Partial Reconfiguration: A Simple Tutorial

Richard Neil Pittman

Microsoft Research

February 2012

Technical Report

MSR-TR 2012-19

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

Partial Reconfiguration: A Simple
Tutorial

A Tutorial for XILINX FPGAs

Neil Pittman — 2/12, version 1.0

Introduction

Partial Reconfiguration is a feature of modern FPGAs that allows a subset of the logic fabric of a FPGA to
dynamically reconfigure while the remaining logic continues to operate unperturbed. Xilinx has
provided this feature in their high end FPGAs, the Virtex series, in limited access BETA since the late
1990s. More recently it is a production feature supported by their tools and across their devices since
the release of ISE 12. The support for this feature continues to improve in the more recent release of
ISE 13. Altera has promised this feature for their new high end devices, but this has not yet
materialized.

Partial Reconfiguration of FPGAs is a compelling design concept for general purpose reconfigurable
systems for its flexibility and extensibility. Despite the significant improvements in software tools and
support, the Xilinx partial reconfiguration design option has a reputation for being an expert level flow
that is difficult to use. In this tutorial we will show that it can actually be quite simple. As a case study,
we apply Partial Reconfiguration to the Simple Interface for Reconfigurable Computing (SIRC) toolset.
Combining SIRC and partial reconfiguration makes the idea of general purpose hardware and software
user systems deployed on demand on generic platforms viable. The goal is to make developers more
confident in the practicality of this concept and in their own ability to use it, so that more will take
advantage of what it has to offer.

Prerequisites
Before beginning there are some prerequisites for successfully completing the tutorial.

A working knowledge of the Xilinx IDE is required to understand and successfully complete this tutorial.
You must have at least version 12 of the Xilinx Integrated Development Environment (IDE), including ISE
and PlanAhead. Itis recommended that you have the latest version available. For this tutorial, all
screenshots and procedures will be performed using version 13.2 of the IDE. In addition, the partial
reconfiguration design flow requires an additional license to activate the feature in the tools. Please
contact for Xilinx representative for assistance in acquiring such a license.[6]

This tutorial requires the latest version of the SIRC hardware/software API. For this tutorial, the
hardware and software sources are derived from SIRC release 1.1.[1]

The partial reconfiguration feature as presented in this tutorial is supported the Xilinx Virtex series since
the Virtex 4 and in the Spartan series since Spartan 6. All the Xilinx 7 series FPGAs support partial
reconfiguration. In this tutorial, the system will be designed and implemented on a Virtex 6 LX 240t
(xcbvIx240t-1ff1156) on a Xilinx ML605 evaluation board.[3]

Generalities

The regular synthesis flow generates a single bitstream for programming the FPGA. This considers the
device as a single atomic entity. In contrast, the PR flow physically divides the device in regions. One
region is called the “static region”, which is the portion of the device that is programmed at startup and
never changes. One region is the “dynamic region” aka “the PR region”, which is the portion of the
device that will be reconfigured dynamically, potentially multiple times and with different designs. It is
possible to have multiple PR regions, but we will consider only the simplest case here.[4]

The PR flow generates at least two bitstreams, one for the static and one for the PR region. Most likely,
there will be multiple PR bitstreams, one for each design that can be dynamically loaded. In our case, we
place the basic SIRC functionality into the static region. The user circuits instead go into the PR region.
Another practical example is an FPGA board where we place the PCle interface logic in a static region of
the FPGA and the user circuits in the PR region. This eliminates the need for a full-device reset on each
separate application run, with potentially negative effects on the OS.

The PR region is a physical entity, with a given geometry. PlanAhead is the tool that allows you to define
the exact location of the PR region on your target device. [4]

Building SIRC with Partial Reconfiguration

Synthesis

The first step in implementing a system using the Xilinx partial reconfiguration design flow is to
synthesize the netlists from the HDL sources that will be used in the implementation process. The
process requires separate netlists for the static (top level) design and for the partial reconfigurable
partition(s). A netlist must be generated for each implementation of the partial reconfiguration
partition used in the design. If the system design has multiple partial reconfiguration partitions, then it
will require a netlists for each implementation of each partial reconfiguration partition, even if the logic
is the same in multiple locations.

First, you should create a new directory to hold the synthesis files and name it appropriately. We will

use ‘Synthesis’ in this tutorial. This folder will eventually contain several separate synthesis projects for
each of the netlists that the design requires for implementation. Then proceed to next section to begin
implementing the netlists for the SIRC example. The SIRC release like many other designs uses of some
ip cores generated by CoreGen. These ip cores are included in the design as netlists rather than source.

These will also be required in the implementation process.

Synthesizing the Static Region

1. Create a new folder inside the Synthesis Folder and label it ‘Static’

Date medified: 11/18/2011 10:19 AM

- — - o
@Uv| .« HW_Example_13_2_MLB05_pr » Synthesis » - | +y |' Search Synthesis JDI
Organize - = Open Include in library - Share with = MNew folder == il .@.
& Bing Search i Marne Date modified Type Size
Bl Deskto =
g |:| . Static 11/18/201110:19 ... File folder
4. Downloads
K TTWeb
5 MSW Intranet
=l Recent Places
43 SharePoint Sites - 4 1 3
Static
File folder

2. Inside that Folder, create a new ISE project.

15 Project Navigator (O.61xd) - DAFPGA\SIRO\SIRCRleasel/L 1AW, Brample 13,2, MLGO3.prSyminesis\Staicstatixise i o (i b5

ew Poject Source Process Jools Windew Layout Help

woex|

View: @ {8} Implementation ©) M Simuiation
Hierarchy

L static
& €1 xcbvh 240141156
Empty View

The view crrently contains no files. You can add files to the project using the toobar at
left, commands from the Project menu, and by Using the Design, Fies, and Libraries
panels.

* New Source: To create a new source fle.
« Add Source: To add an existing fe to the project.

« Add Copy of Source: To copy an existing fil to the preject directory and add it
to the project.

2 NoProcesses Runring

No single design moduleis selected.
@3 Design Utilities

B8 8|v

o Stert | ™ Design | Fles | tbraries

Console w08 x

K F——
[2] consoee Errors | A\ Wamings | 28 Find in Fes Resuls

3. Fill the new project with the SIRC design files as described in the SIRC Release README.

X File Edit View ject Source Process Jools Window Layout Help

L 1 Project Navigator(0.1xd) - DAFPGA\SIRC\SIRCRleaseV/L. 1AW, xampe,_13_2, MLEDS_prSynthesi\Stati\staticise - Design Summaryl b I i

rPIL?

=D & x| 3 [[S Desgn Overview g
w [8) Summary M
) 108 Properties Project File: static.xise Parser Errors: o Errors.
| -] Module Level Utilization Module Names o Tmple on 51 e
5] [Timing Constraints ks
= 0 Pinout Report Target Device: xe6vb20t-1f1156 «Errors:
(4] [Clock Report Product Version: ISE 13.2 *Warnings:
SIRCReleaseVl (] @ static Timing = P < Routs
ingle. nmllmk (DAFPGA\SIRC\SIRCReleaseVLIVHW | & 4g |2 Eropzend Warmings = =5
(D, AP £l Parser Messages i +Timing Constraints:
I m -) Synthesis Messages Environment: «Final Timing Score:
a [Translation Messages
[Map Messages
e .= B -
- [¥] EthToSysACEFifo - fifo36Wrapper (DAFPGA [Timing Messages .
E SysACEToEthFifo - .fosﬁw.appu (D\FPsA\slmsmcR:lmMJ\H, [Bitgen Messages penocNamnel Status Generated Errors Warnings Infos.
m- SIRCR: [Alllmplementation Messages Synthesis Report
D'\FPGA\SIRC\SIRCREI:A;AV‘JJ\HWSr:\MLﬂ)S\MLEOS ud - Detailed Reports
‘ y [Synthesis Report Trandlation Report
[Translation Report Map Report
e O Map Report Place and Route Report
7 | Processes: meminputData - bik_mem_gen_inputhem E gLaS{tE;A"RdStah:T\mmg ccport | |PomerRapet
S |9 CORE Generator 0 Power Report _ || [PostPar static Tming Report
8t Bitgen Report
el Enable Message Fitering
n Summary Contents
" [F] Show Clock Report
: Report Name Status Generated
& Strt | S3 Deson | Fles | () Lbraries = Design summary. 8]
Console “Osx
Generating ASY schematic symbol... =

Generating SYM schematic symbol for 'blk_mem_gen_outputMem’
Generating metadata file.
Cenerating metadata file.
Generating ISE project.
Generating README file.
Generating FLIST file.

)INFO:sim - Finished FLIST file genezation.

Launching README viewer
Moving files o output directory.
Finisned moving files te ousput @irsctory
Wrote CGP file for project 'blk mem_gen_cutputMem'.
Core Generator create command completed successfully.
Gy INFO:HDLCompiler: 1769 - Analyzing Verilog file \"D:/FPGA/SIRC/SIRCReleaseV1.1/HW_Example 13_2 ML605_pr/Synthesis/Static/ipcore_dir/blk mem gen outputMem.v\" into library work
3y INFO:ProjectMgmt - Barsing design hierarchy completed successfully. @

[z console Errors | A\ Wamings [26 Find n s Results

4. Create a Black Box Instance of the user module.

a. Copy the user module file (EX. simpleTestModuleOne.v)
b. Rename file to form <original_file_name>_black_box.v (EX.
simpleTestModuleOne_black_box.v)

B | ——

@@v |, « FPGA » SIRC » SIRCReleaseVll » HWSrc » MLGOS w | 43 ||| Search ML6EOS }J|
—

Organize - Open = Mew folder ==« @
'Y Podcasts “ Name B Date modified Type Size i
B Videos =] iobuf.x 9/8/201110:39 AM VY File 2

|Z] MLBOS.ucf 9/8/2011 10:39 AM UCF File 14 =i

1% Computer |Z] simpleTestMaduleOnev 9/8/201110:39 AM V File 12 |2
& Local Disk (C:) B | = simpleTestModuleOne_black_box.v 9/8/201110:39 AM W File 12
Archive (Ix) =] systemuy 9/8/2011 10:39 AM V File 18+
—w Boneyard (F:) - 4 T | 3 '

- simpleTestModuleOne_black_box.v
L V File
Date modified: 9/8/2011 10:39 AM
— Size: 11.5KB
A= Date created: 11/18/2011 11:05 AM
—

c. Open the file and delete all the contents from the module declaration to the endmodule
tag.

- ISE Project Navigator (0.61xd) - DAFPGA\SIRC\SIRCReleaseV11\HW._Example_13_2 ML60S_pi icaise - .One_black boxv] oo

[D EHle Edit View Project Source Process Jools Window Layout Help [BEE
DEFIL[xnbxwal [£2BR AR BT

[Design 22) (-

E {8} Implementation) M Simulation 25 input wire clk,

26 input wire reser,

& H“""“ 27 //% user spplication can only check the stal

=k o | 2 input wire userRunvalue, //Rezd Tun register value

= s ELH x‘ﬁ\"xl“ﬂt 1171156 =| 20 cutput zeg userRunClear, //Reset run register

& system (D\FRGA\SIRC\SIRCReleaseV1 T\HWSe\MLE0S\system.v) 30

= - g RCReleaseVL\HWSFA\MLOS | & | 33 //Bazamecer register file connections

g emac_ll - emac_single_locallink (D:\FPGA\SIRC\SIRCReleaseVLIVHW Ex| | —| 35 output reg register3zCmdReq, //Parameter register handshaking request

a EC - ethernetController (DAFPGA\SIRO\SIRCReleaseVl LHWSIAMLBOS = | 4 | 53 input wire registersaCmdack, //Parameter register handshaking acknowl

 § meminputData - bl mem_gen inputhdem (DAFPGASROSRCRele | | 55 cutpur mire [31:0] regi iteDat I register write data

2 %[memOutputData - blk mem_gen outputMem (DAFPGA\SRC\SIRCE 35 output reg [7:0] registerszhddress, //Paraneter register address

= ; veginedZFMe blkc mem_gen_paramReg (D\FPGA\SIRC\SIRCRE\EE;\ 2| 36 oucpur wire registersdliritesn, //Wnen we put in a request command, are |

i ; (CEIO - obufl6 (D:\FPGAVSIRC\SIRCReleaseVL\HWSIAMLOS\ | g | 27 imput Wi registers2ReadDataValid, //hfter a read zequest is accepted, this

' E"‘TUSY“‘\(EW" f‘fﬂﬁ"‘f'ﬂlﬂlﬂe'("“\FVG":S‘R(\S‘R(’“'E“E‘fl1\"* 6 38 input wire [31:0] register32ReadData, //Parameter register read data Ml
ifo (0 L
o] tm—i\mp\eTestModuleOne(D\FPGA\S!R(\S!R(REIEHSEVLl\HWSv:\MLﬁ(]S‘ o s //Input memory conmections

‘-~ DAFPGAVSIRC\SIRCReleaseV1.1\HWSrc\MLEUS\MLEOS.uck =| a1 et — inputienoryReadReq, //Input memory handshaking request signal
‘ s 42 input wire inputMemoryReadack, //Input memory handshaking acknowledgeme:
43 output reg [(INMEM ADDRESS WIDTH - 1):0] inputMemozryReadhdd, //Input memory read address - can be set
P | €2 NoProcasses unning 41 ampur wize - - inputMenoryReadDataValid, ~ //After a read request is accepted, this

21 | processes: meminputData - blk_mem_gen inputhem 45 input wire [((INMEM BYTE WIDTH * 8) - 1):0] inputMenoryReadData, //Input memory read data

: %

S| # P CORE Generstor a7 //0utput memory connections

o 5 cutpur zeg outputMemoryiriveReq, //0utput memory handshaking request sign

e e input wire outputMemoryWritedck, //0utput memory handshaking acknowledgem

m s0 output reg [(OUTMEM ADDRESS WIDTH - 1):0] outputMemoryiiriteddd, //0utput memory write address - can be st

51 cutput reg [((OUTMEM BYTE WIDTH * 8) - 1):0] cutputMemozryilzriteData, //0utput memory write data

52 output wire [(OUTMEM_BYTE_WIDTH - 1):0] outputMemoryWriveByteMask, //Allows bybe-wise writes when maloibyte

55

52 /e cprional LEDs for visual fesdback & debugging

55 cutpus wire [7:0] LED

56):

5T

58 |endmodule |

sa 2
« 0 v

& Strt | =8 Design | Fies | [tibraries = Design Summary. =1[E] simpicTestModuleOne_black bax.v* [<]]

Console =33
Generating ASY schematic symbol... =
Generating SYM schematic symbel for 'blk mem gen outpucMem'...

Generating metadate file
Generating metadata file
Generating ISE project.
Generating README file.
Generating FLIST fils
5)INFO:sim - Finished FLIST file generation.

Finisned moving files To output Girectory
Wrote CGP file for project 'blk_mem gen outputMem'.
Gore Generator create command completed successfully.
i) INFC:HDLCompiler: 1768 - Analyzing Verilog file \"D:/FBGA/SIRC/SIRCRelsaseVl.1/HW_Example_13_2_ML605_pr/Synthesis/Static/ipcore_dir/blk_mem_gen_outputMem.v\" into library work
3)INFC:ProjectMgmt - Darsing design hierarchy completed successfully.

Console

Errors | A\ Warmings | (@8 Find in Fies Results

Ln58 Coll Verilog

5. Remove the original user module from the project (EX. simpleTestModuleOne.v)
6. Replace the user module file with the black box (EX. simpleTestModuleOne_black_box.v)
7. Synthesize the static design.

