© 2003 ACM 1-58113-624-2/03/03...$5.00.

Efficient Evaluation of Relevance Feedback
for Multidimensional All-Pairs Retrieval

Michael Ortega
Computer Science
University of lilinois at
Urbana-Champaign
miki@acm.org

Abstract

New retrieval applications support flexible comparison for all-
pairs best match operations based on a notion of similarity
or distance. The distance between items is determined by
some arbitrary distance function. Users that pose queries may
change their definition of the distance metric as they progress.
The distance metric change may be explicit or implicit in
an application {e.g., using relevance feedback). Recomput-
ing from scratch the results with the new distance metric is
wasteful. In this paper, we present an efficient approach to re-
computing the all-pairs best match (join) operation using the
new distance metric by re-using the work already carried out
for the old distance metric. Our approach reduces significantly
the work required to compute the new result, as compared to
a naive re-evaluation.

1 Introduction:

Traditional search engines and Information Retrieval systems
have neglected an important class of searches: best all-pairs
matches. The traditional retrieval paradigm consists of a user
providing a suitable expression of a desired target object and
let the system find those items (documents [19], web pages,
images (18], etc.) that best match what the user specified, and
return them arranged in a ranked list. In essence, the system
is looking for the “nearest neighbors” of the specified search
item.

A different class of search arises when two datasets are com-
pared to each other in-an all-pairs best match manner. This
kind of search arises in applications such as job searching:
“find the best matching (resume — job description) pairs”, or
in a real estate application: “find the closest (home — school)
pairs.” This type of search augments the familiar join op-
eration in relational databases with the notion of similarity,
top-k and ranking so familiar in Information Retrieval [19].
As the following examplé illustrates, this class of search arises
naturally in a variety of today’s applications:

Permission to make digital or hard copies of all or part this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, and that copies bear this notice and the full citation on the
first. page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

SAC 2003, Melbourne, Florida, USA

Kaushik Chakrabarti

Microsoft Research

One Microsoft Way
kaushik@microsoft.com

Sharad Mehrotra
Inf. and Computer Science
University of California, lrvine
sharad@ics.uci.edu

Example 1.1 (E-commerce) Consider a real-estate

database that maintains information like the location of each

house, the price, the number of bedrooms etc. [4] (e.g., MSN

HomeAdvisor). It also contains information like locations

of schools, hospitals, shopping malls and other amenities.

Suppose that a potential customer is interested in houses that

are close to schools and priced around $300,000 as expressed

by the following SQL query:

select similarity, * from Houses H, Schools S where
price_similar(H.price, 300,000) and
close-to(H.location, S.]ocation)
order by similarity desc

The query has two similarity predicates price_similar, and
close_to. The first predicate is a selection predicate in which
we want data items that are closest to a given target value
($300,000 dollars). The second predicate corresponds to a
spatial join that retrieves the closest pairs in the database.
The degree of match of both predicates is combined to obtain
the overall similarity of a house to the user query. The retrieval
system ranks the houses based on the overall similarity and
returns the top houses for the user to inspect. |

An important aspect of top-k queries is user subjectiv-
ity [18, 5]. Let us consider two houses in the database: a
house A that is priced at $400,000 about 1 mile from a school
and a house B that is priced at $325,000 about 10 miles from
a school. Which one is a better match? It depends on the
user. If she is very particular about the proximity to school
and flexible about the price, A is a better match. Conversely,
if she has a limited budget and does not mind the 10 miles
distance, B is better. To return “good quality” answers, the
system must understand the user’s perception of similarity,
i.e., the relative importance of the attributes/features’ to the
user. The system models user perception via the distance
functions (e.g., Euclidean in example 1.1) and the weights as-
sociated with the features [6, 3, 15, 4]. At query time, the
system acquires information from the user based on which it
determines the weights and distance functions that best cap-
ture the perception of this particular user and instantiates the
model with these values. This instantiation is done at query
time since the users perception differs from user to user and
query to query. Once the model is instantiated, we retrieve
the top results for each predicate? and then merge them to
get the overall answers [14, 13, 6, 5].

