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Abstract
A quFile is a unifying abstraction that simplifies data
management by encapsulating different physical repre-
sentations of the same logical data. Similar to a quBit
(quantum bit), the particular representation of the logi-
cal data displayed by a quFile is not determined until the
moment it is needed. The representation returned by a
quFile is specified by a data-specific policy that can take
into account context such as the application requesting
the data, the device on which data is accessed, screen
size, and battery status. We demonstrate the general-
ity of the quFile abstraction by using it to implement
six case studies: resource management, copy-on-write
versioning, data redaction, resource-aware directories,
application-aware adaptation, and platform-specific en-
coding. Most quFile policies were expressed using less
than one hundred lines of code. Our experimental results
show that, with caching and other performance optimiza-
tions, quFiles add less than 1% overhead to application-
level file system benchmarks.

1 Introduction

It has become increasingly common for new stor-
age systems to implementcontext-aware adaptation, in
which different representations of the same object are re-
turned based on the context in which the object is ac-
cessed. For instance, many systems transcode data to
meet the screen size constraints of mobile devices [5, 12].
Others display reduced fidelity representations to meet
constraints on resources such as network bandwidth [8,
27] and battery energy [11], display redacted representa-
tions of data files when they are viewed at insecure loca-
tions [22, 42], and create different formats of multimedia
data for diverse devices [29].

These systems, and many others, have been successful
at addressing specific needs for adapting the representa-
tion of data to fit a given context. However, they suffer
from several problems that inhibit their wide-scale adop-
tion. First, building such systems is time-consuming.
Most required several person-years to build a prototype;
porting them to mainstream environments would be dif-
ficult at best. Second, each system presents a different
abstraction and interface, so each has a learning curve.
Third, these systems typically present only a single logi-
cal view of data, making it difficult for users to pierce the
abstraction and explicitly choose different presentations.

Why are there so many systems that share the same
premise, yet have completely separate implementations?
The answer is that, as a community, we have failed to
recognize that there is a fundamental abstraction that un-
derlies all these systems. This simple abstraction is the
ability to view different representations of the same log-
ical data in different contexts.

In this paper, we argue that this new abstraction,
which we refer to as a quFile, should be implemented as
a first-class file system entity. A quFile encapsulates dif-
ferent physical representations of the same logical data.
Similar to a quBit (quantum bit), the particular represen-
tation of the logical data displayed by a quFile is not de-
termined until the moment it is needed. The representa-
tion returned by a quFile is specified by a data-specific
policy that can take into account context such as the ap-
plication requesting the data, the device on which data is
accessed, screen size, and battery status.

quFiles provide amechanism/policy split. In other
words, they provide a common mechanism for dynam-
ically resolving logical data items to specific represen-
tations in different contexts. A common mechanism re-
duces the time to develop new context-sensitive systems;
developers only need to write code that expresses their
new policies because quFiles already provide the mecha-
nism. A common mechanism also makes deploying new
systems easier. Since the file system provides a unify-
ing mechanism, a new policy can be inserted simply by
creating another quFile.

quFiles provide transparency for quFile-unaware
users and applications. Each quFile policy defines ade-
fault viewthat makes the observable behavior of the file
system indistinguishable from the behavior of a file sys-
tem without quFiles that happens to contain the correct
data for the current context. This transparency has a pow-
erful property: no application modification is required to
benefit from quFiles. The default view also providesen-
capsulationby hiding the messy details of the physical
representation and exporting only a context-specific log-
ical view of the data.

For users and applications that are quFile-aware, a
single logical representation of the data is often not
enough. For instance, some users may wish to view the
data in the quFile as it is actually stored or see a differ-
ent logical presentation of data than the one provided by
default. quFiles support this functionality through their



viewsinterface. All quFiles export araw viewthat allows
the physical representation of data within a quFile to be
directly viewed and manipulated. In addition, quFile
policies may define any number ofcustom views, each
of which is an alternate logical representation of the data
contained within the quFile. Users and applications se-
lect views using a special filename suffix, an interface
that allows users to select views even when using un-
modified commercial-off-the-shelf (COTS) applications.

How good is the quFile abstraction? We demonstrate
its generality by implementing both ideas previously
proposed by the research community (application-aware
adaptation, copy-on-write file systems, location-aware
document redaction, and platform-specific caching) and
new ideas enabled by the abstraction (using spare stor-
age to save battery energy and resource-aware directo-
ries). Our experience suggests a “natural fitness” for im-
plementing context-aware policies using quFiles: com-
pared to the multiple developer-years required to imple-
ment each of the existing systems described above, a
single graduate student implemented each new policy in
less than two weeks using quFiles. Further, policies re-
quired only 84 lines of code on average. Our results show
that, with caching and other performance optimizations,
quFiles add less than 1% overhead to application-level
file system benchmarks.

2 Related Work

A quFile is a new abstraction that encapsulates dif-
ferent physical representations of the same logical data
and dynamically returns the correct representation of the
logical data for the context in which it is accessed.

quFiles are not an extensibility mechanism. Instead,
they are an abstraction that uses safe extensibility mech-
anisms (Sprockets [30] in our implementation) to ex-
ecute policies. Thus, quFiles could use previously-
proposed operating system extensibility mechanisms
such as Spin [3], Exokernel [10], or Vino [39], as well
as file system extensibility mechanisms such as Watch-
dogs [4] or FUSE [13]. Compared to Watchdogs and
FUSE, quFiles present a minimal interface that focuses
on contextual awareness; this results in policies that can
be expressed in only a few lines of code.

A quFile can be thought of as the file system equiva-
lent of a materialized view in a relational database [17].
Unlike materialized views, quFiles return different data
depending on the context in which they are accessed, and
they operate on file data, which has no fixed schema.
Similarly, OdeFS [14] presents a transparent file system
view of data stored in a relational database. However,
unlike quFiles, OdeFS objects are always statically re-
solved to the same view.

Multiple systems adapt the fidelity of data presented
to clients. Since a full discussion of this body of work
is outside the scope of this paper, we only list here

those systems that directly inspired our quFile case stud-
ies. These include systems that transcode data to meet
screen size constraints [12], network bandwidth limi-
tations [8, 27], battery energy constraints [11], format
decoding limitations [29], or storage restrictions [33].
These previous systems either require application or op-
erating system modification or the addition of an in-
termediary proxy that performs data adaptation. With
quFiles, we propose a unified mechanism within the file
system that can dynamically invoke any adaptation pol-
icy.

To simplify data management across multiple devices,
Cimbiosys [34], PRACTI [2], and Perspective [36] al-
low clients to specify which files to replicate with query-
based filters. quFiles could complement filters by adding
context-awareness to replication policies.