' ISE Project Navigator (0.61xd) - DAFPGA\SIRC\SIRCReleaseVLI\HW._Example_13_2_ML60S | - [Design y o I]
X File Edit View Project Source Process Tools Window Layout Help [=]=x]
DAEP . [sbbx(we| (2,38 ,RIEEE D=L L
08 x| o & Design Ozf;‘;‘z””y <] ‘system Project Status (11/18/2011 - 11:13:17) |5
) imolementaton © M simuistion ° [108 Properties Project File: statc.se Parser Errors: o Errors
H‘“"”V = [Module Level Utilzation Module Name: system Implementation State: Synthesized
& 5] O Timing Constraints -
4 s,z AT = D) Pinout Report Target Davice: xeBVIk 240t 171156 «Errors: o Errors
4] [Clock Report Product Version: ISE 132 - Warnings: 50 Warnings (50 new
JJ @ Static Timing Design Goal: Blenced - Routing Results:
- emac_single locallink (D:\FPGA\SIRC\SIRCReleaseVL1\HW_Ex Errors and Warmings
B etCantroller (DAFPG RCRel HE [Parser Messages Design Strategy: iinx Default (unlocked = Timing Constraints:
; meminputData - blk_mem_gen_inputMem (D: 2 [2) Synthesis Messages Environment: Sustem Settinas = Final Timing Score:
: memOutputData - blk_mem_gen_outputMemn (DA\FPGA\SIRCASIRCE | —— [Translation Messages E
%] register32File - blk_mem_gen_paramReg (DAFPGA\SIRC\SIRCReleas, [Map Messages
[4] sysACEIO - iobuf16 (D:AFPGA\SIRC\SIRCReleaseV1 I\HWSrc\ML605"| [Place and Route Messages i i (astir)
4 EthToSysACEFifo - fifo36Wrapper (D:\FPGA\SIRC\SIRC ReleaseVL1\H [Timing Messages — _ a—
" [¥] SysACEToEthFifo - fifo26Wrapper (DAFPGA\SIRC\SIRC ReleaseV1 1\H - [Bitgen Messages Logic Utilization Used Available Utilization
: tm - One (DAFPGANSIRCNSIRCReleaseVl 3 [8 Alllmplementation Messages Number of Slice Registers 1166 301440 0%
. R PGA\SIRC\SIRCReleaseV1.1\HWSrc\MLE0S\MLE0S.ucf - = Dméedsz::::; feport Number of Slice LUTs 2221 150720 1%
[Translation Report Number of fuly used LUTF pars 759 %28 %
12| RORCE==T E ’PA‘EP REPIC" Number of bonded 10Bs 61 500 10%
lace and Route R &
¢! | Processes: system D) Post-PAR Static Timing Report Number of Block RAM/FIFO 39 416 9%
E Design Summary/Reports [Power Report Number of BUFG/BUFGCTRLS 4 n 2%
Design Utilties B 0ienn 2
% User Constraints. Design Properties
— | @ €2\ Synthesize - XST] Enable Message Filtering T e
o Implement Design Optional Design Summary Contents.
Generate Programming File "] Show Clock Report Report Name Status Generated Errors Warnings Infos
Configure Target Device [] Shew Failing Constraints Synthesis Report Current FriNov 18 11:13:16 2011 0 60 Warnings (60 new) 34 Infos (34 new) u
Analyze Design Using ChipScope [C] Show Warnings
B st Translation Report
Vap Report
Place and Route Report
Power Repart
Post-PAR Static Timing Report o
& Start | B Desgn | U] Fles |) Libraries P Design Summary (Synthesized) E!_[
Console

w08 X

E2M/EC/memInputData/U0/xst_blk_mem_gensracor/gnativebmg.native_blk_mem_gen/valid.cscr/ramloop (9] .ran.

.r/vé_noinit.ram/

1atb_tmp (E23/EC

'00/xst_blk_mem_generator/gnativebmg.native_blk_mem g +

Spe.

Timing Summary:

ed Grade: -1
Minimum period: 19.130ms (Maximum Frequency: 52.274MHz)
Minimum input arrival time befors clock: 2.712ns
Maximum output required time afver clock: 2.558ms
Maximum combinational path delay: 0.836ns

Pro

cess "Synthesize - XST" completed successfully

LN

& cor

rsole | @ Errors | A\ Warings | 28 Find in Fles Results

This first step creates the netlists for the static design including the SIRC hardware communication API.

There is a bug in the official SIRC release that will cause issues with the routing of the partial
reconfiguration implementation. The BUFG between the input buffer and the PLL is commented out
and the input buffer is directly connected to the PLL. This BUFG must be replaced for the design to
successfully implement using the Xilinx partial reconfiguration flow. Uncomment the BUFG and change
the output of the input buffer to the input of the BUFG. Also uncomment the wire declaration for the
wire between the input buffer and the BUFG.

Synthesizing the first Partial Reconfiguration Partition Instance

1. Rename the original user module file to ‘<partition_name>_<instance_name>.v’ where
‘<instance_name>’ is ‘org’ (EX. simpleTestModuleOne_org.v)

[S | B [t
@U'| |« FPGA » SIRC » SRCReleaseVl » HWSrc » ML6OS ~ [42 ||| Search mL60s I
Organize - g Open = Mew folder ==« .@.

' Podeasts “ Name Date modified Type Size it
B videos =] iobuf.x 9/8/201110:39 AM VY File 2
2| MLB0S.ucf 9/8/2011 10:39 AM UCF File 14
1% Computer =) simpleTestModuleOne_black_box.v 11/18/201111:11 ... VFile 4
i Local Disk (C) |E| =] simpleTestModuleOne_org.v 9/8/2011 10:39 AM V File 12
g Archive (0:) =] systemuv 9/8/201110:39 AM VY File 18 =
—w Boneyard (F:) - 4 [T 3
simpleTestModuleOne_org.y
Y V File
Date modified: 9/8/2011 10:39 AM
— Size: 11.5KB
e Date created: 9/8/2011 10:39 AM
E ——

2. Create synthesis folder and label it ‘<partition_name>_<instance_name>’ (EX.
simpleTestModuleOne_org)

= |

Search Synthesis 2 |

Organize * [& Open Include in library = Share with = MNew folder =« e !
[t!)] Podcasts i MName Date modified Type Size
B2 Videos e =
[H simpleTestModuleOne_org 11/18/201111:52 ... File folder
Static 11/18/201111:13 ... File folder
1M Computer &

&, Local Disk (C) EJ

Archive (D:)

—a Boneyard (F:) - 4 1 | »

simpleTestModuleOne_org
File folder
Date modified: 11/18/2011 11:52 AM

3. Inside that Folder, create a new ISE project.

15 Project Navigator (0.61xd) - DAFPGA\SIRO\SIRCReeasel/L W, Example_ 13.2_MLGO3.prSynthesis\simpleTesthoduleOne orgstml_orgaise |

File Edit View Project Source Drocess Tools Mindow Layout Help

DPEd L] ¥xbbxwdl (A28 R AR = P I Y I
[Design “O#x
View: @ i} Implementation) M Simuiation

hy
@ stmil_org
B €3 xcbb240 1116

Empty View

fin =

The vien currently contains no files. You can add files to the project using the toobar at
left, commands from the Project menu, and by Using the Design, Files, and Libraries
panels.

Use:

I ED)

« New Source: To create a new source fle.
« Add Source: To add an existing fs to the project.

« Add Copy of Source: To copy an existing fl to the project directory and add it
to the project.

2 NoProcesses Running

No single design module is selected.
% Design Utilities

B2V

o Start | B3 Design |1 Fles | [Lbraries
Console

w08 X

L Fe——
[2] console Errors | A\ Wamings | 28 _Find in Fes Results

4. Add user module files to project.

. ISE Project Navigator (0.51xd) - DAFPGAVSIRC\SIRCReleaseVLI\HW._Example 13 2_ ML60S_priSynthesis\simpleTestModuleOne org\stm1_orgaise - [Design Summary] i

X Fle Edit View Project Source Process Jools Window Layout Help

[=Tlx]

FEEC PP EECIPT TS Y
<08 Xl | = Design Overview - " -
|l simpleTestModuleOne Project Status.
{8} Implementation) M| Simuiation 2 STADITY a 2
) [108 Properties Project File: stmi_org.xise Parser Errors: Mo Errors
Hierarchy [Module Level Utilization Implementation State: New
] stmilorg @ [Timing Constraints — e .
& €1 cbrb240 171155 o [Pinout Report Eecte s AR i
h (DAFPG) SIRCReleaseV1 1\HWSrc\ MLBO0S\simpleTe [Clock Report Product Version: ISE 13.2 «Warnings:
@ - static Timing Design Goal: Bolanced +Routing Results:
Errors and Warnings
EE [Parser Messages Design Strategy: Xilinx Defaut (unlocked) *Timing Constraints:
m Syr is M Environment: +Final Timing Score:
e [Translation Messages =
[Map Messages
[Place and Route Messages Detailed Reports o
- [Timing Messages
D) Bitgen Meszages Report Name Status Generated Errors warnings Infos
[2) AllImplementation Messages Synthesis Report
Detailed Reports
[i 1 v [Synthesis Report Trenslation Report
[Translation Report Map Report.
L[| W ReRmmsrTy E Map Report Place and Route Report
- Place and =
1] Processes: simpleTesthoduleOne D) Post-PAR Static Timing Report Power Report
B Design Summary/Reports) Power Report Post-PAR Static Timing Repart
— Design Utilities I M
24 User Constraints Design Properties e
- Synthesize - XST [] Enable Message Filtering
- Implement Design Optional Design Summary Contents
Generate Programming File [Show Clock Report [ey epor]
Configure Target Device " [[] Show Failing Constraints | Report name Status Generated |
Analyze Design Using ChipScope - [] Show Warnings
[Show Errors Date Generated: 12/01/2011 - 10:58:31
& Start | B3 Design | U] Fles | [Libraries b Design Summary
Console 08 x
%) INFO: HDLCompiler:1769 - Analyzing Verilog file \"D:/FPGA/SIRC/SIRCRel

V1.1/HWSrC/ML

I)INFG:ProjectMont - Pazsing design hierazchy completed successfully.
Launching Design Summary/Report Viewer...

«

_org.v\" into library work

Console Errors | A\ Warmings | (@8 Find in Fies Results

5. Open the ‘Synthesis Options’ dialogue.

- - —
Ei§ Process Properties - Synthesis Options I m -

-write_timing_constraints
[-cross_clock_analysis
-hierarchy_separator
-bus_delimiter
-slice_utilization_ratio
-bram_utilization_ratio
-dsp_utilization_ratio

-case
set -xsthdpini

-lso

|| -vlgincdir
-generics
-define

—
Lategory Switch Name Property Name Value
4 -opt_mode Optimization Goal |Speed -
HODL Options RPI
Xilinx Specific Options -opt_level Optimization Effort |Norma| >
-power Power Reduction (=}
-iuc Use Synthesis Constraints File
-uc Synthesis Constraints File
-keep_hierarchy Keep Hierarchy Mo -
-netlist_hierarchy Metlist Hierarchy As Optimized -
-glob_opt Global Optimization Goal AllClockNets hd
-rtlview Generate RTL Schematic Yes -
-read_cores Read Cores
-sd Cores Search Directories

‘Write Timing Constraints
Cross Clock Analysis

Hierarchy Separator I -
Bus Delimiter <n i
LUT-FF Pairs Utilization Ratio 100 s
BRAM Utilization Ratio 100 =)
DSP Utilization Ratio 100 =
Case Maintain hd
Work Directory MLB0S_pri Synthesis\simpleTestModuleOne_orglust E]
HDL INI File [
Library for Verilog Sources

Library Search Order @

Verilog Include Directories @
Generics, Parameters

Verilog Macros

Other XST Command Line Options

Property display level: Display switch names

Default

Apply

6. Navigate to ‘Xilinx Specific Options’ pane.

r = B
Er§ Process Properties - Xilink Specific Options S — - - g

Lategory Switch Name Property Name Value

aYD”E";;';S‘T'D”‘ -iobuf Add 1/O Buffers

Yilinx Specific Options -max_fanout Max Fanout 100000 =
-bufg Number of Clock Buffers =
-register_duplication Register Duplication
-equivalent_register_removal Equivalent Register Removal
-register_balancing Register Balancing |z|
-move_first_stage Move First Flip-Flop Stage
-move_last_stage Move Last Flip-Flop Stage
-iob Pack /O Registers into I0Bs Auto |z|
-lc LUT Combining Auto |z|
-reduce_control_sets Reduce Control Sets Auto |z|
-use_clock_enable Use Clock Enable Auto |Z|
-use_sync_set Use Synchronous Set Auto |z|
-use_sync_reset Use Synchronous Reset Auto |z|
-optimize_primitives Optimize Instantiated Primitives []

Property display level: Advanced E Display switch names Default

Apply
S
‘ I .
7. Uncheck ‘Add I/O Buffers’ (-iobuf) option.
r = B
Er§ Process Properties - Xilink Specific Options S — - - g
Lategory Switch Name Property Name Value
;YD”E";":_ Options -iobuf Add /0 Buffers &
ptions =
Yilinx Specific Options -max_fanout IMax Fanout 100000 2
-bufg Number of Clock Buffers =

-register_duplication Register Duplication

-equivalent_register_removal Equivalent Register Removal

-register_balancing Register Balancing |z|
-move_first_stage Move First Flip-Flop Stage

-move_last_stage Move Last Flip-Flop Stage

-iob Pack I/O Registers intc I0Bs Auto |z|
-lc LUT Combining Auto |z|
-reduce_control_sets Reduce Control Sets Auto |z|
-use_clock_enable Use Clock Enable Auto |Z|
-use_sync_set Use Synchronous Set Auto |z|
-use_sync_reset Use Synchronous Reset Auto |z|
-optimize_primitives Optimize Instantiated Primitives []

Display switch names

Property display level: Advanced E

[ox [cancd [mwely |[e

8. Click ‘OK’ button.

9. Synthesize Module.

- ISE Project Navigator (0.61xd) - D:\FPGA\SIRC\SIRCReleaseVLI\HW_Bxample 13 2 ML603_priSynthesis\simpleTestModuleOne org\stm1 orgaise - [Design Summary (Synthesized)] =
X fle Edit View Project Source Process Jools Window Layout Help 8]
FEEEIFF Xva| f£LERAREZEDS,RIPEL?
e o0ax] o8 D“‘é‘ Oszf;‘r"“jy k= simpleTesttoduleOne Project Status (12/01/2011 - 11:01:02) |5
v QOHG) rciemerts ool @] M [Semsaton Y [} 108 Properties Project File: stm1_org.xse Parser Errors: o Errors
(2] | Hierarchy [Module Level Utilization Implementation State: Synthesized
& stmi_org 5] [Timing Constraints — o S e
5 €1 rebvioit 141156 o Pinout Report arget Device: xcBvh 240t rrors: (aErrors
o [#)efs simpleTestModuleOne (D:\FPGA\SIRC\SIRCReleaseV1 1\HWSrc\ML60S\simpleTe [Clock Report Product Version: ISE 13.2 «Warnings: |52 Warnings (52 new)
= @ QY static Timing Design Goal: Boianced * Routing Results:
& o | © Errors and Warnings
= 8 [Parser Messages Design Strategy: Xiinx Defauit (uniocked «Timing Constraints:
B & M Environment: Sustem Setiings « Final Timing Score:
a E
(esti) ja|
[Bitgen Mezzages Logic Utilization used Available utilization L
[Alllmplementation Messages Number of Slice Registers 88 301440 0%
& Detailed Reports
o - | v 2) Symihests Repon Number of Slce LUTS 116 150720 0%
[Translation Report Number of fully used LUTFF pars 61 143 2%
P | @ NoProcesses Running E Map Report Number of borded 1082 [00 0%
Place and Route Report L
71 | Processes: simpleTestModuleOne D) PostPAR Static Timing Report Number of DSPABE 15 1 758 0%
2| X Design Summary/Reports O Power Report
= Design Utilties h 2
E User Constraints Design Properties Detailed Reports 5]
- [] Enable Message Filtering -
Report Name Status Generated Errors Warnings Infos
€2 Implement Design Optional Design Summary Contents
£) Generate Programming File 7] Show Clock Report Sunthesis Report current Thu Dec 1 11:01:02 2011 o 52 Warnings (52nzu) 2infos (2 new)
% Configure Target Device [] Show Failing Constraints Translation Report
@ Analyze Design Using Chips: our Warnings L4
lyze Design Using ChipScope [Show Warning: -
7] Show Errors
Place and Route Report
Power Report
Post-PAR Static Timing Report
Bitgen Report <
Start | 518 Desion E Design Summary (§ynihesized) aj
Corsole o0& x

No asynchronous contzol signals found in this design

Timing Summary:

Speed Grade: -1

Minimum peried: 6.126ns (Maximum Freguency: 163.239MHz)
Minimum input arzival time before clock: 4.280ns
Maximum output required time after clock: 0.494ns
Maximum combinational path delay: No path found

Process "Synthesize - XST" completed successfully

.

Ll —T— v

Console | @ Errors | A\ Warnings | 188 Find i Fles Results

10. You may have additional user module instances. An example is provided in the next section.
Repeat Steps 2 through 9 for each user module instance.

In this section we have created and synthesized our first partial reconfigurable design.

There is a bug in the SIRC release that if not corrected will prevent the partial bit streams from
functioning correctly. The register ‘register32CmdReq’ is not initialized by the reset. Since register
values can be of unknown state following partial reconfiguration and there is not global reset for the
FPGA, these must be reset in the logic. Add the following line to the reset state of
‘simpleTestModuleOne’ stating on line 114 of ‘simpleTestModuleOne_org.v'.

register32CmdReq <= 0;

Synthesizing more Partial Reconfiguration Partition Instances

By now, the original user module instance netlist has been generated. However, the purpose of the
partial reconfiguration flow is to have multiple instances of the partial reconfiguration partition. In

order to accomplish this make another copy of the original user module file and rename it to the form
‘<partition_name>_<instance_name>.v’ where ‘<instance_name>’ is ‘alt’ (EX.
simpleTestModuleOne_alt.v). Open the file and make the following change to line 204:

outputMemoryWriteData <= outputMemoryWriteData <=
(inputFifoDataOut * multiplier) % 256; (inputFifoDataOut + multiplier) % 256;

E.g. instead of multiplying we will be adding. This is a simple change to the functionality of the user
module that we can test and verify later. Repeat the steps in the previous section to generate the
netlist for this alternative version of the user module.

