
RAPID: A Reliable Protocol for Improving Delay

Sanjeev Mehrotra, Jin Li, Cheng Huang
{sanjeevm,jinl,chengh}@microsoft.com

ABSTRACT
Recently, there has been a dramatic increase in interactive
cloud based software applications (e.g. working on remote
machines, online games, interactive websites such as finan-
cial, web search) and other soft real-time applications (traffic
within data center). Compared to classical real-time media
applications (VoIP/conferencing) and non real-time file de-
livery, these interactive software applications have unique
characteristics as they are delay sensitive yet demand in or-
der and reliable data delivery. Therefore existing protocols
for delivery of lossless data (such as TCP) and other deliv-
ery protocols using UDP do not work well. In this demo, we
show substantially improved performance for such traffic by
using a transport protocol built on top of UDP which uses
intelligent adaptive forward error correction (FEC) and im-
proved congestion control (rate control). The transport pro-
tocol is made lossless by using a hybrid FEC/ARQ strategy.
The congestion control technique improves the delay perfor-
mance by preventing congestion induced loss and minimizing
queuing delay while still fully utilizing network capacity and
maintaining fairness across flows. In this demo, we present
RAPID (a ReliAble transport Protocol for Improving end-
to-end Delay) and show show its effectiveness in improving
the performance of interactive client-server applications.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Real-time transport protocols

Keywords
Real-time communications, Interactive applications, Cloud
Computing, Forward Error Correction (FEC)

1. INTRODUCTION
Soft-real time applications (such as interactive applica-

tions) are those where there is a soft requirement on the
end-to-end delay being small and where the application per-
formance degrades as this delay becomes larger. Unlike hard

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM Multimedia 2010 Firenze, Italy
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Table 1: Media streaming vs Interactive app vs File
delivery

Media streaming Interactive App File delivery

Strict deadline Delay sensitive No deadline
Best effort Reliable delivery Reliable delivery
No ordering In-order In-order
Low delay Delay-aware Delay agnostic

real-time applications, there is no strict deadline for the data
to remain useful. Application level end-to-end delay refers
to the time between when the data is generated to the time
it is received by the application. It can be measured on
some granularity such as packets or messages (collection of
packets).

Examples of interactive applications are working remotely
from one machine to another, online multi-player (or server
hosted) games, interactive websites (financial, retail) and
web search. Video-on-demand (VOD) and other classical
media streaming is usually not considered real-time since
the end-to-end delay can actually be very large (the video is
generated much before it needs to be viewed for VOD and
even for “live”TV is typically generated a few seconds in the
past). We summarize the difference between media stream-
ing, interactive applications, and file delivery in Table 1.

Interactive applications are multi-party (where a party
can be a user or a machine) and are those where the data
which each party generates is in response to actions or data
generated by other parties. This data can be audio or video
(from microphone or camera) or can be other data such as
text, graphics primitives, bitmaps of screen captures, or in-
put data from keyboard or mouse movements.

As an example, consider an application where a thin client
is used for display and input (keyboard/mouse) purposes
and the server is located in a distant data center. The
server processes the incoming commands and the applica-
tion responds by providing a screen update (via either text,
HTML, graphics primitives, or screen bitmaps) to the client.
The responsiveness of the application is directly related to
the timely delivery of this response. Interactive websites
such as banking or retail have similar characteristics.

As another example, consider the response to a web search
request. The response is usually a small message (for exam-
ple around 10KB) which for a 10Mbps link (which is very
common these days) is only 8ms of network time. Thus the
end-to-end delay for this message delivery (even including
the server processing) can be on the order of 100-200ms.
Such small messages are fairly common in today’s web traf-
fic as the number of small objects in web pages continues

to increase [4]. Also, they are fairly common in data cen-
ter environments where small messages are routinely passed
around between machines running a distributed application.
For such applications, latency can significantly reduce the
throughput of the application.

Since most interactive applications operate as a state ma-
chine, the data has to be delivered losslessly and in-order
so that the client and server state are in sync. Therefore
most existing applications simply use TCP (New Reno) [1].
However, for interactive applications, any network queuing
delay or packet loss can hurt performance by increasing end-
to-end latency. With the use TCP like protocols, both of
these will be present when congestion is present. In TCP,
this is primarily caused by 1) the use of only retransmissions
(ARQ) for reliability which results in large delays whenever
there is loss (congestion or other) and 2) the use of a win-
dow based congestion control and only reducing rate in the
presence of packet loss which results in large queuing delays
and congestion-induced packet loss.