Some file systems allow limited dynamic resolution
of file content. Mac OS X Bundles [6] are file sys-
tem directories that resolve to a platform-specific binary
when accessed through the Mac OS X Finder. Simi-
larly, AFS [18] has an “@sys” directory that resolves
to the binary appropriate for a particular client’s archi-
tecture. quFiles are a more general abstraction that cap-
ture these specific instances that embed particular res-
olution policies into the file system. NTFS has Alter-
nate Data Streams [35] that support multiple represen-
tations of data within a file. However, unlike quFiles,
NTFS does not currently support safe execution of arbi-
trary application policies to determine which representa-
tion should be accessed.

We describe one metadata edit policy for low-fidelity
files. Other quFile policies could be implemented to sup-
port adaptation-aware editing [7]. One possible approach
is to layer updates separately from the data they modify
and reconcile the high-fidelity original with the edit layer
at a later time [32].

Past approaches such as Xerox’s Placeless Docu-
ments [9] and Gifford’s Semantic File Systems [15] sug-
gest semantic or property-based mechanisms to better or-
ganize and manage data in a file system. quFiles share
the same goals of improving organization and simpli-
fying management, but we have chosen a backward-
compatible design that works within existing file sys-
tems, rather than requiring a system re-write. The Se-
mantic File System provides virtualized directories of
files with similar attributes, whereas quFiles virtualize
name and content of data within a directory based on
context.

Schilit et al. advocate context-aware computing appli-
cations [38] and identify four major categories of appli-
cations. Of these, quFiles support context-triggered ac-
tions, as well as contextual information and command-
based applications. While Schilit et al. focus on us-
ability and the graphical user interface, quFiles focus on
supporting different views of the data in the file system.



Building on these ideas, context-aware middleware [21]
allows applications to modify the presentation of data de-
pending on access context. However, these systems re-
quire application modification, e.g., to subscribe to con-
text events. quFiles provide similar functionality trans-
parently to unmodified applications by manipulating the
file system interface.

3 Design goals

We next describe the goals that we aimed to achieve
with our design of quFiles.

3.1 Be transparent to the quFile-unaware
We designed quFiles to be transparent by default.

quFiles hide their presence from users and applications
unaware of their existence. We say quFiles are transpar-
ent if the observable behavior of a file system containing
quFiles is indistinguishable from the behavior of a file
system without quFiles that contains the correct data for
the current context.Consider a quFile that contains mul-
tiple formats of a video and returns the one appropriate
for the media player that accesses the data. In this case,
the application need not be aware of the quFile. It per-
ceives that the file system contains a single instance of
the video that happens to be one it can play. In general,
a quFile may dynamically resolve to zero, one, or many
files located in the directory in which it resides; we refer
to this logical representation as the quFile’sdefault view.

The default view provides the backward compatibil-
ity required to use COTS applications. Without modi-
fication, such applications must be quFile-unaware, so
the context-specific presentation of data must be accom-
plished by presenting the illusion of a file system without
quFiles that contains the appropriate data. The default
view also reduces the cognitive load on the user by re-
moving the need to reason about which representation of
data should be accessed in the current context. Instead,
the policy executed by the quFile mechanism makes this
decision transparently.

Note that our definition of transparency applies to any
specific point in time. When context changes, the ap-
propriate representation to return may also change. This
implies that a quFile-unaware user or application may
observe that the contents of the file system change over
time. This behavior is the same as that seen when another
application or user modifies a file. For instance, a quFile
may redact files to remove sensitive content when data
is accessed at insecure locations. A user will necessarily
notice that the contents of the file change after moving
from home to a coffee shop. However, the quFilemech-
anismitself remains transparent, so the same application
can display the file in both contexts.

3.2 Don’t hide power from the quFile-aware
A quFile does not hide power from users and appli-

cations that wish to view and manipulate data directly.
Instead, a quFile allows them to select among different
views, each of which is a different presentation of its
data. In addition to the default view described in the
previous section, each quFile also presents araw view
that shows the data within the quFile as files within a di-
rectory. The raw view might include, for example, an
original object, all materialized alternate representations
of that object, as well as the links to policies that govern
the quFile. quFile-aware utilities typically use the raw
view to manipulate quFile contents directly.

The raw and default views represent the two end-
points on the spectrum of transparency. In between, a
quFile’s policy may define any number of additionalcus-
tom views. A custom view returns a different logical rep-
resentation of the data than that provided by the default
view. A quFile-aware user or application can specify the
name of a custom view when accessing a quFile to switch
to an alternate representation. In effect, the name of the
custom view becomes an additional source of context.

For example, consider a quFile that keeps old versions
of a file for archival purposes along with the file’s current
version. The quFile’s default view returns a representa-
tion equivalent to the file’s current version. In the com-
mon case, the file system is as easy to use as one that does
not support versioning because its outward appearance is
equivalent to that of one without versioning. However,
when a backup version is needed, the user should be able
to see all the previous versions of the file and select the
correct representation. The quFile policy therefore de-
fines aversions custom view that shows all past ver-
sions in addition to the current one. Another custom view
(a yesterday view) might show the state of all files as
they existed at midnight of the previous day, and so on.
Finally, a utility that removes older versions to save disk
space may need to see incremental change logs, not just
checkpoints, so that it can compact delta changes to re-
duce storage use. This utility uses the quFile’s raw view.

quFiles distinguish between application transparency
and user transparency. In the above example, a user may
view previous versions of a file usingls or a graph-
ical file browser. The user is quFile-aware, but the
file browser is quFile-unaware. This scenario is tricky
because the user must pass quFile-specific information
through the unmodified application to the quFile policy.
We solve this dilemma by using the file name, which is
generally treated as a black box by applications to encode
view selection. Specifically, for a directorypapers, the
user may select the versions custom view by specifying
the namepapers.quFile.versions or the raw view
by specifyingpapers.quFile, which is shorthand for
papers.quFile.raw.



3.3 Support both static and dynamic content
quFiles support both static and dynamic content.

When data is read from a quFile, the file names and
content returned might either be that of files stored
within the quFile or new values generated on the fly.
Storing and returning static content within the quFile
amortizes the work of generating content across multi-
ple reads. Static content can also reduce the load on
resource-impoverished mobile devices; e.g., rather than
transcode a video on demand on a mobile computer, we
pre-transcode the video on a desktop and store the result
in a quFile. On the other hand, dynamic content genera-
tion is useful when all context-dependent versions cannot
be enumerated easily. For instance, our versioning quFile
dynamically creates checkpoints of files at specific points
in time from an undo log of delta changes.

