
 © Surajit Chaudhuri PODS-98 6/1/98 1

An Overview of Query
Optimization in Relational

Systems

Surajit Chaudhuri

Microsoft Research
surajitc@microsoft.com

http://research.microsoft.com/~surajitc

 © Surajit Chaudhuri PODS-98 6/1/98 2

What to expect from
this tutorial?

u Query Optimization in practice
½ Framework
½ A few key ideas
½ Active areas of work

u No cool theorems

u Provide a perspective that helps
place your work in a systems context

 © Surajit Chaudhuri PODS-98 6/1/98 3

Why Query Optimization?

u SQL is a high level language
(“declarative”)
½ Physical data independence

u Needs to be compiled into a program
over relational query engine

u Query optimization compiles the
query into a program that takes the
“least” resources
½ Acid test of data independence

 © Surajit Chaudhuri PODS-98 6/1/98 4

Outline
u Preliminaries

½ Relational query engine
½ “Programs” over relational query

engines (operator trees)

u Query Optimization Framework

u System R optimizer

u Modern Optimizers

u How to interact with Optimizers

u Active Areas of work

u Conclusion

 © Surajit Chaudhuri PODS-98 6/1/98 5

Relational DBMS Components

Storage Engine

 (Manages Tables and Indexes)

 Execution Engine

Query Optimizer

Parsing

SQL

Relational
Engine

 © Surajit Chaudhuri PODS-98 6/1/98 6

Storage Structures

u Tables

u Indexes
½ Columns

½ Single column, Multiple columns

½ Type
½ B+ indexes, Bitmap indexes, Hash indexes

½ Clustering
½ Clustered, Non-clustered

½ Implied “index-evaluable” predicate

 © Surajit Chaudhuri PODS-98 6/1/98 7

Implementation Operators for
Scan and Selection

u Scan([index], table, predicate)
½ Sequential Scan
½ Indexscan: Which index(es) to use?
½ Always push down “index-

evaluable” predicates

u Filter(table, predicate)

 © Surajit Chaudhuri PODS-98 6/1/98 8

Implementation Operators for
Join

u Join([method], outer, inner, join-predicate)
½ Asymmetric
½ Effect of physical properties of input

streams (e.g., sorted input)
½ Physical properties of output stream

(e.g., sorted)
½ Pipelined v.s. Blocking

(Nested Loop v.s. Sort-Merge)

 © Surajit Chaudhuri PODS-98 6/1/98 9

Join Operators

u Join(Sort-Merge, R1, R2, R1.a = R2.a)
½ Can exploit sorted order on R1.a
½ Output is a sorted order
½ Blocking

u Join(Nested-Loop, R1, R2, R1.a = R2.b)
½ Sorted inputs of no consequence
½ Output has the same sort order as R1.a
½ Pipelined

 © Surajit Chaudhuri PODS-98 6/1/98 10

Generic View of Operators

u Input: One or more data streams

u Output: One data stream

u Implementation
½ open()
½ getnext()
½ close()

u Pipelined/Blocking

 © Surajit Chaudhuri PODS-98 6/1/98 11

Operator Trees
u An algebraic expression tree consisting of

selection and join can be realized
½ using an operator tree consisting of scan,

filter and join nodes
½ root node is the output of algebraic expression
½ leaf nodes are scans on stored relations
½ child node is an input data stream to its parent

u (Sequential) Operator tree same as
½ annotated Query Tree
½ execution Plan (or, simply plan)

 © Surajit Chaudhuri PODS-98 6/1/98 12

Example of an Operator Tree

Sort-Merge
Join

Scan R1NL Join

2.A = 3.A

4.B = 5.B

Scan R2 Scan R3

 © Surajit Chaudhuri PODS-98 6/1/98 13

Execution of an Operator
Tree

u Demand-driven architecture is the
simplest

u open() is propagated from the root

u getnext() at the root is propagated

u If getnext() at the root fails to return
a new tuple, then no more answers
for the query

 © Surajit Chaudhuri PODS-98 6/1/98 14

Properties of Trees

u Edge properties
½ Size of the data stream
½ Physical properties (e.g., sorted order)

u Node properties
½ Cost of an operator
½ Pipelined v.s. blocking

u Cost of tree = sum of costs of nodes

u How to estimate the edge and node
properties?

