
On ISP-Friendly Rate Allocation for Peer-Assisted VoD

Jiajun Wang
Univ. of California, Berkeley

Berkeley, CA, U.S.A.
junewang@berkeley.com

Cheng Huang
Microsoft Research

Redmond, WA, U.S.A.
chengh@microsoft.com

Jin Li
Microsoft Research

Redmond, WA, U.S.A.
jinl@microsoft.com

ABSTRACT
Peer-to-peer (P2P) content distribution is able to greatly re-
duce dependence on infrastructure servers and scale up to
the demand of the Internet video era. However, the rapid
growth of P2P applications has also created immense burden
on service providers by generating significant ISP-unfriendly
traffic, such as cross-ISP and inter-POP traffic. In this work,
we consider the unique properties of peer-assisted Video-on-
Demand (VoD) and design a distributed rate allocation al-
gorithm, which can significantly cut down on ISP-unfriendly
traffic without much impact on server load. Through exten-
sive packet-level simulation with both synthetic and real-
world traces, we show that the rate allocation algorithm can
achieve substantial additional gain, on top of previously pro-
posed schemes advocating ISP-friendly topologies.

Categories and Subject Descriptors: C.2.4 [Distributed
Systems]: Distributed applications

General Terms: Algorithms, performance

Keywords: Rate allocation, ISP-friendly, peer-to-peer, Video-
on-Demand

1. INTRODUCTION
Internet video is poised to be the next big thing. The

revenue from Internet video is predicted to grow from $0.9
billion in 2006 to $4.2 billion by 2011, an annual growth
rate of 36% [1]. As consumers spend more and more time
watching videos online, they are becoming increasingly un-
satisfied with being restrained to their computers. Instead,
the demand to get Internet video into living room is record-
high. This demand fuels the increasing popularity of services
(ABC’s full-episode streaming, Netflix on-demand, etc.), as
well as devices with such capabilities (Microsoft Media Cen-
ter , Apple TV, TiVo, etc.). Once in the living room, con-
sumers quickly realize that they prefer to go beyond YouTube’s
limited quality and enjoy SD or even HD video. However,
providing high quality Internet video with a traditional client-
server model is very costly. In addition, the ever mount-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’08, October 26–31, 2008, Vancouver, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-303-7/08/10 ...$5.00.

ing demand is adding significant pressure to existing server-
based infrastructures, such as data centers and content dis-
tribution networks (CDNs), which are already under heavy
burden living up to their current load. As a result, high-
profile failures are not uncommon, such as MSNBC’s demo-
cratic presidential debate webcast mess and the Operah web
show crash, not to mention that Internet itself is predicted
to melt down if online video becomes mainstream [2].

Fortunately, on the heel of such crisis, comes the help
of peer-to-peer (P2P) technology. Indeed, Internet video
streaming (both on-demand and live broadcast) using vari-
ous peer-to-peer or peer-assisted frameworks has been shown
to greatly reduce the dependence on infrastructure servers,
as well as bypass bottlenecks between content providers and
consumers. However, it has also fundamentally altered the
relationship among content owners, service providers (ISPs)
and consumers. ISPs, in particular, on one hand are spend-
ing billions to maintain and upgrade their networks in order
to support the ever increasing traffic due largely to P2P. On
the other hand, they are also being marginalized by content
owners’ direct reaching to consumers. As a result, unhappy
ISPs start to put up various hurdles for P2P applications by
throttling P2P traffic or even taking active measures to de-
ter P2P traffic. As an example, Comcast has recently been
exposed to have employed a method that stops BitTorrent
traffic by sending reset packets. Practices as such often cre-
ate huge backlash once they are discovered and made public
(even FCC intervened in this incident). ISPs, having learned
the lesson in a hard way, now realize that it is in their best
interest to work collaboratively with content providers and
consumers. For instance, Comcast has announced that it
will work closely with BitTorrent. Verizon has also teamed
up with Pando Networks to conduct field trials together.

However, to fundamentally incentivize ISPs to embrace
P2P, any solution has to address two key aspects: 1) ISPs
need to get their share from the booming of Internet video;
and 2) P2P applications need to become ISP-friendly at the
protocol level. While the former aspect is more of a policy
or business issue, the latter one poses a concrete technical
challenge. A number of recent studies [3, 4, 11, 16, 17]
have proposed various schemes at the protocol level to make
P2P applications ISP-friendly. The gist of all these pro-
posals is to build P2P overlay topologies in an ISP-friendly
fashion, i.e., instead of connecting to neighbors randomly,
peers make biased neighbor selection favoring other peers in
the same ISP, AS, POP location, and even subnet. Biased
neighbor selection has been shown to be effective in reducing
ISP-unfriendly traffic. However, neighbor selection is only

carried out at a very coarse scale, typically when a peer first
joins and when the number of neighbors falls below a thresh-
old, whereas the ideal topology changes constantly as peers
join and leave the system. As a result, it is impossible to
have an optimal topology at all times. Thus, we propose to
study a finer granularity rate allocation problem, in which
peers bias transmission rates to their neighbors and dynam-
ically adjust these rates. Our focus in this paper is to de-
sign an ISP-friendly rate allocation solution for peer-assisted
VoD to compliment biased neighbor selection. Specifically,
we make the following contributions.
• We propose and formulate an optimization problem for

rate allocation, which unifies the objectives of all three
parties: guaranteed QoS for consumers, reduced server
load for content owners, and reduced ISP-unfriendly traf-
fic. We derive a distributed solution which can be exe-
cuted by each P2P client independently, while collectively
achieving the desired global optimum. (Sec. 3)

• We translate the fluid-level rate allocation scheme into
an implementable packet-level scheduling algorithm that
conforms nicely to the fluid-level rate allocation. (Sec. 4)

• We develop a highly efficient packet-level simulation plat-
form capable of simulating real-world traces at the scale
up to 10K concurrent peers. Using this platform, we eval-
uate the proposed rate allocation solution using both syn-
thetic and real-world traces (collected from a large-scale
Internet video service – MSN Video). We confirm the ef-
fectiveness of ISP-friendly topology building from earlier
studies. More importantly, we quantitatively show that
rate allocation can achieve substantial additional gain on
top of ISP-friendly topologies. (Sec. 5)

2. SYSTEM DESCRIPTION ����� �������	
��� �	�����	�
�� 	��������� �����
 �� ���

������������ ��!��"
#�$� #� �

%�& �#%��������'"��!�(%�����) *+*+ *+
*, *,*, *+ *+-

Figure 1: MESH System Architecture.

The proposed rate allocation algorithm is designed for
the MESH platform [5] developed at Microsoft. MESH is a
peer-assisted distribution platform and supports both video-
on-demand, as well as bulk data dissemination. We briefly
describe the flow of the peer-assisted VoD scenario. After
introducing the proposed algorithm, we will explain where
the rate allocation algorithm naturally fits in.

The MESH system architecture is shown in Fig. 1. Sim-
ilar to many other P2P applications today, a client discov-
ers videos via a web interface to the content library (step
1). Special URLs with embedded information redirect the

client to a directory service (or tracker). The client down-
loads video metadata from the tracker and also obtains a list
of peers, who have started watching the same video earlier
and are available for sharing (step 2). The client then estab-
lishes direct connections with these peers whenever possible
(step 3b) or gets help from signal servers if NAT-traversal
is required (step 3a). The client retrieves content from the
peers in a best effort fashion, which often cannot provide
sufficient QoS (e.g., continuous high bitrate for high-def and
smooth video playback). Hence, the client actively monitors
its QoS and adaptively retrieves content from media servers
as needed (“life line” in step 4). Such media servers are lo-
cated in data centers, on edge networks or hosted by content
distribution networks.

