Nericell: Rich Monitoring of Roads and Traffic Using Mobile Smartphones

Ram Ramjee

Joint work with Prashanth Mohan & Venkat Padmanabhan (in ACM SenSys 2008)

Mobility, Networks, and Systems Group
Microsoft Research India

Road and Traffic Monitoring

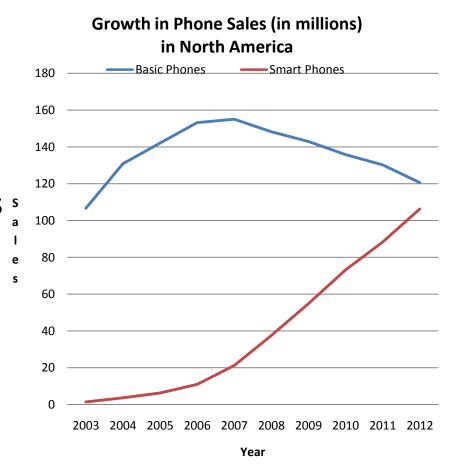
Courtesy: FreeDigitalPhotos.net

Bangalore \neq <your favorite developed city>

What's Different?

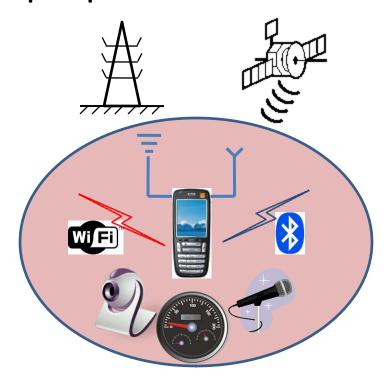
- Varied vehicle types
- Liberal honking
- Chaotic intersections
- Potholes
- Road bumps
- •

Widespread distribution of mobile phones

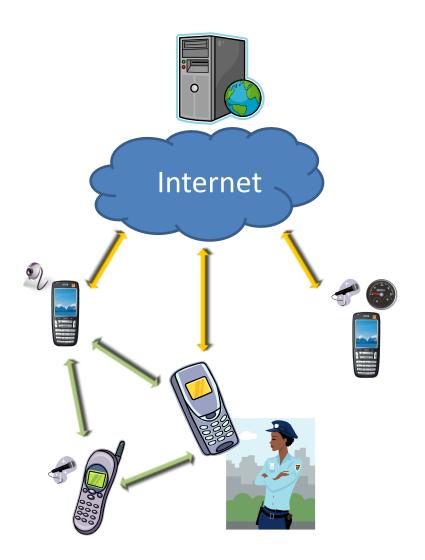


Road and Traffic Monitoring

- Without deployed infrastructure
- Using existing mass of mobile phones


Mobile Phones

- ~4 billion phones worldwide
- ~400 million phones in India
- ~10 million new connections every month in India
- 115 million of 1 billion phones sold worldwide in 2007 were smartphones
- Smartphone market share expected to reach nearly 50% by 2012 in North America


Mobile Smartphones

- Mobility
- Computing + communication + sensing
- Far more capable & ubiquitous than specialpurpose sensors

Distributed Sensing using Mobiles

- Applications
 - Road & traffic monitoring
 - On-demand webcam
 - Human-powered search
 - **—** ...

Outline

- Mobile smartphone-based distributed sensing
- Nericell design and evaluation
- PRISM platform
- Related work
- Microsoft Research India

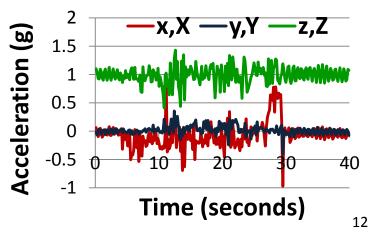
Nericell

- Idea: mobile smartphone-based sensing
 - enables rich monitoring
 - avoids dependence on infrastructure
- Challenges: energy, automated operation, privacy
- Key components
 - accelerometer ⇒ road and drive quality
 - microphone ⇒ honk detection, vehicle type
 - GSM radio ⇒ lightweight localization
- Sensors also used in combination