PlanAhead

The Xilinx partial reconfiguration design flow is managed by the PlanAhead application included in the
Xilinx IDE. This is the tool that allows you to define the physical placement of the static and PR regions
on your target FPGA. The netlists generated in the previous sections must be imported into a PlanAhead
project and used to implement the design for the targeted FPGA.

Creating a PlanAhead project

1. Create a new PlanAhead folder.

i 5 P

%v |. « SIRC » SIRCReleaseWl.l » HW_Example 13 2 MLE0S_pr » - | 3 ||| Search HW Example 13 2 ML&05 pr ,Cl|
Organize * = Open Include in library = Share with = MNew folder =« [@
'@ podcasts “ MName “ [Share the selected items with other Type Size
B videos | people on the network.
| | Planahead TZIITZOITIT0! AM - File folder
| Synthesis 12/1/201111:02 AM File folder
1M Computer = |

&, Local Disk (C) H |

Archive (D:)

= Boneyard (F:) - 4 i | »
Planahead
File folder
Date modified: 12/1/2011 11:07 AM
[]
2. Open PlanAhead to create a new project.
€] Planahead 132 ” N ———— e gt ———— Sl : oo o)
File Tools Window Help [Search conmandi
= & 7
Va N 7
Q) FlaiAhead 122 .
/ £ XILINX.

Getting Started Documentation
Create New Project Release Notes Guide

New Project Wizard will guide you through the process of selecting Information about installation and new IDS features in this release.

design sources and a target device for a new project.

b@
Open Project) User Guide
Open any previously created project. % More detaied info on Planahead commands, didogs, and buttons.

Open Recent Project
Open one of the most recently used projects.

Methodology Guides
Further assistance adopting PlanAhead fiows.

Open Example Project
Open one of the tutorial projects.

PlanAhead Tutorials
Invaluable for first time users or to try new features.

WL e

|2 Td Console:

No Project

3. Inthe ‘New Project’ Dialogue click the ‘Next’ button.

-
#] New Project [
WTCIETE i o Sl S ! —
Create a New PlanAhead Project
This wizard will guide you through the creation of a new project
'@ To create a PlanAhead project you will need to provide a name and a location for your project
files. Mext, you will specify the type of flow you'll be working with. Finally, you will specify your
project sources and choose a default part.

PlanAhead To continue, dick Mext.

| « Back || Next > |’ Cancel]

4. Name the project (EX. sirc_reconfig) and navigate to the PlanAhead folder. Click the ‘Next’
button.

-
#] Mew Project
TN s o ————— ——
Project Name
Enter a name for your project and spedify a directory where the project data files will be stored

Praoject name: | sirc_remnﬁg| |

Project location: | D: \FPGA\SIRC\SIRCReleaseV 1. 1HW_Example_13_2_ML605_pr Planahead |]

Project will be created at: D:\FPGAVSIRC\SIRCReleaseV 1, 1\HW _Example_13_2 ML&05_pr'Flanaheadsirc_reconfig

< Back ” Mext =][Cancel

5. Select ‘Specify synthesized (EDIF or NGC) netlists’. Check the ‘Set PR Project’ box. Click the
‘Next’ Button.

rE New Project

S==
- - a -

Design Source
Specify the type of sources for your design. You can start with RTL or a synthesized EDIF. @ﬂ
= Spedfy RTL Sources
You will be able to run RTL analysis, synthesis, post-synthesis design analysis, planning and implementation,
Import settings from X5T or Synplify project
| @ Specify synthesized (EDIF or NGC) netlist
You will be able to run post-synthesis design analysis, planning, and implementation.
Set PR Project
=, Create an I/0 Planning Project
Do not specify design sources, You will be able to do port assignment and verification,
| = ImportISE Place &Route results Create an [/O Planning Project. Do not specify des
You will be able to do post-implementation analysis of your design. will be able to do port assignment and verification

= Import ISE Project
Create a PlanAhead project from an ISE project file.

[< Back][Mext =][Cancel]

6. Set the location of the static netlists. Add the ip core directory. Click the ‘Next’ button.

F@ New Project

- E; ™
e e —— ﬂ ——
Specify Top Netlist File

Specify the top level EDIF or MGC netlist file that contains the top module, and optionally a list of directories to be used g\
as a search path.

Top Metlist File: | Dy \FPGA\SIRCYSIRCReleaseV 1, 1'\HW_Example_13_2 MLAOS_pr\Synthesis\Staticlsystem.ngc E]

Netlist directories {optional)
D:\FPGA\SIRCISIRCReleaseV 1, 1'\HW_Example_13_2_ML605_pr\Synthesis\Staticlipoore_dir

Copy Sources into Project

< Back ” Mext =]’ Cancel

7. Add user constraint file. Click the ‘Next’ button.

g e — ﬂ ——

Add Constraints (optional)

Specify or create UCF constraint files for physical and timing constraints. If there are multiple files then please choosze
the target, which is where all of the constraints created by PlanAhead will be saved.

F@ New Project

Target File
C\SIRCReleaseV'1. 1\HW_Example_13_2_MLE05_priSynthesis\Staticlpoore_diriblk_mem_gen_paramReg.ncf
CVSIRCReleaseV1. 1\HW_Example_13_2_ML&05_priSynthesis\Staticlpoore_diriblk_mem_gen_outputMem.ncf
RCVSIRCReleaseV 1, 1\HW_Example_13_2_ML&05_priSynthesis\Static\ipoore_dirtblk_mem_gen_inputMem.ncf
L C\SIRCReleasel'1. 1\HWSrc\MLE0SYWLEDS. uch @
[
X
1
f £
H | |
4 rrr =
[AddFies... | [Create File...

Copy Constraints into Project

[< Back ” Mext =]’ Cancel]

8. Select part. For this we are targeting the Virtex 6 LX240T on the ML605. Click the ‘Next’ button.

-
[@] New Project
L o o S - v —— ! ——
Default Part
Choose a default Xilinx part for your project. This can be changed later.
Filter
Product Category | All hd Package | FF1156 -
Eamily | Virtexs - Speed Grade | -1 -
Sub-Family | Virtexs LXT hd Temp Grade | C -
|
|| Search: |Qv
Device I/OPin Count Available IOBs Slices LUT Elements FlipFlops Block RAMs DSPs Gb Tran
& xcBvhe130HF1156-1 1156 500 20000 30000 160000 264 430 20
i 5 wcevho195HF1156-1 1156 31200 124800 249600
m 150720 -
LS xcﬁleSGEtFFllSG 1 56880 227520 455040 L
] I (=]
<Back || Mext> | [cancel |

9. Review Project. Click the ‘Finish’ button.

r Newpmject.“-- . ! “ u
New Project Summary

r’ s @ A new post-synthesis project named 'sirc_reconfig’ will be created from netlist file 'system.ngc’
@ 1 netlist directory will be added,
@ 4 constraints files will be added.

@ The default part and product family for the new project:
Default Part: wcEvhx240tff1156-1
Product: Virtext
Family: virtexalxt

1 Package: ff1156

Il Speed Grade: -1 1l

PIanAhead To create the project, dick Finish

<Back | Finish | [Cancel

10. Project will open.

sirc_reconfig - [DAFPGA\SIRC\SIRCReleaseV/ 1. 1\HW_Example_13 2 ML605_pr\Planahead)si

c_reconfighsirc_reconfig.ppr] - PlanAhead 13.2 i i e

e Edit Flow Tools Window Layout

w Help

BFERBAX PSR NS XL (S [Sroectrmagenent | K

Ready
Project Manager X
3 Project Settings | E Project Summary % oa x
=
&% Addseurces = B e Edit [€] project state 2
=
T Project Summary | ProjectName: sirc_reconfig Status: Ready
—_— 1o system.nge (tog) Product Family: VirtexG Messages: Oerrors
eatlisthesion) o4 e blc_mem_gen_paramReg.ngc DefaultPart: xcvix240F1156-1 0 citical warnings
— il bl mem_gen_outputiiem.ngc Owarnings
il blk_mem_gen_inputhlem.ngc i
- Constaints (1) NextStep: Implement
Inplement constrs_1 =
—————————— blk_mem_gen_paramReg.ncf P Compilation &
v « blk_mem_gen_outputidem ncf Implementation
2 i men_gen puttiem.nct Pt xCBUZH0TIISEL
B » MLSOS.ucf (target)
Stategy: ISEDefaults
| Resources 2
Resourca information s not avaiable.
E & Implemented Timing 2
Tining information i not avalable.
Mext: Implement
& Sources | ? Templates
- Implemented Partitions 2
Propertes —oa@x
Partiton information s not avaiable.
¢ ahd 'L [P
Imglement
Td Console. —o&x
| Finisned parsing template File [C:\X1linx\13.2\ISE_DS\ISE\data\projnav\templates\vhdl.uml].

Xilinx\13,2\ISE_DS\ISE\data\projnav\templates\uct.zml].
$\X11inx\13.2\1SE_DS\ISE\data\projnav\cemplates\uct.xml] .
design mode GateLvl [current fileset] T
{ set_property edif_top file D:/FPGA/SIRC/SIRCReleaseVl.1/HN_Example_13_2 ML60S_pr/Synthesis/Static/system.ngc [current_fileset]
{ impore_files -force -norecurse (D:/FPGA/SIRC/SIRCReleaseVl.1/HW Example_13_2 MLG0S_pr/Synthesis/Static/ipcore dir D:/FPGA/SIRC/SIRCReleaseV1.1/HW Example 13_2 MLE0S_pr/Synthesis/Static}
1 Gurae {D:/FPGR/SIRC/SIRCReleaseVl.1/HW Example_13_2_ML605_pr/Synthesis/Static/ipcore_dir/blk_mem gen paramReq.ncf Di/FPGA/SIRC/SIRCReleaseVl.
{ set_property target_constrs_file D:/FPGA/SIRC/SIRCReleaseVl.1/HW_Example_13_2 ML&0S_pr/Planzhead/sirc_reconfig/sirc_reconfig.srcs/constrs_1/imports/SIRCReleaseVl.1/HWSze/MLE0S/MLE0S . uct
{ set_property name config 1 [current_rua]
{ set provertv is partial reconfis true fcw
<

{ mmport_files -fileset cons

/HW_Example_]
feurrent_rile |

Partial Fiow

Floor planning Partial Reconfigurable Partition

1. Change Flow to ‘Netlists Design’. (Flow->Netlists Design).

[sirc_reconfig - [DAFPGA\SIRO\SIRCReleaseV1 I\HW_Example_13 2 ML60S_pr\Planahead\sirc_reconfig\sirc_reconfig.pprl - PlanAhead 132
Q

File Edit Flow Tool:
=g)
Project Manager
Bl Netist Design
5 Resource Estmation
£D) Poner Estimation
@ RundRC
FT Run Noise Analysis
& ReportTining
llly, Slack Histogram

Y Setup Chinscope

>

Implement

Window Layout

H| D>

View Help

MG OB XIE

25 Design Analysis

2V/EC register32Fie

4, Sources (] Netlist | @ Configurations | @, Timing Constrain,

Froperties

—oax

—oax

Td Console
[T parsing UCF File [Di\FPGA\SIRC\SIRCReleaseVl.1\MW Example 13_2 ML605 pr\Planahead\sirc_reconfig\sirc_reconfig.srcs\constrs 1\imports\SIRCReleaseVl.1\Mi Example 13_2 ML605 pr\Synthesis\Static\ipcore c
o | | Finisned Parsing UCF File [D:\FEGA\SIRC\SIRCReleaseVl.l\HW Example_13_2 ML605_pr\Planzhead\sirc_reconfig\sirc_reconfig.srcs\constrs_I\imports\SIRCReleaseVl.1\HW_Example_13_2 ML60S_pr\Synthesis\Static
7| Parsing UCF File [D:\FEGA\SIRC\SIRCReleaseV1.1\HW Exemple_13_2 ML60S_pr\Planshead\sirc_reconfig\sizc reconfig.srcs\constrs_l\imports\SIRCReleaseVl. 1\HWSzc\MLE0S\HLE0S . uct
| | mro: [Designutils-22] BART comstraint ignored, using Planihead selected device [D:\FPGA\SIRC\SIRCReleaseVl.l\EW Example_13_2 ML605_pr\Plananead\sir_reconfig\sirc_reconfig.srcs\constrs_1\imports\SIE
Finished Parsing UCF File [D:\FPGA\SIRC\SIRCReleassVl.1\HW Exawple 13 2 MLGOS pr\Planshead\sirc reconfig\3irc reconfig.sres\constrs 1\imports\SIRCReleaseVl.1\EWSZe\ML60S\ML60S.ucs
| INFO: (Deaigmusils-20] Invalid conatraints found, use cOImand 'Write ucf -cONstrainta invalid <file>’ to save all the invalid conatraints to a file
open_netlist_design: Time (3): 29.036w. Memory (MB): 547.926p 134.209g
a v
B Td Console | © Messages | [Compiation | 5 Design Runs
Partial Flow

2. Right-click user module in ‘Netlists’ pane and select ‘Set Partition’.

[€] Set Partition

Set Partition

Il quide you through the process of setting instance 'tm' as a

This wizard
Partition.

Ahead To continue, dlick Next.

Next > [Cancel

Click the ‘Next’ button.

4. Select ‘is a reconfigurable Partition’. Click the ‘Next’ button.

] set Partitio

Is the Partition reconfigurabla?
Specify whether the Partition is reconfigurable.

Instance 'tm'

i@ is areconfigurable Partition

=I5 a Partition

[< Back “ Mext = |[Cancel]

5. Name the module instance ‘black_box’ and select ‘Add this Reconfigurable Module as a black
box without a netlist’. Click the ‘Next’ button.

f@] set Partitio
Reconfigurable Module Name

Enter & name for the new Reconfigurable Module for instance 'tm'.

Reconfigurable Module Mame: | black_box

= Metlist already available for this Reconfigurable Module

@ Add this Reconfigurable Module as a black box without a netlist

6. Review module details. Click ‘Finish’ button.

f&] set Partitio

Set Partition Summary

@ A reconfigurable partition will be set for instance 'tm'.

& new black box Reconfigurable Module named ‘black_box' will be created
for instance 'tm

& Mo constraints files will be imported.

To set reconfigurable Partition on this instance and create a Reconfigurable

PlanAhead Module, dick Finish

[< Back]| Einish |[Cancel

7. Inthe ‘Device’ pane, click the ‘Assign Pblock Mode’ button on the toolbar.

[sirc_reconfig - [DAFPGA\SIRC\SIRCReleaseV1 I\HW_Example_13 2 ML605_pr\Planahead\sirc_reconfig\sirc_reconfig.pprl - PlanAhead 132 o 0 S

File Edit Flow Tools Window Layout View Help

o= H| > @ QB K| X @ [Sdhiscope

Project Manager WS LT 1 (active)

= Netlist Design Neﬂwst‘ -0 % E Project Summary x| & Device x
= l|[E]
[Resource Estimation Rsvsien

&) Power Estimation 3
@ RunoRe E

F Run Noise Analysis

2M/EC/meminputData (bk_mem_gen_inputiier
2M/EC/nemOutputData
2V/EC register32Fie

N 0 tm ol one
@ ReportTiming £+ [Reconfigurable Modes (1
& black_box

llly, Slack Histogram

% Setup ChipScope

> .

Implement

(30 Netli & Sources | ¢ Configurations | & Timing Constr.