In the current system, the tracker generates the peer-list
based on certain criteria. Roughly speaking, peers within
the same AS or ASes with peering relationships with the
client’s origin AS are favored. This criterion helps to build
an ISP-friendly topology, which we will examine in detail
later. Additionally, peers that started in closer time stamps
(compared to the client’s own start time) are favored. This
is based on an early discovery [6] that matching peers in
such a matter increases upload efficiency.

3. PROBLEM FORMULATION
In a P2P system, be it streaming or file sharing, each

peer connects to multiple other peers (neighbors) simultane-
ously. Compared to download capacity, peers’ upload capac-
ity is limited and oftentimes the most prominent constraint
of such systems as peers are often connected via DSL and
cable modem (even fiber optic service hosts have very asym-
metric access). When multiple connections contend for the
limited upload capacity, the natural contention will result
in (say via TCP congestion control) an implicit rate alloca-
tion, in which the upload capacity is evenly divided among
all the connections as empirically observed in [4]. Let’s name
this implicit scheme even bandwidth allocation. However, as
shown later in the paper, even bandwidth allocation is far
from sufficient. Thus, the focus of this paper is to design
an explicit rate allocation algorithm, which, at a high level,
continuously solves a global optimization problem in a dis-
tributed fashion and dictates accordingly how much band-
width is allocated to each connection. Through extensive
simulations, we show that explicit rate allocation does sig-
nificantly outperform even bandwidth allocation, across all
the various scenarios we’ve examined.

There are three objectives that an ideal rate allocation
algorithm should achieve:
• Minimize server load. This is the first order objective.
• Minimize ISP-unfriendly traffic, while keeping the mini-

mum server load unaffected.
• Maximize peer prefetching, without affecting the first two

objectives. When both above objectives are met, peers
may still have spare upload bandwidth, which is espe-
cially true when the average peer upload bandwidth is
greater than the video bit rate. As shown in early work [6],
such spare upload bandwidth should be utilized to allow
peers to download faster than real-time and cache future
content. The so-called prefetching can help peers combat
neighbor churning, bandwidth jitter, and thus potentially
reduce server load, as well as ISP-unfriendly traffic.
In this section, we first present a centralized optimiza-

tion problem that achieves these objectives exactly through

a 3-stage optimization. We discuss the drawbacks of this ap-
proach and propose an intuitive utility-based optimization
that is connected to the 3-stage optimization but can be
solved distributedly. Finally, we will introduce some modifi-
cations to the optimization problem for practical purposes.

3.1 Notations and assumptions
Suppose there are n peers in the system at any instant

of time. Denote them as Peer k (k = 1, 2, ..., n), ordered
by their arrival time. When Peer j arrives, it connects to a
subset of peers already in the system (say including Peer i)
and requests data from them. xi,j is the rate Peer i al-
locates from its upload capacity Ui to serve Peer j. Each
peer keeps track of its total upload capacity, which can ini-
tially be estimated based on historical values and then mea-
sured/updated once data starts to flow to its neighbors. Sj

denotes the set of all peers uploading to Peer j (Peer j’s
upstream neighbors). Di denotes the set of all peers down-
loading from Peer i (Peer i’s downstream neighbors). The
aggregate rate Peer j receives from all of its upstream neigh-
bors is denoted as xj =

∑
i∈Sj

xi,j .

Denote Rj as Peer j’s desired streaming rate in order to
maintain smooth video playback. (In general, Rj is a func-
tion of time t as it could vary based on the amount of content
in its local cache, which changes over time. For simplicity,
let Rj(t) be constant for all j for now, equal to the video
bitrate R.) It is clear that smooth video playback requires
xj ≥ Rj = R. If xj < R, Peer j will request data from the
server at rate R − xj to make up for the deficit. If xj > R, on
the other hand, Peer j will download data faster than real-
time and cache for future use, i.e. prefetch, so as to combat
peer churn, bandwidth jitter, etc. The ability to prefetch is
one of the key differentiations between VoD and live stream-
ing. The aggregate rate at which Peer i uploads to all its
downstream neighbors is

∑
j∈Di

xi,j . Clearly, this cannot

exceed Peer i’s upload bandwidth, i.e.,
∑

j∈Di
xi,j ≤ Ui.

Furthermore, for unified representation, we denote the server
as Peer 0. Thus, x0,j is the rate Peer j obtains from the
server, which satisfies x0,j = max(0, R − xj).

We make the following assumptions for the analysis:
1. Peers cache all the content they watch and keep them

until they leave the system.
2. Peers only upload to their downstream neighbors, not

vice versa.
3. Peers have more content than their downstream neigh-

bors and are able to upload as fast as needed.
Assumptions (2) and (3) will be removed in designing a

corresponding packet-level algorithm and in the simulations.

3.2 Centralized 3-stage optimization
We now present the centralized 3-stage optimization.

3.2.1 1st-stage – minimize server load
Minimizing the server load can be realized as follows:

min
∑

j

x0,j (1)

s.t.
∑

i∈{0,Sj}

xi,j ≥ R ∀ j 6= 0,
∑

j∈Di

xi,j ≤ Ui ∀ i 6= 0, and (2)

xi,j ≥ 0 ∀ i, j. (3)

The minimum server load can then be computed as Umin
0 =∑n

j=1 x∗
0,j , where {x∗

0,j}
n
j=1 is an optimal solution.

3.2.2 2nd-stage – minimize ISP-unfriendly traffic
In this stage, we first add the minimum server load Umin

0

from the 1st stage as an additional constraint. We then asso-
ciate a link cost with ISP-unfriendly traffic. Denote gi,j(xi,j)
as the cost for Peer i to upload to Peer j at rate xi,j .

Minimizing ISP-unfriendly traffic can be represented as
minimizing the total link costs:

min
∑

i,j

gi,j(xi,j) (4)

s.t. (2), (3) and
∑

j

x0,j ≤ Umin
0 (from 1st-stage). (5)

The most intuitive choice for the link cost function is a
linear one: gi,j(xi,j) = ci,jxi,j . For example, if minimizing
cross-ISP traffic is the only concern, we can simply set ci,j =
0 if Peer i and j belong to the same ISP and ci,j = c > 0
otherwise. This formulation could potentially be generalized
to incorporate various levels of ISP-unfriendliness, e.g., us-
ing different costs to differentiate intra-POP and inter-POP
traffic within the same ISP.

After the optimization, we can compute the minimum
ISP-unfriendly traffic cost as Gmin =

∑
i,j

gi,j(x
∗
i,j).