3.4 Be flexible for policy writers
quFiles support not just the resolution policies that we

have implemented so far, but also resolution policies that
we have yet to imagine. We provide this flexibility by
allowing resolution policies to be specified as short code
modules in libraries that are dynamically loaded when
a quFile is accessed. Each quFile links to the specific
policies that govern it: aname policy that determines its
name(s) in a given context, acontent policy that deter-
mines its contents in a given context, and anedit pol-
icy that describes how its contents may be modified. A
quFile may optionally link to twocache policies that di-
rect how its contents are cached. These policies are easy
to craft; the policies for our six case studies average only
84 lines of code.

Executing arbitrary code within the file system is dan-
gerous, so policies are executed in a user-level sandbox.
Our current implementation can use Sprocket [30] soft-
ware fault isolation to ensure that buggy policies do not
damage the file system or consume unbounded resources
(e.g., by executing an infinite loop); other safe execution
methods should work equally well.

4 Implementation

4.1 Overview
To illustrate how quFiles work, we briefly describe

one quFile we developed. This quFile returns videos for-
matted appropriately for the device on which the video
is viewed. When a new video is added to the file system,
a quFile-aware transcoder utility learns of the new file
through a file system change notification. The transcoder
creates alternate representations of the video sized and
formatted for display on the different clients of the file
system. It then creates a quFile and moves the origi-
nal and alternate representations into the quFile using the
quFile’s raw view.

The transcoder also sets specific policies that govern

the behavior and resolution of the quFile. Aname policy
determines the name of a quFile in a given context. If the
quFile dynamically resolves to multiple files, the policy
returns all resolved names in a list. For example, one
author owns a DVR that displays only TiVo files, which
must have a file name ending in.TiVo. Thename policy
thus returnsfoo.TiVo when a video is viewed using the
DVR andfoo.mp4 otherwise.

A content policy determines the content of the
quFile in a given context. This policy is called once
for each name returned by a quFile’sname policy. In
the video example, thecontent policy returns the alter-
nate representation in the TiVo format when the quFile
is viewed on the DVR, an alternate representation for
a smaller screen size when the quFile is viewed on a
Nokia N800 Internet tablet, and the original representa-
tion when the quFile is viewed on a laptop. Note that the
example quFile resolves to the same name on the N800
and the laptop, yet it resolves to different content on each
device. Thus, COTS video players see only the video in
the format they can play. Users who are quFile-unaware
see the same video when they list the directory, but a
quFile-aware power user could use the raw view to see
all transcodings.

An edit policy specifies whether specific changes are
allowed to the contents of a quFile. For instance, the user
may modify the metadata of a lower-fidelity representa-
tion on the N800. In this case, the video transcoder is
notified of the edit, and it makes corresponding modifica-
tions to the metadata of the other representations. How-
ever, changes to the actual video are disallowed since
there is no easy way to reflect changes made to a low-
fidelity version to higher-fidelity representations.

Two optionalcache policies specify context-aware
prefetching and cache eviction policies for the quFile and
its contents. These policies help manage the cache of dis-
tributed file systems [18, 20, 26] that persistently store
data on the disk of a file system client. For the example
quFile, thecache policies ensure that only the format
needed for a specific device is cached on that device.

4.2 Background: BlueFS
The quFile design is sufficiently generic so that quFile

support can be added to most local and distributed file
systems. For our prototype implementation, we added
quFile support to the Blue File System [26] (BlueFS) be-
cause BlueFS targets mobile and consumer usage scenar-
ios for which quFiles are particularly useful and because
we were familiar with the code base. BlueFS is an open-
source, server-based distributed file system with support
for both traditional computers and mobile devices such
as cell phones. Additionally, BlueFS can cache data on
a device’s local storage and on removable storage media
to improve performance and support disconnected oper-
ation [20]. BlueFS has a small kernel module that man-



name policy (IN list of quFile contents, IN view name (if specified),
OUT list of file names, OUT cache lifetime);

content policy (IN filename, IN list of quFile contents, IN view name (if specified),
OUT fileid, OUT cache lifetime);

edit policy (IN fileid, IN edit type, IN offset, IN size, OUT enum {ALLOW, DISALLOW, VERSION})
cache insert policy (IN list of quFile contents, OUT list of fileids to cache)
cache eviction policy (IN fileid, OUT enum {EVICT, RETAIN})

Figure 1. quFile API

ages file system data in the kernel’s caches. The ker-
nel module redirects most VFS operations to a user-level
daemon. To support quFiles, we made small modifica-
tions to both the kernel module and daemon, while the
file server remained unchanged. For simplicity, we also
use BlueFS’ persistent query [29] mechanism to deliver
file change notifications.

4.3 Physical representation of a quFile
Logically, a quFile is a new type of file system object.

A quFile is similar to a directory in that they both contain
other file system objects. The difference between quFiles
and directories is their resolution policies. Directory res-
olution policies arestatic: given the same content, a di-
rectory returns the same results. quFile resolution poli-
cies aredynamic: the same content may resolve differ-
ently in different contexts. Further, users and applica-
tions must be aware of directories since they add another
layer to the file system hierarchy, whereas quFiles can
hide their presence by simply adding resolved files to the
listing of their parent directories.

Using this observation, we reduce the amount of new
code required to add quFiles to a file system by hav-
ing the physical (on-disk and in-memory) representa-
tion of a quFile be the same as a directory, but we re-
define a quFile’s VFS operations to provide different
functionality than that provided by a directory. We seg-
ment the namespace to differentiate quFiles from reg-
ular directories. All quFiles have names of the form
<name>.quFile. While we considered other methods
of differentiating the two, such as using a different file
mode, a special filename extension allows quFile-aware
utilities to manipulate quFiles without changing the file
system interface. For example, the video transcoder
simply issues the commandsmkdir foo.quFile and
mv /tmp/foo.mp4 foo.quFile to create a quFile and
populate it with the original video. The only disadvan-
tage of namespace differentiation is the unlikely possibil-
ity that a quFile-unaware application might try to create
a directory that ends with.quFile. Note that the quFile-
aware transcoder uses the quFile’s raw view to manipu-
late its contents; this allows it to use COTS file system
utilities such asmv. Video players will see the default
view since they will not use the special.quFile exten-
sion. When they list the directory containing the quFile,
they will see an entry for eitherfoo.mp4 or foo.TiVo.

4.4 quFile policies
Figure 1 shows the programming interface for all

quFile policies. Policies are stored in shared libraries
in the file system. When a quFile is created, utilities
such as the video transcoder create links in the quFile
to the libraries for its specific policies. Links share poli-
cies across quFiles of the same type, simplifying man-
agement and reducing storage usage.
4.4.1 Name policies

A name policy lets a quFile have different logical
names in different contexts. To make the existence of
a quFile transparent to quFile-unaware applications and
users, a VFSreaddir on the parent directory of a quFile
does not return the quFile’s name; instead, it returns the
names of zero to many logical representations of the data
encapsulated within the quFile. quFiles interpose on the
parent’sreaddir because that is when the filenames of
the children of a directory are returned to an application.