1We use ‘attribute’ and ‘feature’ interchangeably in this paper.
2In this paper, we assume that all the feature spaces are metric
and an index (called the Feature-index or F-index) exists on each

847

Due to the subjective nature of top-k queries, the answers
returned by the system to a user query usually do not sat-
isfy the user’s need right away [15, 3, 9]. This can happen
due to several reasons: the starting examples may not be the
best ones to capture the information need (IN) of the user
or the starting weights may not accurately capture the users
perception or both. In this case, the user would like to re-
fine the query and resubmit it in order to get back a better
set of answers. We refer to this process as relevance feedback
and the new query is called the “refined” query. In a gquery-
by-ezample (QBE) environment (e.g., multimedia databases),
the user typically refines the query by finding, among the an-
swers returned to the “starting” query, one or more results
that best reflect what she wants, and requesting for more ob-
jects like those [15, 21, 9]. Based on the user feedback, the
system computes new query parameters and executes the re-
fined query. Another way to refine the query is for the user
to explicitly modify the perception model, i.e., to explicitly
change weights to better capture her perception of similarity
[12, 5]. In either case, the user may continue refinement it-
erations until she is satisfied with the results. Recent work
shows that query refinement techniques significantly improve
the quality of answers over a few iterations [15, 9, 18, 21].

While there has been a lot of research on improving the ef-
fectiveness of query refinement as well as on evaluating top-k
queries efficiently, there exists no work that we are aware of
on how to efficiently support refinement of top-k queries inside
a retrieval system. In this paper, we explore one approach to
solve the all-pairs (join) problem for multidimensional data
(e.g., geographic locations, visual image features, document
vectors). A naive approach to supporting query refinement is
to treat a refined query just like a starting query and execute
it from scratch. We observe that the refined queries are not
modified drastically from one iteration to another; hence exe-
cuting them from scratch every time is wasteful. Most of the
execution cost of a refined query can be saved by appropriately
exploiting the information generated during the previous iter-
ations of the query. Specifically, we cache the priority queues
generated by the retrieval algorithm during the execution of
the query. We show how to execute subsequent iterations of a
join query efficiently by utilizing the cached information. Note
that since the query changes, albeit slightly, from iteration to
iteration (i.e., the query points and/or the weights/distance
functions are modified), we, in general, cannot answer a re-
fined query entirely from the cache i.e., we still need to ac-
cess some data from the disk. Our technique minimizes the
amount of data that is accessed from disk to answer a re-
fined query. Our techniques are independent of the way the
user provides feedback to the system, i.e., it does not mat-
ter whether she uses a QBE (i.e., “give me more like this”)
interface or an explicit weight modification interface. Our
experiments on real-life datasets show that our technique sig-
nificantly improves the execution cost of refined queries over
the naive approach.

The rest of this paper is developed as follows. Section 2
presents some background. Section 3 presents our algorithm
for efficient evaluation of refined join queries. Section 4
presents experiments to validate our approach. Section 5
presents some related work, and section 6 offers some con-
clusions.

feature space. A F-index is either single dimensional (e.g., B-tree)
or multidimensional (e.g., R-tree) depending on the feature space
dimensionality.

Spatial join, L2 distance o query points/dataset
function overlapped over

one dataset m search dataset

Figure 1: NN Selection and Join Distance Function

2 Background

Before we embark on an explanation of our algorithm, we first
review the concepts and previous work that underlie our ap-
proach. We describe our interpretation of distance, followed
by the incremental nearest neighbor on which our join algo-
rithm builds. Finally, we discuss how the distance metric can
change in response to a users feedback, and how this relates
to the efficiency of re-executing a query with a modified dis-
tance metric. We base our work on a variant of the well known
R-tree, the R*-tree (1], but any data structure that supports
MINDIST (defined below) is also possible.

