A Robust Link-Translating Proxy Server Mirroring the Whole Web

Ziqing Mao
Purdue University
West Lafayette, IN
zmao @purdue.edu

Abstract

Link-translating proxies are widely used for anonymous

browsing, policy circumvention and WebVPN functions. These

are implemented by encoding the destination URL in the
path of the URL submitted to the proxy and rewriting all
links before returning the document to the client. Com-
monly these are based on the CGIProxy implementation or
a variant. While popular, broken links and very slow load
times are common. This is so, since the use of scripting
languages makes finding and translating links (the essential
task of such a proxy) very difficult. Some web-sites become
entirely non-functional when loaded.

This paper proposes a novel architecture for a link-translating

proxy. Using a sub-domain mapping technique we entirely
eliminate the need to translate (or even find) relative links in
content. Then, using robust absolute link rewriting, cookie
re-assignment, and wildcard certificates we achieve an ex-
tremely robust and performant proxy. Our architecture pre-
serves the same-origin policy separation of sites, and thus
entirely eliminates cookie-stealing and other security con-
cerns of CGIProxy. In measurements our proxy is far more
robust, loads pages more quickly, and is more scalable than
CGIProxy. We call our system ABOProxy, since it involves

the Address Bar Only. It is invoked by appending . aboproxy .

com to the hostname of any URL.

1. Introduction

Proxy servers perform a critical réle on the web. They
provide caching, acceleration, content filtering and isola-
tion functions. Most of this is invisible to users who are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’10 March 22-26, 2010, Sierre, Switzerland.

Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$5.00.

Cormac Herley
Microsoft Research
Redmond, WA, 98052
cormac @microsoft.com

unaware that proxies intervene between them and the end
server. Commonly there is a web proxy that the browser
uses for outbound web traffic; this is set and controlled by
the ISP or home network, and is used for caching, policy en-
forcement, auditing and so on. This is often known as a for-
ward proxy. In contrast, a reverse proxy generally sits close
to a server and dispatches in-bound web traffic to a set of
backend servers, presenting a single interface to the clients
[18]. It is generally used to pass requests from the Internet,
through a firewall to an isolated, private network, prevent-
ing Internet clients having direct, un-monitored access to
the sensitive servers. Besides forward and reverse proxies,
sometimes an intermediate proxy sits between them. This
is typically provided by a third-party in the Internet; (some-
times this is unintentional where a mis-configured server
acts as an open relay [1, 2]). In each of these three cases the
proxy intercepts the traffic at the HTTP layer or lower. For-
ward proxy settings are often auto-detected by the browser
(e.g. using the Web Auto Detect Proxy (WPAD) service in
Windows [22]). When using a reverse proxy the backend
servers are configured to accept and send all traffic through
the reverse proxy. An intermediate proxy is often reached
by changing the proxy settings on the browser manually.
Figure 1 summarizes the different kinds of proxy servers.
The proxy architecture discussed in this paper differs
from these three kinds of proxy. We call it a web-service
based or link-translating proxy, because the proxy server
is running and is reachable as a standard web-service. In
terms of network location, the link-translating proxy is sim-
ilar to an intermediate proxy. However, its main advan-
tage is that no alteration of browser or other settings is re-
quired. To use the proxy, the user submits an initial de-
sired URL in a form or in the address bar without chang-
ing proxy settings. The proxy returns the webpage of the
destination URL and all communication for the subsequent
clicks and actions performed in the webpage will also go
through the proxy. Such proxies are widely used. The most
popular link-translating proxy is an open-source implemen-
tation called CGIProxy, which is designed to be an anony-
mous proxy. However, broken links and slow load times are

Intermediate Proxy

i Client Forward Proxyi
i

| |
| Reverse Proxy ~Backend Web Server|
i ! ‘

|
Web Service Based Proxy |

Home network / Enterprise network
Destination website

Internet

Figure 1. Forward proxy, reverse proxy, inter-
mediate proxy and web-service based (link-
translating) proxy

common with CGIProxy.

In this paper, we propose a novel web-service based link-
translating proxy. We call it Address-Bar-Only Proxy (ABO-
Proxy), because the user simply uses the address-bar to di-
rect traffic through the proxy. We borrow an elegant idea
first used in the design of the Coral Content Delivery Net-
work [19] and adapt it to the problem addressed by CGIProxy
[3]. Our design outperforms the CGIProxy in design sim-
plicity, robustness, security, load time and scalability. To
use ABOProxy, the user simply appends . aboproxy.com
to the end of the URL hostname. For example, to visit
www .google.com through the proxy, the user navigates
to www.google.com.aboproxy.com. All the com-
munication for the subsequent clicks and actions performed
in the webpage will also go through the proxy (whether
fetched from the same domain or other domains). The proxy
is currently deployed and readers are encouraged to test. We
describe our method in Section 3. The implementation and
evaluation are presented in Section 4 and Section 5, respec-
tively.