 © Surajit Chaudhuri PODS-98 6/1/98 15

Outline
u Preliminaries

u Query Optimization Framework

u System R optimizer

u Modern Optimizers

u How to interact with Optimizers

u Active Areas of work

u Conclusion

 © Surajit Chaudhuri PODS-98 6/1/98 16

Goal of Query Optimization

u Multiple ways to compile a SQL
query over the relational engine
½ Algebraic properties
½ Implementations for each operator
½ Costs of the alternatives may be

widely different

u Find the program with least cost
½ Query optimization as a planning

problem?

 © Surajit Chaudhuri PODS-98 6/1/98 17

A Framework for Query
Optimization

u Equivalence Transformations
½ Algebraic properties
½ Implementation options

u Estimation Model
½ Needs to estimate cost of an operator

tree (incrementally)

u Search Algorithm
½ Fast, Memory-efficient

 © Surajit Chaudhuri PODS-98 6/1/98 18

Outline
u Preliminaries

u Query Optimization Framework

u System R optimizer

u Modern Optimizers

u How to interact with Optimizers

u Active Areas of work

u Conclusion

 © Surajit Chaudhuri PODS-98 6/1/98 19

SPJ Queries

Select A.a, B.b, C.c
From A, B, C
Where A.x = B.x and B.y = C.y
Order By A.a

 © Surajit Chaudhuri PODS-98 6/1/98 20

Algebraic Transformations
u Select and Join commute

½ Filter(Join(A,B), a) = Join(Filter(A,a), B)

u Joins are associative and commutative :
½ Join(Join(A,B), C) = Join (Join(B,A), C)
½ Join(Join(A,C), B) = Join(Join(A,B), C)
½ Many equivalent expressions

u Linear join trees (restricted use of AC
properties)

 © Surajit Chaudhuri PODS-98 6/1/98 21

Implementation
Transformations

u Scan
½ B+ tree index scan
½ (Sargable) Predicate: Between and

its degenerate forms

u Filter
½ Any Boolean expression

u Join
½ Sort-Merge, Nested-loop, Indexed

Nested-loop

 © Surajit Chaudhuri PODS-98 6/1/98 22

Estimation Model
u Goal: Estimate the cost of an operator tree

½ Number of tuples, Number of distinct values,
cost of sub-expressions

u System-R used a bottom-up computation.
For every node:
½ Computes these parameters of the operator for

the given parameters of the input data streams
½ Derives properties of the output data streams

u Propagates estimates up the tree
½ For base tables, this information is computed by

“run statistics”

 © Surajit Chaudhuri PODS-98 6/1/98 23

Deriving Statistics
u Consider a “normal” form of SPJ query:

Q = Filter(Cartesian-Product(R1,….Rn), f)
u Selectivity is fraction of data that satisfies

predicate
½ Size of Q =

Selectivity(f) * Size-of(R1)* ..*Size-of(Rn)

u Compute selectivity of a filter expression
(a) Determine selectivity of atomic predicates

using statistics (a > 3, a=b)
(b) Derive the selectivity of a Boolean expression

from (a)

 © Surajit Chaudhuri PODS-98 6/1/98 24

Selectivity Estimates for
Atomic Predicates

u Selections
½ Column = v
½ F = 1/(#column)

½ Column Between [a1,a2]
½ F = (a2-a1)/(Hkey - Lkey)

u Joins
½ Column1 = Column2
½ F = 1/max(#column1, #column2)

 © Surajit Chaudhuri PODS-98 6/1/98 25

Selectivity Estimates for
Boolean Expressions

u P1 AND P2
½ F(P1 AND P2) = F(P1)* F(P2)

u NOT P1
½ F(NOT P1) = 1- F(P1)

u P1 OR P2
½ F(P1 OR P2) = F(P1) + F(P2) -

F(P1)*F(P2)

u Interesting issue:
½ There are multiple ways to derive

statistics for the same expression

 © Surajit Chaudhuri PODS-98 6/1/98 26

Cost Estimates
u What to measure?