3.2.3 3rd-stage – maximize peer prefetching
Finally, we want to allow peers to download more than

their demand. One possible formulation is to minimize the
remaining of peers’ upload capacity, while keeping the min-
imum server load and ISP-unfriendly traffic cost limited to
Umin

0 and Gmin. Then, the rate allocation is as follows:

min
∑

i

(Ui −
∑

j∈Di

xi,j) (6)

s.t. (5) and
∑

i,j

gi,j(xi,j) ≤ Gmin (from 2nd-stage). (7)

3.3 Utility-based optimization
While it is clear that this 3-stage optimization achieves all

the aforementioned objectives exactly, it has two main draw-
backs. First, this optimization requires a central oracle and
is difficult to solve distributedly in a practical setup. Dis-
tributed solutions using iterative algorithms do exist for each
stage. Thus, given a fixed set of peers and a static topol-
ogy, each stage can indeed be solved in a distributed man-
ner. However, the optimization problem may not converge
at all in a highly dynamic environment with peer churns,
as it requires the result of an earlier stage to be the con-
straint of a later stage. Second, this formulation enforces
an absolute preference of reducing server load over cutting
ISP-unfriendly traffic. As an extreme example, it may yield
a solution that incurs 100 Mbps additional ISP-unfriendly
traffic just to save 1 Kbps server bandwidth.

To overcome these shortcomings, we now present an intu-
itive utility maximization formulation that has a distributed
solution and provides a “knob” to allow flexible tradeoff be-
tween the server bandwidth and ISP-unfriendly traffic.

3.3.1 Utility of aggregate received bandwidth
First, we introduce a utility function for each peer in terms

of the aggregate rate received from all its upstream neigh-
bors (excluding the server or Peer 0):

f(xj) =

{
a · xj if xj ≤ R

a · R + b · (xj − R) if xj > R
, (8)

where a, b are positive constants and a > b (Fig. 2).

x

f(x)

R

a

b

Figure 2: Utility function f(xj).

The value a can also be interpreted as the cost of server
bandwidth. In a peer-assisted VoD session, the server has to
supplement all the rate peers cannot obtain from each other.
At the same time, each peer has to maintain receiving data
at least at the streaming rate R. Hence, up to streaming
rate R, every unit of bandwidth that a peer is able to obtain
from other peers is a unit of bandwidth the server can save.

A strictly positive b represents the value of prefetching.
This is a major difference between live streaming and VoD
streaming. In live streaming, peers have roughly synchronous
playback times. As a result, they cannot buffer up much
ahead of time and there can be very little prefetching, i.e.
b = 0. In VoD, however, peers’ playback times can be suffi-
ciently far apart and there is great value for peers to buffer
up whenever possible to save for future use.

The piece-wise linear utility function ensures that, when
the total utility is maximized, the server load is minimized.
In addition, peer prefetching is maximized simultaneously.

Proposition 1. The solutions to

max
xi,j

∑

j 6=0

f(xj) (9)

s.t.

∑

j∈Di

xi,j ≤ Ui ∀ i 6= 0, and xi,j ≥ 0 ∀ i, j.

minimize server load and maximize peer prefetching.

Proof sketch: Minimizing server bandwidth can be de-
scribed as the following optimization problem:

min
xi,j

∑

j 6=0

a · max(0, R − xj) (10)

s.t.
∑

j∈Di

xi,j ≤ Ui ∀ i 6= 0, and xi,j ≥ 0 ∀ i, j,

where a is a positive constant.
This is equivalent to

max
xi,j

∑

j 6=0

a · min(xj , R) (11)

s.t.
∑

j∈Di

xi,j ≤ Ui ∀ i 6= 0, and xi,j ≥ 0 ∀ i, j.

Now, we rewrite the utility function (8) as

f(xj) = b · xj + (a − b) · min(R, xj) (12)

Since the proposed utility function (8) is strictly increasing
in xi,j , it can be shown through contradiction that all the
solutions to (9) must satisfy

∑
j∈Di

xi,j = Ui ∀ i 6= 0 and
thus maximize peer prefecthing.

Therefore, (9) is equivalent to

max
xi,j

∑

j 6=0

b · Uj +
∑

j 6=0

(a − b) · min(R, xj) (13)

s.t.
∑

j∈Di

xi,j ≤ Ui, xi,j ≥ 0 ∀ i, j.

∑
j
b·Uj is a constant and a−b > 0, thus (13) is equivalent

to

max
xi,j

∑

j 6=0

a · min(xj , R) (14)

s.t.
∑

j∈Di

xi,j = Ui ∀ i 6= 0, and xi,j ≥ 0 ∀ i, j.

The only difference between (11) and (14) is the constraint
on

∑
j∈Di

xi,j . min(xj , R) = min(
∑

i∈Sj
xi,j , R) is nonde-

creasing in xi,j ,∀ i, j. Thus, the solutions to (14) is a subset
of those to (11).

In summary, the solutions to (9) is the subset of those
to (11) that both minimize server load and maximize peer
prefetching. 2

3.3.2 Cost of ISP-unfriendly traffic
To incorporate ISP-friendliness, we associate a link cost

for each connection, i.e. the cost for Peer i to upload to
Peer j at rate xi,j is gi,j(xi,j). Taking this into account, the
overall utility optimization problem then becomes

max
xi,j

∑

j 6=0

(f(xj) −
∑

i∈Sj

gi,j(xi,j)) (15)

s.t.
∑

j∈Di

xi,j ≤ Ui ∀ i 6= 0, and xi,j ≥ 0 ∀ i, j.

As mentioned earlier, a natural choice for gi,j(·) is gi,j(xi,j) =
ci,j · xi,j , where ci,j is a positive constant that represents
the cost of getting each unit of rate from Peer i to j. When
positive costs are used for various ISP-unfriendly traffic, it
is intuitive that the maximization in (15) will reduce those
undesirable traffic, although potentially at the cost of in-
creasing server load. The relationship among ci,j , a and b

controls the tradeoff between the server load and the ISP-
friendliness. To better understand this, let us consider a
simple case where ci,j = 0 if Peer i and j are within the
same ISP, and ci,j = c > 0 otherwise.

Proposition 2. Compared to solutions to (9), solutions
to (15) may have higher server rates. For each additional
unit of server rate used due to incorporating ISP friend-
liness, there is at least a reduction of a−b

c
units of ISP-

unfriendly traffic.

Proof sketch: Let {xi,j} be a solution for (9). Let {x̃i,j}
be a solution for (15). Then by definition,

∑

j 6=0

(f(xj) −
∑

i∈Sj

gi,j(xi,j)) ≤
∑

j 6=0

(f(x̃j) −
∑

i∈Sj

gi,j(x̃i,j))

⇒
∑

j 6=0

(f(xj) − f(x̃j)) ≤
∑

j 6=0

(
∑

i∈Sj

(gi,j(xi,j) − gi,j(x̃i,j)))

Using (12),

LHS =

b

∑

j 6=0

xj + (a − b) ·
∑

j 6=0

min(R, xj)

 −

b
∑

j 6=0

x̃j + (a − b) ·
∑

j 6=0

min(R, x̃j)

= b ·

∑

j 6=0

xj −
∑

j 6=0

x̃j

 +

(a − b) ·

∑

j 6=0

min(R, xj) −
∑

j 6=0

min(R, x̃j)

 .

As mentioned earlier,
∑

j 6=0 xj =
∑

j 6=0 Uj ≥
∑

j 6=0 x̃j .∑
j 6=0

min(R, xj)−
∑

j 6=0
min(R, x̃j) is the increase in server

load due to incorporating ISP-friendliness. In short,

LHS ≥ (a − b) · (additional server load). (16)

On the other hand,

RHS = c ·
∑

j 6=0

(
∑

i∈Sj
i6∈Ij

xi,j) − c ·
∑

j 6=0

(
∑

i∈Sj
i6∈Ij

x̃i,j) (17)

where Ij denotes the subset of Peer j’s neighbors in the
same ISP as j.