2.1 Query representation

We briefly review the interpretation of distance that we use
in the latter parts of the paper. While the standard distance
metric used to build and query R-trees is the Euclidean dis-
tance (also called an Ly metric), any weighed L, metric can be
used. The distances for the query results depend on the shape
of the distance metric. The shape of the distance function is
based on any weighted L, metric, each dimension ¢ carries a
weight w;:

Definition 2.1 (DIST) The DIST distance function com-
pares two points from different datasets with the same di-
mensionality. Let the dimensional weights be w;, 1 < i < d
where d is the dimensionality of the space, and all weights are
on average 1 (d =Y, (ws)).

d
DIST(P1,P2) = | > wi| P1[g] — P2[i] |°

i=1

In a multidimensional join, a pair with one point from each
data source is compared using DIST. Figure 1 shows how DIST
looks like in a 2 dimensional space for two datasets being
joined together.

2.2 Nearest Neighbor selection

We first discuss the more familiar nearest neighbor selection

since it is more familiar in the context of Information Retrieval

and because it forms the foundation for the join algorithm.
There are several approaches to compute the nearest neigh-

bors of a spatial object or point [17, 7]. Given the constraints

of the application area we envision, the following properties

are desirable in an algorithm:

e it works with R*-trees and other data partitioning indexing
structures that support the MINDIST operator

e the output is sorted: it returns the nearest neighbors or-
dered by their distance to the query

e the algorithm is easily implemented in a pipeline fashion
and has no a priori restriction on the largest distance or
number of neighbors to be returned

848

e avoids the potential of query restarts inherent in the arbi-

trary selection of an epsilon for a range query

An algorithm that fulfills these requirements is an incre-
mental nearest neighbor algorithm based on the work of Rous-
sopoulos [17} and Hjaltson [7]. The algorithm uses a priority
queue to keep the minimum distance (MINDIST) from the
query @ for tree nodes, or the true distance for data points
(DIST, defined above). MINDIST has the same interpreta-
tion as DIST, but is adjusted to return the minimum distance
from a query @ to the minimum bounding rectangle (MBR)
of a node. We next define MINDIST: '

Definition 2.2 (MINDIST(Q, N)) Given the d dimen-
sional bounding rectangle Ry = (L, H) of a node N, where
L = (lh,l2,...,1a) and H = (hi1,ha,...,hq) are the two end-
points of the major diagonal of Ry, I; < h; for 1 <4 < d.
The nearest point NP(P*,N) in Ry to each point P in the
multi-point query Q is defined as follows:

| o Pl <l
NP(P Nl = hi P[] >hy
P*[§] otherwise

where N P[j] denotes the position of NP along the jth dimen-
sion. MINDIST(Q, N) is defined as:

MINDIST(Q,N) = Xn:DIST(Pi,NP(Pi,N))

i=1

The incremental NN algorithm can handle arbitrary dis-
tance functions DIST (i.e., L, metrics with arbitrary
weights). The algorithm is correct if MINDIST(Q, N) al-
ways lower bounds DIST(Q,T) where T is any point stored
under N (for a proof, see [3]).]

2.3 Multidimensional Join

Among the many available algorithms, the incremental join

algorithm by Hjaltson and Samet [8] stands out for satisfying

several desirable properties:

e it is similar in spirit to the incremental Nearest Neighbor
algorithm we use

e it works with R*-trees and other data partitioning indexing

structures that support the MINDIST operator

the output is sorted: it returns the closest pairs first, fol-

lowed by more distant pairs

the algorithm is easily implemented in a pipeline fashion

and has no a priori restriction on the largest distance or

number of pairs to be returned

e it is optimized for the case where the number of pairs shown
to the user is small as compared to other algorithms that
must first compute the full result, then sort it before being
presented to the user

For these reasons, we used this algorithm as a basic build-
ing block to develop an algorithm for efficient re-evaluation of
refined queries.