½ Throughput
½ IO cost + w * CPU cost
½ IO cost = Page Fetches

u Examples of Scan cost
½ S: # of Pages(R)
½ CI: F * (# of Pages(R) + # of Index Pages)
½ NCI: F * (# of Tuples(R) + # of Index Pages)

u Interesting Issue
½ Effect of database buffers?

 © Surajit Chaudhuri PODS-98 6/1/98 27

Cost Estimates (Join)

u Nested Loop Join
½ Cost-of(N1) + Size-of(N1) * Scan-

cost(N2)
½ Scan-cost(N2) depends on indexes

used

u Sort-Merge Join
½ Sort(N1) + Sort(N2) + Scan(Temp1)

+ Scan(Temp2)

 © Surajit Chaudhuri PODS-98 6/1/98 28

Search Strategy

u Need to order joins (linearly)

u Naïve strategy:
½ Generate all n! permutations of joins

u Prohibitively expensive for a large
number of joins
½ Overlapping subproblems, use of

optimal substructures
½ Ideal for dynamic programming

 © Surajit Chaudhuri PODS-98 6/1/98 29

Dynamic Programming
u Goal: Find the optimal plan for Join(R1,..Rn, Rn+1)

½ For each S in {R1,..Rn, Rn+1} do
½ Find Optimal plan for Join(Join(R1,..Rn), S)
½ Endfor
½ Pick the plan with the least cost

u Principle of Optimality:
½ Optimal plan for a larger expression is derived from

optimal plan of one of its sub-expressions

u Complexity
½ Enumeration cost drops from O(n!) to O(n2^n)
½ May need to store O(2^n) partial plans
½ Significantly more efficient than the naïve scheme

 © Surajit Chaudhuri PODS-98 6/1/98 30

Example
1 2 3 4

1 2 3 1 2 4 2 3 4 134

13 1 4 23 24 3 41 2

1 2 3 4

 © Surajit Chaudhuri PODS-98 6/1/98 31

Search Control Features

u Avoid Cartesian product
½ Defer all Cartesian products as late as possible to

avoid “blow-up”
½ Don’t consider (R1 X R2) Join R3

if (R1 Join R3) Join R2 is feasible

u Recognize “interesting orders” as
violation of principle of optimality:
½ Cost-of(SM (R1,R2)) > Cost-of (NL(R1,R2))
½ But, Cost-of (SM(SM(R1,R2)), R3) may be

much less expensive than other options

 © Surajit Chaudhuri PODS-98 6/1/98 32

Handling Interesting Orders

u Identify all columns that may exploit sorted order
(by examining join predicates)

u Collapse into equivalent groups
u One optimal partial plan for each interesting

order
u Example:

R1.a = R2.b,

R1.c = R2.d

R1.a = R3.a

R1.c = R4.d

R1 R2

R3

R4

 © Surajit Chaudhuri PODS-98 6/1/98 33

Key Ideas from System R

u Cost model based on
½ access methods
½ size and cardinality of relations

u Enumeration exploits
½ dynamic programming
½ one optimal plan for each equivalent

expression
½ violation of principle of optimality

handled using interesting order

 © Surajit Chaudhuri PODS-98 6/1/98 34

Limitations of System R

u Cost Model
½ one aggregate number for every

column (inaccurate)
½ independence assumption

u Transformation
½ limited to join ordering

u Enumeration
½ limited to single block queries

 © Surajit Chaudhuri PODS-98 6/1/98 35

Outline
u Preliminaries

u Query Optimization Framework

u System R optimizer

u Modern Optimizers
½ Cost Estimation
½ Transformations
½ Enumeration Architectures