Here,
∑

j 6=0
(
∑

i∈Sj
i6∈Ij

xi,j) is nothing but the total ISP-

unfriendly rate using allocation {xi,j}. Hence

RHS = c · (saving in ISP-unfriendly rate). (18)

Combining (16) and (18), we get

saving in ISP-unfriendly rate ≥
a − b

c
(additional server load).

Intuitively, setting c > a > b will result in a pure ISP-
friendly solution that eliminates ISP-unfriendly traffic com-
pletely. Setting a > c > b will eliminate cross-ISP prefetch-
ing. Setting a > b > c will guarantee full utilization of peers’
upload bandwidth at all time, which may cause unnecessary
ISP-unfriendly traffic. We typically do not choose c > a > b.

3.4 Distributed solution
Since f(·) is concave, the problem at hand (15) is concave

as long as gi,j(·) is convex ∀ i, j. It is straightforward to
apply classical distributed solutions [8] to solve such a con-
vex optimization problem with linear constraints. In other
words, by using convex gi,j(·) ∀ i, j, we are able to obtain a
distributed solution to (15). In particular, we adopt the fea-
sible steepest descent algorithm: at Peer i, xi,j is initialized

to Ui

|Di|
for j ∈ Di and 0 otherwise, where |Di| is the number

of downstream neighbors Peer i has. xi,j is updated at each
step as follows:

ẋi,j = ∆ · (
∂

∂xi,j

f(xj) −
∂

∂xi,j

gi,j(xi,j)), (19)

xi,j = [xi,j + ẋi,j]
+ (20)

where [·]+ means l2 projection onto a feasible set, which
guarantees convergence for this problem [8].

Due to the symmetry of the linear constraints, projection
onto feasible set (20) can be easily implemented as follows:

while(
∑

xi,j > Ui) {

Ni = number of neighbors with xi,j > 0;

foreach(j)

if(xi,j > 0) xi,j = xi,j − min(xi,j ,

∑
xi,j − Ui

Ni

); }

Note that in order for Peer i to carry out the update
step, the only external information required is the aggregate
received bandwidth at its downstream neighbors, i.e. xj , j ∈
Di. This information can be easily piggybacked in Peer j’s
packet requests.

3.4.1 Connection to 3-stage optimization
It is in fact straightforward to show that the utility-based

optimization problem (15) is equivalent to

min(a − b)
∑

j 6=0

x0,j + b
∑

i6=0

(Ui −
∑

j 6=0

xi,j) +
∑

i,j

gi,j(xi,j) (21)

s.t.
∑

i∈{0,Sj}

xi,j ≥ R ∀ j 6= 0,
∑

j∈Di

xi,j ≤ Ui ∀ i 6= 0, and

xi,j ≥ 0 ∀ i, j.

(21) is simply a weighted sum of the 3 objective functions
in the 3-stage optimization. By choosing the weights a−b, b

and functions gi,j(·), we can set a relative priority and con-
sequently a flexible tradeoff among server bandwidth, var-
ious kinds of ISP-unfriendly traffic, and pre-fetching. The
utility-maximization formulation is introduced as it bears a
more intuitive meaning and facilitates understanding of the
following modifications we make for practical purposes.

3.5 Practical considerations

∆R

x

f(x)

R

a

b

Figure 3: Modified Utility Function.

The piece-wise linear utility function f(·) and linear link
cost functions gi,j(·) have shortcomings in practice. First,
f(·) has a sudden slope change at exactly video rate R. This
causes unsteady convergence behavior. Further, it elimi-
nates certain ISP-unfriendly prefetching completely if b is
smaller than the corresponding link cost. As a matter of
fact, moderate prefetching is always beneficial in reducing
the server load and improving peers’ uplink utilization in the
long run, especially in the presence of peer churning, band-
width jitter or flash crowd (when neighboring peers’ play-
back points are very close to each other). Hence we modified
f(·) slightly, by connecting the two linear components with
a concave smooth curve of width ∆R, as qualitatively shown
in Fig. 3. The implication is that we potentially allow mod-
erate ISP-unfriendly prefetching, but bound the amount by
∆R per peer in the worst case. We use ∆R = 0.1R and
a Deg. 3 polynomial for the curve. This modification leads
to a small increase in ISP-unfriendly traffic, in exchange
for steadier convergence, and lower server bandwidth. Sec-
ond, we change the link cost function g(·) from linear to
flat quadratic such that the optimization is strictly concave.
This enables convergence to a unique global optimum and
thus better performance in a highly dynamic environment.
We set g(·) such that d

dx
g(x) = c+εx with ε � c

R
. By mak-

ing these modifications, the final solution will deviate from
the optimal one directly derived from (21). We will examine
the issue of sub-optimality in detail through simulations.

Additionally, to take peers’ evolving buffer level into con-
sideration, peers also convert their buffer level into an equiv-
alent received rate. We use a simple linear conversion where
the aggregate received rate is incremented by buffer level

buffer length
·R.

For instance, suppose Peer j’s buffer can hold 160 packets.
Then if Peer j has 40 packets in the buffer, it will consider
its aggregate received rate to be 1

4
R +

∑
i∈Sj

xi,j .

4. PACKET-LEVEL ALGORITHM
So far, the rate allocation stays at an ideal network flow

level. In other words, upload bandwidth is treated as fluid,
which can be divided and utilized as finely as desired. We
now translate the flow-level rate allocation algorithm into
a corresponding packet-level algorithm, which, as demon-
strated in Sec. 5.1, conforms nicely to the flow-level one.

4.1 Packet-level algorithm
Sliding window: We use a sliding buffer for packet man-

agement. Peers maintain a buffer of interest and only down-
load packets within the range. They slide the buffer forward
every fixed interval (1 second in our case). Peers cache all
the content they have watched and make it available to their
neighbors (both upstream and downstream). Peers adver-
tise about their packet availability once per second.

Packet request: A peer ranks all the missing packets in
its buffer by their importance. From each neighbor, it re-
quests the most important packet possessed by the neighbor,
as long as the number of pending requests at that neighbor
is below a certain threshold. The importance of a packet
is determined as follows. We treat one second’s worth of
packets as one segment, and a segment is more important if
it’s closer to the playback deadline. Within a segment, the
rarer a packet is in the peer’s one-hop neighborhood, the
more important that packet is. We also define an urgency
buffer, which is the first u second(s) of the buffer, of which
the peers will simply request all the missing packets from the
server (we use u = 1 in all our experiments). Unlike in the
flow-level framework, peers are not prohibited from request-
ing packets from their downstream neighbors. Removing
this restriction facilitates sharing among peers when their
playback points are close.

Rate allocation and request response: The more im-
portant part of the packet-level scheduling algorithm is how
serving peers determine which neighbor’s request to satisfy
first. We adopt a token system to implement the rate alloca-
tion algorithm at a packet level. We define a rate-allocation
interval TRA and a token-allocation interval TTA. Namely,
every TRA second, Peer i carries out rate update as in (19)
and computes the appropriate rate to allocate to each of
its neighbors. This computation needs not be synchronized
among peers. Every TTA second, Peer i gets a certain num-
ber of tokens to give out. Again, peers need not synchronize
their intervals. The number of tokens a peer gets is propor-
tional to its upload bandwidth. For instance, if Peer i has
Ui Kbps upload bandwidth, it gets Ui tokens each round. It
then allocates xi,j tokens to neighbor Peer j as computed
in (19). Note that Ui and xi,j need not be integers, as
partial token will simply be left with peers for use in fu-
ture rounds. In deciding which neighbor’s request to satisfy,
Peer i chooses the neighbor with the highest level of tokens
and deduct packet size

TT A
tokens from the neighbor.

