
Jigsaw: Efficient Optimization Over
Uncertain Enterprise Data

Oliver Kennedy
∗

EPFL & Cornell University
oliver.kennedy@epfl.ch

Suman Nath
Microsoft Research

sumann@microsoft.com

ABSTRACT
Probabilistic databases, in particular ones that allow users
to externally define models or probability distributions – so
called VG-Functions – are an ideal tool for constructing,
simulating and analyzing hypothetical business scenarios.
Enterprises often use such tools with parameterized mod-
els and need to explore a large parameter space in order
to discover parameter values that optimize for a given goal.
Parameter space is usually very large, making such explo-
ration extremely expensive. We present Jigsaw, a proba-
bilistic database-based simulation framework that addresses
this performance problem. In Jigsaw, users define what-
if style scenarios as parameterized probabilistic database
queries and identify parameter values that achieve desired
properties. Jigsaw uses a novel “fingerprinting” technique
that efficiently identifies correlations between a query’s out-
put distribution for different parameter values. Using finger-
prints, Jigsaw is able to reuse work performed for different
parameter values, and obtain speedups of as much as 2 or-
ders of magnitude for several real business scenarios.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Database Applications—
Scientific databases, Statistical databases

General Terms
Algorithms, Design, Performance

Keywords
Probabilistic database, Monte Carlo, Black box, Simulation

1. INTRODUCTION
Enterprises often need to evaluate business scenarios to

assess and manage financial, engineering, and operational

∗Work performed while interning at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

risks arising from uncertain data. Our experience working
with a Microsoft Windows Azure cloud platform analytics
team has revealed an increasing need for tools for developing
timely plans for the expansion, deployment, and allocation
of resources. When making these plans, which can involve
dispensation of millions of dollars, accurate and efficient sim-
ulation of many different business scenarios is critical to es-
tablish the validity of specific decisions in a timely manner.
Consider an analyst who wants to forecast the risk of run-
ning out of processing capacity in a cloud cluster. For that,
she needs to combine various predictive models for CPU
core demands and availability. These models are inherently
uncertain due to imprecise predictions of future workload,
possible downtime, delays in deployment, etc. Without ef-
fective tools, simulating and evaluating business scenarios
based on uncertain models can be extremely challenging.

Recently, a swath of probabilistic database (PDB) sys-
tems [3, 4, 5, 12, 13, 16, 18] have made probability distri-
butions and models into first class citizens of the database
world. PDB systems provide an ideal framework for an-
alyzing business scenarios such as those described above.
Some PDB systems, MCDB [12] and PIP [13] in particu-
lar, allow users to evaluate queries over user-provided distri-
butions, defined as stochastic black-box sampling functions
(also called variable-generation (VG) functions [12]). These
systems use Monte Carlo sampling of the VG-Functions to
approximate the results of queries. Support for user-provided
distributions is an extremely useful feature for the analysts,
who derive their baseline models using specialized, external
tools such as R. Sparse, incomplete, or noisy data can trans-
form even conceptually straightforward tasks (e.g., extract-
ing the rate and volatility of demand growth) into daunting
challenges that necessitate the use of such external tools.

A key challenge faced by PDB-based simulation systems
arises when models are parameterized and the system must
explore a large parameter space to optimize for a given goal.
In the previous example, a CPU core availability model
might accept a set of candidate purchase dates and apply
them according to a model for how long it takes to bring
the hardware online. The analyst can then identify pur-
chase dates that minimize the cloud’s cost of ownership,
given a bound on the risk of overload. This is essentially
a constrained optimization problem, albeit one where each
iteration is an entire PDB query. The primary bottleneck
in this context is the repeated (and potentially very costly)
Monte Carlo estimation of query outputs for various pa-
rameter values, largely due to the expensive invocation of
VG-Functions: (1) As the VG-Functions are black-boxes,

it is not correct to assume a relationship (e.g., monotonic,
continuous, etc.) between a VG-Function’s parameters and
outputs. Consequently, the function must be evaluated for
most, if not all, possible parameter values. (2) The func-
tion may need to be evaluated over a range of steps (e.g.,
if it describes time series data, like a daily CPU demand
model), and output at each step may be dependent on prior
steps (i.e., the function describes a Markovian process, as
discussed in Section 4). Therefore, with parameterization,
even relatively simple scenarios taking tens of minutes, or
even hours to evaluate [12] will now take hours or even days.
Such a slow response is unacceptable in many practical sit-
uations where a business decision must be made quickly or
if parameterized what-if scenarios are to be evaluated inter-
actively.

In this paper, we present Jigsaw, a PDB-based simula-
tion framework that addresses the above performance prob-
lem. Jigsaw can efficiently simulate a given business scenario
by combining multiple parameterized stochastic black-box
functions, possibly over multiple time steps. Jigsaw is built
around a simple PDB, which performs Monte Carlo simu-
lation over entire databases. Using this PDB functionality,
Jigsaw takes parameterized queries1 and identifies param-
eter values that optimize a given goal or achieve a desired
property.

Jigsaw’s performance improvement over existing related
systems comes from the following two key observations.
First, outputs of many enterprise-related stochastic func-
tions are strongly correlated under various parameter values.
For example, in our earlier example, changing the purchase
date of new hardware from May to July is unlikely to affect
the cluster capacity in April or August (here, purchase week
and the week being estimated – the “current” week are pa-
rameters). First, identifying such correlations can help avoid
exploration of significant parts of the parameter space. Sec-
ond, when a simulation is Markovian (where the simulation
consists of a series of steps, each depending on the simula-
tion’s output for the prior step), outputs of successive steps
often remain strongly correlated. This is particularly true
for many processes of interest that are built around discon-
tinuities, with discrete events occurring at random points
in time (e.g., the nondeterministic date when new hardware
comes online). Identifying such Markovian dependencies en-
ables the automated generation of simple non-Markovian es-
timators. These estimators, valid for regions of the Markov
chain, allow Jigsaw to skip the corresponding portions of the
simulation.

Jigsaw exploits the above two observations by using fin-
gerprints of stochastic functions. The fingerprint of a
stochastic black box function is a concise and easily-
computable data structure that summarizes its output dis-
tribution. Thus, a fingerprint can be used to efficiently de-
termine a function’s correlation with another function, or its
own instantiations under different parameter values. After
such correlation has been detected, Jigsaw can avoid ex-
pensive Monte Carlo estimation (and the associated VG-
Function invocations) for a target point in the parameter
space by using outputs for an already-explored, correlated
point. The specific fingerprinting technique we use in this

1We assume a discrete-finite domain for each parameter.
This is a reasonable expectation in our target application.
Furthermore, with an infinite parameter domain, continuity
must be assumed for an optimization problem to be feasible.

paper is based loosely on random testing [11], a well known
technique in software engineering: the fingerprint of a pa-
rameterized stochastic function is simply a sequence of its
outputs under a fixed sequence of random inputs (i.e., seed
of its pseudorandom number generator). The use of a fixed
set of random seeds ensures a deterministic relationship be-
tween correlated outputs of the stochastic functions.

Note that correlation in the outputs of a stochastic func-
tion might often be obvious to a human onlooker. For exam-
ple, excepting the days immediately after a hardware pur-
chase, the day-by-day output of a simple cluster capacity
model may be built out of the same distribution. How-
ever, forcing function authors to express such correlations
through metadata is undesirable, as it negates the general-
ity and clean abstraction offered by VG-functions. Data-
dependent corner cases, discontinuities, and Markovian de-
pendencies can make the metadata just as, or even more
complex than the stochastic function itself. The stochastic
nature of these black box functions only complicates matters
further. Therefore, one important design goal for Jigsaw is
to identify such correlation automatically, and fingerprints
are a step towards achieving that goal.