u How to interact with Optimizers

u Active Areas of work

u Conclusion

 © Surajit Chaudhuri PODS-98 6/1/98 36

Selectivity Estimation Models
u Estimate selectivity by executing the query

on a “sampled” database
u Pre-compute Statistical Descriptors

½ Histograms : Range Predicates
½ Frequent Values, Number of distinct

values : Equality Predicates

Number of Steps = k

Height of each step = n/k

a1 a2 a3 a4b3 b4

 © Surajit Chaudhuri PODS-98 6/1/98 37

Histograms for Derived
Columns

u Filter
½ Filter acts as a mask
½ Interpolate count in a partial bucket using

uniformity assumption
½ Filter with host variables hard to handle

u Join
½ “Normalize” two histograms
½ “Join” two histograms

u Shortcomings:
½ Cannot capture correlation

½ Month = Jan and Item = Jacket
½ Needs multi-dimensional histograms

½ Not effective for equality queries

 © Surajit Chaudhuri PODS-98 6/1/98 38

Various Histogram Structures
u Equi-depth:

½ All buckets have same number of values
½ Adjacent values co-located in buckets

u V-Optimal
½ Groups contiguous sets of frequencies
½ Minimizes variance of the frequency

approximation
½ “Optimal” for a subset of range queries

u A General Framework [PIHS96]
½ Assign a metric to each value
½ How to partition the metric space?
½ What information is kept for each bucket?
½ What assumptions are made of values within a

bucket

 © Surajit Chaudhuri PODS-98 6/1/98 39

Building Statistics
u Advantage

½ Optimization sensitive to available statistics

u Disadvantage
½ Expensive to collect and maintain
½ “Auto-maintain” statistical descriptors

u Use of sampling
½ Must take into account data layout
½ Needs “block” sampling
½ Not effective for number of distinct value
½ How sensitive is optimization to accuracy of

statistics?

 © Surajit Chaudhuri PODS-98 6/1/98 40

Outline
u Preliminaries

u Query Optimization Framework

u System R optimizer

u Modern Optimizers
½ Cost Estimation
½ Transformations
½ Enumeration Architectures

u How to interact with Optimizers

u Active Areas of work

u Conclusion

 © Surajit Chaudhuri PODS-98 6/1/98 41

Transformations

u SQL is the target
u SQL identity may not be a good way to

think about transformations
½ Use algebraic framework

u May add, not just commute operators

u Finding transformations is easy,
finding a good one is hard
½ Broadly applicable
½ Interaction with other transformations

 © Surajit Chaudhuri PODS-98 6/1/98 42

Case Studies of
Transformations

u Commuting group by and join

u Commuting join and outer-join

u Optimize multi-block queries
½ Collapse multi-block query to a

single block query
½ Optimize across multiple query

blocks

 © Surajit Chaudhuri PODS-98 6/1/98 43

Commuting Group By and Join

u Traditionally, execution of group-by follows
execution of joins

u “Pushing down” group by past a join:
½ Group By “collapses” an equivalence class
½ Therefore, may reduce cost of subsequent joins
½ Can be pipelined with index scans

u Application needs to be cost based since
½ The cost of group by itself may be increased
½ Access methods on base tables may no longer be

useful for the join

u Related to Optimization of Select Distinct queries

 © Surajit Chaudhuri PODS-98 6/1/98 44

Commuting Group By and Join
u Schema:

½ Product(pid, unitprice, ..)
½ Sales(tid, date, store, pid, units)

u Example :

Join

Scan (Sales)

Filter(s.store in
{CA, WA})

Products

Group By (pid)
sum(units)

Join

Scan (Sales)

Filter(s.store in
{CA, WA})

Products
Group By (pid)
sum(units)

 © Surajit Chaudhuri PODS-98 6/1/98 45

Introducing Group By
u Schema:

½ Sales(tid, date, store, pid,amount)
½ Category(pid,cid)

u Example:

Join

Scan (Sales)

Filter(s.store in
{CA, WA})

Category

Group By (cid)
sum(amount)

Join

Scan (Sales)

Filter(s.store in
{CA, WA})