2. Related Work

An excellent text on web proxies is [18].

Coral. An important building block of our system is bor-
rowed from the design of the Coral [19]. Coral is a peer-
to-peer distribution network that enables web developers
to offer high performance and meet huge demand without
large infrastructure investment. To reach content via the
network a user appends .nyud.net :8090 to an address.
The request is then directed to a nearby Coral cache. Rela-
tive links within the response will automatically point back
to Coral (just as with our subdomain mapping described
in Section 3.2.1). However Coral makes no effort to find
or translate absolute links. Thus absolute links, and con-
tent that Coral decides not to cache will be fetched from
the origin server. While we borrow a very important de-
sign element from Coral our goal is very different. While
Coral seeks to improve the performance in loading content
for relative links, we seek to provide a robust proxy for all
links, and entire sessions, including SSL sessions. Thus
the major differences between our proxy and Coral are as

follows. We translate all links absolute as well as relative,
whether statically or dynamically encoded. Since we point
at a single proxy rather than many caches our DNS con-
figuration is simpler. We preserve session information as
represented by cookies. Since, in Coral, relative links are
fetched from . nyud. net, and absolute ones from the ori-
gin server, a cookie set in one will not be available to the
other even though they belong to the same domain. Thus an
artificial security boundary is constructed between content
from the same origin site, which can break the experience.
We handle both SSL and regular content. Thus the user ap-
plications that our proxy handles that Coral cannot include
secure browsing, anonymous browsing, logging in to web-
sites and any browsing that relies on cookies and dynamic
content.

CGIProxy. The most popular general link-translating proxy

implementation is CGIProxy [3]. This a generic link-translating

proxy with implementations available for most major plat-
forms. It’s primary uses seem to be to provide anonymous
web-browsing and to circumvent network policies (e.g. surf
to forbidden sites). Many of the popular circumventors are
based on instances of this code (see e.g. [4]). There is an
enormous number of instances of CGIProxy running at any
given time. For example [5] lists 5200 of what it claims
are more than 26000 instances running. The major differ-
ences between our proxy and CGIProxy are as follows. By
using sub-domain mapping relative links resolve automati-
cally. We experience far fewer broken links, load times are
far faster, and the proxy is more scalable. We eliminate sev-
eral security concerns such as cookie stealing and cross-site
scripting (see Section 5.3).

The Tor network [21, 6] also offers a means for Internet
users to conceal their browsing patterns even from traffic
analysis.

Open Relays. An open relay is a proxy that will accept traf-
fic from any client and relay it to any server. Often this oc-
curs when an administrator mis-configures a machine. For
example many firewall products, such as ISA [7] or User-
Gate [8] can be configured to proxy from anywhere to any-
where (though this is seldom what a system administrator
would intend). There appears to be enormous demand for
open relays. There are several sites [1, 2] that are dedicated
to providing up to date lists of IP addresses and port num-
bers where open relays can be found. Thus users can manu-
ally configure their browser to use one of these open relays
as proxy and have all their traffic appear to come from the
relay rather than their own IP address. For example [2] lists
what it claims are about 2000 new open relays per day.

Web VPN. Virtual Private Networks (VPNSs) allow for se-
cure communication to internal resources from external lo-
cations. Traditional VPNs require software to be installed
on the client machine, while WebVPN is a VPN connection

that is established using only the web browser.

Many universities uses WebVPN to enable the students
to access restricted websites outside the campus. The Web-
VPN is achieved using a link-translating proxy which runs
a web-service that fetches the internal webpages for the
clients. However, dynamic web content does not work well
when being accessed through a WebVPN. For example, on

the CMU WebVPN website, users are warned that 11 databases

cannot be accessed with WebVPN. In addition, there are
known cross-site scripting vulnerabilities [9] with the pop-
ular WebVPN products from Cisco. The details of the se-
curity problem is discussed in Section 5.3. Using the ABO-
Proxy for WebVPN can robustly serve any web content, and
eliminates the security problem.