In summary, we make the following contributions in this
paper. First, we propose Jigsaw, an efficient framework for
running optimization queries over uncertain enterprise data
(Section 2). It uses a combination of parameter exploration,
Monte Carlo simulation, and Markovian process evaluation.
Second, we propose an efficient mechanism for computing
fingerprints of stochastic black-box functions (Section 3).
We demonstrate the use of fingerprints in the following cases:
(1) We show how to use fingerprints to efficiently explore the
large parameter space of an optimization query, based on a
parameterized Monte Carlo simulation (Section 3). Finger-
prints are used to identify similar parameter values across
which VG-Function invocations may be reused. (2) We show
how to use fingerprints to accelerate the evaluation of some
Markov processes (Section 4). By comparing the fingerprint
to that of a state-independent estimator, we can potentially
avoid computing many iterations of the process. (3) We
also describe how fingerprints can be used to improve the
efficiency of an interactive, online scenario evaluation and
parameter exploration tool called Fuzzy Prophet, which we
have built on top of a PDB (Section 5). This tool uses basic
probabilistic database techniques to allow users to instanti-
ate business scenarios in the familiar environment of SQL,
and analyze the effect of changing various scenario param-
eters with immediate feedback. Finally, we evaluate Jigsaw
with several real-world scenarios seen in an enterprise cloud
management team (Section 6). The results show effective-
ness of our various optimizations: Jigsaw is able to improve
simulation performance by as much as 2 orders of magni-
tude.

Note that Jigsaw has been developed in concert with an
analytics team in Microsoft Windows Azure cloud platform,
and hence the examples we use throughout the paper are in
the context of managing a cloud infrastructure. However,
we believe that the need for parameter optimization tools in
PDB systems is a much more broad requirement.

2. RUNNING SIMULATIONS
In this section we first describe how Jigsaw looks like to

a user via a few simple examples. We then briefly describe

how Jigsaw answers queries and point out specific challenges
that we address in this paper.

2.1 Probabilistic Databases
Probabilistic database (PDB) systems allow users to pose

queries over uncertain data: data specified as a distribution
over a range of possible values, rather than as one specific
value. For example, OCR software might have difficulty
distinguishing between a 9 and a 4. A PDB records both
values and their corresponding probabilities. When the data
is queried, the response is phrased as a distribution over pos-
sible results (although this distribution may be represented
as an expectation, maximum likelihood, histogram, etc.).
Several PDB implementations can similarly represent and
query continuous distributions (e.g. a gaussian distribution
representing a measurement and its statistical error).

While a traditional DBMS stores a single instance of a
database, a database in a PDB system represents a distri-
bution over a (potentially infinite) set of database instances
typically referred to as possible worlds. Queries in a PDB
are (conceptually) evaluated by evaluating the query in each
possible world. The set of results forms an answer distribu-
tion for the query. Clearly, this approach is not feasible in
general, so some PDBs compute approximate results using
Monte Carlo methods. The MCDB [12] system, on which
Jigsaw’s PDB implementation is based, instantiates a finite
set of databases by sampling randomly from the set of pos-
sible worlds. Queries are run on each sampled world in par-
allel, and the results are aggregated into a metric (e.g. an
expectation or standard deviation of the result) or binned
into a histogram.

Note that MCDB’s interaction with distributions being
queried is limited to the generation of samples. This simple
interface makes it possible for users to incorporate (nearly)
any distribution into their queries. User-defined probability
distributions (e.g. a user demand forecast) can be incor-
porated by constructing a stochastic black-box function re-
ferred to as a VG-Function, which generates samples drawn
from the distribution.

2.2 Example queries in Jigsaw
Batch mode execution. Suppose that, in our context of
cloud infrastructure, an analyst wishes to determine the op-
timal date and volume for several server purchase orders to
keep the risk of running out of available CPU cores below a
certain threshold. The later the purchases occur, the lower
the hardware’s upkeep costs, but the greater the chance that
cores will be unavailable when needed. The question of an
ideal purchase date and volume is a simple constrained op-
timization problem.

A Jigsaw user would specify this optimization problem in
three stages: (1) The user defines stochastic models forecast-
ing CPU core availability and demand, (2) The user spec-
ifies inter-model interactions to describe the scenario, and
(3) Jigsaw solves the optimization problem by exploring the
parameter space of purchase dates and volumes.

For step (1), the user defines various stochastic models
that Jigsaw uses as black boxes. These stochastic black
boxes are essentially functions that produce samples2 drawn

2Canonical VG-Functions in MCDB produce tables as out-
put. For clarity, this paper uses a simplified notion of
stochastic black-box functions that produce only single val-

-- DEFINITION --
DECLARE PARAMETER @current_week AS RANGE 0 TO 52 STEP BY 1;
DECLARE PARAMETER @purchase1 AS RANGE 0 TO 52 STEP BY 4;
DECLARE PARAMETER @purchase2 AS RANGE 0 TO 52 STEP BY 4;
DECLARE PARAMETER @feature_release AS SET (12,36,44);

SELECT DemandModel(@current_week, @feature_release)
AS demand,

CapacityModel(@current_week, @purchase1, @purchase2)
AS capacity,

CASE WHEN capacity < demand THEN 1 ELSE 0 END
AS overload

INTO results;
-- BATCH MODE --
OPTIMIZE SELECT @feature_release, @purchase1, @purchase2

FROM results
WHERE MAX(EXPECT overload) < 0.01
GROUP BY feature_release, purchase1, purchase2

FOR MAX @purchase1, MAX @purchase2

Figure 1: An example Jigsaw query.

from the probability distribution that they intend to de-
scribe. This framework allows analysts to easily import ex-
ternally defined models that describe a wide variety of pro-
cesses and system characteristics. In our specific example,
the user writes the following two functions (e.g. based on a
model derived in a statistical modeling application like R):
DemandModel(current_week, feature_release);

CapacityModel(current_week, purchase1, purchase2);

The DemandModel function produces a stochastic CPU core
usage demand forecast for a given week in the future, taking
into account expected future user arrival rates, individual
user capacity requirements, and expected user reactions to
planned special offers and system features.

The CapacityModel function outputs a stochastic estima-
tion of the number of CPU cores available on a given date
in the future (given a set of future purchase dates). It also
takes into account the current CPU core availability, future
expected failure rates, and prediction, based on prior pur-
chasing experiences of when new cores will come online after
purchase. How the models are developed is orthogonal to
Jigsaw’s execution engine, which simply treats the models
as black boxes. This way, we establish a clean separation
between expert knowledge and the task of simulating the
underlying process.

For steps (2) and (3), the user writes the SQL-like query
in Figure 1. The core of the scenario is a simple SQL SELECT

query that produces an output result table – in this exam-
ple, containing capacity, demand, and overload columns.
Note that, as Jigsaw is built around a PDB system, this re-
sults table is specified as a probability distribution over the
space of possible results. Two aspects of the query require
further discussion: (a) The query contains several parameter
variables, each prefixed with a @. Parameter variables, with
their bounds and sets of permitted and initial values, are
declared as part of the scenario using DECLARE PARAMETER

statements and are equivalent to standard SQL variables
from the user’s perspective. (b) The optimization goal is
expressed with an OPTIMIZE query, which iterates over the
parameter space to find the latest purchase1 and purchase2

that keep the expected risk of overload (a condition defined
as a week when capacity < demand) within a threshold.

ues. We make this distinction explicit by using the term
black-box function. Naive extensions of Jigsaw’s fingerprint-
ing technique to VG-functions are trivial (e.g., extend the
function with row and column id parameters) and optimized
extensions are beyond the scope of this paper.

Figure 2: Jigsaw’s interactive interface.

One possible implementation of the CapacityModel is of
interest. This model is charaterized by a sequence of discrete
events (e.g., purchases or hardware failures), each affecting
the cluster’s capacity. Each event is produced by a sepa-
rate model, so the database engine itself can compute the
cumulative effect of the events with a simple SQL SUM aggre-
gate. Also consider the CapacityModel expectation viewed
in a time-series plot. Though each purchase has a stable
long-term impact on the cluster’s capacity, this plot is char-
acterized by two distinct structures in the vicinity of each
purchase date. We will return to this observation later.