Category

Group By (cid)
sum(amount)

Group By (pid)
sum(amount)

 © Surajit Chaudhuri PODS-98 6/1/98 46

Applicability of Group
By/Join Transformations

u Schema constraints, arbitrary aggregation
functions

u No schema constraints, but properties of
aggregate functions
½ Agg(S1 U S2) = f(Agg(S1), Agg(S2))
½ May sometime require use of derived columns

u Related to collapsing multi-block queries into
a single block query

 © Surajit Chaudhuri PODS-98 6/1/98 47

Multi-Block Queries
u Single Block Query

Select columns
From base-tables
Where conditions
Group By columns
Order By columns

u Multi-block structure arises due to
½ views with aggregates
½ table expressions
½ nested sub-queries

u Divide and Conquer
½ leverage single block optimization

techniques

 © Surajit Chaudhuri PODS-98 6/1/98 48

Example of A Nested
Subquery

Select Emp.Name

From Emp

Where Emp.Dept# IN

(Select Dept.Dept#

From Dept

Where Dept.Loc = “Denver”

AND Emp.Emp# = Dept.Mgr)

 © Surajit Chaudhuri PODS-98 6/1/98 49

Example of A View

Create View DepAvgSal as

(Select E.did, Avg(E.Sal) as avgsal

From Emp E

Group By E.did)

Select E.eid, E.sal

From Emp E, Dept D, DepAvgsal V

Where E.did = D.did

And E.did = V.did

And E.age < 30 and D.budget > 100k

And E.sal > V.avgsal

 © Surajit Chaudhuri PODS-98 6/1/98 50

Merging Nested Subquery
u Think of “IN” as a semi-join between Emp and

Dept on
½ Emp.Dept# = Dept.Dept#
½ Emp.Emp# = Dept.Mgr

u Convert Semi-join to Join

Select Emp.Name
From Emp
Where Emp.age < 30 And Emp.Dept# IN
(Select Dept.Dept#
From Dept
Where Dept.Loc = “Denver” And Emp.Emp# =Dept.Mgr)

 © Surajit Chaudhuri PODS-98 6/1/98 51

Result of Merging
Query:

Select Emp.Name

From Emp

Where Emp.Dept# IN

(Select Dept.Dept# From Dept

Where Dept.Loc = “Denver” And Emp.Emp# = Dept.Mgr)

Transformed Query:

Select Emp.Name
From Emp, Dept
Where Emp.Dept# = Dept.Dept#
And Emp.Emp# = Dept.Mgr And Dept.Loc = “Denver”

 © Surajit Chaudhuri PODS-98 6/1/98 52

Nested Subqueries (2)
u Presence of aggregates in the nested sub-query

requires careful treatment
u Key Observations:

½ For each outer tuple, create the “count” of
matching inner tuple and compare to D.parking

½ If outer matches no inner tuple, then the outer
produces an output tuple (“count bug”)

Select D.Name
From Dept D
Where D.parking < =
(Select count(E.Emp#)
From Emp E
Where E.Dept# = D. Dept #)

 © Surajit Chaudhuri PODS-98 6/1/98 53

Merging Nested Subqueries (2)
u Results in a left outerjoin between the parent and the

child block (preserves tuples of the parent)
½ B1 OJ B2 OJ B3 …..

u Outerjoin reduces to a join for sum(), average(),
max(), min()

u Transformed Query:
Select D.Name Select D.name
From Dept D From Dept D LOJ Emp E
Where D.parking < ON (E.Dept# = D.Dept#)
Select count(E.Emp#) Group By D.Dept#
From Emp E Having D.parking
Where E.Dept# = D. Dept # < count(E.Emp#)

 © Surajit Chaudhuri PODS-98 6/1/98 54

Optimization Across Blocks
u Collapsing into a single block query is not

always feasible or beneficial
u We can still optimize by sideways

information passing across blocks
u Idea similar to semi-join

½ Outer provides inner with a list of
potentially required bindings

½ Helps restrict inner’s computation
½ “Once only” invocation of inner for each

binding

 © Surajit Chaudhuri PODS-98 6/1/98 55

Example of Query with View

Create View DepAvgSal as (

Select E.did, Avg(E.Sal) as avgsal

From Emp E

Group By E.did)