Instance Propertis —oax
« »[5
B

FullName: tm

bl
cell simpleTestModuleOne
Type: BlackBox

General | Statitics | Pins | Chidren | Attributes | Connect 4) &

Td Gonsole =
T [rinished Parsing UCF File [D:\FPGA\SIRC\SIRCReleaseVl.l\HW Example 13_2 MLG05_pr\Planahead\sirc_reconfig\sirc_reconfig.srcs\Gonatrs_l\imports\SIRCReleaseV1.1\HW_Example_13_2 ML605_pr\Synthesis\Static -
.| | Parsing UCF File [D:\FBGA\SIRC\SIRCReleaseVl.1\HW Example_13_2_MLG0S_pr\Planahead\sirc_reconfig\sirc_reconfig.srcs\constrs_I\imports\SIRCReleaseV1.1\HK_Example_13_2 ML60S_pr\Synthesis\Static\ipcore_¢
| | Finished Parsing UCT File [D:\FPGA\SIRC\SIRCReleaseVl.l\HW Example 13_2 MLE0S_pr\Planahead\sirc_reconfig\sirc_reconfig.srcs\constrs_l\imports\SIRCReleaseV1.1\HW Example 13_2 ML60S_pr\Synthesis\Static
| parsing UCF File [D:\FPGA\SIRC\SIRCReleaseVl.1\HW Example 13 2 ML605 pr\Planahead\sirc reconfig\sirc reconfig.srcs\constrs 1\imports\SIRCReleaseVl.l\HWSZc\KLGOS\KLG05.uct]

{ INFO: [Designutils-22

[D:\FPGA\SIRC\STRCRe leaseV1. 1\HW_Example_13_2_ML605_pr\Planahead\sirc_reconfig\sirc_reconfig.srcs\constra_l\imports\SIRCReleaseVl.1\HWSTo\ML60S\MLE0S uct]
le>' to save all the invalid comstraints to a file

| Finished Parsing UCF File
INFO: [Designucils-20] Invalid constraints found, use command 'write_ucf -constraints invalid <

rc_reconfi - [D:\FPGA\SIRC\SIRCReleaseV1 1 1 '
HW_Example_13_2_ML605_pr\Planheadsire,_reconfiah
rc_reconfig.ppr] - PlanAhead 13.2

B Td Console | © Messages | [Compiation | 5 Design Runs

8. Select the user module and press the ‘Set Pblock Size’ on the tool bar.
[] sirc_reconfig - [DAFPGA\SIRCASIRCReleaseV/1.1\HW_Example_13_2_ML605_pr\Planahead\sire_reconfig\sire_raconfig.ppr] - PlanAhaad 13.2 o | @ -z

File Edit Flow Tools Window Layout View Help
o 1 & @ % %| T [[cwscope

Netlist Design - netlist

Project Manager 1 (active)

—Oax

B Netiist Design

18] Resource Estmaton

&) Porer Estmation

@ RunDRC 2MJEC fmemInputData (blk_»
MEC/memOutputData

] Run Noise Andlysis MECregister3arie

& ReportTiming Reconfigurable Modes (1
- black_box

Tl Slack Histogram

% Setup ChipSeope

> .

Implement

3] Netli & Sources | @ Configurations | (@ Timing Constr.
Pblock Properties. - 0Oa x
d + S8R =
51 pblock_m

PR Modue Statistics

Type Value =
Bitstream Size 0Bytes
No of Frames [
Number of Frame Region o
Primitive Statistics <

Drimitise fune__ Crunt.
General | Statistics | Instances | Rectangles | Atributes

Td Console —Oogx
7| irFinished Parsing UCF File [D:\FPGA\SIRC\SIRCReleaseVl.1\HW _Example_13_2 ML60S_pr\Planahead\sirc_reconfig\sirc_reconfig.srcs\constrs_1\imports\SIRCReleaseV1.1\HW Example_13_2 ML605_pr\Synthesis\Static
;| {Parsing UCF File [D:\FPGA\SIRC\SIRCReleaseVl.1\HW_Example 13_2 ML60S_pr\Planshead\sirc_recenfig\sirc_reconfig.srcs\constrs_l\imports\SIRCReleaseVl.1\HW Exawple_13 2 ML605_pr\Synthesis\Static\ipcore ¢
;r | Finished Parsing UCF File [D:\FPGA\SIRC\SIRCReleaseV1.1\HW Example_13_2 ML605_pr\Planahead\sirc_reconfig\sirc_reconfig.srcs\constrs_1\imporss\SIRCReleaseVl.1\HW_Example_13_2 ML60S_pr\Synthesis\Static

| Parsing UCF File [D:\FPGA\SIRC\SIRCReleaseV1.1\HW Example_13_2 ML605_pr\Planahead\sirc_reconfig\sirc_reconfig.srcs\constra_1\imporcs\SIRCReleaseVl.1\HWSrc\ML605\ML60S. uct]
BART constraint ignored, using Planihead selected device [D:\FPGA\SIRC\SIRCReleaseVl.1\HW_Example_13_2 ML605_pr\Planshead\sirc_reconfig\sirc_reconfig.srcs\constrs_l\imports\SIF

| INFO: [Designutils-22

X

| Finished Parsing UCF File [D:\FBGA\SIRC\SIRCReleaseVl.1\HW Example_13 2 ML605_pr\Planzhead\3irc_reconfig\3irc_reconfig.srcs\constrs_1\imports\SIRCReleaseVl.l\HWSrc\MLE0S\ML60S.uct]
INFO: [Designutils-20] Invalid constraints found, use command 'write Uef -constraints invalid <file>' to save all the invalid constraints to a file

& Tcl Console Messages | [Compilation | (% Design Runs

Partia Fiow

9. Draw a rectangle for your user module. For our simple example we need very few resources,
but we will use the entire left half of the FPGA anyways.

[@ sirc_reconfig - [DAFPGA\SIRC\SIRCReleaseV 1. I\HW_Example_13 2 ML60S_pr\Planahead\sirc_reconfig)sirc_reconfig.ppr] - PlanAhead 132
Fle Edit Flow Tools Window Layout View Help

gER oo xd b

Project Manager

= [r— I Project Summary X | G Device X
5] Resource Estmation
£ Poner Estmaton
@ RunbRe (] E2/EC/memlnputData (5
E2W/EC/memOutputData
[RunNeise Analyse E2V/EC/iegster3aFie
[Jim (simpleTestioduleone)
€& ReportTiming E- [Reconfigurable Modules (1
i~ bladk_box
Qill, slack Histogram
% Setup ChipScope
> .
Implement
50 Metlist | 4 Sources | & Configurations | (3 Tming Constr,
Phiack Properties —O& x
d + 8N 2
@ pblock_tm
Physical Resource Estinates -
SteType Avalable Requred %Utl
wr 61184 0 0
FD_LD 122368 0 0
SUCEL 8604 0 0
SLIGEM 6692 0 0
BUFIODQS Y 0 0 -
BUFR 2 0 0 =
General | Statistics | Instances | Rectangles | Attrbutes
Td Console —oax
(| Parsing UCF File [D:\FRGA\SIRC\SIRCReleaseVl.1\HW_Example 13_2 605 pr\Planahesd\sirc_reconfig\sirc_reconfiq.srcs\constrs_1\imporcs\SIRCReleaseVl.1\HWSZC\MLG0S\ML605. uct] 3
~| | mFo mutils-22] PART comstraint ignored, using Plankhead selected device [D:\FBGA\SIRC\SIRCReleaseV1.1\HW Example 13 2 ML605_pr\Planzhead\sirc_reconfig\sirc_
& N . - . a1 . F ' Do) et .
| Finished Parsing UCF File [D:\FPGA\SIRC\SIRCReleaseVl.1\HW Example_13_2 ML60S_pr\Planahead\sirc_reconfig\3irc_reconfig.arcs\constrs_l\imporss\SIRCReleaseVl,l\HWSZc\ML60S\MLE0S.uc:
| INFO: [Designurils-20] Invalid constraints found, use command 'write uef -constraints invalid <file>' to save all the invalid constraints to a file
| resize_pblock phlock tm -add [SLICE_X0Y1:SLICE_X77Y239 BUFIODOS_XOY0:BUFIODQS_X1¥23 BUFR_XOY0:BUFR_XIY1l DCI_XOY0:DCI_XIYS DSP4t_XOv2:DSP4e_X3Ys5 IDELAYCTRL X0Y0:IDELAYCTRL X1YS ILOGIC X0V
size_pblock pblock_tm -add (SLICE_X0Y1:SLICE. _X0Y0:BUFR_ D P45_X3Y35 IDELAYCTRL_XO0Y0:IDELAYCTRL X1Y5 IL
size pblock phlock_tm -add (SLICE X0Y1:SLICE X63¥238 BUFIODQS X0¥0:BUFIODQS X1¥23 BUFR X0¥0:BUFR X1¥1l D DSP42_X3¥95 IDELAYCTRL X0Y0:IDELAYCTRL X1¥5 IL
< i y
I3 Tdl Console | © Messages | £ Compiation | % Design Runs
Phiock: phiock_tm Partal Flon

Adding Reconfigurable Instances to the Partial Reconfiguration Partition

1. Right-click the user module and select ‘Add Reconfigurable Module’.

==

Add Reconfigurable Module

This wizard will quide you through the process of adding a new Reconfigurable
Module to instance 'tm'.

pl a nAhead To continue, dick Next.

2. Click the ‘Next’ button.
3. Name the module (EX. org) and select ‘Netlist already available for this Reconfigurable Module’.

Click the ‘Next’ button.

fe] Add Reco

Reconfigurable Module Name
Enter a name for the new Reconfigurable Module for instance “tm'.

Reconfigurable Module Name: | org|

@ Metlist already available for this Reconfigurable Module

& Add this Reconfigurable Module as a bladk box without a netlist

< Back ” Mext =][Cancel

4. Locate the module netlist in the synthesis directory. Click the ‘Next’” button.

f€] Add Reconfigurs

Specify Top Netlist File
Specify the EDIF or NGC netlist that contains the Reconfigurable Module

Top Metlist File: | V_Example_13_2_ML&05_priSynthesis\simpleTestModuleOne_org\simpleTestModuleCOne. nac

MNetlist directories (optional)

Add Directaries. ..

Copy Sources into Project

< Back][Mext =][Cancel

5. Here you may add a module constraint file. There is none for this example. Click the ‘Next’
button.

[€] Add Recon

Specify Top Netlist File
Specify the EDIF or NGC netlist that contains the Reconfigurable Module .

Top Metlist File: | Y_Example_13_2_MLA05_priSynthesisisimpleTestModuleOne_org'simpleTestModuleCne. nac

Metlist directories (optional)

Add Directories. ..

Copy Sources into Project

[< Back ” Mext >][Cancel

6. Review module parameters. Click the ‘Next’ button.

[€] Add Recon

Add Reconfigurable Module Summary
A new Reconfigurable Module named 'org’ will be created for instance 'tm'

@ from the netlist
'\ D:\FPGANSIRC\SIRCReleasey 1, 1\HW _Example_13_2 ML&05_priSynthesis),
simpleTestModuleOne_orgsimpleTestMaoduleOne.ngc

& Mo constraints files will be imported.

P|ElnAhead To import this new Reconfigurable Module, dick Finish

< Back “ Einish |[Cancel

7. Repeat steps 21 through 26 for the alternate version of the user module, the one that does the

addition instead of the multiplication.

Create Design Instances for Implementation

1. Inthe ‘Design Runs’ pane, press the ‘Create New Runs’ button on the toolbar.

[@] sirc_reconfig - [DAFPGAVSIRO\SIRCReleassV1.1\HW_Example_13_2_ MLE0S_pr\Planahead\sirc_reconfig\sire_reconfig.ppr - PlanAhesd 132

File Edit Flow Tools Window Layout View Help

ﬂ 3
Project Manager
] Netlist Design
5] Resource Estimation
&) Poner Estimation
@ RunDRe
B Run Noise Andlyss

% ReportTiming

Tl Slack Histogram

% Setup Chpseape

Implement

X | b

I Project summary X | § Device x

Q @ | X [@ [chipscope
Netlist Desi XCOUx240171166-1 (active)
Configurations —oax
A X sEE
Configuration Module Variant Status
5 config_1(2) Not started
Static Logic Implement
m black_bex Implement
(3 Netist | & Sources . @ Configurati.. | £ Timing Constrs.
Reconfigurable Module Properties - 0Oa x
23R
org
Name: org
Source: simpleTestModuleOne.ngc
Instance:
Promoted From: None
Last Promoted To:
Implemented In: None
Imported In: None.
DesignRuns
X | Name: Part Con:
T| = config_1 XCEVIX240tFF1156-1 const

[E7d Console

Messages | [Compiation (% Design Runs.

staints Strategy

trs_1 ISE Defeults (ISE 13)

Status
Not started

Progress

=%

Unrouted Description

ISE Defauls, induding packing registers in

Start Elopsed Ut (%) FMax (MHz) Timing Score

Partia Fiow

2. Click the ‘Next’ Button.

Ei Create Mew Run
Set-Up Implementation Runs
Define the Part and Constraints for the implementation runs to be created.
Synthesized Metlist: | (3 sources_1 -
Constraints Set: = constrs_1 (active) -
Part: 5 xoAvlx240tFF1156-1 (active) E]
< Back]| Mext> | [Cancel

3. Click the ‘Next’ Button.

Ei Create Mew Run

Choose Implementation Strategies and Reconfigurable Modules

Create and configure runs using various strategies and Module Variants for Reconfigurable
Modules,

Create Implementation Runs

MName Strategy Make Active (optional) Partition Action

config_2 A ISE Defaults (ISE 13) - @ tm=hladk_| E] *

Runs to create: 1

< Back]| Mext = |[Cancel

4. Click ‘Partition Action’ Button for ‘config_2’.

-
[&] Specify Partition

| Choose Module Variants for Reconfigurable Modules and actions

MName Module Variant Action Import from
[static Logic ement » MfA
[tm black_box » ement - MNfA

5. Select a non-black box instance of the user module (EX. org).

-
[@] Specify Partition

|| Choose Module Variants for Reconfigurable Modules and actions

Mame Module Variant Action Import from
[static Logic ement - MNfA
TR -

6. Click ‘OK’ button.

Ei Create Mew Run

Choose Implementation Strategies and Reconfigurable Modules

Create and configure runs using various strategies and Module Variants for Reconfigurable
Modules.

Create Implementation Runs

Mame Strategy Make Active (optional) Partition Action

config_2 |2 15E Defaults (1€ 13) v @ %

More

Runs to create: 2

< Back][MNext =][Cancel

7. Click ‘More’ Button.

Ei Create Mew Run

Choose Implementation Strategies and Reconfigurable Modules

Create and configure runs using various strategies and Module Variants for Reconfigurable f
Modules,

Create Implementation Runs

MName Strategy Make Active (optional) Partition Action
config_2 |3, ISE Defaults (ISE 13) - | @ |tm=nrg E]| B3
config_3 |2 15E Defauits (1SE 13) - | ® [tm=black_| [-] [%]

Runs to create: 2

[< Back][Mext =][Cancel

Repeat steps 31 through 34 for ‘alt’ instance of user module.

Ei Create Mew Run

Choose Implementation Strategies and Reconfigurable Modules

Create and configure runs using various strategies and Module Variants for Reconfigurable
Modules,

Create Implementation Runs

MName Strategy Make Active (optional) Partition Action

- i@ tm=org E]| [b l
config_3 & 15E Defaults (ISE 13) - ® tm=alt

config_2 A ISE Defaults (ISE 13)

Maore

Runs to create: 2

< Back][Mext =

9. Click the ‘Next’ button.

Ei Create Mew Run
Launch Options

Configure hosts for launching runs, and/or set advanced launch options

Launch Directory: | [z <Default Launch Directory =
Options

() Launch Runs on Local Host: Mumber of Jobs| 1

() Generate scripts only

(@ Do not launch now

< Back]| Mext = |[Cancel

10. Click the ‘Next’ button.

Create New Runs Summary

@ 2 implementation runs will be created

@ Implementation run 'config_2' will be made active

PlanAhead To create these runs, click Finish

| <Bak || Fmsh

| [t

11. Review Configuration details. Click ‘Finish’ button.

Implement Designs

1. Right-click ‘config_1’ in the ‘Design Runs’ pane and select ‘Make Active’.

[sirc_reconfig - [DAFPGA\SIRCASIRCReleaseV 1 I\HW_Example_13 2 ML60S_pri\Planaheadsirc_reconfig\sirc_reconfig.pprl - PlanAhead 132
File Edit Flow Tools Window Layout View Help

g Al g M@ QB XL G [Bchiscoe
R Netlist Design - netlist_1 - xc6vx240171156-1 (active)
Netfst O x
Bl Netiist Design - g
< H|E
2 Resource Estmaton o
g -0 Nets (4565
D Poner Estimats
Dr=Eimm - Primitives (415
@ RunpRe - [EZVEC/meminputbata (5
- [EZMEC/menOutputData
FEl Run Noise Analysis i [EZM/EC register32Fie

am o
& ReportTiming £ [Reconfigurable Modules (3
biack
llly, Slack Histogram - org
alt

Y Setup Chpscope

> .