Hjaltson presented several variations of the join algorithm
which differ in the policy for navigating the trees [8]. Some
policies give preference to a depth-first approach, while a sym-
metric approach is more breath-first in nature. Regardless of
the traversal policy, the algorithm uses a priority queue to
process a pair of nodes or data items at a time. The priority
queue returns the closest pair of (node, node), (node, point),
{(point, node), (point, point) seen so far. If the pair consists
of data items only, it is returned with the corresponding dis-
tance. Else, the pair is explored (refined) into its components

Dimensional L, rotation
DIST function Metric L, Weights

Figure 2: Feedback Parameters to Adjust

Original Distance

for which new distances are computed and are added to the
priority queue. The algorithm also incorporates a pruning op-
tion to limit the maximum distance between pairs which in
turn influences the size of the priority queue.

In addition to the DIST and MINDIST functions from def-
initions 2.1 and 2.2, the algorithm also uses an auxiliary func-
tion MINDIST_RECT to compare pairs of node MBRs. We
define MINDIST_RECT next:

Definition 2.3 (MINDIST_RECT(N,N)) Given two d
dimensional bounding rectangles R1y = (L1, H1) and R2y =
(L2, H2) of the nodes N; and N2, where L = (1,12, ...,14) and
H = (h1, ha, ..., hq) are the two endpoints of the major diago-
nalof Ry, l; < h; for1 <i<d.

The nearest distance nd between the rectangles R1 and R2
is defined as follows:

RL.L[j] — R2.H[j]
R2.L[j] — R1.H[j)
0

if R1.L[j] > R2.HJ[j]
if R1.H[j] < R2.L[j]
otherwise

ndl[j] =

where nd[j} denotes the nearest distance between R1 and R2
along the jth dimension.
MINDIST_RECT(N1, N2) if defined as:

MINDIST_RECT(N1,N2) = »

> wi x [ndfi]|p
=1

The join algorithm can handle arbitrary L, distance met-
rics with arbitrary weights for each dimension. The algo-
rithm is correct if MINDIST(N1, N2) always lower bounds
DIST(T1,T2) where T1 and T2 are any points stored under
N1 and N2 respectively.]

2.4 Relevance feedback

We turn our attention to how the distance functions can
change in response to user feedback. Any change is reflected in
the DIST, MINDIST, and MINDIST_RECT functions, specif-
ically, in the functions’ weights.

We present several specific strategies for modifying the dis-
tance function used in a query. Although many different rel-
evance feedback algorithms are possible, we present several
techniques that we have implemented. Figure 2 shows an
overview of refinement techniques that are described next.

¢ Distance Metric Selection determines which of a set
of distance metrics is most consistent with the supplied
feedback. For example, any L, metric can be used, not
Jjust Euclidean distance. This corresponds to changing the
parameter p in the distance functions. We compute the
L; and L, based distances between all values marked as
relevant by the user and average them. The metric that
gives the least average distance is the new distance metric.?

3Although this algorithm is O(n?), in practice there are very few

849

N original query ¢
v — refined query ¢’

@ query dataset

Figure 3: 1/O overlap of original and new query

¢ Query Weight Re-balancing adjusts the weights for in-
dividual dimensions to better fit the feedback. The new
weight for each dimension is computed as the inverse of the
variance for that dimension among relevant values. These
weights are proportional to the importance of the dimen-
sion, i.e., low variance among relevant values indicates the
dimension is important [9, 18]. Mindreader {9] extends
reweighting (stretching) with a rotatated L, metric.

The query processing optimization for feedback we develop
in this paper is independent of the feedback techniques used,
thus one can easily develop more powerful feedback strategies
and seamlessly incorporate them with our work.

3 Efficient evaluation of refined queries

A naive way to evaluate a refined query is to treat it just like
a starting query and execute it from scratch. This approach
is wasteful as we can save most of the execution cost of the
refined query, both in terms of disk accesses (I/O cost) and
distance calculations (CPU cost), by exploiting information
generated during the previous iterations of the query.