Select E.eid, E.sal

From Emp E, Dept D, DepAvgsal V

Where E.did = D.did

And E.did = V.did

And E.age < 30 and D.budget > 100k

And E.sal > V.avgsal

 © Surajit Chaudhuri PODS-98 6/1/98 56

Example of SIP
Select E.eid, E.sal
From Emp E, Dept D, DepAvgsal V
Where E.did = D.did
And E.did = V.did
And E.age < 30 and D.budget > 100k
And E.sal > V.avgsal

u DepAvgsal needs to be evaluated only for
cases where V.did IN
Select E.did
From Emp E, Dept D
Where E.did = D.did
And E.age < 30 and D.budget > 100k

 © Surajit Chaudhuri PODS-98 6/1/98 57

Result of SIP
Supporting Views
(1) Create view ED as (Select E.eid, E.did, E.sal

From Emp E, Dept D

Where E.did = D.did

And E.age < 30 and D.budget > 100k)

(2) Create View LAvgSal as (

Select E.did, Avg(E.Sal) as avgsal

From Emp E, ED

Where E.did = ED.did

Group By E.did)

Transformed Query
Select ED.eid, ED.sal
From ED, Lavgsal
Where E.did = ED.did and ED.sal > Lavgsal.avgsal

 © Surajit Chaudhuri PODS-98 6/1/98 58

More Comments on
Transformations

u Summary of Multi-Block Transformations
½ SIP (semi-join) techniques result in use of views
½ Merging views related to commuting Group By

and Join
½ Nested Sub-query => Single Block

transformations result in J/OJ expressions

u SQL semantics is tricky
u Applicability conditions are complex
u Transformations must be cost based

 © Surajit Chaudhuri PODS-98 6/1/98 59

Outline
u Preliminaries

u Query Optimization Framework

u System R optimizer

u Modern Optimizers
½ Cost Estimation
½ Transformations
½ Enumeration Architectures

u How to interact with Optimizers

u Active Areas of work

u Conclusion

 © Surajit Chaudhuri PODS-98 6/1/98 60

Enumeration Architectures
u Stress on extensibility (for optimizer

developers)
u Key features

½ Explicit representation of transformations as
rules

½ Explicit representation of “ properties” of plans
½ sort-order, estimated costs

½ Rule engine

u Examples: Starburst, Volcano
u Framework != Optimizer

 © Surajit Chaudhuri PODS-98 6/1/98 61

Starburst v.s. Volcano

u Starburst
½ Heuristic application of algebraic

transformations
½ “Core” cost-based single-block join

enumeration

u Volcano
½ No distinction among transformations
½ Cost-based
½ More difficult search control problem

 © Surajit Chaudhuri PODS-98 6/1/98 62

Starburst Overview
u QGM for representation of queries
u Rewrite Rule Engine

½ Condition -> action rules where LHS and RHS
are arbitrary C functions on QGM representation

½ Rule classes for search control
½ Conflict resolution schemes
½ Customizable search control for rule classes

u Plan Optimizer
½ Handles implementation alternatives
½ LOLEPOP (operator)
½ STAR (implementation alternatives)
½ GLUE (achieving required properties)

 © Surajit Chaudhuri PODS-98 6/1/98 63

Volcano Overview
u Query as an algebraic tree
u Transformation Rules

½ Logical rules, Implementation rules

u Optimization Goal
½ Logical Expression, Physical Properties, Estimated Cost

u Top-down algorithm
½ Sub-expressions optimized on demand

½ An equivalence class table is maintained

½ Enumerate possible moves
½ Implement operator (LOLEPOP)
½ Enforce property (GLUE)
½ Apply Transformation Rules

½ Select “move” based on promise
½ Branch and bound

 © Surajit Chaudhuri PODS-98 6/1/98 64

Distributed Systems

u Optimization in Distributed Systems
½ Communication cost v.s. local processing time

u Evolution of Distributed Systems
½ Scalability concerns => Parallel systems
½ Distributed information => Replicated sites

 © Surajit Chaudhuri PODS-98 6/1/98 65

Parallel Database Systems

u Objective is to minimize response time
u Forms of parallelism

½ Independent, Pipelined, Partitioned

u Scheduling of operators becomes an
important aspect of optimization

u Can scheduling be separated from the rest
of the query optimization?

