) is similar, except that the substituted value is
typed under the process label recorded in the substitutasher
than under the current process label. Tgg limit ), the continua-
tion is typed under the changed process label Typ(fork ), the
forked process is typed under the current process label.

4.3 Typing rules for stuck code

While the rules above rely on access control for soundnksg,do
not exploitruntime protection provided by access control to type-
check more programs. For example, the reduced pragessEx-
ample3L cannot yet be typed, although we have checked fHat D
is not violated ing;. Below, we introducestuck typingto identify

labels lower tharb. (Such code may not be restricted by access processes that provably block by access control at runtBnesk

control.) Conversely, access control prevents code witblsdower
than$ from writing tow, since by Invariant (3)y’s label is at least
as trusted aS. (Typ un/protect) preserves Invariant (3), allowing
w's label to be either raised or lowered without falling bel&w
In (Typ read), the effect of a value read from at P is approxi-
mated byS—the least trusted label from whieh's contents may
flow—and further lowered witl? to preserve Invariant (1).

typing allows us to soundly type more programs by compasitio
(The general principle that is followed here is that narrayvthe
set of possible execution paths improves the precisionefttal-
ysis.) This powerful technique of combining static typingdaly-
namic access control for runtime protection is quite claseybrid
typechecking[22]. We defer a more detailed discussionistéth-
nique to Sectiofl6.



Stuck typing judgments T" Fp a : Stuck

Typing rules for untrusted code

(Typ escalate stuck
PCP

I'Fp [P] a: Stuck

(Typ write stuck)
w:0bj(*)fel PCS
I'Fp w:=xz:Stuck

(Typ un/protect stuck)

w:0bj(*Fer PECSUO
T'Fp (O) w: Stuck

(Typ subsumption stuck-I)
_:Stuck e T
I'Fp a: Stuck

(Typ subsumption stuck-Il)

I'Fp a: Stuck
I'tpa:T

We introduce the static approximati@tuck for processes that
do not return values, but may have side effects.

T ::

static approximation
code
stuck process

Stuck
We now present rules for stuck-typing. As before, in our fiestd-

ing of these rules we ignore the side condition
(which involve the predicate). (Typ write stuck) identifies code
that tries to write to an object whose static trust annotafias
higher than the current process lalfelBy Invariant (3), the la-
bel O that protects the object must be at least as high;abus

P = O and the code must block at runtime due to access control.
For example, letmd.exe be of typeObj(_") in ExampleC3lL. By
(Typ write stuck), the codey; is well-typed sincdow C T. (Typ
un/protect stuck) is similar to (Typ write stuck); it further identi-
fies code that tries to raise the label of an object beyonduheiat
process label Typ escalate stuck identifies code that tries to raise
the current process label. All such processes block atmantiue
to access control.

By (Typ subsumption stuck-I), processes that are typed under
stuck hypotheses are considered stuck as well. For exatmide,
rule combines withTyp evaluate) to trivially type a continuation
b if the intermediate process is identified as stuck. Finally, by
(Typ subsumption stuck-II), stuck processes can have any type
and effect, since they cannot return values.

4.4 Typing rules for untrusted code

Typing must guarantee protection in arbitrary environree8ince

the protection guarantee is derived via a type preservéteorem,
arbitrary untrusted code needs to be accommodated by tlee typ
system. We assume that untrusted code runs with a specél lab
L, introduced into the total order by assuming— L for all L. We
now present rules that allow arbitrary interpretation qiety atl .

By (Typ subsumption L-1), placing the static trustL on the

contents of an object amounts to assuming any type for those

contents as required. ByTyp subsumption L-II'), a value that

(Typ subsumption L-I)
[,w:0bj()Efrpa:T
Dw:O0bj(r ) rpa:T

(Typ subsumption L-11)
Iz t Fpa:T
Iz ™t hpa:T

has effectL. may be assumed to have any type as required. These
rules provide the necessary flexibility for typing any ustad code
using the other typing rules. On the other hand, arbitrabyyging

with objects can in general be unsound—we now need to beutaref
when typing trusted code. For example, consider the code

High

wo = x P wy Iﬂvwz P [High]let z =lwiinz:=u

A High-process reads the name of an objeef) from aLow-object
(w1), and then writes: to that object ¢-). DFI is violated if w2
has typeObj(_"'") andw flows fromLow. Unfortunately, it turns
out that this code can be typed under process labahd typing
hypotheses

wa : Obj(75") " w; : Obj(Obj(5"&) )T,
Specifically, the intermediate judgment
z: Obj(rs8) " ...

can be derived by adjusting the typezoh the typing environment
to Obj(rt°") with (Typ subsumption L-I).