Implement

(30 Netlist | £ Sources | % Configurations | & Timing Constr.
Implementation Run Properties —Og x
* + 55
= config_t

Name: config_1

Part: xevix240tfF1156-1 (active) | [
Description: | I5E Defauits, including packing regsters in 10s off
Stats: Notstarted

Constraints: | constrs_L

General | Options | Monitor |Reports | Messages | Partitions

Design Runs. -0Oag %
| Name Part Constraints Strategy Status Progress Start Elapsed Uti (%) FMax (MHz) TimingScors Urrouted Description

o "= conn_1 Gane) covbaaotiiise-tloonsts_1 —|ise Defavlts 0t 13otstarted ———|——ow [[~ [~ |~ | | |ist ocfauks mclwdg pociana ros
o[- config 2 XcBV240tFF1156-1 constrs_1 ISE Defalts (ISE 13) Notstarted C—— 0% 1SE Defaults, induding packing registers in|
9 = config_3 xc6VIx240tff1156-1 constrs_1 ISE Defaults (ISE 13) Not started 0% 1SE Defaults, induding packing registers in|

«
/5 7d Console | © Messages | [Compiation . [Design Runs

Partial Fiow

2. Right-click ‘config_1’ and select ‘Launch Runs’.

Launch Directory: | 5 <Default Launch Directory =
Options

@ Launch Runs on Local Host: Mumber of Jobs| 1 -

Generate scripts only

Runs to Launch: 1

=+ config_1

oK | Cancel

3. Click ‘OK’ button.
4. When the implementation completes, select ‘Promote Partitions’ and click ‘OK’ button.

Mext

") Open Implemented Design

(") Generate Bitstream

() Miew Reports

[Don't show this dialog again

QK

5. Click ‘OK’ button.

,0‘, Please select runs to be promoted. This copies the partitions in implemented run to the
¥ specified promote directory. After promoting runs, you can import the partitions into runs.

Select Runs to promote

=

|
g A

Run Directory

= config_1 ...r"Planahead\sirc_reconfigisirc_reconfig. promote¥config_1
[static Logic

| 4 tm - black_box

| Select Implemented |[Clear Al]

(| Automatically manage Partition action and import location

-

6. Repeat steps 1 through 5 for each Design Run Configuration i.e config_2 and config_3.

[sirc_reconfig - [DAFPGA\SIRC\SIRCReleaseV1 I\HW_Example_13 2 ML60S_pr\Planaheadsirc_reconfig\sirc_reconfig.pprl - PlanAhead 132 o | D S

File Edit Flow Tools Window Layout View Help Q
&= H>IDE & QB K| T G 23 chipscope & e Y Implemented

(cOVX2401f11156-1 (active)

S

Project Manager

Bl Netiist Design

18] Resource Estmaton

S Power Estimati -
&) Power Estimation et

EZM/EC/meminputData (5
EZM/EC/memOutputData
E2M/ECregister32Fie

@ runoRe

FT Run Noise Analysis
& RepartTiming
llly, Slack Histogram

Y Setup Chpscope

> .

Implement

Implemented Design | v

Promote Partitions

130 wetlist | £ Sources | @ Configurations | & Timing Constr.

& v | mplementation Run Propertes —Oox
Program and Debug +
g
=% config_t
Hame Modue Variant Action Import from
[0+ Static Logic Implement N/A
34 tm black_box Implement N/A
« i =
General | Optians | Manitor |Reports | Messages | Partitions
Design Runs —oax
A | Name Part Constraints Strategy Status Progress Start Elapsed UH (%) FMax (M) TmngScore Unrouted Deseription
s "~ coni 1 acte) cvbcaaors1se-tloonste 1 1S Defauls (SE 13)PAR Completet ———|C———1200% " 12/2/2 1100 An obctea6] azmei6l | olik befauts,inchuding pacang
2 | -V config 2 xcoVhQA0LFI1S6 1 constrs 1 [SEDefaults (ISE 13) PAR Complete! E— 1007 12/2/11 1120 AW 00:15:11 1 120.758 <0087 0 ISE Defauts, inchuding packing regis
7| v config_3 Xc6vix240tff1156-1 constrs_1 ISE Defaults (ISE 13) ~ PAR Complete! N 100% 12/2/1112:03PM 00:15:16 1 127.616 20555 0 ISE Defaults, including packing regist
4
=+
&)
g
« =
5 7d Console | © Messages | [Compiation | 3 Reports |, (5 Design Runs.

ChipScope Pr

new project] Partial Flow

7. Right-click ‘config_1’ and select ‘Generate Bitstreams’'.

Create a programming {.bit) file for the desian. Use iIMPACT to program
the FPGA device or generate a PROM programming file from the
generated bitstream.

Options

More Options

Select an option above to see description of it

oK | Cancel

8. Click the ‘OK’ button.

9. Repeat steps 7 through 8 for each configuration.

[€] sirc_reconfig - [DAFPGA\SIRC\SIRGRe leaseVLI\HW Exarnple_13_2_ML60S_priPlanaheadsire_reconfighsire._reconfigppr] - Planshead 13,2 =[=]x]

File Edit Flow Tools Window Layout View Help Q

&= XHDPISRBUHENGOHB KT @ [Bchnscoe - Qe i ® Bitstream Generated
Netlist Design - netlist_1 ive) 4 i

Project Manager
— | et — O & X _||[XFroject summary x | Device x oo x

]

£ Power Estimation

@ rnore

FF RunNaise Analysis

& Report Timing

il Sleck Histogram

% sekup Chipscope

-
Implement

Implemented Design | v

Promate Partitions

’j/@ TINEEEE] & Sources | @ Configura.] @ Tining €
& -
Program and Debug Phlock Properties _oex
q gl
3 phlock tm

Physical Resource Estimates

Ste Type | Avalable | Required | % Ut

wr 1440 w1
D 122880 % 1
SLCEL a640 1
SLIcEm 6720 8 1
BUFIODQS 48 o o
BLFR 2 o o -
< J=
General | Statistics | Instances | Rectangles | Attributes
Design Runs —_oax
@ Hame Part Consiraints Strategy [Status [Progress [start Elapsed | Ut (%) | Fitax (M) | Timing Seore | Unroured Description
|57 config_1 (active) ¥COVIXZ4OKTIL56-1 constrs_1 _ ISE Defaults (ISE 13) Bitgen Completel I 100% 12/2/11 11:00 AM 00:28:30 1 127616 o 0 ISE Defaults, including packing registers in 105 off
2| v coniig 2 XeovbQ4OTLISE constrs | IE Defauls (ISE 13} Bitgen Complete! 00 12/2/11 1120 AN 00:28:28 1 107 0987 0 I5E Defauls, including packing registers in 105 off
= | v config_3 Xcoubk240HFLISE-1 comstrs 1 ISE Defaults {ISE 13} Bitgen Complete! . 00 12/2/11 12:03PM 00:28:268 1 127.616 20555 0 I5E Defaults, including packing registers in 10s off
L

2 Tl Console Messages | B Compiation (% Design Runs.

SLICE_x46v215 SLICEM Partial Reconfiguration Flow

Troubleshooting

Provided you have generated all the necessary netlists for the design, PlanAhead is used to implement
the design using the Xilinx Partial Reconfiguration flow. There are some potential pitfalls in this process,
depending on how the user module region is allocated in the floor plan.

If you get a MAP error regarding the allocations of BUFRs between the partial reconfiguration partition
and the static partition, this is due to the design rule that all the BUFRs of a clock region must belong to
the same partition. To correct this adjust the bounds of your partial reconfiguration partition until you
have achieved this. An alternative is to not assign any BUFRs to the partial reconfiguration partition by
editing the UCF file. Simply delete the line in the AREAGROUP block for the partial reconfiguration
partition. For the purposes of this example tutorial, the following AREAGROUP block may be inserted in
to the UCF file in place of what PlanAhead added from the floor planning phase.

INST "tm" AREA_GROUP = "pblock_tm";

AREA_GROUP "pblock_tm" RANGE=SLICE_XOYO:SLICE_X63Y239;
AREA_GROUP "pblock_tm" RANGE=BUFIODQS_XOY0:BUFIODQS_X1Y23;
AREA_GROUP "pblock_tm" RANGE=BUFR_XOYO:BUFR_X1Y11;
AREA_GROUP "pblock_tm" RANGE=DCI_X0Y0:DCl_X1Y5;

AREA_GROUP "pblock_tm" RANGE=DSP48_X0Y0:DSP48_X3Y95;
AREA_GROUP "pblock_tm" RANGE=IDELAYCTRL_XOYO:IDELAYCTRL_X1YS5;
AREA_GROUP "pblock_tm" RANGE=ILOGIC_XOYO:ILOGIC_X1Y239;
AREA_GROUP "pblock_tm" RANGE=IOB_X0Y0:I0B_X1Y239;
AREA_GROUP "pblock_tm" RANGE=IODELAY_XOYO:IODELAY_X1Y239;
AREA_GROUP "pblock_tm" RANGE=OLOGIC_XOY0:OLOGIC_X1Y239;
AREA_GROUP "pblock_tm" RANGE=RAMB18_XOYO:RAMB18_X3Y95;
AREA_GROUP "pblock_tm" RANGE=RAMB36_XOYO:RAMB36_X3Y47;

If you have a PAR error due to the CLK200 signal failing to route, this is due to a bug in the SIRC release
code (as previously mentioned). The BUFG between the input buffer and the PLL is commented out and
the input buffer is directly connected to the PLL. This BUFG must be replaced for the design to
successfully implement using the Xilinx partial reconfiguration flow. Uncomment the BUFG and change
the output of the input buffer to the input of the BUFG. Also uncomment the wire declaration for the
wire between the input buffer and the BUFG. Resynthesize the static netlists and update the netlist in
the PlanAhead project by going to the Sources pane and right-clicking on the ‘system.ngc’ file. In the
menu, select ‘Update File’. Follow the dialogue to import the updated netlist.

If your design fails to meet timing, you may need to reduce the clock frequency of the user circuit. If the
timing violations only involve the SystemACE circuit, the violations can be ignored. Otherwise, reduce
the user circuit frequency by increasing the divider of ‘CLKOUT1’ of ‘cIkBPLL’ on line 124 of ‘system.v’.
Resynthesize the static netlists and update the netlist in the PlanAhead project by going to the Sources
pane and right-clicking on the ‘system.ngc’ file. In the menu, select ‘Update File’. Follow the dialogue to
import the updated netlist.

With the netlists updated with the appropriate fixes, repeat the steps in ‘Implement Designs’.

Bitstreams

By now, you should have generated six bitstreams using PlanAhead and Xilinx Partial Reconfiguration
flow. Of these, three are full bitstreams and three are partial bitstreams. The difference between these
is that the full bitstreams include the static region configuration and the partial bitstreams do not. The
partial bitstreams may only be used after one of the full bitstreams has been applied.

G~

|« FPGA » SIRC » SIRCReleaseVll » HW_Ex

le_13 .2 ML605_pr » Planahead » sirc_reconfig

_-9 MSW Intranet
% Recent Places
|43 SharePoint Sites

A Libraries
@ Documents
J Music
[/ Pictures
"9’ Podcasts
B Videos L4

- Computer
& Local Disk (C:)
[@a Archive (D:)
@, DVD Drive (E)ITPTL _

r

sirc_reconfig.ppr

sirc_reconfig.runs
File folder

Date modified: 2/13/2012 4:33 PM

2/13/2012 4:32 PM

Organize v = Open Include in library v Share with v New folder
% Favorites “ Name ° Date modified Type Size
I | % Bing Search L sirc_reconfig.data 2/13/20125:03PM File folder
Bl Desktop 1. sirc_reconfig.promote 2/13/20124:33PM File folder
& Downloads ‘ . sirc_reconfig.runs 2/13/2012 4:33PM File folder
| & TWeb 1. sirc_reconfig.srcs 2/13/20124:32PM File folder

PlanAhead Project...

1KB

Organize

Include in library

Share with =

New folder

The bitstream are located in the ‘runs’ directory of your project directory.

7 Favorites
éR Bing Search
B Desktop
1 Downloads
| & TWeb
éR MSW Intranet
| Recent Places

|44 SharePaint Sites

m

74 Libraries
@ Documents
JI Music
[Pictures
'§ podcasts

% Computer
&, Local Disk (C:)
[ia Archive (D:)
@i, DVD Drive () TTPTL _

£ videos L4

MName

J jobs
J config_1
J config_2

J config_3

4 items

Date modified

2/13/2012 5:04 PM
2/13/2012 4,01 PM
2/13/2012 418 PM
2/13/2012 5:16 PM

Type Size

File folder
File folder
File folder
File folder

Inside the ‘run’ directory is a directory for each of the configurations you implemented in PlanAhead:

config_1 with the empty black box partition, config_2 with the original user module and config_3 with

the alternate user module.

Organize =

- Favorites
K Bing Search
Bl Desktop
& Downloads
5 Tweb
5 MSW Intranet
5| Recent Places
4d SharePoint Sites

= Libraries
3 Decuments
rJ:‘ Music
| Pictures
§ Podcasts

B videos

18 Computer
&L, Local Disk [C:)
gy Archive (D)

| | Open

&1, DVD Drive (E) ITPTL _

. 3 = X
@Qv .« HW_Example_13_2_MLB05_pr » Planahead » sirc_reconfig » sirc_reconfig.runs » config l » - ‘ 5 Se jel |
L ee—
New folder =~ [@
Mame Date medified Type . Size it
. .constrs 2/13/2012 2:05 PM File folder
_xmsgs 2/13/2012 349 PM File folder L
. xlnx_auto_0_xdb 2/13/2012 2:05 PM File folder 3
| config_l.bgn 2/13/2012 3:55 PM BGN File TKB
| config_1_tm_black_box_partial.bgn 2/13/2012 4:01 PM BGHN File B KB nl
|| config_1.bit 2/13/2012 3:55 PM BIT File 9,017 KB
| config_1_tm_black_box_partial.bit 2/13/2012 4:01 PM BIT File 4030 KB
|_| config_1.bld 2/13/20122:05PM BLD File 3KB |
| debug_nets.cdc 2/13/2012 2 CDC File 1KB
|| config_l.drc 2/13/2012 3 DRC File 1KB
|| config_1_tm_black_box_partial.drc 2/13/2012 4 DRC File 1KB
|_| config_l.edf 2/13/2012 2 EDF File 5,243 KB
ISEWrap js 2/13/2012 349 PM JScript Script File 5KB
rundef.js 2/13/2012 349 PM JScript Script File 2KB
=] config_1.map 2/13/2012 2 I Linker Address Map 14 KB
=| netlist.Ist 2/13/2012 2 M Listing 1KB
@ config_1_routed_pad.csv 2/13/2012 2 Microsoft Excel C... 45 KB
| config_1.mrp 2/13/2012 2 MRP File 36 KB
|| config_1.ncd 2/13/2012 213PM NCD File 137 KB -
2 items selected
Date modified: 2/13/2012 4:01 PM
Size: 127 MB
Date created: 2/13/2012 4:01 PM

Each directory contains the build data for that configuration of the system including the two bitstreams

generated for that configuration, one full bitstream and one partial bitstream.

Each full bitstream includes the configuration of the static region and version of the partial
reconfiguration partition. The partial bitstreams contain only the configuration of a given version of the

partial reconfiguration partition. The following table summarizes the contents of the bitstreams.

Bitstream Name

Contents

config_1.bit

Full Bitstream

Static region and black box user
module

config_1_tm_black_box_partial.bit

Partial Bitstream

Black box user module (blanking
bitstream)

config_2.bit

Full Bitstream

Static Region and original user
module

config_2_tm_org_partial.bit

Partial Bitstream

Original user module

config_3.bit

Full Bitstream

Static Region and alternate user
module

config_3_tm_alt_partial.bit

Partial Bitstream

Alternate user module

After the FPGA is powered up it must be configured with one of the full bitstreams that include the
static region. After the full bitstream is applied the static region will be operational with whatever user
module was included. After that any partial bitstream may be used to change the functionality of the
partial reconfiguration partition while the static region remains operational. The
‘config_1_tm_black_box_partial.bit’ is a special case bitstream since it configures the partial
reconfiguration partition to a black box state. This called a blanking bitstream. This is used to remove
any configuration from the partial reconfiguration partition and leave it in an unconfigured state when it
is not in use. This can have considerable power saving implications if the partial reconfiguration
partition is to be inactive for a significant amount of time. It is not necessary to blank the partial
reconfiguration partition before applying a new user configuration.

Testing

The following is a procedure for verify the functionality of these bitstream configuration files.

Build the software example project provided in the SIRC release.
Connect the FPGA to the host machine per the instructions in the SIRC release.

3. Using Impact, configure the FPGA with the bitstream config_1.bit, or the full bitstream
containing the back box instance of the user module.

| 1

[File Edit View Operations Output Debug Window Help NEE
OFH s DEXmEmmX: 2 =T A8

MPACT Flows 08 X
=5 Boundary Scan

[2] SystemACE

E Create PROM File (PROM File Format...
[Z] WebTalk Data

XCCAce XKeBvix240t
bypass config_1.bit
TDO
IMPACT Processes 08 x
Available Operations are:
= Program
= Program eFUSE Registers...
= Read cFUSE Registers
= Set eFUSE Control Register...
=P Read eFUSE Control Register
=P Get Device ID
=b Get Device Signature/Usercode
@ Read Device Status
= One Step SVF
= One Step XSVF }
= Read Device DNA rogram Succeeded I
= Boundary Sean |

Console o+0&F X

*2': Programmed successfully. -
PROGRESS_END - End Operation.
Elapsed time = 20 sec.

m r

«
W2l console [@ Erors | 1) warnings

Configuration |Platform Cable USB |6 MHz |Mot Named |usb-hs

4. Open acommand prompt in the build directory.
5. Run the software example by typing ‘eth_sirc_lib_ SW_Example.exe’ into the command prompt.