Debugging Proxies. There are a number of lightweight
proxy applications that are suitable for use by a single or
small number of users. Generally these are not intended
to scale to supporting a large number of users. For ex-
ample Charles [10] and Fiddler [11] are debugging prox-
ies mainly intended to enable developers to examine the re-
quest/responses stream that flows between the browser and
web-site. They provide powerful tools to examine, mod-
ify and replay headers, content and cookies in great de-
tail. Both provide interfaces to allow modification of the
request/response stream, and handle SSL as well as regular
HTTP traffic. Itis thus possible using either of these proxies
to customize the browsing experience. Burp [12] and Paros
[13] provide similar functionality.

Personal proxy. The personal proxy has been widely used
for debugging, form-filling, content-filtering, archiving the
browsing history, ad-removal and so on [14]. There are a
great number of open-source and product personal prox-
ies. All of them require the user to manually change the
browser’s proxy settings in order to use the proxy from other
machines. Using the ABOProxy eliminates this require-
ment. An advantage of ABOProxy is that a user might get
all of the advantages of a personal proxy from any location.
That is, even when alteration of the browser proxy settings
is not possible or convenient the functionality would still be
reachable. Various filtering functions suitable for personal
proxies are suggested by the Internet Content Adaptation
Forum [15].

Other Uses of Proxies Gabber ef al. [17] describe a proxy
system, known as the Lucent Personalized Web Assistant,
which acts as a credential intermediary and allows anony-
mous access to various web-services. The user’s browser
is configured to use the proxy, which might reside on their
own machine or in the cloud.

Provos and Holz [20] describe a creative use of a proxy
which monitors the loading of blacklisted sites. The idea
is that vulnerable webservers can be made to serve con-
tent that loads from malicious sites. SpyBye [20] acts as

a proxy and monitors all of the requests originating from
the browser. By maintaining a blacklist and a set of URL
classification rules it can determine when fetches are sent to
malicious or unapproved servers.

3. Method

3.1 Background and Existing Approaches

The most popular and reliable link-translating proxy im-
plementation currently available is CGIProxy [3], which is
a server-side script in Perl and has been developed and ac-
tively updated since 1998. The general idea of CGIProxy
is to encode the destination URL in the path. The same
idea is used in existing implementations of WebVPN (e.g.
from Cisco). The idea can be illustrated with an exam-
ple. Suppose the CGIProxy’s script is running at the ad-
dress http://cgiproxy.com/nph-proxy.cgi. If
the user wants to visithttp: //www.google . com through
the CGIProxy, then the URL shown in the browser’s address-

barishttp://cgiproxy.com/nph—-proxy.cgi/http/

www.google.com. In this way, when the perl script re-
ceives the HTTP request, it is able to decode the destination
URL from the path of the submitted URL. More specifi-
cally, the script does the following upon receiving each re-
quest.

1. Decode the destination URL from the URL path.

2. Retrieve the content from the destination website.

3. Modify the response by rewriting all links, pointing

them back to the proxy script.
4. Send the modified response to the user.

The key operation of the proxy script is the link rewriting
in Step 3. The purpose of which is to point all links con-
tained in the server’s response back to the proxy, so that
when those links are triggered in the user’s browser, the re-
quests will be also routed through the proxy. For example,
in Google’s homepage, there is a logo image file embed by
the following tag (img src="/intl/en_ALL/images/logo.gif”). The
proxy script has to modify the link of the logo image to be
/nph-proxy.cgi/http/www.google.com/intl/
en_ALL/images/logo.gif. The design is conceptu-
ally simple and clear. However, it is actually very difficult
to perform link rewriting robustly, as explained next.
3.1.1 Understanding Links

A link can be either absolute or relative. An absolute
link defines the location absolutely including the protocol,
the host-name, and the path of the resource. For example,
http://www.cnn.com/linkto/ticker.htmlisan
absolute link. A relative link takes advantage of the fact that
the browser knows the location of the current document.
Thus, if we want to link to another document from the same
host as the current document, we just need to specify the
path of the file. In the previous example, the link to Google
logoimage (/intl/en_ALL/images/logo.gif)isa

relative link. The protocol and the host-name of the link
are the same as the current document located at http:
//www.google.com. A link in a HTML document can
also be either statically encoded or dynamically generated.
The link to the Google image logo in the previous example
is a statically encoded link. With the wide use of client-
side scripting and AJAX technology, many links are dynam-
ically generated by client-side scripts in the browser.