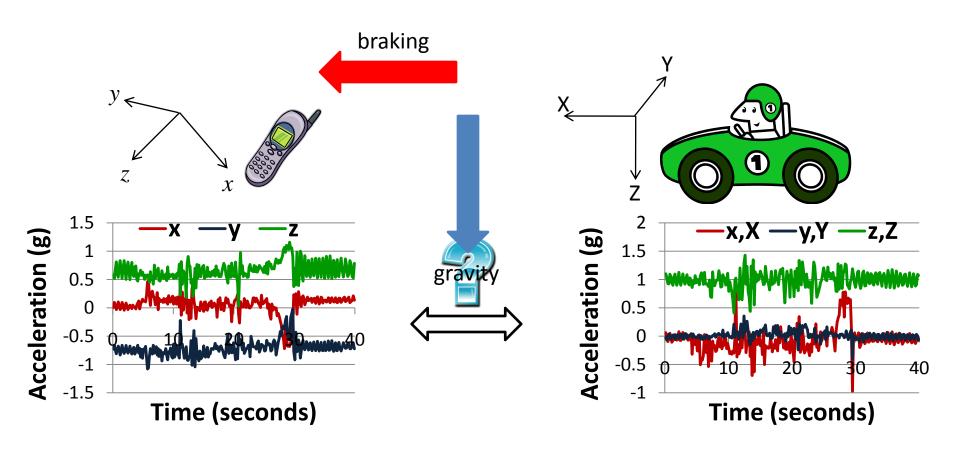
Energy is a key challenge

Resource	Power (mW)
Bluetooth	20
Wi-Fi	770
GPS	620
Microphone	225
Accelerometer	2

Energy consumption on iPaq hw6965


Accelerometer-based Sensing

- Advantage: low energy cost
- Challenge: "disorientation"
- Analyses:
 - braking detection
 - bump/pothole detection
 - pedestrian versus stop-and-go traffic


Braking Detection

- Braking impacts drive quality
- Two approaches:
 - GPS: high energy cost (600 mW on iPAQ hw6965)
 - Accelerometer: much cheaper (2 mW + 30mW)
- Accelerometer-based braking detection:

Y		
Threshold T(g)	False Negative	False Positive
0.12 (4 sec)	11%	16%

Virtual Reorientation

Virtual Reorientation

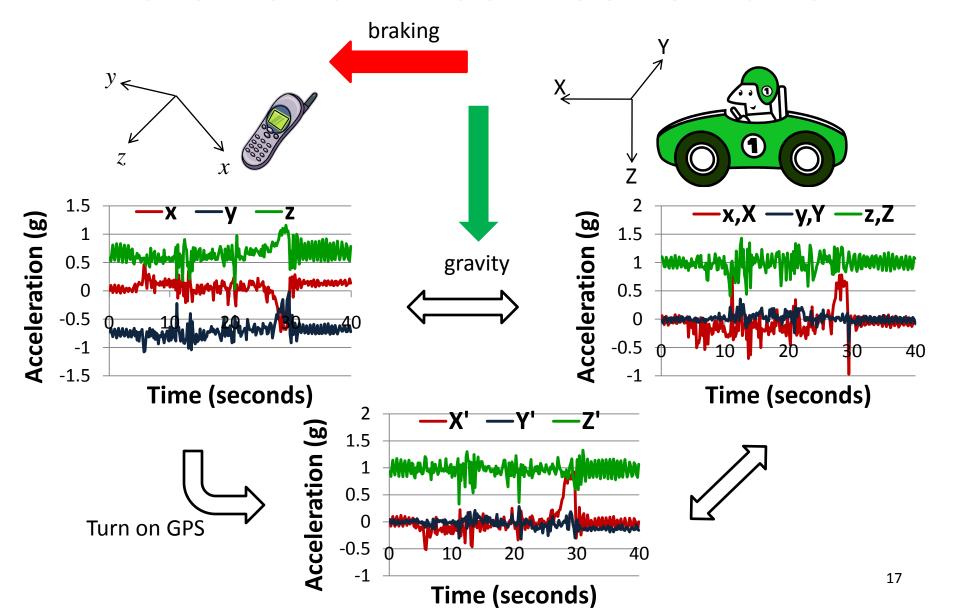
- Euler Angles:
 - Any orientation of the accelerometer can be represented by Z-Y-Z (and other equivalent) rotations
- Three Unknowns (angles):
 - pre-rotation (ϕ_{pre}),
 - tilt (θ_{tilt}) ,
 - post-rotation (ψ_{post})
- Knowns:
 - Gravity along Z
 - Braking along X