This source of unsoundness is eliminated if some of the tsffec
in our typing rules are required to be trusted, that is, to igadr
than L. Accordingly we introduce the predicate such that for
any labell, xL simply means. O L. We now revisit the typ-
ing rules earlier in the section and focus on the side canditin

shaded boxes (which involv#g. In some of those conditions, we
care about trusted effects only if the process label isfitagsted.
With these conditions,Typ write) prevents typechecking the of-

fending write above, since the effectoin the typing environment
is untrusted.

High

. Low
X . T2 5 1

u T

. glow R
, Ut Ty High 2 ‘= U : -

4.5 Compromise

The label L introduced above is an artificial construct to tolerate
a degree of “anarchy” in the type system. We may want to specif
that a certain label (such &sw) acts like L, i.e., is compromised
The typing judgment” Fp a : T despite C allows us to type
arbitrary code: running at a compromised lab&lby assuming that
Cis the same a4, i.e.,, by extending the total order with C L

(so that all labels that are at most as trusted aollapse tol).
We do not consider labels compromised at runtime (as in Gordo
and Jeffrey’s type system for conditional secrelcy [27]\waeer
we do not anticipate any technical difficulty in includingntime
compromise in our type system.

4.6 Typechecking examples

We now show some examples of typechecking.
We begin with the programs in ExampldZ3.P. Recall that DFI

is violated inp2. Suppose that we try to derive the typing judgment
-+« 1 p2 : _ despite Low

This amounts to deriving- - -+ p2 : _ by assumind.ow C L.



As a first step, we applyTyp new), (Typ read), (Typ write),
(Typ pack), and {Typ evaluate), directed by syntax, until we have
the following typing environment.

r = ...,
url : Obj(_*") ",
setup.exe : Obj(-
binIE : (View. Bin(Unit)) ",
ie.exe : Obj((View. Bin(Unit)) )",
home : Obj(_Mem) T
empty : Unit '

LOW)T7

The only complication that may arise is in this step is in\dag
an intermediate judgment

Low
cey 20 Frolz:

Here, we can applyTyp subsumption _L-II) to adjust the typing
hypothesis of: to Obj(_)*, so that Typ read) may apply.
After this step, we need to derive a judgment of the form:

'+ [High] (...) © [Medium] (...) 7 [Low] (...)

Now, we apply Typ fork ). We first check that the codeow] (.. .)
is well-typed. (In fact, untrusted code is always well-tgpas we
show in Sectiofil5.) The judgment

I' Fiow home := empty : Unit

typechecks byTyp write stuck). Thus, by Typ pack) and (Typ
evaluatg, we add the following hypothesis to the typing environ-
ment.

binVirus : (View. Bin(Unit))""
Let Thinvirus = (View. Bin(Unit))"". Next, by (Typ new) and
(Typ evaluate), we add the following hypothesis to the typing
environment.

. . L
virus.exe : Obj(Tvinvirus)

Finally, the judgment
T,...,virus.exe: Obj(TbinVims)LOW Flow url := virus.exe

can be derived byTlyp write ), after massaging the typing hypothe-
sis forvirus.exe to the required"*" by (Typ subsumption L-I1).

On the other hand, the procgstigh] (... ) does not typecheck;
as seen above, an intermediate judgment

I" FHigh exec setup.exe : _

cannot be derived, sinc&)p executd does not apply.

To understand this situation further, let us consider soangav
tions where Typ executg does apply. Suppose that the cedec z
is forked in a new process whose label is loweretlda. Thenp-
typechecks. In particular, the following judgment can beveel by
applying (Typ execute.

I Fhigh [Low] exec setup.exe : _

Fortunately, the erasure abme now blocks by access control at
runtime, so DFI is not violated.

Next, suppose that the static annotationgetup.exe is High
instead ofLow, and setup.exe is initialized by a process with
label High instead ofLow. Thenp, typechecks. In particular, the
type ofsetup.exe in I becomegDbj(_'e"). We need to derive an
intermediate judgment

I',...,z: - Flow setup.exe := z : Unit

This judgment can be derived by applyinfyp write stuck) in-
stead of Typ write ). Fortunately, the overwrite gfetup.exe now
blocks by access control at runtime, so DFI is not violated.