The difficulty of link rewriting mainly comes from the dif-
ficulty of finding all links contained in the document. Once
identified, modifying links becomes a trivial task, but the
complexity of finding them varies according to the type.
Links that are statically encoded can be easily identified by
parsing the HTML document, because they can only appear
as certain attributes of certain HTML tags, such as (img), (a),
and (frame). However, the links that are dynamically gen-
erated are difficult to identify, because scripting languages
are very flexible and powerful. For example, JavaScript
supports all structured programming syntax in C and many
high-level programming language features such as objects,
run-time evaluation and so on. One possible way to robustly
identify all dynamically generated links would be for the
proxy to contain a complete JavaScript engine and render
the page just as a browser would do. While conceptually
simple this is infeasible. Rendering the page is expensive
computationally: the overhead would be too large to make
it scalable.

Hence, CGIProxy and WebVPNs handle dynamically gen-
erated links in an ad-hoc way. Instead of implementing a
complete JavaScript engine, the CGIProxy uses heuristics
to identify the constants and variables that possibly store
links, and modify those links by invoking a function. For
example, the function call window.open opens a webpage in
anew or an existing window. The first argument of the func-
tion call specifies the URL, e.g., u="next.html”; window.open(u).
The CGIProxy identifies the variable u stores a URL and
modifies the JavaScript to u="next.html”; window.open(proxify(u)),
where proxify is a function provided by the CGIProxy to
rewrite an individual link. Consider the example where the
website has the following JavaScript: u="next.html”;

w=document.getElementByld(’sub_frame”); w.contentWindow.open(u);.

In order to capture the link stored in u, the proxy has to
identify the DOM element with ID sub_frame has an attribute
named contentWindow that implements the interface window.

This can not be done without a complete HTML and JavaScript

engine. This example merely shows the difficulty of finding
dynamically generated links, and explains why CGIProxy
often breaks; there certainly exist many other cases making
the problem very complicated.

3.2 A Novel Approach

3.2.1 Dynamic Links: Subdomain-Mapping

A key part of our approach comes from Coral [19]: map
each destination domain to a sub-domain of the proxy server
by appending the proxy domain to the destination hostname.
For example, the proxy server is running at aboproxy .
com, so the domain www . google . comis mapped to www .
google.com.aboproxy.com. By navigating to www .
google.com.aboproxy . com, the user visits the Google
homepage through the proxy. Similarly, the logo image
would be retrieved from http://www.google.com.
aboproxy.com/intl/en_ALL/images/logo.gif.
We call this technique subdomain-mapping, which simply
appends . aboproxy.com to the end of the original URL
hostname.

3.2.2 DNS Configuration

In the DNS account for the proxy domain, we use a wild-
card DNS record to map the domain » . aboproxy.com
to the IP address of the server machine. As a result, all re-
quests for a sub-domain within aboproxy.com will be
delivered to the server machine of the proxy. Note that we
have a far simpler DNS configuration than Coral. Coral
seeks to find one of many caches in the CDN that will give
best performance to the client, while we point all requests
at a single proxy.

Our proxy runs a script. On receiving each request, the
script performs the following operations.

1. Decode the destination URL by removing . aboproxy .

com from the request URL.

2. Retrieve the contents from the destination website.

3. Modify all absolute links in the response, by append-
ing .aboproxy.com to the URL hostname, point-
ing them back to the proxy.

4. Send the modified response to the user.

Again, the key step for the proxy script is to do the link
rewriting in server’s responses. Observe that only absolute
links need be translated. This is a main point of contrast
with other web-service proxies. The path component of
the URL remains unchanged after the subdomain-mapping.
Therefore, all relative links, whether statically or dynami-
cally generated, do not need modification.
3.2.3 Absolute Links: Robust Rewriting

The subdomain-mapping also makes rewriting absolute
links easy. We merely append .aboproxy.com to the
end of the URL hostname. As discussed before, the real
difficulty of link rewriting comes from finding links that are
dynamically generated by client-side scripts. We have elim-
inated the need to modify relative links. For absolute links,
instead of trying to find all variables and constants that store
links, we just need to find all positions that are the end of
hostnames. We use pattern matching to do that.

Recall that hostnames end with a fixed set of tails, such
as .com, .edu, and so on. They are called top-level do-
mains, including 33 generic top-level domains and 253 country-

code top-level domains. A complete list of top-level do-
mains is available officially athttp: //www. iana.org/
domains/root/db/. With the set of all top-level do-
mains, by searching those patterns in the server’s response,
we can locate a set of candidate positions that may be the
end of hostnames. However, certainly not all of them are
really the end of hostnames. We need to do a further selec-
tion by examining the characters follows the appearances of
top-level domain patterns. There are four cases that follow
a hostname.