Virtual Reorientation Using Gravity

- Ideal orientation (X,Y,Z): $a_X = 0$; $a_Y = 0$; $a_Z = 1(g)$;
- Current orientation (x,y,z) with force a_x, a_v, a_z
- $a_z = a_z \cos(\theta_{tilt})$

$$\theta_{\text{tilt}} = \cos^{-1} (a_z)$$

- $a_x = a_z \cos(\phi_{pre}) \sin(\theta_{tilt})$
- $a_y = a_Z \sin(\phi_{pre}) \sin(\theta_{tilt})$

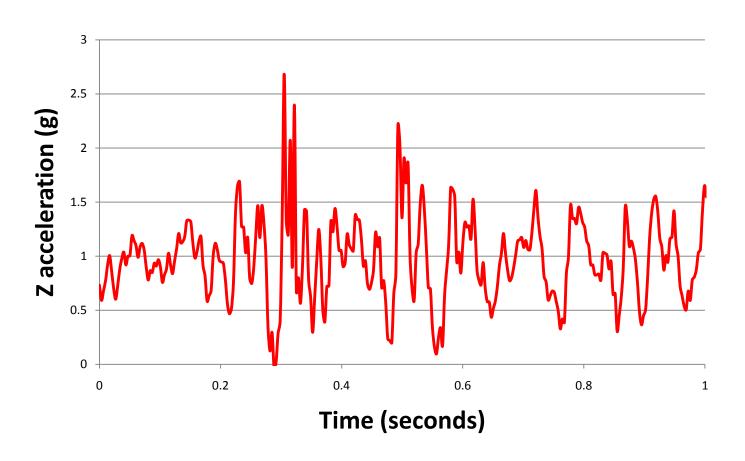

$$\phi_{\text{pre}} = \tan^{-1} \left(a_y / a_x \right)$$

Virtual Reorientation Using Braking

- Use GPS to identify braking
- Ideal orientation (X,Y,Z): a_X = large; a_Y=0;
 a_Z=1(g);
- Current orientation (x,y,z) with force a_x , a_y , a_z and angles θ_{tilt} and ϕ_{pre}
- Find ψ_{post} such that force along X is maximized

$$\psi_{\text{post}} = \tan^{-1} \left(\frac{-a_x \sin(\Phi_{pre}) + a_y \cos(\Phi_{pre})}{(a_x \cos(\Phi_{pre}) + a_y \sin(\Phi_{pre})) \cos(\theta_{tilt}) - a_z \sin(\theta_{tilt})} \right)$$

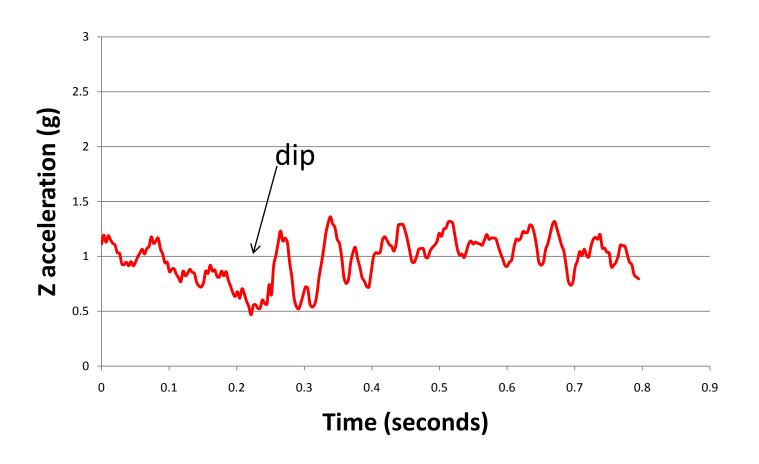
Automatic Virtual Reorientation


Results: Virtual Reorientation

Sr No $\Phi_{pre}/\theta_{tilt}/\psi_{post}$	Cross correlation		
	Well oriented – Well oriented	Reoriented – Well oriented	
1	7°/38°/106°	0.90	0.91
2	174° /34° /-107°	0.75	0.87
3	174° /34° /-107°	0.94	0.90
4	4° /42° /12°	0.74	0.68
5	3° /44° /-1°	0.76	0.79
6	-80° /42° /121°	0.78	0.73

Braking detection with Virtual Reorientation

	False negatives	False positives
Well-oriented	11%	16%
Virtually reoriented	11%	18%