Finally, we sketch how typechecking fails for the violatoof
DFI described in Sectidnd.2.

(Write and copy) Let the type ofv be Obj(_%), whereO J S T
P. Then the write tav(O) does not typecheck, since the value
to be written is read fromv’(P) and thus has some effeesuch
thatE C P, so thatE C S.

(Copy and execut@ Let the type ofw’ be Obj(S'). If S C O
then the execution ab’(P) by a(P) does not typecheck, since
S’ C P.If S’ O O then the write tav’(P) does not typecheck,
since the value to be written is read franfO) and thus has
some effecE such thaE C O, so thatE — S'.

(Unprotect, write, and protect) Let the type ofw be Obj(_%),
whereO 2 S T P. Then the unprotection af(O) does not
typecheck, sinc® C S.

(Copy, protect, and executg Let the type ofw’ be Obj(_sl),
whereS’ C O. Then the execution af’(P) does not type-
check, sinc&’ C P.

5. Properties of typing

In this section we show several properties of typing, and/@ro
that DFI is preserved by well-typed code under arbitraryusied
environments. All proof details appear [n]15].

We begin with the proposition that untrusted code can always
be accommodated by the type system.

Definition 5.1 (Adversary) A C-adversary is any process of the
form [C] _ that does not contain stores, explicit substitutions, and
static trust annotations that are higher th&n

Proposition 5.2 (Adversary completeness).etI" be any typing
environment and be anyC-adversary such thatv(c) C dom(T).
Thenl" 1 ¢ : _despite C.

Propositiol[2P provides a simple way to quantify over arbi-
trary environments. ByTyp fork ) the composition of a well-typed
process with any such environment remains well-typed, aod t
enjoys all the properties of typing.

Next, we present a monotonicity property of typing that ig ke
to decidable and efficient typecheckingl[15].

Proposition 5.3 (Monotonicity) The following inference rule is
admissible.

FFP/f:TE af
[hp forf™®

This rule formalizes Invariant (5), and allows inferencérabst
general” types for packed code]15]. Further, it impliesanitive
proof principle—code that is proved safe to run with highgvp
ileges remains safe to run with lower privileges, and coselgr
code that is proved safe against a more powerful adversargins
safe against a less powerful adversary.

The key property of typing is that it is preserved by struatur
equivalence and reduction. Preservation depends ddyiaatehe
design of the typing rules, relying on the systematic maiatee of
typing invariants. We writd" - o, meaning that “the substitution
environment is consistent with the typing environmekit, if for
allz/u@P € othere existd’ suchthatr : 7€ T'andl’ Fp 1 : T

Theorem 5.4(Preservation) Suppose thaf' - o andT p a : _.
Then

eifa=0bthen'Fp b:
eifa 2% bthenT kp b: _.

We now present our formal protection guarantee for welet/p
code. We begin by strengthening the definition of DFI in Sef8.

PCP




In particular, we assume that part of the adversary is knowirpart

of itis unknown. This assumption allows the analysis to eitgny
sound typing information that may be obtained from the knpari

of the adversary. (As a special case, the adversary may lelgnt
unknown, of course. In this case, we recover Definifiod 3e& s
below.) LetQ2 be the set of objects that require protection from
labelsL or lower. We let the unknown part of the adversary execute
with some process lab€l (C L). We say thaf? is protected if no
such adversary can write any instance that flows ftoor lower,

to any object ir.

Definition 5.5 (Strong DFI) A set of objectS) is protected by
codea from label L despiteC (C L) if there is now € Q, C-
adversarye, substitution environment, and instancer such that

T, . o
ar ¢ —" &1 gwr z]t,,andz v L.

For example, we may want to prove that some code protects a 5/

set ofHigh-objects fromMedium despite (the compromised label)
Low; then we need to show that no instance may flow fidadium
or lower to any of thoséligh-objects under anizow-adversary.

We pick objects that require protection based on their types
effects in the typing environment.

Definition 5.6 (Trusted objects) The set of objects whose contents
are trusted beyond the labél in the typing environment' is
{w|w:0Obj(*)FerandSMNE L}

Suppose that in some typing environmefitjs the set of ob-
jects whose contents are trusted beyond ldheindC (C L) is
compromised; we guarantee tifatis protected by any well-typed
code fromL despiteC.