1. The hostname is followed by the port number, con-
nected by the character ‘:’. For example, https:
//www.vanguard.com:443.

2. The hostname is followed by the path, connected by

the character ‘/’. For example, http://www.google.

com/services/.

3. The hostname is followed by an encoded colon #58,
or an encoded slash #47.

4. The hostname is the end of a URL, or a string con-
stant, which are identified by the characters ‘’ ° and
‘"’ The string constant may be further used in con-
structing URLs.

Therefore, only when the character immediately follows the
appearance of top-level domain pattern is one of the four
characters (in plain or encoded form): : / * " ,is it identi-
fied as the end of a hostname. Table 1 gives some examples
on when to and when not to identify .com as the end of
a hostname. Last, we append . aboproxy.com at all the
positions that are identified as the end of hostnames in the
Server’s response.

Limitations There are two limitations of the link rewriting
algorithm described above. First, it is certainly possible for
a web-site to break the algorithm (i.e. conceal links from
the proxy script) intentionally. There exist two ways, (1)
hide the top-level-domain pattern; (2) add a character other
than those : / / " to the end of a hostname. The examples
include:

ul="http://www.example.” + “c” + “0” + “m”;

u2="http://www.example.cpp”; u2=u2.replace(/pp/, "om”);

u3="http://www.eg.comp”; u3=u3.substr(0, u3.length-1);

However, these techniques are adversarial rather than nor-
mal: they are essentially unknown in benign real-world web
applications (see Section 5.1). However, this does imply
that ABOProxy will not necessarily function well in adver-
sarial settings (a good example of a proxy in an adversarial
setting is SpyBye [20]).

Second, the algorithm may append .aboproxy.com
to a hostname that will be displayed in the webpage. For ex-
ample, the algorithm will append . aboproxy . comin the
following JavaScript, document.write(“Thank you for visiting ex-
ample.com”). We don’t try to distinguish between a hostname
in a link and a hostname displayed in a webpage, because it

Set-Cookie: name=value;
domain= google.com.proxy.com;
path=/accounts

Set-Cookie: name=value;
domain=google.com;
path=/accounis

Axoig

18smolg
1aMBg

Cookie: name=value Cookie: name=value

Www.google.com.proxy.com www.google.com

Figure 2. Modifying cookie attributes

would again require a complete JavaScript and HTML en-
gine. The only effect is that the user will see a superfluous
.aboproxy.com on the webpage and it doesn’t affect the
functionality.

Since they do not end with generic or country code top-
level domains, our implementation makes no attempt to trans-
late numeric IP address links. This has minor impact since
such links are now rare. A user who loads a page from the
Google search cache (which loads from numeric addresses)
will go directly to the cache rather than the proxy.

3.2.4 HTTP Cookies

HTTP Cookies are pieces of text data sent by a web
server to a browser to maintain state. Each cookie is a
name/value pair with four optional fields: expires, domain,
path, and secure. The domain and path fields indicate with
which HTTP requests the cookie should be sent back. For
example, if the user requests the URL http://www.bank.
com/credit/index.html, then a cookie with
domain=.bank . comand path=/credit would be attached
to the request, but a cookie with domain=script .bank.
com would not. With the introduction of the proxy, from
the browser’s point of view, the cookies are set by the proxy
server returned to it. Therefore, the proxy needs to mod-
ify the attribute values. The subdomain-mapping technique
makes the modification very simple. We append . aboproxy .
com to the end of the original value of the attribute domain.
In this way, as shown in Figure 2, the browser will send
back the appropriate set of cookies for each request. We
don’t need to modify the value of the attribute path because
the path components in the URLs remain unchanged.

4. Implementation and Applications

We have implemented and deployed a prototype of ABO-
Proxy. We report the experiences in the implementation and
deployment and discuss interesting design issues.

4.1 Domain Registration and DNS Setup

We acquired the second-level domain aboproxy.com
and custom DNS hosting service from DynDNS.com. In the
DNS settings, we added a wildcard host record that maps
* .aboproxy.com to the IP address of our server ma-
chine (this means that all requests ending in . aboproxy .
com will be referred to that server). The total cost for the
domain registration and DNS service is $42.5 per year. Ac-
tually this can even be done without cost. Among others,

Examples The end of a | Explanation

hostname?
src="http://www.example.com’ Yes A statically encoded link
window.open(‘http://www.example.com/index.html’) Yes A dynamically generated link
sUrl = “http://collect.myspace.com/index.cfm?MyToken="+ myToken; Yes A dynamically generated link
var Hna="mail.google.com”, Ina="https”, Jna="?logout&hl=en”; Yes Use JavaScript to compute links
... if (b.xk==Hna) {b.Dt(Ina);a=b[o];return a+Jna} (from GMail)
Sys.component=function() {...} No A method starting with “.com”
u="http://www.sina.com.cn” No A second-level-domain

Table 1. Examples on when to and when not to append “.aboproxy.com”.