High speed (≥ 25 kmph)

z-peak: look for significant spike

Low speed (< 25 kmph)

z-sus: look for sustained dip

Results: Pothole Detection

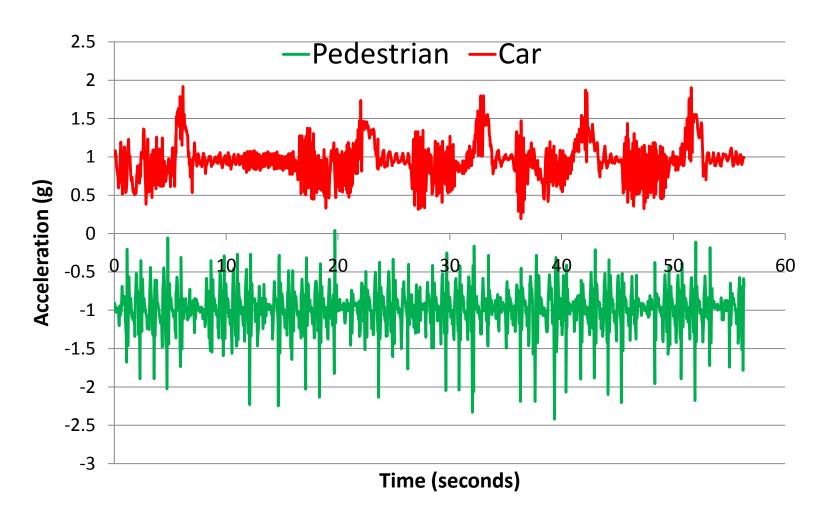
Training data: 5km long drive with 44 bumps

Test data: 35km long drive with 101 bumps

False Negative: missed pothole (not so bad)

False Positive: incorrectly identified as pothole (not so good)

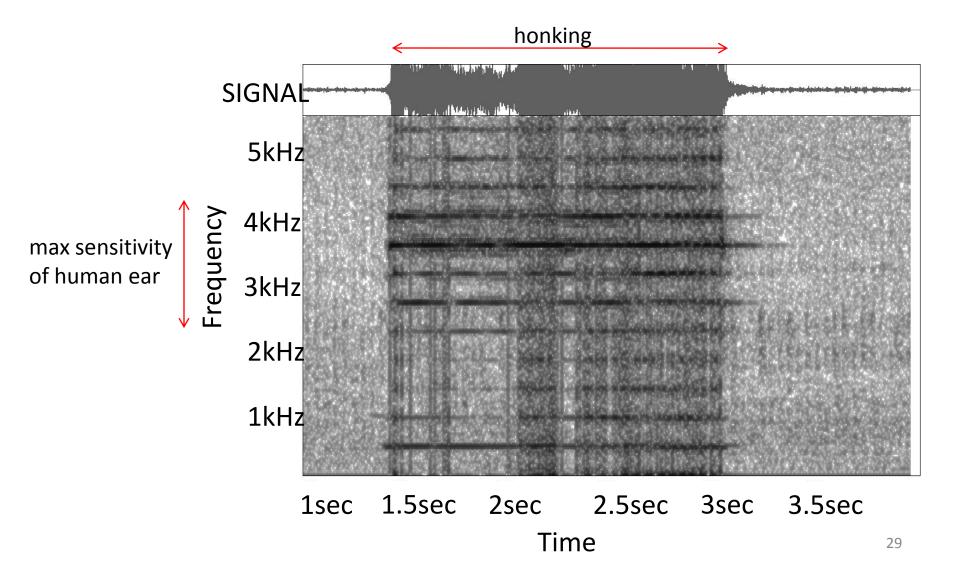
Throshold	Speed < 25 kmph		Speed > 25 kmph	
Threshold	False Neg	False Pos	False Neg	False Pos
Z-sus (0.8g, 20ms)	37%	14%	0%	136%
Z-peak (1.45g)	65%	21%	3%	49%
Z-Peak (1.75g)	83%	0%	41%	8%


Determining Location

- Why not just GPS?
 - coverage (indoors, urban canyons, ...)
 - time to lock (~26 secs even with warm start)
 - energy (~600 mW on iPAQ 6965)
 - not all phones have it
- Alternative: GSM tower matching
 - match towers seen against those in training set
 - widely accessible, fast, "zero" energy
 - location: median error: 130m, 90th %tile: 610m
 - speed: median error: 3.4 kmph, 90th %tile: 11.2 kmph