Theorem 5.7 (Enforcement of strong DFI)Let Q2 be the set of
objects whose contents are trusted beyanth T". Suppose that
T b+ a : _ despite C, whereC C L. Thena protectsS2 from L
despiteC.

In the special case where the adversary is entirely unknawen,
simply considei. andC to be the same label.

The type system further enforces DFI for new objects, as can
be verified by applying Theorelb.4Ty(p substitute), and The-
orem[5Y. Finally, the type system suggests a sound runtptie o
mization: whenever a well-typed process executes packee ico
a trusted context, the current process label is alreadyoppptely
lowered for execution.

Theorem 5.8 (Redundancy of execution controlSuppose that
I b1 a: _despite Canda 3+ Eriolw > -7 exec w'[pis
such thatv < w’ andP = C. ThenP C O.

It follows that the rule Reduct executg¢ can be safely opti-

mized as follows.
o !
w=w

pack(f) € o(x)

o) 1 Pio o)
walexecw —— wal f

This optimization should not be surprising. Lowering theqass
label for execution aims to prevent trusted code from exegut
untrusted code in trusted contexts; our core static dis@pbn
trusted code effectively subsumes this runtime controlth@rother
hand, write-access control cannot be eliminated by anyipdise
on trusted code, since that control is required to restrittusted
code.

Lastly, typechecking can be efficiently mechanized thaiks t
Propositio 5B and our syntactic restriction on nestedipgac

Theorem 5.9(Typechecking) Given a typing environmerit and
codea with LL distinct labels, the problem of whether there exists
such thatl’ -+ a : T, is decidable in time&)(L|a|), where|a| is
the size ofi.

A typechecking algorithm is outlined i JIL5]. As usual, thga
rithm builds constraints and then checks whether thoseti@ints
are satisfiable. The only complication is duepack processes,
which require “most general” types.

Briefly, the grammar of types is extended with type variables
and a distinguished labélis introduced to denote an “unknown”
label. Let atypechecking environmert be a typing environment
augmented by simple type constraints, anthtzel constraint(a
boolean formula with propositions of the forim C Ls). The fol-
lowing typechecking judgments are defined, with mutualiyure
sive rules:

e Alpa:Tr> A, where the label constraint i’ is true.
e A-f:Tr A’,whereA’ contains a label constraint over

The rules forA p a : T > A’ build simple type constraints in
following the original typing rules. To derive a judgmerft o
the formA Fp pack(f) : - > -, we need to derive a judgment of
the formA + f : _> _. The rules forA + f : T > A’ build
label constraints from conditions on labels in the origitygling
rules; here, the implicit (unknown) process label is takeibé 7.
To derive a judgment of the form + [P] a : _> _, we need to
derive a judgment of the form\ +p @ : _> _. On the other hand,
the syntactic restriction on expressions ensures that wetoeed
to consider judgments of the fort - pack(f) : - > _.

Solving the simple type constraints built by a judgment & th
form A Fp a : _1> _takes timeOD(]al); solving the label constraint
built by a judgment of the formA + f : _ > _ takes time
O(L|f]). The running time of the typechecking algorithm follows
by a straightforward inductive argument.

6. Limitations, related work, and discussion

In this paper we formalize DFI—a multi-level integrity preny
based on explicit flows—and present a type system that can effi
ciently enforce DFI in a language that simulates Windowgass
security environment.

Not surprisingly, our type system is only a conservativéhiec
nique to enforce DFl—while every program that typechecks is
guaranteed to satisfy DFI (as stated in Thedremh 5.7), wpkdness
is not necessary for DFI.

By design, our analysis is control-insensitive—it doestratk
implicit flows. In many applications, implicit flows are of rggus
concern. It remains possible to extend our analysis to axtdou
such flows, following the ideas of [bI[,556.199.1 37]. Howeveg w
believe that it is more practical to enforce a weaker prgplke
DFI at the level of an operating system, and enforce stronger
control-sensitive properties like noninterference atléwel of the
application, with specific assumptions.