We now discuss how to optimize join queries after feedback
has been submitted and processed according to section 2.4.
Due to the high cost of executing joins, it is inefficient to
naively re-execute them from scratch after an iteration of rel-
evance feedback. A naive re-execution will cause substan-
tial unnecessary disk accesses, even when a traditional LRU
database buffer cache is used due to the poor locality of the
distance join algorithm.

As described in section 2.3, we use a distance based join al-
gorithm with two index trees and a priority queue Q to main-
tain enough state to compute the next result pair. In addition
to this priority queue, we cache the pairs already returned to
the user in an unsorted list for later processing (Qord)-

For joins, the distance function can change in its eccen-
tricity and orientation in space. Figure 3 shows iso-distance
contours of the same distance for an original and refined dis-
tance function.* All data point and node pairs in the region of
the original query have been explored and are included in @
or Qoia. All possible point or node pairs in the shaded region
can be re-utilized for computing the result of the refined query.
In the figure, point P2 was returned for this query point in
the previous iteration and is also included in the new itera-
tion. P3 however is in a region that has not been explored
in connection with the present query point, and so may incur
additional disk accesses.

Algorithm 3.1 improves the efficiency for subsequent query
iterations by caching the priority queue and results from ear-

(<20) feedback values simplifying this problem.

4This figure shows distance functions overlapped with a single
data point from the query dataset, these functions are conceptually
overlapped with all data points in the query dataset and compared
to the other dataset to find the nearest pairs of points, as depicted
in figure 1.

lier iterations.® After a user is done viewing the results of a

query iteration, submits feedback and the system computes a
new distance function, we initialize a new iteration by con-
structing a new priority queue Q'. We construct the new pri-
ority queue Q' by recomputing the distance for each pair from
the original priority queue @ and the data already returned
to the user Q,¢. This ensures that we have updated the al-
gorithms state for the new distance function and preserve the
correctness property so we can continue exploring at will. Note
that if the list Qo4 becomes too large to remain in memory, it
can be sequentially written to disk and later sequentially read
to be included in Q. After all items are transferred, Qo:4, and
Q are discarded and Q' becomes @ (Q ~ @’). This process
repeats for subsequent iterations.

4 Experiments

Similarity retrieval and relevance feedback represent a signif-
icant departure from the existing precise matching semantics
supported by current databases. Our purpose in this section
is not to show the merits of relevance feedback, but of the ef-
ficiency of our algorithms to re-evaluate refined queries. The
merits of query refinement have been discussed extensively
elsewhere, e.g., [16, 14, 18, 9, 21].

Experimental setup. We implemented and tested algo-
rithm 3.1. All experiments were conducted on a Sun Ultra
Enterprise 450 with 3GB of physical memory and several GB
of secondary storage, running Solaris 2.7.

In general, the priority queues for the NN and join algo-
rithms may grow too large to remain in main memory. Many
works on nearest neighbor retrieval assume that the entire pri-
ority queue fits in memory [20].% The size needed depends on
the dimensionality of the data, and on the number of entries
which itself depends on the degree of overlap between index
nodes. Several approaches exist to store a priority queue on
disk, e.g., the slotted approach presented in [8]. In our join
experiments, even when fetching the top 10,000 pairs out of
a possible 1.5 billion, the maximum size of the priority queue
was about 1.6MB, well within limits of main memory. There-
fore, for our experiments, we isolated our algorithm from the
issue of an external priority queue implementation and assume
the priority queue is small enough to fit in memory.

For this experiment, we chose a two dimensional join based
on geographic data to simulate the geographic distance join
of example 1.1. We used the following two datasets: (1) the
fixed source air pollution dataset from the ATRS” system of
the EPA which contains 51,801 tuples with geographic location
and emissions of 7 pollutants , (2) the US census data which
contains 29470 tuples that include the geographic location and
some demographic data at the granularity of one zip code. We
constructed an R*-tree for each of these datasets with a 2KB
page size, for a maximum fanout of 85. The pollution dataset
index had 923 nodes and the census index had 548 nodes.