& Visual Studio Command Prompt (2010) [E=ESE ™

Betting environment for using Microsoft Uisual Studio 2018 xB86 tools.

D=~ FPGA~SIRC~SIRCRe leaseli _i~8W_ExamplesDebugreth_sirc_lib_8SUW_Example.exe_

6. The application will hang because the partial reconfiguration region is empty.

BN eth_sirc_lib_SW_Example.exe |ﬂ‘ﬁ

Betting environment for using Microsoft Uisuwal Studio 2018 xB86 tools.

D :=~FPGA~SIRC~SIRCRe leasell i~8W_ExamplesDebugreth_sirc_lib_SW_Example .exe
sl JETNG DEFAULT MAC ADDRESE — AA:AA:AA:AA:AA:AA
Will use NIC *MUIDIA nForce Metworking Controller”
Using PacketDriverUersion 3.
wxxxBeginning test #1 — parameter register testing
Passzed test #1
Executed in 31 ms

exxxBeginning test #H2 — soft reset testing
Passed test #2

xxxBeginning test #3 — simple test application

7. Type Ctrl-C to exit the application.

@8 Visual Studio Command Prompt (2010) [ESEEE ™

Betting environment for using Microsoft Uisual Studio 2018 xB6 tools.

D:~FPGA~SIRC~SIRCRe leasell .1 5W_ExamplesDebugreth_sirc_lib_SU_Example.exe
x| |[STNG DEFAULT MAC ADDRESS — AA:AA:AA:AA:AA:AA
Will use NIC *HUIDIA nForce Hetworking Controller’
Using PacketDriverUersion 3.
wxxxBeginning test H#H1 — parameter register testing
FPassed test #1
Executed in 31 m=

=xxxBeginning test #2 - soft reset testing
Pazsed test H2

f***Beginning test H3 — simple test application
C

D :~FPGA~SIRC~SIRCReleaszell _1~5W_Example~Debug >

8. Pressthe CPU RESET button on the ML605 Evaluation Board
9. Using Impact, configure the FPGA with the partial bitstream config_2 tm_org_partial.bit,
meaning the partial bitstream containing the original version of the user module.

a ISE iIMPACT (0.61xd) - C:\Xilinx\12.3\SE_DS\auto_project.ipf - [Boundary Scan] | o | B |l
l% FEile Edit View Operations Output Debug Windew Help

DOPH ¥ DXxEmEmmx: 2 BTN
IMPACT Flows +04&F %

& 25 Boundary Scan
2] SystemACE

=] Create PROM File (PROM File Format...
i [2] WebTalk Data I SN g

xceace XCEVb40t
bypass config_2_tm_org_
OO

IMPACT Processes <08 x

Available Operations are:

= Program

= Program eFUSE Registers...

= Read eFUSE Registers

= Set eFUSE Control Register...
= Read eFUSE Control Register
= Get Device ID

= Get Device Signature/Usercode
= Read Device Status

=b One Step SVF

=p One Step XSVF
= Read Device DNA Program Succeeded

@ Boundary Scan
Console <+08 x
"2': Programmed successfully. P
PROGRESS_END - End Operation.
Elapsed time = 3 sec.
< i v
[g] console |@ Erors | 1y warnings

Configuration |Platform Cable USB |6 MHz |Not Named |usb-hs

10. Run the software example by typing ‘eth_sirc_lib_ SW_Example.exe’ into the command prompt.

@ Visual Studio Command Prompt (2010) [E=EEE ™

Betting environment for uwusing Microsoft Uisual Studio 2818 xB6 tools.

D:~FPGA~SIRC~SIRCRe leasell .1 5W_ExamplesxDebugreth_sirc_lib_SU_Example .exe
el |[SITNG DEFAULT MAC ADDRESS — AA:AA:AA:AA:AA:AA
Will use NIC *HUIDIA nForce HNetworking Controller’
Using PacketDriverUersion 3.
wxxxBeginning test #1 — parameter register testing
Passed test #1
Executed in 31 m=

xxxBeginning test #2 - soft reset testing
Paszsed test #H2

i***Beginning test #3 — simple test application

D :~FPGA~SIRC~SIRCRe leaseli _i~8W_ExamplesDebugreth_sirc_lib_SUW_Example .exe_

11. It will complete successfully.

m v suco o U, - - ==

] esting read handwidth
Read time = 265 ns
Read bandwidth = 4%4.611 HMbps

xxx]esting write banduwidth
Urite time = 328 ms
WUrite bandwidth = 399_.61 HMbps

m

P esting read bandwidth
Read time = 281 ns
Read bandwidth = 466.448 Mhps

] ecting write banduwidth
Urite time = 344 ms
Urite bandwidth = 381.823 Mbps

xxxx]esting read handwidth
Read time = 266 ns
Read bandwidth = 4%2_.752 HMbps

Best write banduwidth = 418.76 Hbps
Best read bandwidth = 4%4.611 Mbps

D:~FPGA~SIRC*SIRCRe leasell .1%8W_Example“Dehug> &

12. Using Impact, configure the FPGA with the partial bitstream config_3 tm_alt_partial.bit,
meaning the partial bitstream containing the alternate version of the user module.

133 ISE iIMPACT (0.61xd) - C:\Kilinx\12.3\ISE_DS\auto_project.ipf - [Boundary Scan] o B s
|3 File Edit View Operations Qutput Debug Window Help

DPE ¥DEBXuEmmX: # BT AN
IMPACT Flows 05X

i 5% Boundary Scan
=] SystemACE

=] Create PROM File (PROM File Format...
@ |=] WebTalk Data oI X o

Xccace *cBvix240t
bypass cenfig_3_tm_alt_p..

OO

IMPACT Processes <08 x

Available Operations are:

= Program

= Program cFUSE Registers...

= Read cFUSE Registers

= Set eFUSE Control Register...
= Read eFUSE Control Register
= Get Device ID

= Get Device Signature/Usercode
= Read Device Status

= One Step SVF

=b One Step XSVF
= Read Device DNA Program Succeeded

273 Boundary Scan
Console 08 x
'2': Programmed successfully. P
PROGRESS_END - End Operation.
Elapsed time = 10 sec.
« i v
[] console |@ Erors | 1y warnings

Configuration |Platform Cable USB |6 MHz |Mot Named |usb-hs

13. Run the software example by typing ‘eth_sirc_lib_SW_Example.exe’ into the command prompt.

-

& Visual Studio Command Prompt (2010) [E=NEEE ™

] esting read handwidth
Read time = 265 ns
Read bandwidth = 4%4.611 HMbps

xxx]esting write banduwidth
Urite time = 328 ms
WUrite bandwidth = 399_.61 HMbps

P esting read bandwidth
Read time = 281 ns
Read bandwidth = 466.448 Mhps

] ecting write banduwidth
Urite time = 344 ms
Urite bandwidth = 381.823 Mbps

xxxx]esting read handwidth
Read time = 266 ns
Read bandwidth = 4%2_.752 HMbps

Best write banduwidth = 418.76 Hbps
Best read bandwidth = 4%4.611 Mbps

D:~FPGA~SIRC-SIRCRe leasell .1“8W_Example“Debugreth_sirc_lib_8U_Example.exe_

14. 1t will fail on the first output.

xxxlesting read handwidth
Read time = 266 ns
Read bandwidth = 492.752 Mbps

Best write bandwidth = 418.%76 Mbps
Best read bandwidth = 4%4_611 Hbps

m

D:~FPGA~SIRC~SIRCRe leasell .1 5W_ExamplesxDebugreth_sirc_libh_SU_Example .exe
el |[STNG DEFAULT MAC ADDRESS — AA:AA:AA:AA:AA:AA

Will use NIC *HUIDIA nForce HNetworking Controller’

Using PacketDriverUersion 3.

wxxxBeginning test #1 — parameter register testing
Passed test H1
Executed in 15 m=

=xxxBeginning test #2 - soft reset testing
Pazsed test H2

sxxxBeginning test #3 - simple test application
Ervor:
Output #A does not match expected value

D:~FPGA~SIRCSIRCRe leasell .18 _Example“Debug>_ N

15. Edit the software example project. Change the multiplication in the output check to an addition
to reflect the change in the alternate version of the user module on lines 363, 421 and 482.

if((inputValues[i] * 3) % 256 != if((inputValues[i] + 3) % 256 !=
outputValues[i]){ N outputValues[i]){

16. Rebuild the software example project with the changes.
17. Run the software example by typing ‘eth_sirc_lib_SW_Example.exe’ into the command prompt.

A Visual Studio Commal
T —

] esting read handwidth
Read time = 266 n=s
Read bandwidth = 4%2.752 HMbps

Best write banduwidth = 418.76 Mbps
Best wead bhandwidth = 474.611 MHbps

D:~FPGA~SIRCSIRCRe leasell _1~5UW_Example~Debugreth_sirc_lib_SU_Example .exe
=33 |]SING DEFAULT MAC ADDRESE — AA:AA:AA:AA:AA:AA
Will use NIGC *HUIDIA nForce HNetworking Controller”’
Using PacketDriverlUersion 3.
=xxxBeginning test #1l — parameter register testing
Pazzed test #1
Executed in 15 ms

xxxBeginning test #2 — soft reset testing
Passed test #2

xxxBeginning test #3 — simple test application
Ervor:
OQutput #P does not match expected value

D:~FPGA~SIRC~SIRCRe leasell _ 1~8W_ExamplesDebugXeth_sirc_lih_8SW_Example.

18. It will complete successfully.

@ Visual Studio Command Prompt (2010) [E=EE ™

] ecting read handwidth
Read time = 265 ns
Read bandwidth = 4%4.611 HMbps

] esting write banduwidth
Urite time = 344 ms
Urite bandwidth = 381.823 Mbps

exxxlesting read handwidth
Read time = 266 ns
Read bandwidth = 492.752 Mbps

] ecting write banduwidth
Urite time = 359 ms
WUrite bandwidth = 365.183 HMbhps

xxx]esting read handwidth
Read time = 266 ns
Read bandwidth = 4%2_.752 HMbps

Best write banduwidth = 382_.134 Mbps
Best read bhandwidth = 4%4.611 Hbps

D:~FPGA~SIRCSIRCRe leasel1 .18W_Example“Debhug>

This procedure confirms that the full and partial reconfiguration bitstreams work as expected. Using the
partial bitstreams, we have shown that it is possible to change the functionality of the user module
while the SIRC Hardware/Software API remains active. It is now possible for you to write and generate
bitstreams for your own user modules that can be configured on top of the existing static
implementation of SIRC in this tutorial.

Advanced Materials

This concludes the tutorial. You can now program the FPGA with the static bitstream and use the partial
bitstreams to dynamically change the functionality of the user circuit and communicate between
software and this circuit using SIRC. In this section we will present some more advanced material, such
as practical limitations, and debugging of the PR circuits which is currently not very well documented by
Xilinx.

Preparing the Design for Partial Reconfiguration

Before using the partial reconfiguration design flow to implement a complex system, we recommend
that you have already debugged and tested each instance or reconfigurable state of your system as
much as possible, using the standard flow. The partial reconfiguration design flow itself can introduce
new problems that can be difficult to diagnose and correct if bugs remain in the base system. These
problems include but are not limited to errors in the design hierarchy, timing errors resulting from floor
planning constraints and lost optimization, and under specified reset and metastate conditions
introduced by runtime reconfiguration.

The first step in creating a system using partial reconfiguration from an existing static system, is
selecting what parts of the system you think should be able to reconfigure dynamically. When making
this decision, it is required that the functionality that you want to reconfigured be encapsulated within a
module. To simplify design and maintenance, functions that are intended to be changed together should
whenever possible be wrapped within the same higher level model to minimize the number of
independently reconfigurable partitions in the design. The complexity of the flow significantly increases
with additional partitions.

The Xilinx partial reconfiguration design flow imposes some restrictions on the contents of modules and
partitions meant to be reconfigured dynamically [4]. Most but not all components available within the
FPGA fabric can be included in a partial reconfiguration partition. Most of these exceptions are related
to clocking resources. All global clocking resources and those architectural features that are used to
modify clock signals cannot be included in a partial reconfiguration partition. These include BUFG,
MMCM, PLL and DCMs. Additionally architectural features related to configuration and FPGA state such
as BSCAN, STARTUP, ICAP, CAPTURE, DCIRESET, FRAME_ECC, KEY_CLEAR, USR_ACCESS, etc. cannot be
included in the partial reconfiguration partition. Additionally, any IP core that makes use of these
components may not be included in a partial reconfiguration partition. This includes some EDK blocks
and MIG. Under normal circumstances this would also preclude the use of Chipscope for debugging
within the partial reconfiguration partition because of the use of BUFGs and BSCAN components.
However we have a work around that will be presented later in this tutorial.

The Xilinx partial reconfiguration design flow also imposes restrictions on the interface to the partial
reconfiguration partition. Bidirectional ports on the interface between the partial reconfiguration
partition and the remaining design are not allowed. If the design makes the use of such ports they will
need to be separated into dedicated input and output ports and recombined into bidirectional ports
higher in the hierarchy. [4]

One major difference between a full configuration and a partial reconfiguration of the FPGA is that there
is no global reset of the logic after the configuration is complete. Thus the state of the logic in the
partial reconfiguration partition is unknown immediately following the completion of the
reconfiguration process. For this reason, all logic within the partial reconfiguration partition must be
initialized by a reset state and the partial reconfiguration partition should be reset after the
reconfiguration process and prior to resuming operation. Similarly, the state of partial reconfiguration
partition outputs will be of unknown state during the reconfiguration process. This process can take a
long period of clock cycles depending on the size partial reconfiguration partition and bandwidth of the
reconfiguration channel. For this reason, it is important to place the system into a safe state where the
outputs of the partial reconfiguration partition are ignored until the reconfiguration is complete and the
partition is reset. However, this does not preclude the remainder of the FPGA from operating on other
tasks that do not interact with the partial reconfiguration partition. [4]

The partial reconfiguration partition will be synthesized and implemented independently of the rest of
the design. This means that some optimizations that the tools took advantage of when the design was
flat will no longer apply now that these pieces are separated. In addition when you floor plan the design

later in the tutorial, you are imposing additional restrictions on the placement and routing of the design.
This in some cases is enough to push the timing of certain signals out of compliance and result in timing
errors. For this reason, additional pipeline stages as well as registering the inputs and output of partial
reconfiguration partitions is recommended to improve slack in the timing whenever possible. Xilinx
recommends expecting a 10% performance loss in clock frequency and expecting to not exceed 80% of
the FPGA resources. [4]

A big question when implementing a partial reconfiguration system relates to the floor planning. In
some cases, partial reconfiguration partitions will interact with fixed elements in the FPGA such as 10
pins and other features. Itis possible to use these as anchors to guide the placement of the partial
reconfiguration partition in the floor plan. But what should be done when such anchors do not exist? A
good starting point is the original design implemented in the standard flow. If the standard flow placed
the logic in a certain area it is possible to constrain the partial reconfiguration to do the same, which will
provide similar results.

To view the location of a module on the FPGA in the design, locate the routed netlists or *.ncd file for
the design. Open that file in Xilinx FPGA Editor. Then search for the nets and components associated
with the module of the selected partial reconfiguration partition and highlight them. You will see a mass
of logic somewhere in the FPGA. If you are lucky, the mass will be fairly localized and you can aim to
place the region constraint for your partial reconfiguration centered on that mass. However, if the mass
is more widespread this may indicate that when partial reconfiguration flow is used timing and other
implementation issues may arise. In this case, more effort may be needed to better decouple the partial
reconfiguration partition from the design. Timing errors that surface later can also be dealt with using
timing constraints on the using partition pins of the partial reconfiguration partition.

Debugging Partial Reconfiguration Designs with Chipscope

Chipscope is the on-chip debugging solution for Xilinx FPGAs. Using the Chipscope tool you can probe
signals of the design under development within the FPGA. The signal values are sampled each cycle of a
reference clock and stored in a provided blockram. Sampling begins when user defined trigger
conditions are satisfied until the allocated blockrams are filled. When the blockrams are filled the
captured data is sent to the host PC over the JTAG. Chipscope is well supported and partially automated
for non-partial reconfigurable designs, whereas using it with partial reconfiguration is not too well
supported. However, with some effort and knowledge it is possible to use Chipscope to debug designs
using partial reconfiguration. It is recommended though to do as much debugging and verification on a
non-partial reconfiguration version before moving to the partial reconfiguration flow.