Our core security calculus is simplified, although we takes ca
to include all aspects that require conceptual modelinggiason-
ing about DFI. In particular, we model threads, mutablerefees,
binaries, and data and code pointers; other features ofix@@iés,
such as recursion, control flow, and parameterized proesduan
be encoded in the core calculus. We also model all detailsiof W
dows Vista that are relevant for mandatory integrity camivith
dynamic labels. On the other hand, we do not model details asic
discretionary access control, file virtualization, andusecautho-
rization of privilege escalatio [82], which can improve threci-
sion of our analysis. Building a typechecker that works atlével
of x86 binaries and handles all details of Windows Vista nezsu
more work. At the same time, we believe that our analysis @n b
applied to more concrete programming models by translation

Our work is closely related to that of Tse and ZdanceWid [49]
and Zheng and Myer$ [61] on noninterference in lambda dalcul
with dynamic security levels. While Tse and Zdancewic do not



consider mutable references in their language, it is plesdid
encode the sequential fragment of our calculus in the laggoh
Zheng and Myers; however, well-typed programs in that fraigim
that rely on access control for DFI do not remain well-typéa v
such an encoding. Specifically, any restrictive accesskcli@t
integrity in the presence of dynamically changing labekEnse to

can be enforced formally in a contemporary operating syséer
possibly improved in future ones.

Acknowledgments We wish to thank Martin Abadi, Steve Zdan-
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comments on an earlier draft of this paper. We also wish tokha

let the adversary influence trusted computations in thestesy,
violating noninterference [60].

Noninterference is known to be problematic for concurrant |
guages. In this context, Zdancewic and Myers study the naifo
observational determinismi_[68]; Abadi, Hennessy and Riahgd
others study information flow using testing equivalend¢®gl; and
Boudol and Castellani, Honda and Yoshida, and others usegstr
notions based on observational equivalefcél[10, 30]. Stpated
techniques that involve linearity, race analysis, behayipes, and
liveness analysis also appear in the literatlré[[30. 58 2P While
most of these techniques are developed in the setting ofi tte-p
culus, other works consider distributed and higher-ord#irgs to
study mobile coddT28.55.46] (as in this work).

DFI being a safety property][7] gets around some of the dif-

ficulties posed by noninterference. A related approachegutte
design of the operating systems Asbesffo$ [20] and HiStir §58l
dates back to the Clark-Wilson approach to security in corniae
computer system§ L6, 147]. In comparison with generic nodél
trace-based integrity that appear in protocol analysish &s cor-
respondence assertiofis[26] 23], our integrity model isrfare
specialized; as a consequence, our type system requiles$aan-
notations than type systems for proving corresponden@stasss.

Our definition of DFI relies on an operational semantics bdase

on explicit substitution. Explicit substitution, as inthaced by

Abadiet al.[d], has been primarily applied to study the correctness

of abstract machines for programming languages (whosergasa
rely on substitution as a rather inefficient meta-operatiand in
proof environments. It also appears in the applied pi cak{d] to
facilitate an elegant formulation of indistinguishabilfor security
analysis. However, we seem to be the first to use explicittgubs
tions to track explicit flows in a concurrent language. Rvasly,
dependency analysi5 36, 6] has been applied to informsdigon
analysis [[2[[42[(57]. These analyses track stronger depeide
than those induced by explicit flows; in particular, the defen-
cies are sensitive to control flows. In contrast, the use pfi@k
substitutions to track explicit flows seems rather obviond ap-
propriate in hindsight. We believe that this technique $thdae
useful in other contexts as well.

Our analysis manifests a genuine interplay between stgiic t
ing and dynamic access control for runtime protection. \iéersto
be the first to study this interaction in a concurrent systeth dy-
namic labels for multi-level integrity. This approach oigbining
static and dynamic protection mechanisms is reflected ivique

work on typing,e.g, for noninterference in a Java-like language

with stack inspection and other extensiohs[[8, 41], for ntar
ference in lambda calculi with runtime principals and dyiata-
bels [49,[61], and for secrecy in concurrent storage calwith
discretionary access control mechanisind [14, 13]. A vetifio

technique based on this approach is developed by FlanA@n [2

for a lambda calculus with arbitrary base refinement typethése
studies and ours, dynamic checks complement static analysre
possible or as required, so that safety violations that areaught
statically are always caught at runtime. Moreover, statjuing

sometimes subsumes certain dynamic checks (as in our @)alys

suggesting sound runtime optimizations. This approacéfisated
in previous work on static access contiall[29, 43, 31].

In most real-world systems, striking the right balance teetw
security and practice is a delicate task that is never fan fcon-
troversy. It is reassuring to discover that perhaps, sucalanbe

John Lambert, Andrew Roths, Lantian Zheng, Karthik Bhaagav
and Cormac Flanagan for various discussions on this work.
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