We focused only on the geographic location attribute and
constructed queries with different eccentricities and orienta-
tions. Then, we used these queries as starting and goal queries
and let the query refinement generate the intermediate queries.
We tested starting to goal query difference in eccentricity of

5We implemented the pruning option from [8] (cf. sec. 2.3), we
do shown it here for clarity reasons.

6This assumption is reasonable when the number k of top
matches requested is relatively small compared to the size of the
database which is usually the case [2].

Thttp://www.epa.gov/airs

850

Algorithm 3.1 (Incremental Join Algorithm)

type { (node | point) :A, (node | point) :B} : pair
variable Q: MinPriorityQueue(distance, pair);
variable Q,;q4: Queue(distance, pair);

function NewlIteration()

/* DIST, MINDIST, and MINDIST_RECT were */

/* modified by the feedback process of section 2.4 */

variable Q’: MinPriorityQueue(distance, pair);

while not @Q,1q.empty() do /* process earlier returns */
top = Qo1d-PoP()
/* top.A and top.B must be points */
Q' .insert(DIST (top.A, top.B), (top.A,top.B))

enddo
while not @.empty() do
top = Q.pop()

if top.A and top.B are points
Q' .insert(DIST (top: A, top.B), (top.A,top.B))
else if top.A and top.B are nodes
Q' .insertt(MINDIST_RECT (top.A, top.B),
(top.A, top.B))
else if top.A is a node and top.B is a point
Q' .insert(MINDIST (top.B, top.A), (top.A,top.B))
else if top.A is a point and top.B is a node
Q' .insert(MINDIST (top.A, top.B), (top.A,top.B))
endif
enddo
Q = Q' /* the re-processed queue becomes @ */
end function

up to 2 orders of magnitude, which represents a substantial
change in the distance function, far more than can be expected
under normal query circumstances. Even so, our algorithm
performed quite well.

For the same sets of starting and target queries, we ran
tests to obtain the top;1, 10, 100, 1000, and 10,000 pairs® that
match the query and performed feedback on them.® For each
of these, we measured the number of disk I/Os performed, the
cpu response time (ignoring queue overhead), and the wall
clock response time (subtracting queue overhead).

Results. Figure 4 shows the number of node accesses per-
formed (assuming no buffering) by the naive approach (re-
executing the query from scratch every time) and our recon-
struction approach. After the initial query, subsequent iter-
ations perform minimal node accesses for the reconstruction
approach while the naive approach roughly performs the same
work at each iteration. We also compare to the nested loop
join algorithm. Since we assume the priority queue for our
algorithm has unlimited buffer space in memory, to be fair to
nested loop join, we assume unlimited memory and fit both
complete datasets in memory (thus only 1 access per page).
We included the disk accesses needed by the nested loop join
algorithm and divided this value by 10 to reflect the relative
advantage of sequential reads over random reads [3]. Thus,
the roughly 150 accesses already take into account the advan-
tages gained from sequential access. While slightly lower than
the naive re-execution, nested loop suffers from a very high
cpu overhead and easily loses out to the naive algorithm when
overall time is considered (2-3 orders of magnitude). Figure 5

8We ran these tests independently, i.e., information in the pri-
ority queue was not shared among them.

9For the experiment that requests only the top pair we did not
use feedback, since there is not enough information to meaningfully
compute a new distance function. Instead we used the per-iteration
distance functions of the top 100 query.