DynDNS.com provides free dynamic DNS service. Instead
of a paid-for second-level domain, a free third-level host-
name can be obtained, e.g., aboproxy.dontexist .com.

4.2 Web Server Setup

Our implementation is based on ASP.NET 2.0 and Mi-
crosoft IIS 6.0 running on Windows 2003 SP2. We imple-
mented the proxy script as an HttpHandler in C#, which acts
as a target for all incoming HTTP requests. The script is
about 3000 lines of C# code. The proxy script can be im-
plemented using other server-side scripting languages, such
as Perl and Python. Besides IIS, the server can use other
web server applications that supports server-side scripting.
For example, in the Apache web server, one can use the
directive SetHandler to make all requests to be delivered to
the scripting handler cgi-script, which will invoke the corre-
sponding script interpreter.

4.3 SSL and Certificates

ABOProxy handles SSL as well as regular traffic. If
the user visits a HTTPS website through the proxy, e.g.,

https://www.paypal.com.aboproxy.com, the proxy

will maintain one SSL connection with the client browser
and another SSL connection with the end server. The client
browser sees a certificate from the proxy rather than the ori-
gin server. To proxy any HTTPS website, we use a wildcard
certificate for » . aboproxy . com. However, the handling
wildcard certificates (as governed by RFC 2818) is browser
dependent. All versions of Firefox and Opera that we tested
(i.e. Firefox 1.0 and 2.0 and Opera 9.25) allow the wildcard
to match multiple fields in the hostname. So, the certificate
for *.aboproxy.com matches mail.google.com.
aboproxy.com, www.paypal.com.aboproxy.com,
etc. However, IE, Safari only allow using the wildcard to
match the leftmost field in the hostname. In this way, the
wildcard certificate for x .aboproxy.com would match
a.aboproxy.com,orb.aboproxy.com, etc., but would
not match a.b.aboproxy.com. In addition, they do
not accept certificates with multiple wildcards, such as .
* .aboproxy.com. In conclusion, as currently imple-
mented, users can visit any HTTPS website through the
proxy without certificate warnings in Firefox and Opera.
But with IE, Safari and Chrome, there will be one warn-
ing per new certificate encountered. We point out that these

occasional certificate warnings are specific to our proto-
type implementation and can be rectified. This can be done
by obtaining a separate certificate for each domain to be
reached. Alternatively, if the user accepts the proxy as a
Trusted CA all subsequent browsing via the proxy is warning-
free.

4.4 Applications and Extensions

Anonymous Proxy. We extended the ABOProxy imple-
mentation as an anonymous proxy. Besides normal anonymiza-
tion steps, such as removing third-party cookies and web
bugs, the key step is to encrypt the communication between
the client and the proxy server using HTTPS even when
loading non-SSL sites. In ABOProxy, the protocol between
the client and the proxy is the same as that between the
proxy and the website. To work around this restriction, we
extend the link rewriting of ABOProxy by modifying all ap-
pearances of http: // in the server’s response to ht tps:
//non-secure.. In this way, all communication be-
tween the client and the proxy is over HTTPS, and the proxy
is able to tell whether the original URL is using HTTP or
HTTPS by examining the first filed of the hostname. If
the first field of the hostname is non-secure, the proxy
changes the protocol to HTTP and remove the first filed of
the hostname. For example to navigate to www .google.
comthe user would load https://non-secure.www.
google.com.aboproxy.com. Traffic to the proxy is
encrypted, even though the end server does not support SSL.

WebVPN. We built a WebVPN service using ABOProxy
to enable access to an internal enterprise network from out-
side locations. The enterprise network uses Microsoft Ac-
tive Directory Domain Services. Each internal website is
an active directory, such as team, paystub, hrweb, efc..
The VPN server machine connects to the internal network,
and at the same time has an external IP address that is ac-
cessible from the Internet. The communication between the
clients and the VPN server is using HTTPS. For example,
the active directory hrweb can be accessed using the We-
bVPN at https://hrweb.aboproxy.com. A single
wildcard SSL certificate for » . aboproxy . comis enough
to cover arbitrary active directories. The VPN server rejects
the requests targeting a website that does not exist in the

Websites Failed operations

Gmail Send an email; View/edit settings/contacts/labels

Microsoft Exchange Email | Every link broke after login

Facebook Search friends; Add a friend; Confirm a friend request; Join a group; Send a message
Hotmail Manage calendar; Manage contacts; Write a new message; Manage folders; Add a blog entry
Yahoo Check emails; After login, when performing personal operations, it asked for a login again.