Integrated Chipscope Support

Xilinx PlanAhead provides integrated support for setting up Chipscope probes for debugging. This works
similarly to the GUI based interface used in the ISE Project Navigator and carries the same advantages
and disadvantages. The user selects the signals to probe and the tools add the appropriate logic to the

design after synthesis during design translation. This makes adding debugging logic easier assuming the
signals required to diagnose the bug are understood. This effectively changes the design and how it
implements. After the probe logic is selected and added the design must be mapped, placed and routed
again. A debug cycle can take 15 minutes to several hours depending on the design complexity.

There is an additional issue when applying it to partial reconfiguration designs. The integrated
Chipscope support can only probe signals accessible from the static region of the design. Signals that
are contained within the partial reconfiguration partition cannot be probed by Chipscope in this way
unless you change the design sources to output those signals from the partial reconfiguration partition.

1. Inthe ‘Project Manager Pane’ click ‘Set up Chipscope’.

-
E Set up ChipScope

Set up ChipScope

This wizard will guide you through the process of selecting
nets for debugging by ChipScope Analyzer,

[Import existing ChipScope COC file

FldanaAanedu To continue, dick Next

<Back || MNext> |[Cancel]

2. Here you can import a Chipscope CDC file from your debugging in the standard flow so long as it
does not contain signals of the user module in the partial reconfiguration partition. In this
example, we will proceed manually. Click the ‘Next’ button.

-
E Set up ChipScope

Specify Nets to Debug
Spedfy Mets for debugging using ChipScope

Mame Clack Domain TRIG DATA

[Add/Remove Nets. .. Mets to debug: 0

< Back ” Mext =][Cancel

3. Click the ‘Add/Remove Nets’ button.

r 1
[€] Add/Remove Nets - =
Find Net Criteria —
Name - | |matches ~|[*
Unigue Nets Only
[] Eilter nets that are not debuggable using ChipScope
[7] Match Case
|
Find Results (0) Mets to Debug with ChipScope (0)
g B g B
5 pag 5 p
S A

4. Here you may search and select signals for debugging from the static region. We might select,
for instance the TX and RX states of the SIRC interface.

,
R S

Find Net Criteria

Name - | |matches - |[*

Unigue MNets Only

[] Eilter nets that are not debuggable using ChipScope
[Match Case

Find Results (4857) Mets to Debug with ChipScope (8)

==

[==]
1 pda

- E2M/EC/softResetToggleUserSide (2) -
- E2M/EC/sysACECounter (3)

i E2M/EC/sysACE_MPADD (7)

iy E2M/EC/sysACE_MPADD[S]_GND_20_o_mux_795_OUT (7)
i E2M/EC/ sysACE_MPDATA_In (15)

s E2M/EC fsysACE_state[2]_GMND_20_o_mux_826_0OUT (18)
s E2M/EC bc_curr_bytes_left (32)

- E2M/EC/tx_curr_bytes_left[31]_GMD_20_o_equal_594 o (1)
i E2MEC /b _curr_bytes_left[31]_GND_20_o_sub_s02_OUT
i E2M/ECftx_curr_mem_address (32)

i E2M/ECtx_curr_mem_address[31]_GND_20_o_add_588_OUT (32)
s E2MJEC/t_header_buffer_dest_add (43)

il E2M{EC[tx_header_buffer_len (16)

- E2M/EC/tx_header_buffer_src_add (43)

- E2M/EC/tx_header_counter (5)

- E2M/EC/tx_max_output_address (13)

-l E2M/EC/tx_read _len (18)

s E2M/EC/bx_save_dest_add (43)

s E2M/EC/tx_state[2]_rx_state[4]_wide_mux_663_OUT |

-y E2M/EC/tx_state[2]_rx_state[4]_wide_mux_664_OUT |

e EWEC I cbstalal rv ctataldl wids mon AR QLT 710

< m | =

1
®@e

e e

2)

5. When you are done selecting signals click the ‘OK’ button.

-
E Set up ChipScope
Specify Nets to Debug
Spedfy Mets for debugging using ChipScope @
Mame Clack Domain TRIG DATA
(- E2M/EC rx_state (3) dk_125_eth vy vy
[+ i E2M/EC b state (3) dk_125 _eth v v
[Add/Remove Nets.., Mets to debug: 6
< Back ” Mext =] [Cancel

6. Click the ‘Next’ button.

-
E Set up ChipScope

Set up ChipScope Summary

Partition system may require reimplementation after
instantiating ChipScope cores, Please manually
change the Partition state to implement’ to ensure
that the run will implement properly.

@ 0 debug cores will be removed:

@ 1 debug core will be created
@ Found 1 dock

FianAnedu

To create ChipScope core, didk Finish

<Back || Finish | | Cancel

7. Review the summary and click the ‘Finish’ button.

Manually Generating Chipscope IP Cores using CoreGen.[2]

The integrated Chipscope support has its advantages since it automates much of the process for
inserting the debugging infrastructure. However, it also has its limitations. It is possible to use the
debugging capabilities of Chipscope to greater efficiency by manually constructing the debugging
infrastructure in your design. The first step in this is to generate the Chipscope cores required in Xilinx
CoreGen for later instantiation in your design.

1. Using Xilinx CoreGen, create the Chipscope IP Cores for the capturing traces and sending the
traces to the host PC over the JTAG. In the ‘IP Catalog’, navigate to ‘Debugging & Verification-
>Chipscope’.

< Xilinx CORE Generator - DAFPGA\SIRC\SIRCReleaseV 1. 1pricoregen.cgp B —— p—— . =NEENL_~

File Project View Managel Help
D2EIEIGF BN TS
IP Catalog & X

iew by Functon giCHFE coregen

"

Automotive & Industrial
AXlInfrastructure Select IP you wish to wark with,
BaselP
|7 Basic Elements Information

Communication & Networking Project fiename: Di\FPGAVSIRC\SIRCReleaseV 1. or\coregen.cap
Debug & Verfication oty e

<] AX1Bus Functionsl Model e oot

Chipscope Pre Padage 1156
4 ATC2 (ChipScope Pro - Agilent Trace € | o iC e

4 IBERT Kinted pe Pro - I

4] IBERT Sp Pro-

o-15| | Actions
(; IBERT Virtex GTH (Chij pe Pro - IB|
% IBERT Virtex$ GTX (ChipSeope Pro - 18
4J ICON (ChipScope Pro - Integrated Cor|
% ILA (ChipScope Pro - Integrated Logic || Copyrgh (c) 1985-2011 ¥, Inc. Al rights reserved.
4§ VIO (ChipScope Pro - Virtual Input/ Oul

Digital Signal Processin:

FPGA Features and Design

Math Functions

Memories & Storage Elements

Standard Bus Interfaces

Storage, NAS and SAN

Video & Image Processing

The following actions are avaiable for this project:

Console & x

with the following =
~"Ce\inx\13. 21SE_DS\ISE\coregen} [using existing xi_index.xmi]
The IP Catalog has been reloaded.
Wirote CGP file for project ‘coregen. B

Part xc6vh240t1/1156 Design Entry: VHDL) |||

4 i B

Search IP Catalog:

[C] NP versions

2. Select the ICON core and double click. Give the ICON core a name (EX. sirc_icon). Select the
number of desired control ports. One control port is required for each ILA that will be
connected to the ICON. For this example, one control port is selected. Check the ‘Disable
Boundary Scan Component Instance’. It is permissible to have this unchecked in some cases.
However, each case is doable with it checked, so this example will be implemented with it
checked. Click ‘Generate’ button when ready.

- —
Q’ [CON (ChipScope Pro - Integrated Controller) 5 s

View Documents
IP Symbol

[SERSEN]

TDI_IN TDO_OUT
RESET_IN CONTROLO[35:0]
SHIFT_IN CONTROL1[35:0
UPDATE_IN cot D

CAFTURE_IN cot

SEL_IN D
DRCK_IN cot 0

ToO_IH 3 TDI_OUT

L1

| gicire
Component Name

ICON Parameters

m

Disable Bound

=

ICON (ChipScope Pro -
Integrated Controller)

sirc_icon

[C] Generate Example Design

Mumber of Control Ports

ary Scan Component Instance

Boundary Scan Chain |USER1 =

xilinx.com:ip:chipscope_icon:1.05.a

[Generate] l Cancel] [Help

3. Select the ILA core and double click. Give the ILA core a name (EX. sirc_ila). This example is
using the default settings of the ILA. Options to note are the ‘Sample On’ and the ‘Sample Data
Depth’ parameters in ‘Storage Settings’. The ‘Sample On’ should match the desired capture

edge of the reference clock and the ‘Sample Data Depth’ to the appropriate size to for the

debug traces. The more samples the more blockram and debug logic will be required.

r i
q ILA (ChipScope Pro - Integrated Logic Analyzer)

Documents View
IP Symbol

g X

CONTROL|35:0] 5 TRIG_OUT
CLK
TRIGA[T:0]

% IP Symbal | %] Core Resource Usage |

g P

ILA (ChipScope Pro -

Integrated Logic Analyzer)

Component_Name sirc_ila

[T] Generate Example Design

Trigger Port Settings

MNumber Of Trigger Ports

Max Sequence Levels
Use RPMs

[] Enable Trigger Ou
Storage Settings

Sample On

tput Port

Sample Data Depth |1024 -

Enable Storage Qualification

Data Same As Trigger

Data Port Width

0 Range: 0..0

-

I W G R S— [——

1

xilinx.com:ip:chipscope_ila:1.04.a

< Back | Page 1 of 2 [Mext >] [Generate] I Cancel] [Help

]

4. Set the ‘Trigger Port Width’ to the number of signals desired to probe using the ILA. This can be
1 to 256 signals. Click ‘Generate’ button when ready.

—

— - —

~
*] ILA (ChipScope Pro - Integrated Logic Analyzer) 0 o o 0
Documents Miew

TF Symbol g x

mgiC:Zj-’Ri"

TRIG OUT Trigger Port 1

CONTROL|35:0] 3 TRIG_OU
Trigger Port Width 8 Range: 1..256
Match Units
Counter Width
Match Type [basu: with edges -]
Bit Values: 0,1,%rfb,n
Functions: =<

|| Exclude Trigger Port from Data Storage

%] IPsSymbol | %/ Core Resource Usage

ILA (ChipScope Pro -
Integrated Logic Analyzer)

< Back |Page2of2 Mext >

xilinx.com:ip:chipscope_ila:1.04.a

[generate H Cancel H Help]

5. Inaddition, using Chipscope debugging capability requires a connection to the FPGA JTAG
resources. This accomplished using the BSCAN primitive from the Xilinx HDL library. Itis
recommended using a wrapper file like the one below when implementing the BSCAN in your

design.

‘timescale 1ns / 1ps
“define V6 1

module bscan_wrapper #(

parameter JTAG_CHAIN = 1

) (
output wire CAPTURE,
output wire DRCK,
output wire RESET,
output wire RUNTEST,
output wire SEL,
output wire SHIFT,
output wire TCK,
output wire TDI,
output wire TMS,
output wire UPDATE,

input wire TDO
)i
“ifdef V6
BSCAN_VIRTEX6 #(
.DISABLE_JTAG("FALSE"),
.JTAG_CHAIN(JTAG_CHAIN) // Chain number.
) bsi (
.CAPTURE(CAPTURE), /I 1-bit Scan Data Register Capture instruction.
.DRCK(DRCK), /I 1-bit Scan Clock instruction. DRCK is a gated version of
Il TCTCK, it toggles during the CAPTUREDR and SHIFTDR
/I states.
.RESET(RESET), /I 1-bit Scan register reset instruction.
.RUNTEST(RUNTEST), /I 1-bit Asserted when TAP controller is in Run Test Idle state.
/I Make sure is the same name as BSCAN primitive used in
/I Spartan products.
.SEL(SEL), /I 1-bit Scan mode Select instruction.
SHIFT(SHIFT), /I 1-bit Scan Chain Shift instruction.
.TCK(TCK), /I 1-bit Scan Clock. Fabric connection to TAP Clock pin.
.TDI(TDI), /I 1-bit Scan Chain Output. Mirror of TDI input pin to FPGA.
.TMS(TMS), /I 1-bit Test Mode Select. Fabric connection to TAP.
.UPDATE(UPDATE), /I 1-bit Scan Register Update instruction.
.TDO(TDO) // 1-bit Scan Chain Input.
“endif
endmodule

Chipscope ICON and ILA in the Static

You can think of this procedure as the manual version of what the integrated Chipscope is doing, except
this procedure provides some additional control. For this additional control you pay with the time and
effort to add the debugging logic into the source code manually. Add the Chipscope cores and the
BSCAN wrapper to the top level design and add the signals to the trigger of the ILA. Refer to the
following example.

wire CAPTURE_BS;
wire DRCK_BS;
wire RESET_BS;
wire RUNTEST_BS;
wire SEL_BS;

wire SHIFT_BS;
wire TCK_BS;

wire TDI_BS;

wire TMS_BS;

wire UPDATE_BS;
wire TDO_BS;

wire [35:0] CONTROL;
wire [255:0] TRIG;

assign TRIG = <insert signals here>;

bscan_wrapper #(

JTAG_CHAIN(1)

) bsw(
.CAPTURE(CAPTURE_BS),
.DRCK(DRCK_BS),
.RESET(RESET_BS),
.RUNTEST(RUNTEST_BS),
.SEL(SEL_BS),
SHIFT(SHIFT_BS),
TCK(TCK__BS),
TDI(TDI__BS),
TMS(TMS__BS),
.UPDATE(UPDATE_BS),
.TDO(TDO_BS)

sirc_icon scsi(
.CONTROLO(CONTROL),
.TDO_OUT(TDO_BS),
.TDI_IN(TDI_BS),
.RESET_IN(RESET_BS),
.SHIFT_IN(SHIFT_BS),
.UPDATE_IN(UPDATE_BS),
.CAPTURE_IN(CAPTURE_BS),
.SEL_IN(SEL_BS),

.DRCK_IN(DRCK_BS)

)i

sirc_ila scii(
.CONTROL(CONTROL),
.CLK(clk),
.TRIGO(TRIG)

Assign the signals to be probed to the trigger bus, TRIG. If the signals are in modules somewhere else in

the hierarchy, even partial reconfiguration partitions, they must be passed to the top static module and

assigned to the trigger bus. If the signals are part of the partial reconfiguration partition, they will cross

the partition boundary and create a new partition pin for that signal. When viewing the signals in the

Chipscope Analyzer, signals from the partial reconfiguration partition will read as high or logic 1 when

the partition is not configured or blank. This way of setting up the Chipscope debugging cores is pre

synthesis and thus does not depend on how the synthesis tools optimize signals when it comes to the

signals available to probe.

Resynthesize the static netlist and update the file the PlanAhead project. Go to the Sources pane and
right-clicking on the ‘system.ngc’ file. In the menu, select ‘Update File’. Follow the dialogue to import
the updated netlist. The Chipscope ip cores should appear as black boxes in the hierarchy of the Sources
pane. In the File Menu, select ‘Add Sources’ and follow the dialog for ‘Add Design Sources’ to add the
netlists files for the ICON and ILA i.e sirc_icon.ngc and sirc_ila.ngc. With the netlists updated with the
appropriate fixes, repeat the steps in ‘Implement Designs’.

Chipscope ICON and ILA in the PR Partition.

Normally the Chipscope ICON can only be inserted into the static region, because inside the ICON netlist
there is a BUFG primitive. The Xilinx Partial Reconfiguration design rules do not allow global clock
resources such as BUFGs to reside in a partial reconfiguration partition. However, the BUFR is allowed.
It is possible to edit the ICON netlist and replace the BUFG with a BUFR so it can be used in the partial
reconfiguration partition.

Edit ICON Netlist
1. Go the location where the Chipscope file are located and open and command prompt.

2. Type “<Xilinx Install>\ISE_DS\ISE\bin\nt\ngc2edif.exe <ICON file>.ngc

@ Visual Studio Command Prompt (2010) E=REE

Setting environment for wusing Microsoft Uisuwal Studio 2818 x86 tools.

D:~FPGA~SIRC~SIRCReleaszell . 1“HY_Example_13_2 MLG6B5S_pr~SynthesissStatic™ipcore_di
e iswAilinx~13 . 25I5E_DE~ISE~shin~wnt~ngcZedif .exe sirc_icon.ngoc_

3. Press Enter.

P& Visual Studio Command Prompt (2010) E=EE

ISetting environment for wusing Microsoft Uiswal Studio 2018 x86 tools.