If readdir encounters a directory entry with the re-
served.quFile extension, it makes a downcall to the
BlueFS daemon, which runs thename policy for that
quFile. The kernel reads the quFile’s static contents from
the page cache and passes the contents to the daemon.

The user may optionally specify the name of a view
for thename policy. For example, instead of typingls
foo, a user could typels foo.quFile.versions to
show a directory listing that contains all versions retained
by the quFiles in the directory. The view name is passed
to thename policy without interpretation by the file sys-
tem. This allows a quFile-aware user to use a COTS ap-
plication such asls to list file versions when desired. As
mentioned previously, the syntaxls foo.quFile re-
turns the raw view of the quFile, which shows the quFile
and all its contents as a subdirectory withinfoo. This
syntax allows quFile-aware utilities and users to directly
manipulate quFile contents and policies.

Thename policy returns a list of zero to many logical
names. The kernel module then callsfilldir for each
name on the list to return them to the application reading
the directory. If no names are returned by the policy, the
kernel does not callfilldir. This hides the existence
of the quFile from the application.

In addition to returning the name of existing repre-
sentations encapsulated in a quFile, aname policy may
also dynamically instantiate new representations by re-
turning filenames that do not currently exist within the



quFile. To ensure that such names do not conflict with
other directory entries or names returned by other quFiles
within the directory, each quFile reserves a portion of the
directory namespace. For instance, the names returned
by foo.quFile must all start with the stringfoo; e.g.,
foo.mp3, foo.bar.txt, etc. Directory manipulation
functions such ascreate and rename ensure that the
claimed namespace does not conflict with current direc-
tory entries. For example, creating a quFilefoo.quFile

is disallowed if there currently exists within the direc-
tory a file namedfoo.txt or another quFile named
foo.tex.quFile.

To improve performance, aname policy may specify
a cache lifetime for the names it returns — the kernel
will not re-invoke thename policy for this time period.
By default, the kernel module does not cache entries if
no lifetime is specified, so the policy is reinvoked on the
nextreaddir and may return different entries if context
has changed. Cache lifetimes are useful for policies that
depend on slowly-changing context such as battery life.
4.4.2 Content policies

A content policy lets a quFile have different content
in different contexts. After reading a directory, an appli-
cation that is unaware of quFiles will believe that there
are one or more files with the logical names returned by
the quFile’sname policy within that directory. Thus, it
issues a VFSlookup for each logical name. Since no
such file exists, we modifylookup to return an inode of
a file containing the logical content associated with the
name in the given context.

The modified BlueFSlookup operation checks
whether the name being looked up resides within the di-
rectory namespace reserved by a quFile. If this is the
case, it makes a downcall to the BlueFS daemon, pass-
ing the filename being looked up, a list of the quFile’s
contents, and a view name if one was specified. The dae-
mon calls the quFile’scontent policy, which returns the
unique identifier of a file containing the appropriate con-
tent. The kernel modulelookup operation instantiates a
Linux dentry with the inode specified by the fileid re-
turned by the policy.

This implementation allows quFiles to create content
dynamically. Acontent policy can first create a new
file and populate it with content, then return the newly
created file to the kernel. Likename policies,content
policies may also specify a cache lifetime for the con-
tent they return. If a lifetime is not specified, the kernel
does not cache the resultingdentry, which forces a new
lookup the next time the content is accessed.
4.4.3 Edit policies

An edit policy specifies which modifications to a
quFile’s contents are allowed. Currently, quFiles sup-
port three actions: the modification can be allowed, dis-
allowed, or force the creation of a new version. We mod-

ified VFS operations such ascommit write andunlink
to make a downcall to the daemon when a quFile repre-
sentation is modified. The daemon runs theedit policy,
passing in the unique identifier of the file being modified
and the type of the modifying operation. For write oper-
ations, it also specifies the region of the file being mod-
ified. The policy returns an enum that specifies which
action to take.

If the edit is allowed, the modification proceeds as
normal. If it is disallowed, the kernel returns an error
code to the calling application specifying that the file is
read-only. If the edit should cause a new version, we
modify the representation in place but also save the pre-
vious version of the modified range in an undo log. We
chose to log changes rather than create a new copy of
the file for each version because many consumer files are
large (e.g., multimedia files) and are only partially modi-
fied (e.g., by updating an ID3 header). Modifications that
delete files such asunlink andrename cause the current
version of the file to be saved as a log checkpoint.
4.4.4 Cache policies

Our final two policies control the caching of quFile
data in the BlueFS on-disk cache. For a distributed file
system, the decision of what files to cache locally signif-
icantly impacts user experience when disconnected.

quFiles may optionally specify two cache policies. A
cache insert policy is called when a quFile is read
and may specify which of its contents to cache on disk.
Files specified by the cache insert policy are kept on a
per-cache list by the BlueFS daemon and are fetched and
stored when the daemon periodically prefetches data for
the cache. For instance, when a quFile containing the
recent episode of a favorite TV show is prefetched to a
portable video player, itscache insert policy might
specify that the video formatted for the video player, a
representation that resides in that quFile, should also be
prefetched. In contrast, when the same policy runs on a
laptop, it would specify that the full-quality video should
be fetched and cached instead. Thus, the policy ensures
that only the data needed to play the video on each device
is actually cached on the device’s disk.

A cache eviction policy is called when the file
system needs to reclaim disk space. The policy speci-
fies whether or not cached contents should be evicted.
Cache policies complement type-specific caching mech-
anisms in mobile storage systems [29, 34, 36] by adding
the ability to make cache decisions based on dynamic
context such as battery state or location.

4.5 Context library
Through the Sprocket interface, quFiles have read-

only access to all information available to the BlueFS
daemon. Thus, in principle, policies can extract arbi-
trary user-level context information in order to determine
which representations to return. However, for conve-



Function Returns
getUserName char* username
getUserGroupId uid t uid, gid t gid
getProcessName char* procname
getHostname char* hostname
getOSname char* osname
getOSversion char* release, char* version
getMachine char* family
getCPUvendor char* vendor, char* model
getCPUspeed double cpuSpeed
getCPUutil double utilization
getMemUtil double utilization
getPowerState enum{A/C, Battery}
getLocation double latitude, double longitude
getServerBandwidth double bandwidth
getServerLatency double latency

Table 1. quFile context library

nience, we have implemented a library against which
policies may link. This library contains the functions
shown in Table 1 that query commonly-used context.