Request rejection: Peers turn down requests that they
are unlikely to fulfill, so that the requesters do not wait
unnecessarily. For this purpose, peers include time to play-
back deadline (Dm) in the request of Piece m. Peer i knows
how much token its neighbor Peer j has accumulated (Lj).
Peer i will turn down the request for Piece m from j if by the
time the packet expires, Peer j still would not have received
enough tokens given the current token allocation rate, i.e.

Lj + xi,j · b
Dm

TTA

c <
packet size

TTA

.

4.2 Computation complexity and overhead
Each iteration of the rate allocation at Peer i involves

computing the update step for each of its neighbor j. Since
the derivatives of the utility and cost functions are closed
form expressions and pre-stored, this is a fairly straightfor-
ward computation with a few multiplications and additions.
Each peer typically has no more than 20 neighbors includ-
ing both upstream and downstream neighbors. In our sim-
ulations, we carry out the rate allocation once per second
(TRA = 1 second). For today’s personal computers with
GHz processors, the computation overhead is marginal.

There is almost no communication overhead involved ei-
ther. The only additional information that peers have to
transmit to their neighbors is their aggregate received band-
width and the playback deadline for each packet. Peers can
easily piggyback this information in their packet requests.

5. EVALUATION
To evaluate the proposed packet scheduling algorithm,

we implemented a discrete-time packet-level simulator that
can simulate the peer-assisted VoD system, as described in
Sec. 2, with up to 10k concurrent users. We first demon-
strate that the proposed packet-level algorithm converges
closely to the solution of the fluid-level optimization prob-
lem (9). We then evaluate its performance using both syn-
thetic and real-world traces. In particular, we demonstrate
the effectiveness of the proposed algorithm in reducing ISP-
unfriendly traffic and server load compared to a simple even
rate allocation scheme. We showcase the flexible tradeoff
between server load and ISP-unfriendly traffic enabled by
the proposed framework. We also mimic the MESH plat-
form and implement a heuristic-based ISP-friendly topology
building scheme and demonstrate that the proposed algo-
rithm can bring significant additional performance gain.

We use VoD traces collected from MSN Video service
in July, 2007. The 10 most popular videos’ traces logged
around 10 million users. These traces contain clients’ pub-
lic IP addresses and download bandwidth. We map these
IP addresses to AS numbers [7] and find the relationship
among ASes using CAIDA’s data [9]. We say traffic be-
tween Peer i and Peer j is ISP-friendly if i and j are in the
same AS or in ASes with a peering relationship, otherwise
it is ISP-unfriendly. We infer peers’ upload bandwidth from
their download bandwidth as in [6], and quantize it to 128,
384, 512 and 768 Kbps for the discrete-time simulator1. For
all our simulations, data packet size is 4KB2.

5.1 Convergence behavior
We first demonstrate that the packet-level algorithm con-

verges closely to the solution of the optimization problem (9).

1Though we have only used a single bandwidth constraint
per peer, this needs not be the case in practice. For example,
peers within the same local area network may have higher
bandwidth among them. As long as all the bandwidth con-
straints are node constraints instead of link constraints, the
proposed framework will work directly. We only need to add
the additional bandwidth constraints to the formulation and
modify the specific implementation of projection onto feasi-
ble set accordingly. In this section, we continue to use one
bandwidth constraint per node as it is the only information
we can derive using the data at hand.
2Each packet equals to multiple network packets. The size is
chosen to strike a balance between communication overhead
and flexibility and mimics that used in the real system.

Using statistics obtained from the MSN traces, we simulated
peers from the 5 ASes with the most users. At Time 0, peers
start joining the system following a Poisson arrival process
with an arrival rate of 1.2 peers per second. The video is
300 seconds long at 512 Kbps. Peers stay in the system until
the end of the video and leave immediately after watching
the entire video. In other words, peers arrive and stay for
exactly 300 seconds. In steady state, there are on average
1.2 × 300 = 360 peers in the system.

Every second, we log the current topology and run cen-
tralized global optimization to obtain the solution of (9) and
the corresponding server load and amount of ISP-unfriendly
traffic. We refer to this as the centralized fluid-level solution.
We also log the server load and amount of ISP-unfriendly
traffic using our packet-level discrete-time simulator every
second and plot it against the centralized solution as shown
in Fig. 4. Fig. 4(a) plots the number of peers in the sys-
tem over time. Fig. 4(b) and (c) plot the server load and
amount of ISP-unfriendly traffic respectively. We see that
both curves remain very close to the centralized fluid-level
solution even though peers constantly join and leave.

We then vary the peer arrival rate to see how the pro-
posed algorithm responds to much higher peer arrival rates,
i.e. more dynamic topology. We compute the average per-
centage difference between the packet-level simulation result
and the centralized fluid-level solution in the following way.
Every second, we compute the (absolute) percentage differ-

ence as |packet-level result - fluid-level centralized result|
fluid-level centralized result

. We com-
pute the average percentage difference (over 15 minutes) for
each peer arrival rate and plot it in Fig. 4(d). It shows that
regardless of the peer arrival rate and fast evolving topol-
ogy, the packet-level algorithm converges very closely to the
centralized fluid-level solution.

0 100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

350

400

Time (second)

N
um

be
r

of
 p

ee
rs

 in
 th

e
sy

st
em

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

3000

3500

Time (second)

S
er

ve
r

lo
ad

 (
K

B
ps

)

Distributed packet−level simulation result
Centralized solution using MOSEK

(a) (b)

0 100 200 300 400 500 600 700 800 900
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time (second)

IS
P

−
un

fr
ie

nd
ly

 tr
af

fic
 (

K
B

ps
)

Distributed packet−level simulation result
Centralized solution using MOSEK

1.2 2.4 3.6 4.8
0

2

4

6

8

10

12

Peer arrival rate (peer/second)

A
ve

ra
ge

 %
 d

iff
er

en
ce

 b
et

w
ee

n
pa

ck
et

−
le

ve
l

si
m

ul
at

io
n

an
d

ce
nt

ra
liz

ed
 fl

ui
d−

le
ve

l s
ol

ut
io

n

Difference in server load
Difference in ISP−unfriendly traffic

(c) (d)

Figure 4: Convergence behavior of proposed packet-

level algorithm. Peers have Poisson arrival process of

rate 1.2/sec. Peers watch the entire video (5 min) then

leave. (a) Number of concurrent peers over time. (b)

Server load over time (KBps). (c) ISP-unfriendly traffic

over time (KBps). (d) Percentage discrepancy between

packet-level simulation and centralized fluid-level solu-

tion as peer arrival rate varies from 1.2 to 4.8, i.e. avg.

number of concurrent peers varies from 360 to 1440.