Interactive mode. Jigsaw can also be used in an inter-
active online mode. In this mode, the user modifies vari-
ous parameter values (e.g., purchase date and volume) and
quickly sees the outcome (e.g., the risk of overload at a given
date). As parameter values are modified, the system contin-
ually updates a progressively refined estimate of the results
table for those parameter values. This quickly gives a rough
estimate of the final answer so that the user, not finding the
given parameter values interesting, can abandon the simula-
tion in the middle and try a different parameter value. This
mode is particularly targeted at users who may not have
an extensive statistics background. An analyst-developed
scenario can be used by an executive (e.g. as part of a man-
agement dashboard tool) to quickly observe the expected
outcome of specific financial decisions for various parameter
values.

The interactive mode, with the output shown in Figure 2,
is expressed with the following execution query (parameter
definition and SELECT portions of the query are same as in
Figure 1):

-- INTERACTIVE MODE --
GRAPH OVER @current_week

EXPECT overload WITH bold red,
EXPECT capacity WITH blue y2,
EXPECT_STDDEV demand WITH orange y2;

The query above provides Jigsaw with a parameter to use
as the graph’s X-Axis, and specifies how each column in the
results table is to be graphed in the GUI (Figure 2).

2.3 Jigsaw Simulation Process
Figure 3 shows how a Jigsaw executes an optimization

query in the batch mode. Each random table in the un-
certain database is represented on disk by its schema, to-
gether with a set of black-box functions that are used to
generate realizations of uncertain attribute values. When a
query is issued, the Parameter Enumerator module enumer-
ates all feasible parameter values for the black-box functions
involved in the query. This brute force approach is neces-
sary to guarantee that the optimization converges to the

Figure 3: Processing optimization queries in Jigsaw

global maximum for an arbitrary black-box function. Note
that Jigsaw’s fingerprinting techniques remain applicable to
more advanced techniques that use additional information
about the black-box (e.g., gradient-descent, if the black-box
is known to be continuous).

For each parameter value, Jigsaw then invokes its PDB
subsystem (shown inside the dotted box). The PDB subsys-
tem (loosely modeled after MCDB) invokes the black-box
functions with the current set of parameter values to gener-
ate a set of n ≥ 1 independent and identically distributed
(i.i.d.) sampled instances, sometimes referred to as possible
worlds; for parameter valuation Pa, we say that sample di
is generated by instance (Pa, i). Recall that in a PDB, the
output of a query is a probability distribution. Evaluating
the query over each sampled possible world generates a set of
i.i.d. samples of the results table’s distribution. These latter
samples are then aggregated by the Estimator to compute
one or more characteristics of interest (i.e., mean, standard
deviation, etc. . .) for the output distribution. The process
is repeated for all different parameter values. Finally, the
Selector component selects the parameter value, along with
its output distribution, that satisfies the optimization goal.

2.4 Jigsaw Challenges
The most expensive aspect of Jigsaw’s simulation process

is its interaction with the underlying PDB. This processing
overhead is linear in the size of the parameter space and
dominates all other processing tasks performed by Jigsaw.
The primary goal of Jigsaw is to reduce the number of in-
stances on which the PDB must be invoked. To achieve this,
we exploit several observations about redundancy in compu-
tations. First, outputs of many enterprise-related stochastic
functions are strongly correlated under various parameter
values (examples in Section 3). Identifying such correlations
can help to avoid exploring large regions of the parameter
space. Second, in many event-based processes with marko-
vian dependencies (i.e. each step in the process depends
on the output of the prior step), the markovian dependen-
cies are relevant only in the steps near an event. A suit-
ably crafted non-markovian estimator function (examples in
Section 4) may be used to reduce simulation required for
the other steps. Finally, in interactive mode execution, a

quick estimation of simulation results for a selected parame-
ter value can often be given based on results from previously
selected parameters; the estimation can then be gradually
refined with more samples.

To exploit the above observations, Jigsaw needs to address
the following challenges.

• How can parameter values that produce the same (or
similar) outputs be efficiently identified and exploited?

• How can correlated Markovian steps be efficiently iden-
tified and exploited?

• Can an accurate estimate be obtained for one param-
eter value in interactive mode by reusing results com-
puted for other parameter values?

In the rest of the paper, we discuss how Jigsaw addresses
these challenges.

3. FINGERPRINTS
The key concept Jigsaw uses to reduce the number of

Monte Carlo evaluations is fingerprints. A fingerprint of a
stochastic black box function is a concise and easily-
computable data structure that summarizes its output dis-
tribution. Thus, a fingerprint can be used to determine a
function’s similarity with another function, or its own in-
stantiations under different parameter values. We will show
a concrete example of fingerprints in Section 3.1, but first
we explain the general principle.

The outputs of a deterministic function F evaluated on
two different values Pi and Pj , are deemed similar (denoted
as F (Pi) ∼M F (Pj)) if there exists a closed form mapping
functionM that maps from F (Pi) to F (Pj).

F (Pi) ∼M F (Pj) ≡ F (Pi) =M(F (Pj))

Consider a stochastic function F with output X = F (Pi)
and probability distribution f(x = X|Pi). F is similar at Pi

and Pj if a closed form mapping function exists to map the
domain of f(x|Pi) into that of f(x|Pj).

F (Pi) ∼M F (Pj) ≡ ∀x : f(x|Pi) = f(M(x)|Pj)

More generally, we can think of M as the central element
of a family of mapping functions that map not only func-
tion values but also metrics, aggregates, and other derived
values. Efficient mapping between members of this fam-
ily can substantially reduce the sampling requirements of
a computation. For example, consider a scenario where
both expectations E[F (Pi)] and E[F (Pj)] are needed, and
F (Pi) ∼M F (Pj) can be efficiently proven. An Mexpect

derived from M such that E[F (Pj)] =Mexpect(E[F (Pi)]),
eliminates the need to explicitly compute E[F (Pj)].

Identifying the mapping function for an arbitrary pair of
stochastic black-box functions (F (Pi), F (Pj)) is difficult for
two reasons: (1) The functions are black-boxes – interactions
with the function are limited to sample generation. (2) The
functions are stochastic. In order to match two distribu-
tions, it is first necessary to approximate the distributions
(i.e., by sampling from both, negating the benefits of having
established similarity).

Rather than attempt to map the result distribution, Jig-
saw employs a shortcut. We propose the abstract fingerprint
operation (and corresponding mapping function Mf), which

Algorithm 1 DemandModel(current week, feature)

Require: The current week being simulated, and a
feature release date.

Ensure: The demand for the week being simulated.
1: demand = Normal(

μ : 1 ∗ current week,
σ2 : 0.1 ∗ current week

)
2: if current week > feature then
3: demand += Normal(

μ : 0.2 ∗ (current week − feature),
σ2 : 0.2 ∗ (current week − feature)

)

efficiently maps parameterized stochastic black-box func-
tions to concise, comparable data structures such that with
high probability:

F (Pi) ∼M F (Pj) ≡
fingerprint(F (Pi)) =Mf (fingerprint(F (Pj)))

Fingerprints can be computed for individual stochastic
black-box functions, such as DemandModel in Figure 1, or
combinations of such functions. Taken to one extreme, the
entire Monte Carlo simulation shown inside the dashed box
in Figure 3 can be treated as the stochastic function F .
Thus, F (Pi) ∼M F (Pj) implies that we can avoid expensive
Monte Carlo simulations for parameter value Pj and esti-
mate the output of Estimator(Pj) accurately as
Mest(Estimator(Pi)).