Table 2. Popular websites failed in the CGIProxy implementation.

internal network.

One-time-password System. We have integrated the ABO-
Proxy implementation with the one-time-password (OTP)
system proposed in [16]. The service enables the user to
safely log into sensitive websites from public computers,
and is running at www . urrsa. com.

5. Evaluation and Status

5.1 Efficacy

We tested the ABOProxy implementation by using it for
everyday browsing. In four months’ testing with two users
(i.e. the authors) the ABOProxy provided the same expe-
rience as that without using the proxy. We tested using a
variety of browsers and from locations in the US, Canada,
Brazil, Taiwan, Ireland, Peru, Ecuador and Australia. The
proxy is currently running and to test readers need merely
append .aboproxy.com to any URL hostname, so that

version 2.1betal8 (released on Aug 10, 2008)! with a Apache
web server 2.2, and visited some popular websites through
the proxy using Firefox 2.0. We observed many basic opera-
tions failed when performed through the proxy. A summary
of the failure cases of CGIProxy on some popular sites is
given in Table 2.

5.2 Performance Evaluation

The following experiments were performed on a Server
machine with Inte]l XEON Processor 2.40GHz, 1GB RAM
and 90GB hard disk. For comparison, we conducted the
same experiments against the CGIProxy implementation on
the same server machine and report the results.

5.2.1 Page load time and page size
We visited a set of popular web site through the proxies

using Firefox. We measured the time used to load the web
pages and the total amount of HTTP data received by the
browser to load the pages. Before each visit, we removed
all cache files in both the server machine and the client ma-

www . google.combecomes www.google.com.aboproxychine. The evaluation results is shown in Figure 3. The

com efc..

We observed only one set of cases where ABOProxy im-
plementation failed. That is due to the extra restrictions
that the IIS and .NET framework place on URL’s besides
those specified in RFC 1738. The IIS and .NET framework
have the following extra restrictions: (1) The total length
of the path in the URL should not exceed 160. (2) The
path in the URL should not contain characters that are not
allowed to be used in the NTFS file names, such as :, x,
|, and so on. Both are un-configurable. We circumvented
the second restriction by adding an extension before the
.NET in the stack. The extension maps each of those spe-
cial characters to a specific sequence of normal characters.
The .NET extension can use the mapping rules to change
those characters back when processing the requests. How-
ever, we are unable to work around the first restriction in any
IIS based implementation. The websites hosted using other
web servers, such as Apache, may use a very long URL
whose path is longer than 160. When visiting such a URL
through the ABOProxy, the IIS server will respond a 404
(bad request) error. In our testing, we observed very few
websites use URLs that have a path longer than 160. Only
two exceptions were observed: doubleclick.com and
yahoo.com. URLs of length greater than 160 even from
these sites are extremely rare.

CGIProxy For comparison, we also tested the efficacy of
the CGIProxy implementation. We set up the CGIProxy

results for “conventional web proxy” are obtained by con-
figuring the browser to use a standard web proxy within the
client’s Intranet. The results for “ABO Proxy” and “CGI
Proxy” are obtained by connecting through our ABOProxy
implementation and the CGIProxy implementation, respec-
tively. The results are normalized to make the measure-
ments for “conventional web proxy” to be 1.

In terms of the page load time, the ABOProxy has 47%
overhead on average compared with the conventional web
proxy, while the CGIProxy has 620% overhead. In terms of
the page size, the ABOProxy has 2.6% overhead on aver-
age, while the CGIProxy has 27% overhead.