5.2 Synthetic trace results
In this part of the result, we demonstrate:

1. the proposed framework enables a flexible tradeoff be-
tween server load and ISP-unfriendly traffic;

2. the proposed framework outperforms even bandwidth al-
location3 in reducing both server load and ISP-unfriendly
traffic;

3. given an ISP-friendly topology, the proposed algorithm
provides significant additional reduction in ISP-unfriendly
traffic.
We use synthetic traces to control a relatively stable num-

ber of peers in the system to make certain comparisons. We
simulated peers using statistics of the Top 5 ASes. Peers
have a Poisson arrival process at the rate of 2 peers per sec-
ond. Peers stay until the end of the video. The video is
300 second long at 512 Kbps. In steady state, there are 600
peers in the system. We compare results using two different
topology building strategies. In the case with ISP-unaware
topology, peers simply connect to a certain number of up-
stream peers (8 in our case) with the closest playback points.
In the case with ISP-friendly topology, we mimic the MESH
platform and generate ISP-friendly topologies in the follow-
ing way. Among the certain number of upstream peers a peer
tries to connect to, it tries to make 70% of the connections
with peers in the same or peering ASes4. If this cannot be
satisfied right away, the peer will make as many connections
with peers in the same or peering ASes as possible and en-
sure a minimum total number of connections (6 in our case)
by connecting to peers in non-peering ASes. The peer then
queries the tracker periodically to see if additional upstream
peers in the same or peering ASes become available5.

To study the tradeoff between server load and ISP-unfriendly
traffic, we vary the coefficient of the linear term in the link
cost function (c) and plot the average server load versus the
average ISP-unfriendly traffic using both ISP-unaware and
ISP-friendly topologies (solid lines in Fig. 5 (a) and (b) re-
spectively). As expected, when we increase c, ISP-unfriendly
traffic is reduced at the cost of increased server load.

The single data point in Fig. 5 (a) and (b) is the result of
using even bandwidth allocation. All but one point on the
performance curve of the proposed algorithm lie to the lower
left of the even bandwidth allocation data point, indicating
both lower server load and lower ISP-unfriendly traffic.

Comparing Fig. 5 (a) and (b), we see that an ISP-friendly
topology helps reducing ISP-unfriendly traffic. Using the
same even bandwidth allocation scheme, the amount of ISP-
unfriendly traffic is reduced from 250,000 KBps to 150,000
KBps, an reduction of 40%, at the cost of approximately
500 KBps increase in server load. However, the proposed
algorithm can still provide a significant amount of additional
reduction in ISP-unfriendly traffic.

We acknowledge that, due to the strictly convex link cost
function (to ensure a unique global optimum), there will
be a performance gap between the proposed algorithm and
the ideal 3-stage optimization. Fig. 5 also plots the optimal
solution of the 3-step optimization. The gap between the

3To simulate even bandwidth allocation, each peer serves
its neighbors’ packet requests in a round-robin fashion, thus
almost evenly splitting its upload bandwidth among them.
4This can be done either by the tracker or by peers them-
selves using the IP-AS map followed by AS relationship table
5This could happen if an upstream peer in the same or peer-
ing AS has freed up an upload slot due to peer leaving.

4000 4500 5000 5500 6000 6500 7000
0

0.5

1

1.5

2

2.5

3

x 10
4

IS
P

−
un

fr
ie

nd
ly

 tr
af

fic
 (

K
B

ps
)

Server load (KBps)

Proposed algorithm with ISP−unaware topology
Even bandwidth allocation with ISP−unaware topology
Optimal solution with ISP−unaware topology

Operating point for the
rest of the simulations

5600 5800 6000 6200 6400 6600 6800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

IS
P

−
un

fr
ie

nd
ly

 tr
af

fic
 (

K
B

ps
)

Server load (KBps)

Proposed algorithm with ISP−friendly topology
Even bandwidth allocation with ISP−friendly topology
Optimal solution with ISP−friendly topology

Operating point for the
rest of the simulations

(a) (b)

Figure 5: ISP-unfriendly traffic vs. server load for pro-

posed algorithm with different link costs and even band-

width allocation with (a) ISP-unaware topology and (b)

ISP-friendly topology.

proposed algorithm and the 3-stage optimization is larger
when c is small, i.e., when the server load needs to be min-
imized. This is because the quadratic term of the link cost
function (εx2+cx) becomes more dominant for small c’s. In
those cases, as the transmission rate increases, it becomes
almost as expensive to transmit within and across ASes.
This suppresses traffic within the same (or peering) ASes to
some extent, thereby increasing ISP-unfriendly traffic. This,
however, cannot be avoided unless the quadratic term of the
link cost is dropped, which then causes convergence issues.
In fact, without the quadratic term, the iterative algorithm
may never converge under peer dynamics. It is interesting
future work to reduce the gap when the server load needs to
be optimized while maintaining good convergence behavior.

From Fig. 5 (a) and (b), we see that even though the
topologies are quite different, the shape of the tradeoff curve
of the proposed algorithm remains very similar. We find
the tradeoff behavior from such small-scale simulations to
be a helpful indicator for choosing an appropriate operating
point. For the rest of our simulations, we fix c = a

2
, which

corresponds to the points indicated by the arrows.
In practice, we do not believe that a single set of param-

eters can fit all scenarios. It is important to allow flexible
tradeoffs for different ISPs and at different times. For in-
stance, say the server load is charged based on 95th per-
centile rule, it makes perfect sense to set a small link cost
during peak time to keep server load small. While during
trough period, when the server could afford more bandwidth,
the link cost can be set to a relatively large value. In this
way, over traffic peak and valley, the value of link cost should
change slowly through the day. While the specific values of
the parameters will need online tuning6, a possible strat-
egy for picking the initial values is to follow the results of
small-scale simulations.

5.3 MSN trace results
In addition to peers’ public IP address and their download

bandwidth, the MSN traces also log peers’ joining time and
the amount of time they stay in the streaming session. We
follow the traces in simulating peers’ joining and departing.
We use two traces, each 24 hours long, with very different
populations. Fig. 6 shows the number of peers over the 24-
hour period for each trace. From here on, we refer to the
first trace (Fig. 6 (a)) as the gold trace and the second trace
(Fig. 6 (b)) as the silver trace. We extract peers in the 20

6A practical solution is to collect feedback from peers and
gradually change the parameter assignment.

most popular ASes to make the number of peers to simu-
late manageable. Even so, at peak time, the gold trace still
logged more than 5000 concurrent users. As stated before,
we look up AS relationships using CAIDA’s data.

0 4 8 12 16 20 24
0

1000

2000

3000

4000

5000

6000

N
um

be
r

of
 p

ee
rs

 in
 th

e
sy

st
em

Time (hour)
0 4 8 12 16

0

100

200

300

400

500

600

700

800

N
um

be
r

of
 p

ee
rs

 in
 th

e
sy

st
em

Time (hour)

(a) (b)

Figure 6: Number of peers over a period of 24 hours in

(a) the gold trace and (b) the silver trace.

For each trace, we compare the server load and the amount
of ISP-unfriendly traffic for the following four systems:

1. proposed algorithm with ISP-unaware topology;
2. even allocation with ISP-unaware topology;
3. proposed algorithm with ISP-friendly topology;
4. even allocation with ISP-friendly topology.
The gold trace video is 456 seconds long. We quantize

the streaming rate to 512 Kbps. Fig. 7 shows the server
load (in KBps) and the amount of ISP-unfriendly traffic (in
KBps) over time for all four systems. Fig. 7 shows the the
corresponding CDFs over the whole day7.