3.1 Computing Fingerprints
Identifying similarities between the outputs of two func-

tions is, in general, hard [15]. Jigsaw uses a probabilistic
approach based on the principle of random testing [11], a
well-known software testing technique. For random testing
of a deterministic function F against a hypothesis function
H , both functions are evaluated on m random inputs and
the results are compared. The function F is declared satisfy-
ing the hypothesis H if the outputs of F and H match for all
m random inputs. Random testing has two features in par-
ticular, that make it well suited to our needs: (1) Random
testing is simple and can be used while treating the func-
tions as black boxes. (2) Random testing has been shown to
be robust for functions with a small number of conditional
branches so that a small number of random inputs can ex-
ercise all code paths. We have found in our cloud infras-
tructure management context that almost all our stochastic
functions are relatively simple and contain at most one or
two conditional branches.3

We use the same principle to determine similarities of out-
puts of a stochastic black-box function F under two valu-
ations of the same parameters Pi and Pj . However, unlike
random testing where the parameters are random and the
function is deterministic, Jigsaw must deal with stochastic
functions and fixed parameters. To make F deterministic,
we extend F with a seed parameter σ and ensure that all
sources of randomness within F (Pi, σ) are replaced by in-
vocations of a pseudorandom generator seeded by σ. In

3The functions are kept simple in practice, modeling only
one particular aspect of the system so that they can be
trained and validated even with small, noisy data sets.

practice, these modifications are negligible, as randomness
is typically obtained from system API calls (e.g. rand()).

It is crucial for both invocations of F to use the same
source of randomness to make their comparison meaning-
ful. Consider two stochastic functions that output 0 and
1 with equal probability. When repeatedly evaluated with
the same sequence of random seeds, they can be quickly de-
clared to be equivalent with a very high probability. On
the other hand, using different seeds, equivalence testing is
much more difficult. Consider our example stochastic func-
tion in Algorithm 3.1. As a sum of two normal distributions,
the function’s output is normally distributed for all inputs.
Suppose the function is invoked twice as DemandModel(1,3)
and DemandModel(2,4). Both invocations take the same code
path, and their outputs will be drawn from linearly corre-
lated distributions. In addition, by using a pseudorandom
number generator seeded with the same value for each in-
vocation, we ensure that there is not just a correlation, but
a linear mapping from one fingerprint to the other. In con-
trast, using different random seeds would hide the one-to-one
similarity in their outputs.

A Concrete Fingerprint. The fingerprint of a parame-
terized stochastic function F (Pi), with respect to a vector
of m seed values {σk}, is the vector of size m where the k’th
entry of the vector is the output of F (Pi) with σk as the
random seed. More formally,

fingerprint({σk}, F (Pi)) = {θk = F (Pi, σk)|0 ≤ k < m}
For the remainder of the paper, we use this definition of
fingerprints and an implicit global seed set {σk}, randomly
generated as part of the initialization process and held con-
stant throughout.

Note that using the same set of random seeds for different
parameter values does not affect the correctness of Jigsaw’s
Monte Carlo simulations. Referring to Figure 3, since the
seeds used by each Monte Carlo Generator are i.i.d. random,
inputs to the Estimator(Pi) are i.i.d. samples from query
result distribution. Thus, the output of Estimator(Pi) re-
mains statistically correct. Using same set of seeds for differ-
ent parameter values introduces correlated error terms into
the outputs of different Estimators, but the Selector only
compares, and never combines, the Estimator’s outputs.

Mapping Functions. For fingerprints, as defined above,
we can define fingerprint mapping functions Mf that can
be applied to each element of a fingerprint (in order to iden-
tify its similarity with another fingerprint). For example,
consider two fingerprints: θ1 = (0, 1.2, 2.3, 1.3, 1.5) and θ2 =
(0.1, 1.3, 2.4, 1.4, 1.6). The mapping functionM(x) = x+0.1
maps θ1 to θ2. In general, mapping functions should be: (1)
easy to parameterize, (2) easy to validate, (3) easy to com-
pute, (4) easily applied to simple aggregate properties (e.g.,
expectation).

Given two fingerprints, Jigsaw can automatically compute
a linear function (i.e.,Mα,β(x) = αx+β) that maps one fin-
gerprint to another, if such a mapping exists (Algorithm 2).
Linear mapping functions fulfill our desired characteristics
precisely: (1) The mapping function can be determined from
two distinct values in a pair of fingerprints. (2) The remain-
ing values in the fingerprints can be used to validate the
mapping. (3) Linear functions are incredibly simple, and (4)
can be easily applied to simple aggregate properties such as
expectation and standard deviation.

In general, the notion of similarity between two signatures

Algorithm 2 FindLinearMapping(θ1, θ2)

Require: Two fingerprints θ1 and θ2 of size m
Ensure: A linear function M(x) = αx + β such that
M(θ1[i]) = θ2[i], ∀i, and null if no such function exists

1: α← (θ2[1]− θ2[2])/(θ1[1]− θ1[2])
2: β ← θ2[1]− αθ1[1]
3: match← true
4: for i = 3 to m do
5: if αθ1[i] + β 	= θ2[i] then
6: match← false
7: return (M(x) = αx+ β) if match, null otherwise

is application dependent. Therefore, Jigsaw allows users to
provide their own classes of mapping functions.

Using Fingerprints. With fingerprints, Jigsaw executes
Monte Carlo simulations for different parameter values as
follows. Let F denote the entire Monte Carlo simulation
with a parameter value Pi (i.e., the computation inside the
dashed box in Figure 3). Thus, the fingerprint of F (Pi)
is essentially the outputs of first m simulation rounds with
parameter Pi.

During execution, Jigsaw incrementally maintains a set of
basis distributions. Each basis distribution is a tuple (θi, oi),
implying that Jigsaw has already computed the output met-
rics oi for some F (Pi) with fingerprint θi. For a new param-
eter value Pj , Jigsaw first computes fingerprint θj of F (Pj)
(as part of the first m rounds of simulation with parameter
Pj). It then checks for a basis distribution with fingerprint
θk such that θj ∼M θk. If such a basis distribution exists,
Jigsaw omits the subsequent rounds of simulation for Pj and
returnsMest(ok) instead.

Retrieving Mapping Functions. When presented with
an unknown distribution, Jigsaw compares each new finger-
print against all the fingerprints in the basis distribution,
identifying a mapping to one of them if it exists. Algo-
rithm 3 shows the process. Jigsaw first uses a suitable in-
dexing scheme (described next) to prune the search space
of candidate basis fingerprints. For each pairing candidate,
Jigsaw uses the FindMapping function to discover a possi-
ble mapping between the two fingerprints. An instance of
the FindMapping function, the FindLinearMapping function
shown in Algorithm 2 searches for mappings of the form
M(x) = αx + β. If a mapping exists between two finger-
prints, Jigsaw uses the mapping to reuse work done for the
existing basis distribution. If no mappable fingerprint can
be found, Jigsaw completes the simulation process and adds
the results (i.e., the fingerprint and computed metric(s)) to
the set of basis distributions.

3.2 Indexing Fingerprints
The existence ofM can be computed quickly for any pair

of fingerprints. However, the expected number of times this
test must be performed grows linearly with the number of
basis distributions.

Instead of naively scanning every basis distribution, Jig-
saw builds an index over the basis fingerprints. The goal
of indexing is to quickly find a set of candidate basis fin-
gerprints that are similar to a given fingerprint (i.e., where
a mapping exists). The set of fingerprints returned by the
index must contain all similar fingerprints. In addition, it
may contain few fingerprints that are not similar to the given

Algorithm 3 FindMatch(F, Pa)

Require: A stochastic black box function F , and a point
in its parameter space Pa.

Ensure: The pair (basis,M), where basis is a basis dis-
tribution (fingerprint θ, output metrics o), and M is a
mapping function such that θ ∼M fingerprint(F (Pa))

1: θ ← {F (Pa, σi)|i ∈ [0, m)}
2: candidates← CandidateF ingerprint(basis, θ)
3: for all basis ∈ candidates do
4: M← FindMapping(basis, θ)
5: if M 	= null then
6: return (basis,M)
7: return {[(θ, Estimator(F (Pa))), (M(x) = x)]}

fingerprint; these false positives are later discarded in Algo-
rithm 3.