4.6 File system requirements for quFiles
Since our current implementation leverages BlueFS,

it is useful to consider what features of BlueFS would
need to be supported by a file system before we could
port quFiles to that file system. First, quFiles require
a method to notify applications when files are created
or modified. While OS-specific notification mechanisms
such as Linux’s inotify [23] would suffice for a local file
system, BlueFS persistent queries are useful in that they
allow notifications to be delivered to any client of the dis-
tributed file system. Second, quFiles require a method
to isolate the execution of extensions. This could be as
simple as a user-level daemon process, or we could lever-
age existing extensibility research [3, 10, 39]. Finally,
quFiles reuse existing file system directory support, as
defined by POSIX.

5 Case Studies

The best way to evaluate the effectiveness and gen-
erality of a new abstraction is to implement several sys-
tems that use that abstraction to perform different tasks.
Thus, in this section, we describe six case studies that use
quFiles to extend the functionality of the file system. We
have used these quFile case studies within our research
group. The primary author of the paper has used quFiles
for the last 12 months, while others have used quFiles for
the past 6 months.

5.1 Resource management
One of the primary responsibilities of an operating

system is to manage system resources such as CPU,
memory, network, storage and power. While several re-
search projects have shown that context can be used to
craft more effective policies, almost every new proposed
policy has resulted in a new system being built [1, 8, 27].

quFiles simplify resource management in two ways.

First, they execute policies in the file system — thus,
developers need not create new middleware or modify
applications or the operating system. Second, develop-
ers only need to write resource management policies;
quFiles take care of the mechanism.

Our case study allows a mobile computer to save bat-
tery energy by utilizing its spare storage capacity. Music
playback is one of the most popular applications on mo-
bile devices. Most mobile devices store music in a lossy,
compressed format, such as the mp3 format, to conserve
storage space and reduce network transfer times. How-
ever, decoding compressed music files requires signifi-
cantly more computational power than playing uncom-
pressed versions. For instance, the experimental results
in Section 6.6 show a battery lifetime cost of 4–11%
across several mobile devices. Further, we conducted a
small survey to determine the amount of unused storage
on cell phones and mp3 players. 13 of 45 mp3 players
were over half empty, 18 were 50–90% full, and 14 were
over 90% full. 15 of 29 cell phones were over half empty,
10 were 50–90% full and 4 were over 90% full.

Our quFile uses the spare storage on a mobile com-
puter to store uncompressed versions of music files and
then transparently provides those uncompressed version
to music players to save energy. We built a quFile-aware
transcoder that is notified when a new mp3 file is added
to the distributed file system. The transcoder generates
an uncompressed version of the music file with the same
audio quality as the original, creates a quFile, links it to
our policies, and moves both the compressed and uncom-
pressed versions of the music file into the quFile using
its raw view. Since persistent queries provide the abil-
ity to run the transcoder on any BlueFS client, we gen-
erate alternate transcodings on a wall-powered desktop
computer. This shows one benefit of statically storing
alternate representations in a quFile rather than generat-
ing them on-demand: we can avoid performing work on
a resource-constrained device. In contrast, dynamically
generating transcodings on a mobile device could sub-
stantially drain its battery.

The quFilecache policies ensure that only otherwise
unused storage space is used to store uncompressed ver-
sions of music files. Using the normal BlueFS mecha-
nisms, a music file is cached on a client either when it is
first played or when it is prefetched by a user-specified
policy (e.g., that all music files should be cached on a
cell phone [29]). Since the music file is contained within
a quFile, the file system’slookup function must always
read the quFile before reading the music file. At this
time, the quFile’scache insert policy is run. The pol-
icy queries the amount of storage space available on the
device and adds the uncompressed representation to the
prefetch list if space is available.

Later, when BlueFS does a regularly-scheduled
prefetch of files for the mobile client, it retrieves files on



the prefetch list from the server if the mobile computer is
plugged in, has spare storage available, and has network
connectivity to the server. It adds these prefetched files to
its on-disk cache. When BlueFS needs to evict files from
the cache, it executes the quFile’scache eviction pol-
icy, which specifies that the uncompressed version is al-
ways evicted before any other data in the cache.

Thename andcontent policies return the name and
data for the uncompressed version of the music file if
the mobile device is operating on battery power and the
uncompressed version is cached on local storage, thereby
improving battery lifetime. If the uncompressed version
is not cached on the device, the original file is returned.

This case study demonstrates how quFiles achieve ap-
plication and user transparency. All actions described
above run automatically, without explicit user involve-
ment and without application modification.

5.2 Versioning: a copy-on-write file system
Copy-on-write file systems such as Elephant [37] and

ext3cow [31] create and retain previous versions of files
when they are modified. Users can examine previous ver-
sions and revert the current version to a past one when
desired. However, these systems are monolithic imple-
mentations, and the need to use new file systems has hin-
dered their adoption. Thus, we were curious to see if
quFiles could be used to add copy-on-write functionality
to an existing file system.

We created a copy-on-write quFile that adds the abil-
ity to retain past versions of files. A user may choose to
version any individual file, all files of a certain type, or
all files in a particular subtree of the file system. For
instance, a user might version all LaTeX source files.
A quFile-aware utility uses BlueFS persistent queries to
register for notifications when a file with the extension
.tex is created. When it receives a notification, e.g., that
foo.tex is being created, it creates a new quFile with
the namefoo.tex.quFile. It then uses the quFile’s
raw view to move the LaTeX file into the quFile and link
the quFile to the copy-on-write policies.

In addition to the current version of the file, each
copy-on-write quFile may contain possibly many older
versions of the file. A past version may be represented
as either acheckpoint, which is a complete past version
of the file, or areverse delta, which captures only the
changes needed to reconstruct that version from the next
most recent one. The reverse delta scheme is effectively
an undo log that reduces the storage space needed to
store past data; for instance, a change to the header of a
1 GB video file can be represented by a delta file only one
block in size. While reverse deltas save storage, gener-
ating a complete copy of a past version incurs additional
latency when one or more deltas are applied to a check-
point or the current version.

The quFile’sname andcontent policies simply re-

turn the current version of the file for the default view.
The quFile’s edit policy specifies that a new version
should be created on any modification, i.e., whenever a
file is closed, deleted, or renamed. Thus, when the user
opens a file and issues one or more writes, the old data
needed to undo his changes are saved to a new delta file
within the quFile. The modifications are written to the
current version of the file stored within the quFile. Be-
cause the default view exposes only the current version,
these actions and the presence of past versions are com-
pletely transparent.