Consistent with the previous result, we see that ISP-friendly
topology is able to effectively reduce the amount of ISP-
unfriendly traffic when using the same even rate allocation
scheme. However, the proposed algorithm is able to pro-
vide significant additional performance gain. Compared to
the baseline system with ISP-unaware topology and even
rate allocation, the best scheme (ISP-friendly topology with
proposed algorithm) can achieve an overall reduction in ISP-
unfriendly traffic of 40% on average. Using the proposed al-
gorithm also provides significant reduction in server load. In
fact, the 95 percentile server load is reduced almost by half
compared to even bandwidth allocation schemes (Fig. 7 (c)).

For the silver trace, the video is 217 seconds long. The bit
rate is 503 Kbps, which we quantize to 512 Kbps. Fig. 8 (a)
and (b) show the CDFs of the server load and ISP-unfriendly
traffic. Here we observe very similar behavior to the gold
trace though the popularity of the trace is very different.
In summary, the proposed algorithm combined with ISP-
friendly topology is able to reduce the amount of ISP-unfriendly
traffic by up to 50% compared to the baseline system.

5.4 Is topology building enough?
The evaluations so far have clearly demonstrated: 1) build-

ing ISP-friendly topology can help reduce both server load
and ISP-unfriendly traffic; 2) once a topology is established,
the proposed rate allocation can provide substantial addi-
tional gain. In this section, we study the following question:
if we use a more sophisticated topology building mechanism,
will it achieve most of the gain such that an explicit rate al-
location becomes unnecessary? While we cannot completely
answer the question yet, our study did provide some intu-

7The CDF curves have an unusual shape due to the fluctu-
ation of the number of peers in the system over time.

0 4 8 12 16 20 24
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Time (hour)

S
er

ve
r

lo
ad

 (
K

B
ps

)
Iterative algorithm with ISP−unaware topology
Even allocation with ISP−unaware topology
Iterative algorithm with ISP−friendly topology
Even allocation with ISP−friendly topology

0 4 8 12 16 20 24
0

0.5

1

1.5

2

2.5
x 10

5

Time (hour)

IS
P

−
un

fr
ie

nd
ly

 tr
af

fic
 (

K
B

ps
)

Iterative algorithm with ISP−unaware topology
Even allocation with ISP−unaware topology
Iterative algorithm with ISP−friendly topology
Even allocation with ISP−friendly topology

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Server load (KBps)

Iterative algorithm with ISP−unaware topology
Even allocation with ISP−unaware topology
Iterative algorithm with ISP−friendly topology
Even allocation with ISP−friendly topology

0 0.5 1 1.5 2 2.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ISP−unfriendly traffic (KBps)

Iterative algorithm with ISP−unaware topology
Even allocation with ISP−unaware topology
Iterative algorithm with ISP−friendly topology
Even allocation with ISP−friendly topology

(c) (d)

Figure 7: Gold trace: (a) server load over time, (b)

ISP-unfriendly traffic over time, (c) server load CDF,

(d) ISP-unfriendly traffic CDF .

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Server load (KBps)

Iterative algorithm with ISP−unaware topology
Even allocation with ISP−unaware topology
Iterative algorithm with ISP−friendly topology
Even allocation with ISP−friendly topology

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ISP−unfriendly traffic (KBps)

Iterative algorithm with ISP−unaware topology
Even allocation with ISP−unaware topology
Iterative algorithm with ISP−friendly topology
Even allocation with ISP−friendly topology

(a) (b)

Figure 8: Silver trace: (a) server load CDF, (b) ISP-

unfriendly traffic CDF.

ition on why a centralized topology building guide may not
be sufficient in practice.

5.4.1 The iTracker approach
We adapt the iTracker approach from the recently pro-

posed P4P framework [11] and evaluate a similar topology
building mechanism in the VoD scenario. The P4P frame-
work advocates a flexible and light-weight portal, through
which ISPs provide explicit information and guidelines to
P2P apps. The centerpiece of the proposed P4P framework
is a coordinating unit called iTracker. In short, iTracker
takes information from both ISPs (e.g., network topology,
bandwidth cap, etc.) and P2P apps (e.g., peers’ upload and
download bandwidth, IP addresses, etc.) as input and solves
a global optimization problem to strike a balance between
ISPs’ objectives (e.g., limit cross-ISP traffic) and P2P apps’
objectives (e.g., speed up download). The outcome is used
to guide topology building. Specifically, the iTracker op-
timization consists of two parts: 1) modeling peer sharing
efficiency, following the method proposed by Qiu et al. [10];
2) solving the global optimization problem and allocating
rates on each individual link. Total traffic within ISP and
between ISPs are then used to compute ratios, which guides
topology building for future peers. For example, say there
are three ISPs (A, B and C). Suppose the outcome of the

global optimization is that the ratio among total traffic in-
side ISP A, total traffic between A-B, and total traffic be-
tween A-C is 7:2:1. Hence, when a new peer from ISP A
joins, it will establish connections based on this ratio: 70%
connections to peers within A, 20% to B and 10% to C.

When we adapt the iTracker approach to the VoD sce-
nario, we make two changes to single out the effect of topol-
ogy building. First, we remove the first part of efficiency
modeling and compute the efficiency exactly, by taking a
snapshot of the entire existing topology. The 3-stage global
optimization is executed on this topology. Once optimal
rates are allocated, for each ISP, we compute the total in-
ternal/external traffic and calculate the corresponding ratio,
which is then used to guide topology building in a similar
way. Second, the global optimization is executed whenever
a new peer joins. Though neither complete snapshot nor
frequent optimization is scalable in practice, we did it in an
attempt to create a scenario that allows us to focus on the
impact of sophisticated topology building alone.

5.4.2 Evaulation
We simulated 24hr of the silver MSN trace (see Sec. 5.3 for

more details on the trace). Fig. 9 shows the CDF of server
load and ISP-unfriendly traffic using the following systems:

1. proposed algorithm with ISP-unaware topology;
2. even allocation with ISP-unaware topology;
3. proposed algorithm with iTracker-guided topology;
4. even allocation with iTracker-guided topology.
Though the iTracker-guided topology provides gain in re-

ducing ISP-unfriendly traffic, the proposed iterative algo-
rithm can be used on top of the iTracker-guided topology to
achieve significant additional gain. Compared to Fig. 8, the
iTracker-guided topology does not seem to provide better
result than the simple heuristic-based ISP-friendly topology
building scheme. While we acknowledge that our adapta-
tion of the iTracker approach may not be the best one, the
following reasons also play a role in the result.

First, the iTracker guides the peers on topology building
by providing a ratio of peers from each ISP that they should
connect to. This ratio is an average among all peers from
the same ISP, not for each individual peer. Thus, if a new
peer in this ISP makes connections according to this ratio,
the resulting topology is typically suboptimal.

Second, as peers churn, the optimization result may fluc-
tuate among different optimums that correspond to com-
pletely different rate allocations on each link and yield differ-
ent connection ratios. While new peers can follow the newest
iTracker result in making the connections, it is infeasible for
existing peers to change their connections to conform to the
new result. This is because video streaming applications are
much more sensitive to breaking and establishing new links
compared to file download due to the strict delivery deadline
for every packet.

In practice, it is clearly not scalable to run the iTracker
optimization every time a new peer joins a VoD session, nor
is it possible to optimize over the entire topology. This will
only cause the resulting topology to be of lower quality and
the proposed algorithm can be used to improve performance.