function GetNextPair()
while not Q.IsEmpty() do

top=@Q.pop();
if top.A and top.B are objects /*i.e., points*/
Qo14-append(top); // keep it in history
return top;
else if top.A and top.B are nodes
for each child o; in top.A
for each child o2 in top.B
if 01 and o2 are nodes
Q.insert(MINDIST_RECT (01, 02), {01,02));
if 01 is a node and o2 is a point
Q.insert(MINDIST (02,01), {01,02));
if 01 is a point and o2 is a node
Q.insert(MINDIST(o01,02), {01,02));
if 01 is a node and o2 is a point
Q.insert(DI1S5T (o1, 02), {01,02));
else if top.A is a node and top.B is a point
for each child o; in top.A
if 01 is a node
Q.insert(MINDIST (top.B, 01), {01, top.B));
if 01 is a point
Q.insert(DI15T(o1,top.B), {01, top.B));
else if top.A is a point and top.B is a node
/* mirror of above with top.A and top.B reversed*/
else if top.A is a point and top.B is a point
Q.insert(DIST(top.A, top.B), (top.A, top.B));
end if

enddo

shows the CPU time needed by the algorithm excluding the
priority queue overhead. The time required for the nested
loop join computations (ignoring the sort time since we ig-
nored the priority queue overhead above) is roughly 21 min-
utes for the approximately 1.5 billion possible pairs. The cpu
time includes the cost of reconstructing the priority queue for
each new iteration. Figure 6 shows the total wall clock time
(excluding priority queue overhead) for the queries. Nested
loop join (ignoring sort time) takes roughly 22 minutes to
complete this query even when both datasets fit entirely in
memory. This is due to the very high number of distance
computations required. The total response time using the re-
construction approach is typically 3-4 times faster than using
the naive approach. Overall, the reconstruction technique sig-
nificantly outperforms the naive approach or the nested loop
join technique.

5 Related Work

Traditionally, similarity retrieval and relevance feedback have
been studied for textual data in the IR community and have
recently been generalized to other domains. IR has devel-
oped numerous models for the interpretation of similarity [19],
e.g., Boolean, vector, probabilistic, etc. models. IR models
have been generalized to multimedia documents, e.g., image
retrieval [18] uses image features to capture aspects of the
image content, and adapts IR techniques to work on them.
Techniques to incorporate similarity retrieval in databases
have also been considered both for text and multimedia [12].
There are several algorithms to support top-k similarity
queries, such as Fagins (6] algorithm. There are a plethora
of spatial join algorithms that perform better than the reli-
able nested loop join, [11] presents a good overview of the
algorithms available to solve this problem. Koudas [11] gives
an algorithm based on space filling curves that does not need
pre-built indices. Query refinement through relevance feed-

851

800

700

600 +

500 -

Naive Top 1000 - -

Naive Top 10000 —7— Naive Top $8000
ted Lo

1/Os

1+ Top 10000 --l--
Naive Top 1 ~-Q--
Naive Top 10 @~
08 [Naive Top 100 -~-&--
Naive Top 1000 - -~

Naive Top 10 -

Naive Top 10000 ——
Nested

Responsa time (seconds)

CPU response lime (seconds)
=4
@

fterations

Iterations

Figure 4: I/O cost of naive, reconstruc- Figure 5: CPU time of naive and recon-Figure 6: Total response time of naive

tion, and nested loop approaches

back has been studied extensively in the IR literature {19, 16]
and in multimedia domains, e.g., for image retrieval by Min-
dreader [9], FALCON [21], and MARS [18] among others. Any
of these relevance feedback approaches can be used in conjunc-
tion with out approach. [10] considers a succession of manually
modified precise queries as a browsing session and optimizes
the computation of results by computing the differences be-
tween old cached query results and the new query.

6 Conclusions

Our goal is to enhance retrieval systems with similarity search
and user guided query refinement through feedback. In this
paper we concentrated on the all-pairs problem for multidi-
mensional data and how to execute refined searches efficiently.
Our experiments show that significant gains are possible with
smart application oriented caching of the results of earlier it-
erations.

7 Acknowledgments

This work was supported in part by NSF grants CCR 0220069,
IIS 0083489, IIS 0086124, and CAREER award 11S-9734300,
and under Army Research Laboratory Cooperative Agreement
DAALO01-96-2-0003.