2. TRANSPORT PROTOCOL DEMO
When the requirement on the end-to-end delay is much

larger than the network round-trip time (RTT), protocols
such as TCP which fully utilize the network bandwidth while
suffering minimal waste (since they only retransmit lost pack-
ets) work well even though they suffer from significant queu-
ing delays and some congestion induced packet loss. How-
ever, when the end-to-end delay requirement is on the order
of RTT, then network queuing delay and packet loss become
a main cause of performance issues.

In previous work, we have proposed the use of a proto-
col running on top of UDP as shown in Fig. 1 which uses
a hybrid FEC/ARQ protocol [2, 3] along with an improved
congestion control strategy (to determine the network trans-
mission rate). The proposed network protocol improves end-
to-end delay of packets or messages by using the following:

• Using a delay based congestion control (which backs
off prior to loss thus resulting in network buffers being
not completely full) to minimize network queuing delay
and congestion induced packet loss.

• Correcting for any remaining packet losses by proac-
tively inserting FEC packets.

Although FEC can be used to reduce delay due to retrans-
mission of lost packets for packets or messages which have al-
ready been sent, using it arbitrarily can actually hurt overall
delay performance since for a fixed rate channel, the inser-
tion of an FEC packet delays sending of future packets and
messages waiting to be sent. Therefore we use a cost func-
tion to compute a transmission policy to optimize the total
delay seen by all packets (or messages). The transmission
strategy portion of the protocol in Fig. 1 attempts to find
an optimal transmission policy and the congestion control
portion attempts to find an appropriate transmission rate
of packets into the network (by controlling the transmission
rate and window size for unacknowledged data).

This demo will present the improvements that can be
achieved when using such a protocol for use in an interactive
client-server communication such as working on a remote
machine or interactive web browsing. There are a host of
applications for working remotely which allow for connect-
ing from a client (a machine, lightweight device, or browser)
to a server (a physical machine, virtual machine, or server in
a data center). The client sends keyboard and mouse com-

Application

Application

Rate Control

Congestion

Control

Transmission

Strategy
Original

Packets

Coded

Packets

Network

Feedback

Coded

Packets

Transport Protocol

Figure 1: Block Diagram.

TCP
New

Protocol

Server Server

Client

Figure 2: Demo Setup.

mands to the server (perhaps in a distant location) and the
server sends display updates (in the form of text, dynami-
cally generated HTML, graphics, or bitmaps) to the client.

This demonstration will show the performance improve-
ments when using this protocol compared to using a stan-
dard protocol such as TCP for interactive applications over
various network conditions. The demo setup is as shown
in Fig. 2 and will compare the performance using two si-
multaneous interactive client-server sessions which the user
can control. The network conditions will be varied using
a network emulation tool to simulate realistic network en-
vironments. The performance difference between using the
two protocols will be easily observable.

3. CONCLUSION
In this demo, we have shown the performance improve-

ment that can be achieved when using intelligent transport
protocols designed for applications with low end-to-end la-
tency (interactive applications, short message delivery). Al-
though the demo shown has been for interactive applications
with text and graphics data, such a protocol can be widely
used wherever there is a requirement on low end-to-end de-
lay. With rich, immersive multimedia communications (au-
dio/video/haptics) ready to take off, such a protocol can
find a wide range of uses.

4. REFERENCES
[1] S. Floyd and T. Henderson. The NewReno Modification

to TCP’s Fast Recovery Algorithm, Apr. 1999. RFC
2582.

[2] Y. Huang, S. Mehrotra, and J. Li. A hybrid FEC-ARQ
protocol for low-delay lossless sequential data
streaming. In Proc. Int’l Conf. Multimedia and Expo,
pages 718–725. IEEE, June 2009.

[3] S. Mehrotra, J. Li, and Y. Huang. Minimizing delay in
lossless sequential data streaming. In Proc. Int’l Conf.
Multimedia and Expo. IEEE, July 2010.

[4] SPDY: An experimental protocol for a faster web.
http://dev.chromium.org/spdy/spdy-whitepaper.