Currently Jigsaw supports the following two indexing
strategies that reduce the cost of matching linear mapped
fingerprints to a single hash-table lookup with high proba-
bility.

Normalization. The first indexing strategy is to translate
the fingerprints to their normal forms so that two similar
fingerprints have the same normal form (and hence can be
retrieved by a hash lookup). Such normalization requires a
class of mapping function that admits a normal form trans-
lation. For example, when using a linear mapping function,
a fingerprint’s normal form can be produced by taking the
first two distinct sample values and identifying the linear
translation that maps them to 0 and 1 (or, any two pre-
defined constants) respectively. If two fingerprints have a
linear mapping, then all, not just the first two, entries of
their normal forms will be identical.

Sorted SID.Normalization requires that the mapping func-
tion admits a normalized representation of a fingerprint. In
some cases (e.g., a probabilistic mapping), no such normal
form can be computed easily. In such cases, we assign each
sample value in a fingerprint an identifier (e.g., its index po-
sition in the fingerprint), using the same identifier ordering
across all fingerprints. We then sort the sample values in a
fingerprint, and take the resulting sequence of sample iden-
tifiers (or, SIDs) as the hash key in the index. As long as the
mapping function is monotonically increasing, the resultant
ordering of SIDs will be consistent across all mappable dis-
tributions. Even if the mapping function is only monotonic,
a similar effect can be achieved by comparing both the SID
sequence and its inverse.

4. MARKOVIAN JUMPS
Jigsaw allows users to specify inter-model dependencies.

Consider two models where the first model predicts the re-
lease date of a particular feature of the cloud service, and the
second model predicts demand, given that release date. Fre-
quently, such dependencies are cyclical: the feature release
date might be driven by demand. For example, sufficiently
high demand might convince management to allocate addi-
tional development resources to the feature.

As a consequence of this sort of cyclical dependency, the
models and thus the simulation must be evaluated as a
Markovian process, where a model is evaluated in discrete
steps and its output for any given step is dependent on the
prior step’s output. The discrete steps are usually small

(e.g., a day in the above example) so that outputs of other
models affecting the model remain static within a step. Ev-
ery step in the process must be simulated, even if the only
output of interest is for one specific step (e.g., user demand
in two months).

In the space of cloud logistics, models with this sort of
cyclical dependency often have an interesting characteristic:
the Markovian dependency is present only over certain steps.
In the case of the feature release date, as long as the user
demand remains strictly (or at least with high probability)
below or above the threshold value, the feature release date
is unaffected. For these periods, the demand and feature re-
lease date model can be treated as non-Markovian, despite
its cyclical dependency. Concretely, Markovian dependen-
cies in this sort of model are characterized as (1) infrequent,
and (2) often closely correlated (3) discontinuities in (4) an
otherwise non-Markovian process. Thus, given the state of
the system at the beginning of one of these non-Markovian
regions, it is possible to create a non-Markovian estimator
function for the remainder of the region.

These infrequent Markovian dependencies occur often in
event-based simulations. Forcing programmers to identify
the ranges within which these dependencies occur is un-
desirable. Instead, Jigsaw can automatically identify non-
Markovian regions in these processes automatically by using
fingerprints.

4.1 Fingerprinting Markov Processes
Consider a model F that needs to be evaluated in a se-

quence (or a chain) of discrete steps. Assuming that Marko-
vian dependencies are infrequent, outputs of F in many suc-
cessive steps will not be affected by previous steps. To jump
over such non-Markovian steps and avoid expensive compu-
tation, Jigsaw uses a non-Markovian estimator function E
(discussed further in Section 4.2), which predicts the outputs
of F at different steps of the chain without considering the
outputs (of F or other models) at previous steps. By com-
paring the fingerprints of E and F , Jigsaw can efficiently
identify the regions over which E is a valid approximation.

Recall that each fingerprint of F is a set of its random
outputs. Thus, the fingerprint for any step in a Markov
process can be used to generate the fingerprint for the next
step. Instead of evaluating the full set of n Monte Carlo
simulation rounds of the Markov chain, we evaluate only a
fingerprint-sized (m < n) set and compare it to the finger-
print of an estimator function. If a mapping exists between
the two, the estimator remains viable.

To compute the value of a Markovian black-box function
at a particular step in the chain, Jigsaw does an exponential-
skip-length search of the chain until it finds a point where
the estimator fails to provide a mappable fingerprint. From
that point, it does a binary search to find the last point in
the chain where the estimator provides a mappable finger-
print, uses the estimator to rebuild the state of the Markov
process, generates the next step, and repeats the process.
This algorithm is shown explicitly in Algorithm 4.

Consider the previous example of a cyclically dependent
user demand and feature release date models. An example
execution of the Markov Jump algorithm is illustrated in
Figure 4. Jigsaw begins with an estimator for the Markov
process that assumes the feature has not yet been released
(the initial system state). (4.a) It iterates over each step of
the Markov process, computing only the fingerprint and not

Algorithm 4 MarkovJump(Fmkv, initial, target)

Require: A function, Fmkv(prev state) = new state de-
scribing a Markov process and its estimator, respec-
tively. An initial state for the functions. A target
number of steps to return after. A statically defined
fingerprint size m.

Ensure: The state of each instance of the Markov process
after target steps.

1: state← {initial, initial, . . .}; θ1 ← state[0 . . .m]
2: s← 1; Fest ← Fmkv(θ1)
3: loop
4: for s/2 < i ≤ s do
5: θi ← Fmkv(θi−1)
6: if (s > target)∧ (Fest ∼M θtarget) then
7: returnM(Fest(state))
8: if Fest(s, state[0 . . .m]) ∼M θs then
9: s← s ∗ 2
10: else
11: (valid,M)←MAXvalid(

{(valid,M)|valid ∈ [s
2
, s] ∧ Fest ∼M θvalid})

12: if valid ≤ 1 then state← Fmkv(state); valid← 1
13: else state←M(Fest(state))
14: target← target− valid; s← 1;
15: θ1 ← state[0 . . .m]; Fest ← Fmkv(θ1)

the full set of instances being generated. At each step, the
fingerprint of the Markov function is compared to that of
the estimator. The number of steps between comparisons
grows exponentially until (4.b) the algorithm finds a mis-
match. (4.c) At this point, the algorithm backtracks to the
last matching value with a binary search and uses the es-
timator to regenerate the full state of the Markov process.
(4.d) The Markov process is used to step the full set of in-
stances until the estimator function once again begins to
produce matching fingerprints.

4.2 Generating Estimator Functions
The user does not need to explicitly provide an estima-

tor function. Simple cyclical dependencies between mod-
els allows us to extract an estimator function by fixing one
model’s output to its value at a given step. Indeed, any
Markov function that models an infrequently discontinuous
process can be made into a viable estimator by reusing state
in a similar way.

A function Fmkv defining a Markov process with per-step
state Pi generates the next step’s state: Fmkv(Pi, Q) = Pi+1.
We can define a rudimentary estimator function Fest,i by
fixing Fmkv ’s input state at one point in time.

Fest,i(Q) = Fmkv(Pi, Q)

Even this rudimentary estimator function can be quite pow-
erful when combined with fingerprints; any uniform changes
in state are absorbed by the mapping function.

For example, consider the Markov jump query illustrated
in Figure 5. The special CHAIN parameter type is used to
chain the output of one stage of the Markov computation
to the following one – in this case chaining the output of
ReleaseWeekModel to the subsequent DemandModel invoca-
tion.

As before, ReleaseWeekModel has a single discontinuity
at the point where DemandModel’s output exceeds a certain
threshold. Each step in the Markov chain corresponds to

Figure 4: An example execution of the Markov
Jump algorithm. The algorithm starts by perform-
ing a fingerprint-sized sampling (a) from the markov
chain, until the fingerprint differs from a synthesized
estimator (b), then backtracks and synthesizes a new
estimator (c). This process repeats until it finds an
estimator valid for the remainder of the chain (d).