5.2.2 Server throughput and responsiveness
The server scalability is typically estimated by measur-

ing the responsiveness and throughput of the server when
gradually increasing the number of concurrent clients. The
server responsiveness is measured by the average Time To
First Byte (TTFB) on the clients. The TTFB is the duration
from the client making an HTTP request to the first byte of
the page being received by the client. The server through-
put is measured by the maximum number of requests that
are processed by the server every second. We simulated the
concurrent clients using the Web Application Stress Tool
from Microsoft. The evaluation results are shown in the
Figure 4. The throughput of the ABOProxy is about 4 times

I As stated in the website of CGIProxy, though this is a beta release, it is
stabler than the old production release

Normalized Page Load Time

e

SNETmmoNE

loginta Facehook CNN wikipedia MSH

Gmail

Google

B Conventional Web Proxy

NYTimes

‘Yahoo GoDaddy Baidu

B ABO Proxy &l Proxy

Normalized Page Size

loginta Facehook CNN Wikipedia MSN

amail

Google

B Conventional Web Proxy

WYTimes

Yahoo GoDaddy Baidu AOL ehay fidelity

B ABO Proxy &1 Proxy

Figure 3. The performance evaluation on page load time and page size

Throughput

ﬁ.*_*w:é._._.
e .

=——ABO Proxy
/

/

s

0 5

e
[

-
=)

—W—cal Proxy

Re quests fsec

=R R

10 15

Cencurrency Level

20 5 30

Time to First Byte

10000
5000 ——ABO Froxy
5000
5 7000 —B— Gl Proxy
E G000
@ 5000
£ 4000
3000
2000
1000
—t e
0
0 5 10 15 20 25 30

Cencurrency Level

Figure 4. The performance evaluation on the throughput and TTFB under heavy load

larger than that of the CGIProxy, and the TTFB of the ABO-
Proxy is 4-6 times less than that of the CGIProxy.

5.3 Security: Same-Origin Policy

The browser same-origin policy is enforced by isolat-
ing webpages according to the security context of a three-
tuple <protocol,hostname,port>. For example, the script
from http://www.evil.org cannot access the con-
tents downloaded from https://bank.com. In the de-
sign of the CGIProxy, the original URL is encoded in the
path of the new URL. In other words, every destination do-
main is mapped to a directory in the host of www . cgiproxy.
com. From the browser’s point of view, all websites the
user visits through the proxy are hosted at http: //www.
cgiproxy.com(orhttps://www.cgiproxy.comif
the proxy server is using HTTPS), so that they have the
same security context. As a result, a malicious website
can launch cross-site scripting attacks and cookie-stealing
attacks against a sensitive website if the user visits both
through the proxy. Thus, CGIProxy completely destroys
the domain boundary enforced by the same-origin policy
in the browser. In contrast, in ABOProxy, each destination
domain is mapped to a subdomain of the proxy. Different
websites visited through the proxy have different security
contexts and are isolated by the same-origin policy. There-
fore, our approach preserves the domain boundary among
different websites and eliminates the security concern that
CGIProxy introduces.

6. Conclusion

We present a novel link-translating proxy. We imple-
mented ABOProxy using IIS and ASP.NET, and tested by

using for everyday browsing. Both theoretical and experi-
mental evaluation show that the ABOProxy is significantly
better than existing web-service based proxies and Web-
VPN’s in terms of robustness, performance, and security.

7. REFERENCES

[1]
[2]
[3]
[4]
[5]
[6]
[7]

http:
http:
http:
http:
http:

//www.proxy4free.com
//www.freeproxy.ru.
//www.jmarshall.com/tools/cgiproxy.
//circumventor.net.

//proxy.org.
http://www.torproject.org
http://msdn2.microsoft.com/en-us/library/
ms828058.aspx.

http:
http:
http:
http:
http:
http:

//www .
//www .

[8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

entensys.com
securityfocus.com/bid/18419.
xk72.com/charles/.
fiddlertool.com.

//waw .
//waw .
//www.portswigger.net/proxy
//WWW.parosproxy.ord.
http://www.privoxy.org
http://www.icap-forum.org

D. Floréncio and C. Herley. One-Time Password Access to Any
Server Without Changing the Server. ISC 2008, Taipei.

E. Gaber, P. Gibbons, Y. Matyas, and A. Mayer. How to make
personalized web browsing simple, secure and anonymous. Proc.
Finan. Crypto ’97.

A. Luotonen. Web Proxy Servers. Prentice Hall, 1998.

M. J. Freedman and E. Freuenthal and D. Mazieres. Democratizing
Content Publication with Coral. NSDI, 2004.

N. Provos and T. Holz. Virtual Honeypots. Addison Wesley, 2007.
R. Dingledine and N. Mathewson and P. Syverson. Tor: the
Second-generation Onion Router. In Usenix Security, 2004.

M. E. Russinovich and D. A. Solomon. Microsoft Windows
Internals. Microsoft Press, fourth edition, 2005.

(17]
[18]
[19]

[20]
[21]

[22]