ND:~FPGA~SIRC~SIRCReleaseli.i~HY_Example_13_2_ ML6A5_pr~Synthesis~Btaticsipcore_di
rrecinAilinx~13 .. 25I5E_DS~ISEshin~nt~ngcZedif .exe sirc_icon.ngcoc

Release 13.2 — ngc2edif 0.61xd <nt>

Copyright <c>» 1995-2811 Hilinx,. Inc. All rights reserved.

RHeleasze 13.2 — ngc2edif 0.61xd <nt>

Copyright Cc? 1995-2011 X¥ilinx., Inc. All rights reserved.

Reading design sirc_icon.ngc ...

Processing design ...
Preping design’s networks ...
Preping design’s macros ...

WARMING:NetListlhiters:306 — Signal bus UB-U_ICONAiCORE_ID_SEL<15 - B> on block
sirc_icon is not reconstructed,. hecause there are some missing bus signals.
finizshed :Prep

Writing EDIF netlist file sirc_icon.ndf ...

ngc2edif = Total memory usage iz 67684 kilohytes

D:~FPGA~SIRC~SIRCReleaszell .1“HY_Example_13_2 ML6B5_pr~SynthesissStaticsipcore_di
P

"
4. Change sirc_icon.ndf to sirc_icon.edif
5. Open sirc_icon.edif in a text editor.
Bld < | sirc_icon.edif - WordPad [E=la <=
‘jvﬁl Conertiew |11 <|[X & = G F P fﬁm
P IFEE P 5| P ot e et | s
g B 1- 2 ' -3 P4 ‘-5 ' &

(edif sirc_icom
(edifversion 2 0 0)
(edi: 10
(key ap (keywordLevel 0))

n
timestamp 2011 12 16 11 29 4)
(program "Xilinx nge2edif" (version "0.61xd"))

sis tools")

component™)

supported synt
es of the desi

t "represented by
t "Command line: sirc_icon.ngc ")))
(external UNISIMS
(edifLevel 0)
(technology (numberDefinition))
(cell vee
(cellType GENERIC)
(view view_1
(viewTyps NETLIST)
(interface
(pozt B
(direction OUTEUT)
)
)
)
)
(cell GND
(cellType GENERIC)
(view view_1
{viewlype NETLIST)
(interface
(port G
(direction OUTPUT)
)
)

)
)
(cell BSCAN_VIRTEX6
(cellTyps GENERIC)
(view view_1
(viewTyps NETLIST)
{intexrface
(port SHIFT
(direction OUTEUT)
)
(port TDL
(direction OUTPUT)

100% (=) ®

6. Replace all instances of the name ‘BUFG’ with ‘BUFR’ using ‘Replace’.
7. Save thefile.

Now edit the top level module of the partial reconfiguration partition by adding the Chipscope modules
similarly to the previous section. Resynthesize the user module netlist and update the file in the
PlanAhead project. Go to the Sources pane and right-clicking on the ‘simpleTestModuleOne.ngc’ file. In
the menu, select ‘Update File’. Follow the dialogue to import the updated netlist. In the ‘Netlists’
pane, right-click on the module instance that was just updated and select from the menu ‘Set as Active
Reconfigurable Module’. The Chipscope modules should appear as black boxes in their hierarchy of the
Sources pane under the partial reconfiguration partition. In order to proceed, these black boxes must
be resolved. With the netlists updated with the appropriate fixes, repeat the steps in ‘Implement
Designs’.

Resolving Black Boxes of Chipscope IP Core Modules
1. Inthe menu, select ‘File->Add Sources’.

F B
E} Add Sources M

Add Sources

This wizard will guide you through the process of adding and creating sources for your project

What type of sources you want to add?
(@ Add Design Sources

(7) Add or Create Constraints

(7) Add or Create Simulation Sources

() Add Reconfigurable Logic Sources

PI Ell‘"tAhead To continue, dick Next

< Back

Einish Cancel

2. Select ‘Add Reconfigurable Logic Sources’.

Add Sources

This wizard will guide you through the process of adding and creating sources for your project

What type of sources you want to add?
() Add Design Sources
() Add or Create Constraints

() Add or Create Simulation Sources

(@ Add Reconfigurable Logic Sources

PlanAhead

To continue, dick Next

<Back || Mext> §| Finish

| [cancel

]

Y

3. Click the ‘Next’ button.

-
Add Sources

Add Reconfigurable Logic Sources

Specify reconfigurable logic spedific files, or directories, to add to your project. Valid source types for reconfigurable logic
are netlist files.

Specify Reconfigurable Logic Set:

Id MName

Library Location

Add Files...] ’ Add Directories, ..

|:| Copy Sources into Project
[/] Add Sources from Subdirectories

) [+ [%]

==
&

<Back || Mext> | Fnsh | [cancel

Y

4. Select the partial reconfiguration partition module instance in the ‘Specify Reconfigurable Logic
Set:’ drop box.

5. Click the ‘Add Files’ button.

6. Navigate to the modified ‘sirc_icon.edif’ and select it.

7. Click the ‘OK’ button

[E] Add Sources Lﬂ1

Add Reconfigurable Logic Sources
a

Specify reconfigurable logic spedfic files, or directories, to add to your project. Valid source types for reconfigurable logic f
are netlist files, oS

Specify Reconfigurable Logic Set: | &= tm#org -

Id Mame Library Location
1 sirc_icon.edif MfA D:\FRPGAVSIRC\SIRCReleasey 1. 1\HW _Example_13_2_ML&05_priSynthesis\Staticljpoore_dir

| Add Files. ..] [Add Directories...

Copy Sources into Project

Add Sources from Subdirectories

[< Back ” Mext =][Einish][Cancel

8. Repeat steps 5 through 7 for the ‘sirc_ila.ngc’.

-
Add Sources
Add Reconfigurable Logic Sources
Specify reconfigurable logic spedific files, or directories, to add to your project. Valid source types for reconfigurable logic
are netlist files.
Specify Reconfigurable Logic Set:
Id Mame Library Location
1 sirc_jcon.edif MNfA D:\FPGA\SIRCISIRCReleaseV 1, 1\HW_Example_13_2_MLA0S_priSynthesis\Staticipcore_dir
i 2 sirc_ila.ngc MfA D:\FPGA\SIRCYSIRCReleaseV' 1. 1'HW _Example_13_2 MLADS_priSynthesis\Staticlipcore_dir
%]
. Ed
&4
i Add Files... | ’ Add Directories. ..
Copy Sources into Project
[/] Add Sources from Subdirectories
<Back || MNext> || FEnsh | [Cancel ||
9. Click the ‘Next’ button.
F b
Add Sources u
Add Sources Summary

g\ J @ 2 reconfigurable logic spedific source files or directories will be added to your project.

PIanAhead To add sources, please dick Finish

[< Back]| Mext= |f Finish |[Cancel

10. Review the summary and click the ‘Finish’ button.

The advantage of this approach as opposed to placing the Chipscope modules in the static regions is that
to implement the partial reconfiguration region, it is first required to implement the static region. Then
as long as no changes are required, that implementation is reused for every instance of the partial
reconfiguration region. This means that so long as the resources allocated to the partial reconfiguration
partition are adequate for the user circuit and the Chipscope debug cores, the impact of the debug logic
can be limited to the user circuit and reduce the cases of the debug logic greatly modifying the design
being debugged. This also reduces the debug cycle by only requiring the reimplementation of the partial
reconfiguration partition.

Chipscope can only support connecting to one ICON within the FPGA. The FPGA has four JTAG chain
positions. The Chipscope software on the host PC will always connect to the first ICON it sees on the
JTAG chain (e.g. 1 before 2 before 3 before 4). It is possible to have more than one ICON in the design
on different positions. If an ICON is in the static, it should be on the last position such that if a partial
reconfiguration partition instance is loaded with an ICON, the host will connect to that one before the
one in the static when debugging the user circuit.

Chipscope ICON in Static and ILA in PR Partition [5]

The debugging use cases presented thus far make it possible to debug partial reconfiguration designs
using the existing tools. However, these have the limitation of only allowing the developer to debug the
static and partial reconfiguration partition in isolation from each other. A hybrid solution may be
appropriate when designing a general purpose platform using partial reconfiguration, e.g. when the
debugging infrastructure is included as a feature of the system.

The Chipscope ICON can be connected to 15 ILAs cores. By implementing a single ICON in the static
region and connecting the control ports to an ILA in the static and the partial reconfiguration partition, it
is possible to debug the static and user circuits. In this way, it would also be possible to have multiple
partial reconfiguration partition with their own ILA for debugging when necessary and removed for
production and deployment. The ICON and ILA in the static would remain as a debugging feature of the
system platform.

This use cases has several advantages but it requires a little more information and effort to implement
than the previous cases. The first issue is that the control ports of the ICON and ILA are declared as
INOUT ports. The design rules do not allow for bidirectional signals on the partial reconfiguration
partition. Fortunately, these control signals are not truly bidirectional. Xilinx has chosen to declare
these as INOUT so they can collect the different signals, both input and output, into a single bus. If you
know the directions of each wire in the bus, it is possible to separate it out using a wrapper. The
following are example wrappers that can be used.

module sirc_icon_wrapper(

input CONTROLO_TO_ICON,
output [34:0] CONTROLO_TO_ILA,
input CONTROL1_TO_ICON,
output [34:0] CONTROL1_TO_ILA,
output TDO_OUT,;

input TDI_IN;

input RESET_IN;

input SHIFT_IN;

input UPDATE_IN;

input CAPTURE_IN;

input SEL_IN;

input DRCK_IN;

)i

wire [35:0] CONTROLO;

wire [35:0] CONTROL1Z,;

assign CONTROLO_TO_ILA[2:0]
assign CONTROLO_TO_ILA[34:3]
assign CONTROLO[3]

CONTROLO[2:0];
CONTROLO[35:4];
CONTROLO_TO_ICON;

assign CONTROL1_TO_ILA[2:0]
assign CONTROL1_TO_ILA[34:3]
assign CONTROL1[3]

CONTROL1[2:0];
CONTROL1[35:4];
CONTROL1_TO_ICON;

sirc_ic on scsi(
.CONTROLO(CONTROLO),
.CONTROL1(CONTROL1),

.TDO_OUT(TDO_OUT),
TDIL_IN(TDL_IN),
.RESET_IN(RESET_IN),
SHIFT_IN(SHIFT_IN),
.UPDATE_IN(UPDATE_IN),
.CAPTURE_IN(CAPTURE_IN),
.SEL_IN(SEL_IN),
.DRCK_IN(DRCK_IN)

);

endmodule

module sirc_ila_wrapper(

output CONTROL_TO_ICON,
input [34:0] CONTROL_TO_ILA,
input CLK,

input [255:0] TRIGO

wire [35:0] CONTROL;

assign CONTROL[2:0]
assign CONTROL[35:4]

CONTROL_TO_ILA[2:0];
CONTROL_TO_ILA[34:3];

assign CONTROL_TO_ICON CONTROL[3];
sirc_ ila scii(

.CONTROL(CONTROL),

.CLK(CLK),

TRIGO(TRIGO)

endmodule

After these or similar wrappers including the previously generated Chipscope IP Cores have been added
the appropriate synthesis projects, the next step is to insert them into the design. To add the ILA into
the partial reconfiguration partition, make the following additions to the user circuit module. This will
add the ILA to the user circuit and output the control signals to the static region where they will be
connected to the ICON.

module simpleTestModuleOne #(
) (
output CONTROL_TO_ICON,

input [34:0] CONTROL_TO_ILA,

);

assign TRIG = <insert signals here>;

sirc_ila_wrapper scii(
.CONTROL_TO_ICON(CONTROL_TO_ICON),
.CONTROL_TO_ILA(CONTROL_TO_ILA),
.CLK(clk),

.TRIGO(TRIG)

);

endmodule

Next, add the BSCAN and ICON to the static region by making the following changes to the top level
module.

Here an ICON is added with two control ports. To generate an ICON with two control ports return to
‘Manually Generating Chipscope IP Cores using CoreGen’ and follow the procedure except change the
number of control ports from one to two.

The first control port is connected to an ILA in the static region that can be used for debugging scenarios
that involve crossing the partition boundary. The second control port is connected user circuit module
using the ports added in the previous steps for adding the ILA in the partial reconfiguration partition.

The BSCAN is still required for this ICON because we have chosen not to include it inside of the ICON for
these examples. Here it is recommend using the original ICON with the BUFG rather than the modified
one with the BUFR.

wire CAPTURE_BS;
wire DRCK_BS;
wire RESET_BS;
wire RUNTEST_BS;
wire SEL_BS;

wire SHIFT_BS;
wire TCK_BS;

wire TDI_BS;

wire TMS_BS;

wire UPDATE_BS;
wire TDO_BS;

wire CONTROLO_TO_ICON,
wire [34:0] CONTROLO_TO_ILA,
wire CONTROL1_TO_ICON,
wire [34:0] CONTROL1_TO_ILA,
wire [255:0] TRIG;

assign TRIG = <insert signals here>;

bscan_wrapper #(

JTAG_CHAIN(1)

) bsw(
.CAPTURE(CAPTURE_BS),
.DRCK(DRCK_BS),
.RESET(RESET_BS),
.RUNTEST(RUNTEST_BS),
.SEL(SEL_BS),
.SHIFT(SHIFT_BS),
.TCK(TCK__BS),
.TDI(TDI__BS),
.TMS(TMS__BS),
.UPDATE(UPDATE_BS),
.TDO(TDO_BS)

sirc_icon_wrapper scsi(
.CONTROLO_TO_ICON(CONTROLO_TO_ICON),
.CONTROLO_TO_ILA(CONTROLO_TO_ILA),
.CONTROL1_TO_ICON(CONTROL1_TO_ICON),
.CONTROL1_TO_ILA(CONTROL1_TO_ILA),
.TDO_OUT(TDO_BS),
.TDI_IN(TDI_BS),
.RESET_IN(RESET_BS),
.SHIFT_IN(SHIFT_BS),
.UPDATE_IN(UPDATE_BS),
.CAPTURE_IN(CAPTURE_BS),
.SEL_IN(SEL_BS),

.DRCK_IN(DRCK_BS)

)i

sirc_ila_wrapper scii(
.CONTROL_TO_ICON(CONTROLO_TO_ICON),
.CONTROL_TO_ILA(CONTROLO_TO_ILA),
.CLK(clk),

.TRIGO(TRIG)

)i

simpleTestModuleOne #(

)t

.CONTROL_TO_ICON(CONTROL1_TO_ICON),

.CONTROL_TO_ILA(CONTROL1_TO_ILA)

)I

Resynthesize the static and user modules netlist and update the file in the PlanAhead project. Go to the
Sources pane and right-clicking on the ‘simpleTestModuleOne.ngc’ file. In the menu, select ‘Update
File’. Follow the dialogue to import the updated netlist. Repeat for system.ngc. In the ‘Netlists’ pane,
right-click on the module instance that was just updated and select from the menu ‘Set as Active
Reconfigurable Module’. The Chipscope modules should appear as black boxes. In order to proceed,
these black boxes must be resolved. . In the File Menu, select ‘Add Sources’ and follow the dialog for
‘Add Design Sources’ to add the netlist files for the ICON, sirc_icon.ngc. Add the netlist for the ILA using
steps similar to ‘Resolving Black Boxes of Chipscope IP Core Modules’ for the sirc_ila.ngc. With the
netlists updated with the appropriate fixes, repeat the steps in ‘Implement Designs’

In this scenario the debugging infrastructure is included as part of the static platform. The impact of the
debugging logic is for the most part known and accounted for. It will not change so long as you use this
version of the static platform. In this way, you have greatly limited how much the debugging logic will
change your design, one of the greatest aggravations of FPGA on-chip debuggers. Additionally, this
scenario provides the greatest visibility of both the static platform and the user module being debugged.

References

1. Ken Eguro. “SIRC: An Extensible Reconfigurable Computing APL.” Proc. IEEE Symposium on
Field-Programmable Custom Computing Machines 2010 (FCCM 2010).

2. Xilinx, Inc. “Chipscope Pro Software and Cores User Guide.” Xilinx UG029, July 6, 2011.
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13 2/chipscope pro sw_cor
es ug029.pdf

3. Xilinx, Inc. “ML605 Hardware User Guide.” Xilinx UG534. July 18, 2011.
http://www.xilinx.com/support/documentation/boards _and kits/ug534.pdf

4. Xilinx, Inc. “Partial Reconfiguration User Guide.” Xilinx UG702. July 6, 2011.
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13 2/ug702.pdf

5. Xilinx, Inc. “Partial Reconfiguration — Can | insert Chipscope Cores within Reconfigurable
Modules?” Answer Record 42899. December 8, 2011.
http://www.xilinx.com/support/answers/42899.

6. Xilinx, Inc. Xilinx Homepage. www.xilinx.com

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/chipscope_pro_sw_cores_ug029.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/chipscope_pro_sw_cores_ug029.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/ug702.pdf
http://www.xilinx.com/support/answers/42899
http://www.xilinx.com/