Versioning the data overwritten by file writes often
consumes less storage and takes less time than creating
a full checkpoint. To further reduce the cost of version-
ing, quFiles create new versions at the granularity of file
open andclose operations, rather than at each individ-
ual write. Unlike write, operations such asrename
andunlink affect the entire file. For these operations,
the current version is moved to a checkpoint within the
quFile. Since there is no current version remaining, the
quFile’sname policy does not return a filename for the
default view, giving the appearance that the file has been
deleted. However, the old data can still be accessed via
the raw view or a custom view.

When the user wishes to view prior versions, she uses
the versions custom view (the.quFile.versions
extension). This allows the use of COTS applications
such asls and graphical file system browsers to view
versions. Whereas the default view only shows a sin-
gle file, foo.tex, in a directory, the custom view may
additionally show several past versions, e.g.,foo.tex,
foo.tex.ckpt.monday, foo.tex.ckpt.last week,
etc. When thename policy receives theversions key-
word, it returns the names of any past versions found in
the quFile’s undo log. A user may use theversions
keyword to specify all versions within a subtree;
for example,grep bar -Rn src.quFile.versions

searches for bar in all versions of all files in all subdi-
rectories ofsrc.

To conserve storage space, we dynamically generate
checkpoints of past versions when they are viewed us-
ing theversions view. The quFile’scontent policy
receives one of the names returned by thename policy.
It dynamically creates a new checkpoint file within the
quFile by applying the reverse deltas in succession to the
next most recent checkpoint or the current version of the
file. In addition to saving storage space, dynamic res-
olution also saves work in the common case where the
user never inspects a past version. The performance hit
of instantiating a previous checkpoint is taken only in the
uncommon case when a user recovers a past version.

We have also implemented a quFile-aware garbage
collection utility that runs as a cron job and removes
older versions to save disk space. One sample policy
maintains all prior versions less than one day old, one



version from the previous day, one from the prior two
days, and one additional version from each exponentially
increasing number of days.

5.3 Availability: resource-aware directories
Distributed file systems typically make no visible dis-

tinction between data cached locally and data that must
be fetched from a remote server. Unfortunately, the ab-
sence of this distinction is often frustrating. For instance,
a directory listing might reveal interesting multimedia
content that the user tries to view. However, the user
subsequently finds out that the content cannot be viewed
satisfactorily because it is not cached locally and the net-
work bandwidth to the server is insufficient to sustain the
bit rate required to play the content.

To address this problem, we created a resource-aware
directory listing policy that uses quFiles to tailor the con-
tents of the directory to match the resources available to
the computer. Our policy currently tailors directory list-
ings to reflect cache state and network bandwidth. We
can imagine similar policies that tailor listings to match
the availability of CPU cycles or battery energy.

If a multimedia file is cached on a computer, thename

policy’s default view returns its name to the application.
Otherwise, the policy returns the name of the multimedia
file only if the network bandwidth to the server is greater
than the bit rate needed to play the file.

The effect of thename policy is that a multimedia file
is not displayed by directory listings or media players if
there is insufficient network bandwidth to play it. Thus,
a media player that is shuffling randomly among songs
will not experience a glitch when it tries to play an un-
available song. A user will not have to experiment to find
out which songs can be played and which cannot.

However, our experience using this policy revealed
that sometimes we want to see files that are currently
unavailable when we list a directory. For instance, a
video player may support buffering, and we are will-
ing to tolerate a delay before we watch a video. We
therefore altered thename policy to support a custom
view that simply changes the name of a file fromfoo
to foo is currently unavailable when the file is
unplayable. The custom view is selected using the
keyword all; e.g., ls MyMusic.quFile.all shows
foo is currently unplayable, while ls MyMusic

does not show an entry for that file.

5.4 Security: context-aware data redaction
Mobile computers may be used at any location, in-

cluding those that are insecure. For this reason, infor-
mation scrubbing [19] has been proposed to protect, iso-
late and constrain private data on mobile devices. For
instance, a user may not want to view her bank records
or credit card information in a coffee shop or other pub-
lic venue because others may observe personal or sensi-

tive information by glancing at the screen. To help such
users, we created a quFile that shows only redacted ver-
sions of files with sensitive data removed when data is
viewed at insecure locations. The original data is dis-
played at secure locations.

This case study redacts only the presentation of data,
not the bytes stored on disk. Thus, it guards against in-
advertent display of data on a mobile computer, but not
against the computer being lost or stolen.

We first created a quFile-aware utility that redacts
XML files containing sensitive data. This utility is noti-
fied when files that may contain sensitive data are added
to the file system. While our utility can redact any XML
file using type-specific rules, we currently use it only for
GnuCash, a personal finance program that stores data in
a binary XML format. GnuCash [16] runs on Linux and
is compatible with the Quicken Interchange Format.

Our utility parses each GnuCash file and generates a
redacted version. The general-purpose redactor uses the
Xerces [41] XML parser to apply type-specific transfor-
mation rules that obfuscate sensitive data. Our current
rules obfuscate details such as account numbers, trans-
action details and dates, but leave the balances visible.
Finally, the utility creates a quFile and moves both the
original and redacted files into the quFile using its raw
view. The redactor generates these two static representa-
tions each time the file is modified.

When an application reads this quFile, our context-
aware declassification policy determines the location of
the mobile computer using a modified version of Place
Lab [25, 40]. If the computer is at a trusted location,
as specified by a configuration file, the original version
is returned. Otherwise the redacted version is displayed.
Since the file type of the original and redacted versions
are the same, thename policy returns the same name in
all locations; however the data returned by thecontent

policy may change as the user moves.
We did not need to modify GnuCash since it uses the

transparent default view. GnuCash simply displays the
original or redacted values in its GUI, depending on the
location of the mobile computer. A quFile-aware user
may override thecontent policy and view a different
version using the quFile’s raw view; e.g., by specifying
/bluefs/credit card.quFile/credit card.xml

instead of/bluefs/credit card.xml.

5.5 Application-aware adaptation: Odyssey
Odyssey [27] introduced the notion of application-

aware adaptation, in which the operating system moni-
tors resource availability and notifies applications of any
relevant changes. When notified by Odyssey of a re-
source level change, applications adjust the fidelity of the
data they consume. A drawback of Odyssey is that both
the operating system and applications must be modified.
However, we observe that almost all application modifi-



cation is due to implementing the adaptation policy and
mechanism inside the application. Thus, we decided to
re-implement the functionality of Odyssey using quFiles.
Unlike Odyssey, our quFile implementation requires no
application modification. The adaptation policy can be
removed from the application and cleanly specified us-
ing the quFile interface.

Our Odyssey implementation replicates Odyssey’s
Web (image viewing) application. A similar policy could
be used for other Odyssey data types such as speech,
maps [11], and 3-D graphics [24].

We created a utility that is notified when new JPEG
images such as photos are added to the file system. The
utility creates four additional lower-fidelity representa-
tions of the photo with varying JPEG quality levels.
It creates a quFile, links in our Odyssey policies, and
moves the lower-fidelity representations and the original
image into the quFile using its raw view.