Locating a Pothole

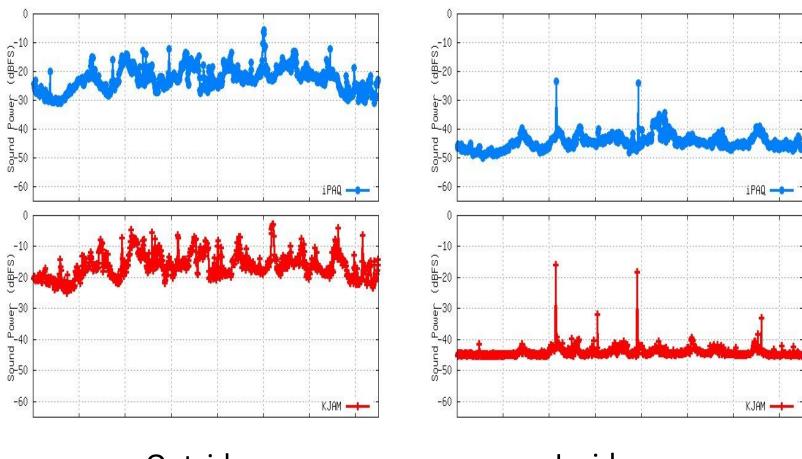
- Accelerometer is cheap, so keep on continuously
- When bump is detected, use GSM tower matching to estimate location
 - median error: 130 m, 90th percentile: 610 m
- Send bump report to server
- If several reports in same vicinity, server triggers
 GPS on other phones for location fix
- Sample result: GPS turned on only 3.2% of the time on a 20 km drive with one point of interest


Pedestrians vs. Stop-and-Go Traffic

Microphone-based Sensing

- Advantage: ubiquity
- Challenge: energy, privacy
- Analyses:
 - honk detection: triggered when accelerometer indicates a lot of braking
 - vehicle type: exposed versus enclosed vehicle

Honk Detection


Honk Detection

- Efficient detector suitable for mobiles
 - discrete Fourier transform on 100 ms of audio
 - look for spikes in the 2.5-4 kHz range
 - spike: instantaneous > 10x mean
- Performance: 5.8% of CPU on the HP iPAQ
- Accuracy:
 - false negative rate:

Phone	Exposed	Enclosed
HP iPAQ	19%	51%
iMate KJAM	0%	23%

- false positive rate: negligible in typical traffic conditions
 - sirens, alarms, ...
 - chirping of bird!

Exposed vs. Enclosed Vehicles

Outside car

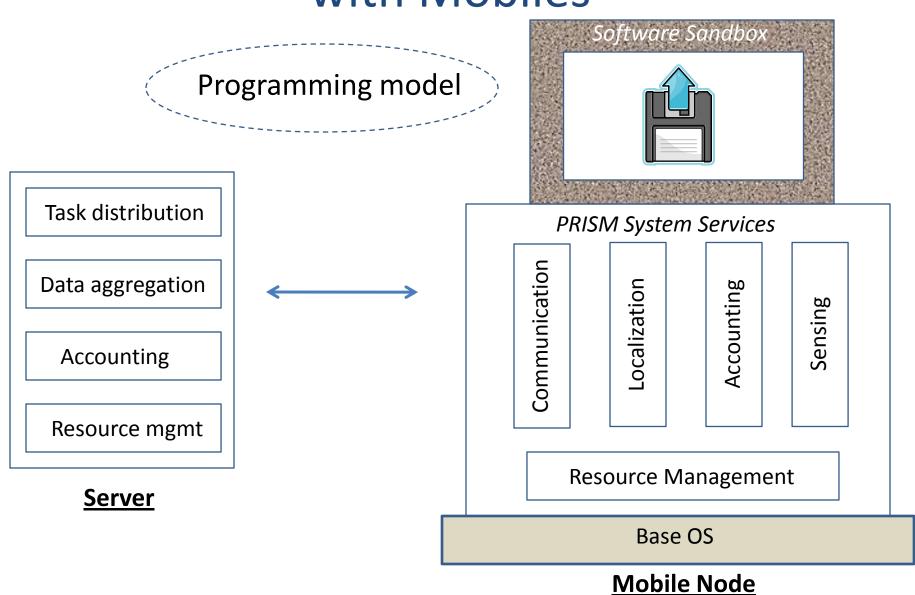
Inside car

Triggered Sensing


 Use cheap sensors to trigger the activation of expensive sensors when needed

Examples:

- Traffic chaos: accelerometer info to trigger microphone
- Localization: GSM tower info to trigger GPS


— ...