 © Surajit Chaudhuri PODS-98 6/1/98 66

Parallel Database Systems
u Two step approach:

½ Generate a sequential plan
½ Apply a scheduling algorithm to “parallelize” the plan

u The first phase should take into account cost of
communication (e.g., repartitioning cost)
½ Influences partitioning attribute

u Scheduling algorithm assigns processors to
operators
½ Symmetric schedule: assigns each operator

equally to each processor
½ suboptimal when communication costs are considered

 © Surajit Chaudhuri PODS-98 6/1/98 67

Outline
u Preliminaries

u Query Optimization Framework

u System R optimizer

u Modern Optimizers

u How to interact with Optimizers

u Active Areas of work

u Conclusion

 © Surajit Chaudhuri PODS-98 6/1/98 68

Interacting with Optimizer
u Information on the plan chosen by the

optimizer
½ Showplan (MS), Visual Explain (IBM)
½ Load plan information in tables

u Optimizer hints to control the nature of plans

u Optimization Level
½ How exhaustive is the search for the “optimal” plan?

(greedy v.s. DP join enumeration)

u Statistics
½ Update Statistics

½ Manual update to statistics (distinct values,
frequent values, highest values)

 © Surajit Chaudhuri PODS-98 6/1/98 69

Optimizer Hints

u Give partial control of execution back to
the application developer

u Can specify
½ Join ordering, Join methods, Choice of Indexes

u Liability
½ Hard to maintain as software is upgraded or

database statistics changes

u Example
Select emp-id
From Emp (index = 0)
Where hire-date > ‘10/1/94’

 © Surajit Chaudhuri PODS-98 6/1/98 70

Outline
u Preliminaries

u Query Optimization Framework

u System R optimizer

u Modern Optimizers

u How to interact with Optimizers

u Active Areas of work

u Conclusion

 © Surajit Chaudhuri PODS-98 6/1/98 71

Active Areas

u OLAP

u Optimization for ADT

u Content Based Retrieval

u Old-fashioned problems

 © Surajit Chaudhuri PODS-98 6/1/98 72

OLAP
u Spreadsheet paradigm drives the

querying model

u Complex ad-hoc queries over large
databases

u Stress on use of
½ Indexes
½ Multi-pass SQL
½ Materialized Views
½ Top-k Queries
½ “Helper Constructs”
½ Data Partitioning, Parallelism

 © Surajit Chaudhuri PODS-98 6/1/98 73

Using Indexes

u Selection
½ Use single or multi-column indexes

u Join
½ Join indexes, Use two clustered indexes

u Projection
½ Use as a vertical projection

u Group By
½ On-the-fly aggregation

u Index AND-ing
½ data scan for fewer pages
½ avoid data scan altogether

u How to use the right set of indexes?

 © Surajit Chaudhuri PODS-98 6/1/98 74

Multi-Pass SQL

u Backends always cannot digest
complex SQL

u Middleware (“ROLAP”) tool
optimizes SQL generation
½ Creates and maintains materialized

views
½ Tuned to backends
½ Defines appropriate temporary

relations

 © Surajit Chaudhuri PODS-98 6/1/98 75

Materialized Views
u View Definitions

½ Must consider aggregation as part of view
definitions

u Optimization Problem
½ Choose an equivalent expression over

materialized views and tables
½ Appropriate access methods

u Reminders
½ Need for a cost-based choice

½ Multiple materialized views may apply
½ Using base table may be better than using