-- DEFINITION --
DECLARE PARAMETER @current_week

AS RANGE 0 TO 52 STEP BY 1;
DECLARE PARAMETER @release_week

AS CHAIN release_week
FROM @current_week : @current_week - 1
INITIAL VALUE 52;

SELECT ReleaseWeekModel(demand) AS release_week, demand
FROM (SELECT DemandModel(@current_week, @release_week)

AS demand)
INTO results

-- BATCH MODE --
...

Figure 5: A Jigsaw query with a Markovian depen-
dency

predictions for one specific week. The interesting output
of this model is demand. An estimator from this value will
be constructed by fixing release_week (the chain parame-
ter) at its initial value. Until the markov process enters the
region of the chain (and after it exits) where the discontinu-
ity is likely to occur, the demand model can be effectively
approximated by this non-Markovian estimator.

5. INTERACTIVE WHAT-IFS
Jigsaw’s heuristic approach to sampling is ideally suited to

the task of online what-if exploration. Moreover, the sort of
parameter exploration problems that Jigsaw addresses also
benefit from having a human in the loop—imprecise goal
conditions that are difficult to specify programmatically can
often be reached easily by an expert human operator.

A human operator indicates which regions of the parame-
ter space are interesting, and Jigsaw provides progressively
more accurate results for that region. Metadata supplement-
ing the simulation query allows Jigsaw to interpret the query
results and to produce and progressively refine a graphical
representation of the query output for a given set of param-
eter values.

Unlike its offline counterpart, the goal of online Jigsaw is
to rapidly produce accurate metrics for a small set of points
in the parameter space. Fingerprinting is used primarily to

Algorithm 5 SimplifiedEventLoop(p, State)

Require: One point of interest p. A lookup table State[]
containing, for all points: a mapping function M, the
point’s fingerprint θ, and the point’s basis distribution.

1: loop
2: (θ, basis,M)← State[p]
3: next← p
4: task← TaskHeuristic(p)
5: if task = refinement then
6: candidate ids← {id|id 	∈ basis}
7: else if task = validation then
8: candidate ids← {id|id ∈ basis ∧ id 	∈ θ}
9: else if task = exploration then
10: next← ExploreHeuristic(p) {Find a nearby point}
11: if State[next].θ 	= ∅ then
12: candidate ids← {id|id 	∈ State[next].basis}
13: else
14: candidate ids← [0, 10)
15: sample ids← PickAtRandom(10, candidate ids)
16: values← EvaluateBlackBox(next, sample ids)
17: State[next].θ ← State[next].θ ∪ values
18: if State[next].basis ∼M State[next].θ then
19: (State[next].basis, State[next].M)←

FindMatch(State[next].θ)
20: else
21: State[next].basis←

State[next].basis ∪M−1(values)

improve the accuracy of Jigsaw’s initial guesses; a very small
and quickly generated (e.g., of size 10) fingerprint allows
Jigsaw to identify a matching basis distribution and reuse
metrics precomputed for it.

Jigsaw provides the following three categories of process-
ing tasks:

Refinement. Once the initial guess is generated, Jigsaw
begins generating further samples for points (i.e., parameter
values) of interest. In addition to improving the accuracy
of the displayed results, the new samples are used to im-
prove the accuracy of the basis distribution’s precomputed
metrics.

Validation. Latency also places stringent requirements on
the size of fingerprints. Larger fingerprints produce more
accurate estimates, but take longer to produce. However,
in an online setting, Jigsaw constructs the fingerprint pro-
gressively. In addition to generating additional samples for
the basis distribution, Jigsaw also reproduces samples for
the points of interest that are already present in the basis
distribution. The duplicate samples effectively extend the
point’s fingerprint by validating the existing mapping; if the
new points do not match the values mapped from the basis
distribution, Jigsaw finds or creates a new basis distribution.

Exploration. In addition to the above two processing tasks,
Jigsaw heuristically selects points in the parameter space
that are likely to be of interest to the user in the near future
(e.g., adjacent points in a discrete parameter space). For
each point explored, Jigsaw either generates a fingerprint (if
none exists), or extends the point’s basis distribution with
a small number of additional samples.

For clarity, we have drawn a distinction between samples
produced for fingerprints and those produced for basis dis-
tributions. However, in most cases there is no difference be-

tween either process. For any invertible mapping function,
samples are generated directly for the point of interest, and
mapped back to the basis distribution by the inverse of the
mapping function M−1. For example, for linear mappings
M(x) = αx+ β, the inverseM−1(x) = x−β

α
.

The core of online Jigsaw is a relatively simple pick-
evaluate-update process: (1) Pick the next set of (point,
sampleID) pairs to generate samples for, (2) Evaluate the
query, and (3) Update the fingerprint, basis, and mapping.
This process is presented in Algorithm 5.

6. EXPERIMENTS
In this section we experimentally evaluate effectiveness of

various optimizations used in Jigsaw.

Implementations. The original prototype of Jigsaw is im-
plemented as a C# PDB layer built on top of Microsoft SQL
Server. The black box functions are implemented as stored
procedure written in C#. The C# layer interacts with the
SQL Server query execution engine by simply invoking it on
subqueries and post-processing the results outside DBMS.
However, this implementation is not well-suited for perfor-
mance evaluation of Jigsaw, as timing results are polluted by
noise from interprocess communication and SQL interpreta-
tion and evaluation overheads. In order to achieve a more
representative comparison, and to streamline the testing
process, we have constructed a second prototype of Jigsaw
query evaluation engine entirely in Ruby (without any com-
mercial DBMS). Queries are implemented as black box func-
tions in Ruby, and invoked by a driver process. This simple
implementation is representative of how Jigsaw’s function-
ality can be implemented within a probabilistic database’s
query evaluation engine. We compare these two prototypes
in Section 6.1.

Black Box Functions. Experiments use a variety of black
boxes described in Figure 6. Though several synthetic black-
boxes are used to identify specific performance characteris-
tics, the Capacity, Demand, Overload, User Selection and
Markov Step black boxes are permutations of actual Jigsaw
use cases in real cloud infrastructure management scenarios.
Specific numbers (i.e., the mean and standard deviation of
a normal distribution) have been replaced by ad-hoc val-
ues, but the structure of these models remains intact. In
all experiments, we explore the entire parameter space for
particular black boxes.

Experimental Setup. Experiments are performed on a 2.4
GHz Core2 Duo with 4 GB of RAM. Except where stated,
experiments assume a need for exactly 1000 sample instances
per point in the parameter space, and use a fingerprint size
of 10. All results shown are the average of 30 trials.

6.1 Comparison of Two Prototypes
Figure 7 shows a brief comparison of the relative per-

formance of Jigsaw’s C# + MS SQL implementation and
the lightweight Ruby engine. As shown, for simple data-
independent queries, the Ruby implementation is able to
achieve much better performance, as the dominant cost is
that of invoking the black box, rather than the overheads
of repeatedly invoking the query processor. The one case
where the ruby implementation is not representative of the
offline engine is black boxes that are heavily data dependent,
as in the UserSelection simulation. As might be expected, a

Capacity(current date, purchase date 1, purchase date 2). The Capacity black box simulates a series of purchases.
Each purchase increases the capacity of the server cluster after an exponentially distributed delay.

Demand(current date, feature release). The Demand black box simulates a simple linearly growing gaussian demand
model. As of the feature release week, the growth rate is changed.

Overload(current date, purchase date 1, purchase date 2). A black box synthesized from Capacity and Demand.
Demand’s feature release is ignored, and this black box returns 1 if Demand is greater than Capacity, and 0 otherwise.

UserSelection(current date). The UserSim black box simulates the per-user requirements of each of a set of users.

SynthBasis(parameter point). A synthetic black box based on Demand, but with a deterministic number of basis distri-
butions.