Integration with Maps

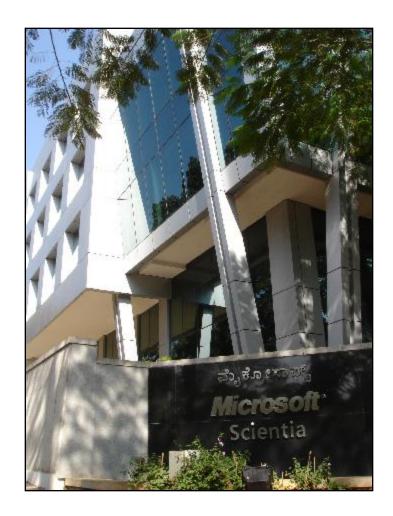
Find least stressful route

PRISM: Platform for Remote Sensing with Mobiles

Related Work

- GPS-based vehicle tracking
 - OnStar, Surface street traffic estimation (MobiSys'07)
- Infrastructure for traffic monitoring (e.g., cameras)
 - SmartTrek, Busview
- Traffic estimation using tower-based tracking of mobiles
 - BTIS
- Dedicated vehicle based sensors
 - CarTel, Pothole Patrol

Summary


 Diversity of road and traffic conditions => need to go beyond GPS-based monitoring

 Nericell: rich monitoring of road and traffic conditions using smartphones

http://research.microsoft.com/research/mns

Microsoft Research India

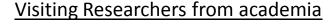
- Established in 2005
- Goals:
 - high-quality research
 - internal tech transfer
 - external collaboration/service
- ~50 full-time staff
 - researchers, post-docs, assistant researchers, software engineers
 - visiting researchers, interns
- Seven areas of research
 - algorithms
 - crypto, security, and applied math
 - digital geographics
 - mobility, networks, and systems
 - multilingual systems
 - rigourous software engineering
 - technologies for emerging markets

Mobility, Networks, And Systems Group

Research Staff

Bhavish Aggarwal

Assistant Researcher (IIT Mumbai)
Network diagnostics, wireless networking


Group formed in Spring 2007

Ranjita Bhagwan

Researcher (IIT Kharagpur → UCSD → IBM Research)

Network management, distributed systems

3

Tathagata Das

Assistant Researcher (IIT Kharagpur) Network management, P2P systems Kameswari Chebrolu (IIT Mumbai) Bhaskaran Raman (IIT Mumbai) Geoff Voelker (UC San Diego)

Vishnu Navda

Researcher (Bangalore U→MS IDC → Stonybrook)

Wireless networking, mobile systems

<u>Interns</u>

9 interns in 2007 (5 from India, 4 from the U.S.)

9 interns in 2008 (4 from India, 5 from the U.S.)

Venkat Padmanabhan (Research Manager)

Sr Researcher (IIT Delhi → Berkeley → MSR-Redmond)

Mobile systems, network management

"Graduated" Assistant Researchers

Ram Ramjee

Sr Researcher (IIT Chennai →UMass → Bell Labs)

WAN acceleration, wireless networking

Ganesh Ananthanarayanan (→ Berkeley)
Lenin Ravindranath (→ MIT)
Prashanth Mohan(→ ??)

Ongoing and Completed Research

Network Management and Performance

NetPrints: Home Network Configuration Management (USENIX NSDI 2009)

CoCoNet: Content Compression in Networks (ACM SIGMETRICS 2009)

Mobile and Sensor Systems

SPACE: Lightweight Peering (ACM HotNets 2006)

Nericell: Rich monitoring of Roads and Traffic Using Smartphones (ACM SenSys 2008)

PRISM: Platform for Remote Sensing with Mobiles

SixthSense: RFID-based Enterprise Intelligence (ACM MobiSys 2008)

Wireless Networking

COMBINE: Collaborative Downloading Using WLAN and WWAN (ACM MobiSys 2007)

Neighbourcast: Enabling Communication
Among Nearby Clients (ACM HotMobile 2008)

Multicast in Wireless LANs

Smartphone energy modeling and optimization

Other

Insight: Distributed Systems Profiling (ACM HotMetrics 2008)

Defending Against Code Geometry Attacks

More info: http://research.microsoft.com/research/mns/