When a photo viewer lists a directory containing an
image quFile, the Odysseyname policy returns the name
of the original image file. However, when the content
of the image is read, the quFile’scontent policy re-
turns the best quality representation that can be displayed
within one second.

Thecontent policy uses the context library to deter-
mine the client’s current bandwidth to the server. It reads
the size of each representation in the quFile starting with
the highest-fidelity, original representation and proceed-
ing to the lowest. If a representation is cached locally or
can be fetched from the server in less than a second, the
content policy returns the inode for that representation.
If no representation can meet the service time require-
ment, the lowest fidelity representation is returned.

The edit policy returns a context-specific value. It
allows all modifications to the original image since the
quFile-aware transcoder will be notified to regenerate al-
ternate representations from the modified original. How-
ever, the policy disallows modifications to multimedia
data in low-fidelity representations because it is unclear
how such modifications can be reflected back to the orig-
inal and other representations. This behavior is similar
to the one users see in other arenas (e.g., when they try
to save an Office document in a reduced-fidelity format
such as ASCII text).

After experimenting with this policy, we made two
further refinements. First, we realized that most edits to
multimedia files change only the metadata header, which
is identical across formats and quality levels. Thus, we
modified our policy to allow editing of metadata for low-
fidelity representations. The transcoder propagates meta-
data changes to other representations.

We also realized that some image editors rewrite the
entire image instead of just modifying its metadata. We
therefore modified ouredit policy to allow writes out-
side the metadata region if the data written is identical to

the data in the file. With these changes, all edits we at-
tempted to make to low-fidelity versions succeeded. Of
course, this is just one policy, and different applications
may craft other policies such as allowing edits to low-
fidelity data or creating multiple versions.

5.6 Platform-specific video display
Section 4.1 gave a brief overview of our last case

study, which transcodes videos to meet the resource con-
straints of file system clients. The authors currently use
TiVo DVRs, N800 Internet tablets, and laptop comput-
ers to display videos. When a new.TiVo file is recorded
and stored in BlueFS, a quFile-aware utility generates a
full-resolution.mp4 for the laptop and a lower-fidelity
.mp4 representation for the Nokia N800. Since the N800
has a lower screen resolution, we can save storage space
on that device by producing a video formatted specifi-
cally for the N800’s smaller display. The utility creates a
quFile and populates it with the original and transcoded
videos for each computer type described above. If we
were to use additional types of clients, our transcoder
could produce versions for those devices.

The name andcontent policies query the machine
type on which they are running using the context library
described in Section 4.5. Thename policy returns a
name ending with.TiVo when the video is read by the
DVR, as determined by seeing that the name of the re-
questing application is a TiVo-specific utility. Otherwise,
thename policy returns a name ending with.mp4. The
content policy determines the type of client using the
context library and returns the encoding appropriate for
that type. Thecache insert policy ensures that each
device only caches the video encoding it will display. We
use BlueFS’ type-specific affinity to prefetch such encod-
ings to each device. quFiles hide this manipulation from
video display applications, which therefore do not need
to be modified. In practice, we found that this cached
store of videos on the N800 made many a bus-ride more
enjoyable! We also implemented a simple eviction pol-
icy: when the device is running out of storage space, all
prefetched recordings are deleted before content the user
has explicitly cached.

6 Evaluation

While the case studies in the previous section il-
lustrate the generality of quFiles, we also verified that
quFiles do not add too much overhead to file system op-
erations and that the amount of code required to imple-
ment quFile policies is reasonable.

Unless otherwise stated, we evaluated quFiles on a
Dell GX620 desktop with a 3.4 GHz Pentium 4 proces-
sor and 3 GB of DRAM. The desktop runs Ubuntu Linux
8.04 (Linux kernel 2.6.24). The desktop runs both the
BlueFS server and client, and the BlueFS client does not
use a local disk cache.
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Figure 2. Time to list a directory with 100 images

We executed each experiment in three scenarios. In
the warm clientscenario, the kernel’s page cache con-
tains all BlueFS data read during the experiment (the
working sets of all experiments fit in memory). In the
cold clientscenario, no client data is in the kernel’s page
cache, but all server data is initially in the page cache.
Thus, the first time an application reads a file page or at-
tributes, an RPC is made to the server but no disk access
is required. In thecold serverscenario, no data is ini-
tially in any cache. On the first read, an RPC and a disk
access are required to retrieve the data.

6.1 Directory listing
Our first experiment evaluates the performance over-

head of quFiles for common file system operations by
measuring the time to list the files in a directory and their
attributes with the commandls -al. This is a worst-
case scenario for using quFiles since the listing incurs
the overhead of retrieving a quFile and executing both
the name andcontent policies to determine which at-
tributes to return for each file. Yet, there is minimal ad-
ditional work to amortize this overhead because the di-
rectory listing requires that only the attributes of the file
being listed be retrieved.

In our experiment, a directory contains 100 JPEG im-
ages. Each image is placed in a quFile that contains 4
additional low-fidelity representations and returns the ap-
propriate one for the available server bandwidth using the
Odyssey policy in Section 5.5.

The first bar for each scenario in Figure 2 shows a
lower performance bound generated by assuming that
Odyssey-like functionality is completely unsupported.
Each value shows the time to list a directory without
quFiles that contains only the original 100 JPEG images.

The second bar in each scenario shows the time to
list the directory using quFiles. The Odysseyname and
content policies return the name and content of the
original image since server bandwidth is abundant. If the
client cache is warm (which we expect to be the common
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Figure 3. Time to read 100 images

case for most file system operations), quFiles add less
than 3% overhead for this experiment (roughly 1.6µs per
file). If the client cache is cold, quFiles add 59% over-
head. For each file, quFiles execute two policies. There
is a measured overhead of 28µs per policy, almost en-
tirely due to user-level sandboxing. An additional 70µs
per file is required to fetch quFile attributes and contents
from the server. If both the client and server caches are
cold, the server performs two disk reads per file to read
the quFile attributes and data. In this case, quFiles im-
pose slightly less than a 3x overhead because disk reads
are the dominant cost and three reads per file are per-
formed with quFiles while only one read is performed
without quFiles. However, it should be noted that even
when both caches are cold, quFiles impose only 0.48 ms
of overhead per file in this worst-case scenario. Note that
the relative overhead of quFiles would decrease if file ac-
cesses were more random since, as directories, quFiles
can be placed on disk near the files they contain (mini-
mizing seeks).