cached results!
½ “2-step” algorithms can be significantly worse

 © Surajit Chaudhuri PODS-98 6/1/98 76

Materialized Views over Star
Schema

Fact table

Order
OrderNo
OrderDate

Customer

CustomerNo
CustomerName
CustomerAddress
City

Salesperson
SalespersonID
SalespesonName
City
Quota

ProdNo
ProdName
ProdDescr
Category
CategoryDescr
UnitPrice
QOH

City

CityName
State
Country

Date

DateKey
Date
Month
Year

OrderNo
SalespersonID
CustomerNo
ProdNo
DateKey
CityName
Quantity
TotalPrice

Product

 © Surajit Chaudhuri PODS-98 6/1/98 77

Dominance among Views

u Use a more specific view that and can
answer the query

u Dominance is a partial order
u Need cost-based optimization

½ Consider a query on (category, state)
½ The view on (product, state)

½ dominates (product, city)
½ does not dominate (category, city)

½ (product, state) and (category,city) are candidate
materialized views to answer the query

 © Surajit Chaudhuri PODS-98 6/1/98 78

Top K Queries

u Find k best restaurants in Seattle by …
where …

u If k is small compared to result size then
optimal query plan may be different
½ Use nested loop instead of sort-merge
½ Use non-clustered index scan instead of

sort
½ Alternative row blocking techniques

u Commercial databases provide
constructs

 © Surajit Chaudhuri PODS-98 6/1/98 79

Helper Constructs
u Ensuring “Optimality” of plans not feasible
u Provide constructs in language that help

optimizer
½ Does not extend expressivity
½ But, may result in significant performance

enhancement

u Example: Each subtotal requires a separate
aggregate query

Y
E
A
R

MODEL

Sum By Model

Sum
by
Year

 © Surajit Chaudhuri PODS-98 6/1/98 80

CUBE and ROLLUP
u Rollup (order of columns matters)

½ Group By product,store,city Rollup
½ Group by product, store, city; Group by product,

store; Group by product

u Cube (order of columns does not matter)
½ Group By product,store,city Cube
½ One aggregation on each subset of

{product, store, city}:
½ Group by product, store, city; Group by store, city;

Group by city, product
½ Cube = A set of Roll-up operations

 © Surajit Chaudhuri PODS-98 6/1/98 81

Optimization for ADT
u Independent user-defined functions

½ Select * From Stocks Where stocks.fluctuation > .6
½ Associate a per-tuple CPU and IO cost with udf
½ New issues in enumeration

½ Udfs are harder than selections, but easier than relations

u Relationship among udfs
½ E.g., Spatial datablade supports related spatial

indexes
½ Use rules to specify semantic relationships
½ Cost-based semantic Query Optimization
½ New issues in costing and enumeration

½ Don’t generate all equivalent expressions
½ How to use costs uniformly across ADT-s
½ “Mix and match” or “ADT-specific” optimization?

 © Surajit Chaudhuri PODS-98 6/1/98 82

Content Based Retrieval

u Fuzzy matches
½ Associate a degree of match with selection

u Top k fuzzy matches
½ Only interested in “top 10” matches with a

suspect’s sketch
½ Match may involve multiple features
½ How to exploit the specification of for reducing

the cost of data access?
½ Related to near neighbor search

u Relationship to IR work

 © Surajit Chaudhuri PODS-98 6/1/98 83

Old-fashioned Problems

u Compile Time v.s. Run time optimization
½ Choose plan and Exchange

u Resource governer
½ Adapting optimization to memory

constraints

u Sensitivity of the cost model
½ How detailed a cost model needs to be?

u Client-Server issues

u Object models

 © Surajit Chaudhuri PODS-98 6/1/98 84

Concluding Remarks
u Many factors determine performance

½ Query Processing engine
½ Query Optimizer
½ Physical database design
½ Settings of the “knobs”

u Many open problems
½ Architectural framework is important
½ Oversimplification may render results useless
½ Need to pay attention to SQL semantics

surajitc@microsoft.com
http://research.microsoft.com/~surajitc