6. RELATED WORK
P2P and ISP: Many measurement-based studies have

argued that peer-to-peer or peer-assisted appliations can in-
deed become ISP-friendly. Saroiu et al. [12] collected in-

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Server load (KBps)

Iterative algorithm with iTracker−style topology
Even allocation with iTracker−style topology
Iterative algorithm with ISP−unaware topology
Even allocation with ISP−unaware topology

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ISP−unfriendly traffic (KBps)

Iterative algorithm with iTracker−style topology
Even allocation with iTracker−style topology
Iterative algorithm with ISP−unaware topology
Even allocation with ISP−unaware topology

(a) (b)

Figure 9: Effect of sophisticated topology-building: (a)

and (b) show the server load and ISP-unfriendly traffic

CDF over 24 hr using the silver MSN trace.

bound/outbound traffic of a large university and showed
that there are lots of redundancy in P2P traffic. Gummadi
et al. [13] studied Kazaa traffic and showed that ISPs’ exter-
nal traffic can be greatly reduced by incorporating locality-
awareness. Karagiannis et al. [14] studied BitTorrent traffic
and showed that locality-aware P2P delivery solutions can
significantly alleviate the induced cost at the ISPs. Huang
et al. [6] studied video-on-demand traffic from a large portal
and showed there is a trade-off to be explored between server
load and ISP-unfriendly traffic. Griwodz [15] estimated the
cost of deployment and operation of a VoD service in a CDN
with several hierarchical levels, and studied the placement
of VoD content that achieves the minimal cost.

Topology building: A number of studies have shown
that ISP-friendliness can be incorporated into topology build-
ing [3, 4, 11, 16, 17]. It can be an explicit mechanism, as
simple as biased neighbor selection [16], or more sophisti-
cated schemes requiring a dedicated oracle [3], drafting be-
hind CDNs’ infrastructure [4], or executing optimizations
in an iTracker [11]. It can be extended to take into ac-
count multi-tier network topology, from subnets, POPs to
ISPs [17]. The topology building mechanism can also be im-
plicit. As shown in the recent study of UUSee [18], peers
tend to form ISP-based clusters as the topology evolves nat-
urally. In our study, we confirm the benefit from topology
building and further demonstrate that there is substantial
additional gain from rate allocation.

Rate allocation: Distributed optimization framework,
a well-explored direction in network flow problems [19, 20,
21], has been applied to P2P applications recently. All the
studies [22, 23, 24] so far have been focusing on either ap-
plication layer multicast or P2P live streaming. Instead, we
study peer-assisted VoD, which deals with additional chal-
lenge of peer prefetching, besides QoS and ISP-friendliness.

7. CONCLUSIONS
Making P2P applications ISP-friendly has been a topic

of great interest. Instead of tackling the problem from a
topology-building angle, we proposed to study a distributed
bandwidth allocation algorithm for video-on-demand that
minimizes ISP-unfriendly traffic without much impact on
the server load. We formulated the problem using an opti-
mization framework that allows a flexible tradeoff between
server load and ISP-unfriendly traffic. We presented a dis-
tributed solution and translated it into a light-weight packet-
level scheduling algorithm. We evaluated the performance
of the proposed solution with a discrete-time packet-level

simulator using both synthetic and real-world traces. We
showed that the proposed algorithm can bring significant
additional reduction (up to 40%) in ISP-unfriendly traffic
on top of an ISP-friendly topology without incurring addi-
tional server load. In the future, we would like to integrate
the proposed work into the MESH platform and understand
its behavior in the real-world.

8. REFERENCES
[1] M. Goodman, Internet Video Forcast: Broadband Emerges as

an Alternative Channel for Video Distribution. Yankee group,
2006.

[2] Global Internet Geography 2006. TeleGeography Research,
2006.

[3] V. Aggarwal, et al., Can ISPs and P2P Users Cooperate for
Improved Performance? ACM SIGCOMM Computer
Communication Review, vol 37, pp. 29–40, Jul. 2007.

[4] D. Choffnes, and F. Bsutamante, Taming the Torrent: A
Practical Approach to Reducing Cross-ISP Traffic in
Peer-to-Peer Systems, In Proc. of SIGCOMM, Aug. 2008.

[5] MESH: Peer-assisted Distribution Platform. Microsoft,
http://meshv1.edge.msn.com.

[6] C. Huang, et al., Can Internet Video-on-Demand be
Profitable? In Proc. of SIGCOMM, Aug. 2007.

[7] N. Spring, et al., Measuring ISP Topologies with Rocketfuel.
IEEE/ACM Trans. on Networking, vol 12, pp. 2–16, Feb.
2004.

[8] D. P. Bertsekas. Nonlinear Programming. Athena Scientific.

[9] The Cooperative Association for Internet Data Analysis.
http://www.caida.org.

[10] D. Qiu, and R. Srikant, Modeling and Performance Analysis of
BitTorrent-like Peer-to-Peer Networks. In Proc. of
SIGCOMM, Aug. 2004.

[11] H. Xie, et al., P4P: Proactive Provider Participation for P2P.
In Proc. of SIGCOMM, Aug. 2008.

[12] S. Saroiu, et al., An Analysis of Internet Content Delivery
Systems. In Proc. of Symposium on Operating Systems
Design and Implementation, Dec. 2002.

[13] K. Gummadi, et al., Measurement, Modeling and Analysis of a
Peer-to-Peer File-Sharing Workload. In Proc. of ACM
Symposium on Operating Systems Principles, Oct. 2003.

[14] T. Karagiannis, et al., Should Internet Service Providers Fear
Peer-Assisted Content Distribution. In Proc. of ACM Internet
Measurement Conference, Oct. 2005.

[15] C. Griwodz, Movie Placement in a Hierarchical CDN with
Stream Merging Mechanisms. In Proc. of SPIE/ACM
International Conference on Multimedia Computing and
Networking, Jan. 2004.

[16] R. Bindal, et al., Improving Traffic Locality in BitTorrent via
Biased Neighbor Selection. In Proc. of IEEE International
Conference on Distributed Computing Systems, Jul. 2006.

[17] J. Li, Locality Aware Peer Assisted Delivery: the Way to Scale
Internet Video to the World. Packat Video, 2007.

[18] C. Wu, et al., Magellan: Charting Large-Scale Peer-to-Peer
Live Streaming Topologies. In Proc. of International
Conference on Distributed Computing Systems, Jun. 2007.

[19] F. Kelly, et al. Rate Control in Communication Networks:
Shadow Prices, Proportional Fairness and Stability. Journal of
the Operational Research Society, vol 49, pp. 237–252, Mar.
1998.

[20] D. Wei, et al., FAST TCP: Motivation, Architecture,
Algorithms, Performance. IEEE/ACM Trans. on Networking,
vol 14, pp. 1246–1259, Dec. 2006.

[21] H. Han, et al., Multi-Path TCP: A Joint Congestion Control
and Routing Scheme to Exploit Path Diversity in the Internet.
IEEE/ACM Trans. on Networking, vol 14, pp. 1260–1271,
Dec. 2006.

[22] D. Lun, et al., Achieving Minimum-cost Multicast: A
Decentralized Approach Based on Network Coding. In Proc. of
INFOCOM, Mar. 2005.

[23] C. Wu, and B. Li, Strategies of Conflict in Coexisting
Streaming Overlays. In Proc. of INFOCOM, May. 2007.

[24] C. Wu, and B. Li, On Meeting P2P Streaming Bandwidth
Demand with Limited Supplies. In Proc. of SPIE/ACM
International Conference on Multimedia Computing and
Networking, Jan. 2008.