References

[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B.Seeger.
The R*-tree: an efficient and robust access method for
points and rectangles. In Proc ACM SIGMOD, 1990.

[2] M. Carey and D. Kossmann. On saying ”enough already”
in sql. Proc. of SIGMOD, 1997.

[3] Kaushik Chakrabarti, Michael
Porkaew, and Sharad Mehrotra. Evaluating refined
queries in top-k retrieval systems. IEEE Transactions
on Knowledge and Data Engieneerig, (to appear), 2003.

[4] Surajit Chaudhari and Luis Gravano. Evaluating top-k
selection queries. Proc. of VLDB, Edinburgh, Scotland,
1999.

[5] R. Fagin. Fuzzy queries in multimedia database systems.
Proceedings of PODS, 1998.

[6] Ronald Fagin. Combining fuzzy information from multi-
ple systems. 15th ACM PODS, 1996.

[7] Gisly R. Hjaltason and Hanan Samet. Ranking in spatial
databases. In Advances in Spatial Databases - 4th Sympo-
sium, SSD’95, M. J. Egenhofer and J. R. Herring, Eds.,
Lecture Notes in Computer Science 951, Springer-Verlag,
Berlin, pages 83-95, 1995.

Ortega, Kriengkrai

struction approaches

and reconstruction approaches

[8] Gisli R. Hjaltson and Hanan Samet. Incremental distance
join algorithms for spatial databases. In Proc. ACM SIG-
MOD, pages 237-248, 1998.

[9] Yoshiharu Ishikawa, Ravishankar Subramanya, and

Christos Faloutsos. Mindreader: Querying databases

through multiple examples. In Int’l Conf. on Very Large

Data Bases, 1998.

Martin L. Kersten and M.F.N de Boer. Query opti-

mization strategies for browsing sessions. In IEEE 10th

Int. Conf. on Data Engineering (ICDE), pages 478-487,

February 1994.

Nick Koudas and K. C. Sevcik. High dimensional sim-

ilarity joins: Algorithms and performance evaluation.

In IEEE International Conference on Data Engineering

ICDE, pp. 466-475., 1998.

Amihai Motro. VAGUE: A user interface to relational

databases that permits vague queries. ACM TOIS,

6(3):187-214, July 1988.

Michael Ortega, Yong Rui, Kaushik Chakrabarti,

Kriengkrai Porkaew, Sharad Mehrotra, , and Thomas S.

Huang. Supporting ranked boolean similarity queries in

mars. IEEE Trans. on Data Engineering, 10(6), Decem-

ber 1998.

Michael Ortega-Binderberger, Kaushik Chakrabarti, and

Sharad Mehrotra. An Approach to Integrating Query

Refinement in SQL. In Proc. EDBT, March 2002.

K. Porkaew, K. Chakrabarti, and S. Mehrotra. Query

refinement for content-based multimedia retrieval in

MARS. Proceedings of ACM Multimedia Conference,

1999.

J.J. Rocchio. Relevance feedback in information retrieval.

In Gerard Salton, editor, The SMART Retrieval System,

pages 313-323. Prentice-Hall, Englewood NJ, 1971.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest

neighbor queries. Proceedings of SIGMOD, 1995.

Yong Rui, Thomas S. Huang, Michael Ortega, and

Sharad Mehrotra. Relevance feedback: A power tool for

interactive content-based image retrieval. IEEE CSVT,

September 1998.

G. Salton and M. J. McGill. Introduction to Modern In-

formation Retrieval. McGraw Hill Computer Science Se-

ries, 1983.

T. Seidl and H. Kriegel. Optimal multistep k-nearest

neighbor search. Proc. of ACM SIGMOD, 1998.

L. Wu, C. Faloutsos, K. Sycara, and T. Payne. FALCON:

Feedback adaptive loop for content-based retrieval. Pro-

ceedings of VLDB Conference, 2000.

(10]

[11]

(12]

[13]

[14]

[15]

(19]

20}

[21)

852