While the first bar in each scenario in the figure pro-
vides a lower bound on performance, a fairer compar-
ison for Odyssey with quFiles is one in which all rep-
resentations are stored together in the same directory.
Odyssey uses this storage method for video, map, and
speech data [27, 11]. Thus, there are 500 files in the
directory. As the last bar in each scenario in Figure 2
shows, listing the directory takes over twice as long with-
out quFiles in the warm client and cold server scenarios,
and over 5 times as long in the cold client scenario. Be-
cause each quFile encapsulates many representations but
returns only one, quFiles fetch less data than a regular
file system when a naive storage layout policy is used.

Overall, we conclude that quFiles add minimal over-
head to common file system operations, especially when
the client cache is warm. Compared to naive file system
layouts, quFiles can sometimes improve performance
through their encapsulation properties.
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Figure 4. Time to make the Linux kernel

6.2 Reading data
Often, users and applications will read file data, not

just file attributes. We therefore ran a second mi-
crobenchmark that measures the time taken by thecat

utility to read all images in our test directory and pipe the
output to/dev/null. As Figure 3 shows, quFile overhead
is negligible in the warm client scenario, 3% in the cold
client scenario, and 5% in the cold server scenario. Al-
though the total overhead of quFile indirection remains
the same as in the previous experiment, that overhead is
now amortized across more file system activity. Thus,
relative overhead decreases substantially.

6.3 Andrew-style make benchmark
We next turned our attention to application-level

benchmarks. We started with a benchmark that measures
quFile overhead during a completemake of the Linux
2.6.24-2 kernel. Such benchmarks, while perhaps not
representative of modern workloads, have long been used
to stress file system performance [18].

We compare the time to build the Linux kernel on
BlueFS with and without quFiles. For the quFile test,
we created a kernel source tree in which all source files
(ending in .c, .h, or .S) are versioned using the copy-on-
write quFile described in Section 5.2. The kernel source
tree contains 23,062 files, of which 19,844 are versioned.
Each quFile contains the original file and a checkpoint of
approximately the same size as the original.

As Figure 4 shows, quFiles add negligible overhead
in the warm client scenario and 1% overhead in the cold
client and cold server scenarios. Even though kernel
source files are quite small (averaging 11,663 bytes per
file), many files such as headers are read multiple times,
meaning that the extra overhead of fetching quFile data
from the server can be amortized across multiple file
reads. Further, computation is a significant portion of
this benchmark, reducing the performance impact of I/O.

6.4 Kernel grep
We next ran a read-only benchmark that stresses file

I/O performance. We usedgrep to search through the
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Figure 5. Time to search through the Linux kernel

Linux source tree described in the previous section to
find all 9 occurrences of “removewait queuelocked”.

The first bar in each scenario of Figure 5 shows the
time to search through the Linux source without quFiles.
The second bar in each scenario shows the time to search
through the source with quFiles using the default view.
In this case, each quFile returns only the current version
of each source file. Thus, the results returned by the two
grep commands are identical.

In the warm client scenario, the performance ofgrep

with quFiles is within 1% of the performance without
quFiles. As we would expect, the overhead is larger
when there is no data in the client cache: 21% in the
cold cache scenario and 6% in the cold server scenario.

quFiles, however, allow greater functionality than
a regular file system. For instance, we can search
through not only the current versions of source files but
also all past versions by simply executinggrep -Rn

linux.quFile.versions wherelinux is the root of
the kernel source tree. This command, which uses the
versions view of the copy-on-write quFile, searches
through twice as much data and returns 18 matches.

The last bar in each scenario shows the time to ex-
ecutegrep using theversions view. Since approx-
imately twice as much data is read, the version-aware
search takes approximately twice as long as a search us-
ing the default view in the warm client scenario. How-
ever, in the cold server scenario, the search takes only
31% longer since quFile representations are located close
to each other on disk, reducing seek times.

This scenario shows that even when there is little data
or computation across which to amortize overhead, per-
formance is still reasonable, especially when data resides
in the kernel’s page cache. Further, quFiles enable func-
tionality that is unavailable using regular file systems.

6.5 Code size
We measure the effort required to develop new poli-

cies by counting the lines of code for the quFiles used in



Component Name Content Edit Cache Total
Resource mgmt. 32 18 8 36 94
Versioning 29 18 8 n/a 55
Security 20 33 8 n/a 61
Availability 64 26 8 n/a 98
Odyssey 23 27 32 n/a 82
Platform spec. 31 30 8 43 112

Table 2. Lines of code for quFile policies

each of our six case studies. As Table 2 shows, almost
all policies required less than 100 lines of code. Com-
pared to the code size of their monolithic ancestors, these
numbers represent a dramatic reduction. For instance,
the base Odyssey source is comprised of 32,329 lines of
code while ext3cow requires a 18,494 line patch to the
Linux-2.6.20.3 source tree. Our quFile implementation
added 1,515 lines of code to BlueFS (BlueFS has 28,788
lines of code without quFiles). Further, all policies were
implemented by a single graduate student. All policies
took less than two weeks to implement. Later policies
required only a few days as we gained experience.

6.6 Energy saving results
To evaluate the effectiveness of our case study in Sec-

tion 5.1 that plays uncompressed music files to save en-
ergy, we measured the power used to play the uncom-
pressed version of music files returned by quFiles and
the power used to play the equivalent mp3 files. Table 3
shows results for three mobile devices: an HP4700 iPAQ
handheld and Nokia N95-1 and N95-3 smart phones.
The iPAQ runs Familiar v8.4, with OpiePlayer as its
media player while the the N95-1 and N95-3 ran their
factory-installed operating system and media players.

We directly measured the power consumed on the
iPAQ by removing its battery and connecting its power
supply cable through a digital multimeter. Unfortunately,
the Nokia smart phones cannot operate with their battery
unplugged, so we instead used the Nokia Energy Pro-
filer [28] to measure playback power. Our tests show
that quFiles can increase the battery lifetime of these de-
vices by 4–11% when they are playing music. Given
the importance of battery lifetime for these devices, this
is a nice gain, especially considering that only spare re-
sources are used to achieve it.

7 Conclusion

The quFile abstraction simplifies data management by
providing a common mechanism for selecting one of sev-
eral possible representations of the same logical data de-
pending on the context in which it is accessed. A quFile
also encapsulates the messy details of generating and
storing multiple representations and the policies for se-
lecting among them. We have shown the generality of
quFiles by implementing six case studies that use them.

Power to play Power with Battery life
Device mp3 files (mW) quFiles (mW) extension
HP4700 iPAQ 1549 1401 11%
Nokia N95-1 962 914 5%
Nokia N95-3 454 437 4%

This table compares the power used to play mp3 files on 3 mo-
bile devices with the power required to play the uncompressed
versions returned by quFiles.

Table 3. Power savings enabled by quFiles
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