MarkovStep(current date, before or after). A simple Markovian process simulating the behavior of Demand with a
Markovian dependency introduced between feature release and the prior date’s demand.

MarkovBranch(prior state). A synthetic black box where at each step, a state counter is incremented by one with a
predefined probability. The states diverge at some specified rate.

Figure 6: Black boxes used to evaluate Jigsaw

Model Online Speed Offline Speed
Demand 0.1964 s/pc 0.00096 s/pc
Capacity 0.84525 s/pc 0.0028 s/pc
Overload 5.4625 s/pc 0.092825 s/pc
UserSelect 34.4 s/pc 252.454 s/pc

Figure 7: User Interface Wrapper vs Core Engine
Simulator Timing comparison. Values are in time
per parameter combination.

 0

 5

 10

 15

 20

 25

 30

Usage
Capacity

Overload
MarkovStep

C
om

pu
ta

tio
n

T
im

e
(m

in
)

0.06 0.15 0.36

Full Evaluation
Jigsaw

Figure 8: Jigsaw vs fully exploring the parameter
space.

database engine’s ability to manage large datasets is supe-
rior to that of Ruby.

The rest of the experiments in this section use less-data de-
pendent black boxes, and hence we use the Ruby implemen-
tation. However, relative performance gains demonstrated
by the Ruby prototype are roughly similar to that in the
C# + MS SQL implementation.

6.2 Baseline Performance
We now analyze the standalone performance gain of fin-

gerprinting by comparing against a naive-generate every-
thing approach. Figure 8 shows timing results for several
queries, each evaluated both with and without fingerprint-
ing. The extremely simplistic Demand model requires only
one basis distribution for its entire ∼5000 point parame-
ter space, and can be evaluated almost instantantaneously.
Even relatively complex event-based models like Capacity
(which has a parameter space of ∼8000 points) and
MarkovStep (evaluated over ∼2500 steps) require only a few
basis distributions.

Overload is an interesting case: despite being defined as
a query over two two black boxes for which Jigsaw can pro-
vide a substantial performance boost (compare Overload

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 5 10 15 20

C
om

pu
ta

tio
n

T
im

e
(m

s/
po

in
t)

Structure Size

Array
Normalization

Sorted SID

Figure 9: Computation time versus the size of struc-
tures in the Capacity model

with ∼8000 points and Demand and Capacity’s timing), the
joint query is only computed in half the time. The reason
for this is that the query produces a boolean result: the
output of a comparison between two values, and informa-
tion about the two original values is lost. Effectively, Jigsaw
is unable to reuse basis values by re-mapping them. This
strongly suggests that Jigsaw’s techniques can be further im-
proved by incorporating them into a database engine with
a symbolic execution strategy (e.g. [13]). In such a system,
database operations between random variables (i.e., VG-
Function-generated values) mapped from the same basis dis-
tribution are resolved symbolically. For example, consider
two random variables X,Y such that X = MX(f(x)) =
2 · f(x) + 2 andMY (f(x)) = 3 · f(x) + 3. We can symbol-
ically produce X + Y = (MX +MY)(f(x)) = 5 · f(x) + 5.
Similarly, given a histogram of f(x) we can efficiently com-
pute the probability that MX(f(x)) > MY (f(x)).

The Capacity model also deserves more discussion. Recall
the overview provided in Section 2. As discussed in Section
2.2, the model produces a line with several non-localized dis-
continuities or structures, one for each purchase. However,
each of the discontinuities is surrounded by a structure span-
ning a range of dates: each purchase is followed by a short
period during which the simulated hardware has not come
online in a(n exponentially shrinking) fraction of the sample
instances. Figure 9 relates the number of basis distributions
to the size of each structure (the number of “weeks” that it
spans). Note that the relationship between structure size
grows and the number of basis distributions is sub-linear.
Jigsaw is able to recognize individual points in each struc-
ture (i.e., four weeks after one purchase, and the week of the
second purchase), and reuse the corresponding basis distri-
bution.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 10 100

C
om

pu
ta

tio
n

T
im

e
(R

el
at

iv
e

to
 A

rr
ay

)

Basis Distributions

Array
Normalization

Sorted SID

Figure 10: Indexing in a static pa-
rameter space.

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 50 100 150 200 250 300 350 400 450 500

C
om

pu
ta

tio
n

T
im

e
(s

/p
oi

nt
)

Basis Distributions

Array
Normalization

Sorted SID

Figure 11: Indexing, growing the
parameter space with basis size.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1e-05 0.0001 0.001 0.01 0.1

C
om

pu
ta

tio
n

T
im

e
(m

s/
st

ep
)

Branching Factor

Naive
Jigsaw

Figure 12: Performance for a
Markov process.

Accuracy. In theory, our principle of using fingerprints
can introduce two sources of errors in a general simulation
framework. The first source is the possibility of selecting
an incorrect fingerprint due to insufficient fingerprint length.
We have not observed any significant error of this sort in any
of our our experiments, suggesting that a fingerprint length
of 10 is sufficient for the models we consider. The second
source of possible error is due to correlation of results under
different parameter values (since we use the same random
seed across parameter values). However, Jigsaw never com-
bines such correlated results of different parameters—it only
compares them. Hence we do not see such errors in our re-
sults. In other words, outputs of Jigsaw are equivalent to
full simulation for each possible parameter value.

6.3 Indexing
We now explore the behavior of the two indexing strate-

gies described in Section 3:Normalization, and Sorted SID
indexing. In this test, we synthesized black boxes, each de-
signed to generate a specific number of basis distributions.
We computed the expectation of each black-box for 1000
different parameter combinations. Figure 10 shows the per-
formance of each indexing strategy relative to performing a
naive Array scan for each lookup. The overall results are not
surprising: The costs of an array scan begin to dominate the
static costs of indexing as the basis grows past 50 elements.

Both indexing schemes perform substantially better than
naive array scan, with Normalization trailing behind Sorted
SID slightly. After we reach a basis size of about 200 (full
sample generation is required for 20% of the parameter
space), the cost of sample generation begins to dominate
the cost of basis matching. Indexing continues to asymptot-
ically approach a 10% reduction in computation time. This
is best illustrated in Figure 11. Here, we scale the size of the
parameter space (and consequently the total amount of com-
putation) relative to the basis size. We fix the basis size at
10% of the parameter space. As expected, naive Array scan
scales linearly with basis size, while the indexing strategies
scale sub-linearly.

6.4 Markovian Jumps
Next, we analyze Jigsaw’s performance on Markov pro-

cesses. Markov processes consisting of periodic, but infre-
quent discontinuities are ideal for Jigsaw; this sort of black
box behavior generates frequently overlapping states and ad-
mits an easy estimator, which simply assumes that the state
stays the same. Such a process has already been illustrated
in Figure 8.

We now consider the benefits and limitations of Jigsaw on
more complex, diverging models. Figure 12 shows Jigsaw’s

performance on a black-box Markovian process synthetically
generated to diverge at a predefined rate. We use the term
branching to refer to the probability of divergence at each
timestep. The black box was invoked for 128 steps, and
Jigsaw attempted to accelerate evaluation by skipping ahead
in the process.

This shows Jigsaw’s applicability to Markovian processes
characterized by periodic discontinuities. Even in its de-
fault configuration, Jigsaw is able to improve the efficiency
of Markovian processes where as many as one in twenty steps
involves a discontinuity. Indexing strategies designed specif-
ically for Markovian processes (e.g., discard all basis values
except the last), can improve this even further.

7. RELATED WORK
Jigsaw is designed to act as a component of a probabilis-

tic database system [3, 4, 12, 13, 16, 18, 5]. These systems
make probability distributions into a directly representable
and queryable datatype. Most probabilistic database sys-
tems restrict their users to either discrete probability distri-
butions, and/or a carefully selected set of well known con-
tinuous probability distributions. Orion 2[18] takes this one
step further and allows the use of arbitrary distributions, if
it can evaluate its PDF. However, two systems: MCDB [12]
and PIP [13] aim for a much general distribution support. In
these systems, users specify distributions through stochastic
black-box functions (commonly referred to as variable gen-
erating, or VG-Functions). This extremely general approach
is necessary for Jigsaw’s application domain. Jigsaw builds
on their functionality, adding support for efficient parameter
exploration and optimization tasks.

MCDB focuses on constructing an efficient infrastructure
for black-box invocation and query evaluation. Recent work
in this space explores the use of parallel processing [20] and
different sampling techniques for highly selective queries [10],
but does not exploit any analytically useful properties of in-
dividual black-box functions. Conversely, Jigsaw’s ability to
identify correlations between different parameterizations of
a black-box function makes it more efficient at queries that
enumerate all possible parameter combinations.

PIP employs a grey-box technique, where developers have
the option of specifying characteristics of their functions
with supplemental metadata. However, this additional meta-
data must be provided in order to obtain any performance
benefits. Jigsaw is able to infer function characteristics with-
out programmer support, allowing it to present a much sim-
pler programming interface.

A related area of database research involves representing
continuous functions as tables. Pulse [1], MauveDB [6], and

FunctionDB [19] allow users to construct functional models
within the database. Queries posed over these models are
evaluated symbolically to the extent possible, substantially
improving performance. However, these systems necessitate
a functional representation of the data being modeled, and
thus lack the generality of VG-Functions. However, once
Jigsaw has extracted a set of mapping functions M for an
entire parameter space, symbolic querying techniques such
as these could be applied to improve performance further.

Functional representation of stochastic black-boxes is a
field that has been explored extensively. Techniques ranging
from simple curve-fitting, wavelets [9], various space trans-
forms [2], and even simple hat functions [7] have been pro-
posed as mechanisms for producing functional representa-
tions of stochastic black-boxes.

A number of techniques [17, 14] have also been devel-
oped for performing optimization over black-box functions.
However, all of these techniques are developed for uncon-
trollable black-boxes, typically real-world processes. Con-
sequently, they are limited to a regression-style approach.
Conversely, Jigsaw controls the source of randomness within
the function, which allows it to deterministically generate
fingerprints.

Constrained optimization has also been considered in the
context of databases [8], but with a view towards minimiz-
ing IO requirements. Indexes containing data bounds are
used to prune the search space. However, this approach re-
lies on the continuity of the function being optimized; VG-
Functions negate this assumption.

The integration of specialized modeling tools with
database systems [21] has also been explored. However,
while such tools streamline the process of fitting a model,
they do not focus on model evaluation. One could imagine
such a tool being integrated into the Jigsaw workflow for the
construction of VG-Functions.

8. CONCLUSIONS
In this paper, we have demonstrated Jigsaw, a power-

ful tool for evaluating and optimizing parameterized what-if
scenarios. Jigsaw efficiently performs parameter optimiza-
tion, allows online exploration of a scenario’s parameter space
at interactive speeds, and rapid evaluation of a common class
of Markovian processes. The key to these three processes is
a novel “fingerprinting” mechanism which identifies correla-
tions between similar, yet distinct probability distributions.
We have shown that fingerprints can be applied to several
common tasks that arise in the domain of cloud service
management, and demonstrated that Jigsaw can achieve
speedups of as much as 2 orders of magnitude.

Acknowledgements. The authors would like to acknowl-
edge Steve Lee, Charles Loboz, and Slawek Smyl from Mi-
crosoft Windows Azure for providing motivating example
scenarios and technical feedback, as well as Christoph Koch
from EPFL for providing support and technical feedback.

9. REFERENCES
[1] Y. Ahmad, O. Papaemmanouil, U. Çetintemel, and

J. Rogers. Simultaneous equation systems for query
processing on continuous-time data streams. In ICDE,
pages 666–675. IEEE, 2008.

[2] N. Ahmed, T. Natarajan, and K. Rao. Discrete cosine
transfom. Computers, IEEE Transactions on,
C-23(1):90 – 93, jan. 1974.

[3] L. Antova, C. Koch, and D. Olteanu. MayBMS:
Managing incomplete information with probabilistic
world-set decompositions. In ICDE, 2007.

[4] J. Boulos, N. N. Dalvi, B. Mandhani, S. Mathur,
C. Ré, and D. Suciu. MYSTIQ: a system for finding
more answers by using probabilities. In ACM
SIGMOD, 2005.

[5] P. Cudré-Mauroux, H. Kimura, K.-T. Lim, J. Rogers,
R. Simakov, E. Soroush, P. Velikhov, D. Wang,
M. Balazinska, J. Becla, D. J. DeWitt, B. Heath,
D. Maier, S. Madden, J. M. Patel, M. Stonebraker,
and S. B. Zdonik. A demonstration of SciDB: A
science-oriented DBMS. PVLDB, 2(2):1534–1537,
2009.

[6] A. Deshpande and S. Madden. MauveDB: supporting
model-based user views in database systems. In ACM
SIGMOD, 2006.

[7] L. Devroye. Non-Uniform Random Variate
Generation. Springer-Verlag, New York, 1986.

[8] M. Gibas, N. Zheng, and H. Ferhatosmanoglu. A
general framework for modeling and processing
optimization queries. In VLDB ’07: Proceedings of the
33rd international conference on Very large data bases,
pages 1069–1080. VLDB Endowment, 2007.

[9] A. Haar. Zur theorie der orthogonalen
funktionensysteme. Mathematische Annalen,
69:331–371, 1910. 10.1007/BF01456326.

[10] P. J. Haas, C. M. Jermaine, S. Arumugam, F. Xu,
L. L. Perez, and R. Jampani. MCDB-R: Risk analysis
in the database. PVLDB, 3(1):782–793, 2010.

[11] D. Hamlet. Encyclopedia of Software Engineering,
chapter Random testing, pages 970–978. Wiley, New
York, 1994.

[12] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M.
Jermaine, and P. J. Haas. MCDB: a monte carlo
approach to managing uncertain data. In ACM
SIGMOD, 2008.

[13] O. Kennedy and C. Koch. PIP: A database system for
great and small expectations. In ICDE, 2010.

[14] H. J. Kushner and D. S. Clark. Stochastic
approximation methods for constrained and
unconstrained systems. Springer-Verlag, 1978.

[15] W. Landi. Undecidability of static analysis. ACM
Letters on Programming Languages and Systems,
1(4):323–337, December 1992.

[16] M. Mutsuzaki, M. Theobald, A. de Keijzer, J. Widom,
P. Agrawal, O. Benjelloun, A. D. Sarma, R. Murthy,
and T. Sugihara. Trio-One: Layering uncertainty and
lineage on a conventional dbms (demo). In CIDR,
pages 269–274, 2007.

[17] M. H. Safizadeh and B. M. Thornton. Optimization in
simulation experiments using response surface
methodology. COMP. INDUST. ENG., 8(1):11–28,
1984.

[18] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. E.
Hambrusch, and R. Shah. Orion 2.0: native support
for uncertain data. In ACM SIGMOD, 2008.

[19] A. Thiagarajan and S. Madden. Querying continuous
functions in a database system. In ACM SIGMOD,
2008.

[20] F. Xu, K. S. Beyer, V. Ercegovac, P. J. Haas, and

E. J. Shekita. E = mc3: managing uncertain
enterprise data in a cluster-computing environment. In
ACM SIGMOD, 2009.

[21] Y. Zhang, W. Zhang, and J. Yang. I/O-efficient
statistical computing with RIOT. In F. Li, M. M.
Moro, S. Ghandeharizadeh, J. R. Haritsa, G. Weikum,
M. J. Carey, F. Casati, E. Y. Chang, I. Manolescu,
S. Mehrotra, U. Dayal, and V. J. Tsotras, editors,
ICDE, pages 1157–1160. IEEE, 2010.

