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Abstract. In this paper we prove decidability results of restricted frag-
ments of simultaneous rigid reachability or SRR, that is the nonsym-
metrical form of simultaneous rigid E-unification or SREU. The absence
of symmetry enforces us to use different methods, than the ones that
have been successful in the context of SREU (for example word equa-
tions). The methods that we use instead, involve finite (tree) automata
techniques, and the decidability proofs provide precise computational
complexity bounds. The main results are 1) monadic SRR with ground
rules is PSPACE-complete, and 2) balanced SRR with ground rules is
EXPTIME-complete. These upper bounds have been open already for
corresponding fragments of SREU, for which only the hardness results
have been known. The first result indicates the difference in computa-
tional power between fragments of SREU with ground rules and non-
ground rules, respectively, due to a straightforward encoding of word
equations in monadic SREU (with nonground rules). The second result
establishes the decidability and precise complexity of the largest known
subfragment of nonmonadic SREU.

1 Introduction

Rigid reachability (RR) is the problem, given a rewrite system R and two terms
s and t, whether there exists a substitution # such that s, t6, and RO are
ground, and sf rewrites in some number of steps via RO into tf. The term
“rigid” stems from the fact that for no rule more than one instance can be used
in the rewriting process. Simultaneous rigid reachability (SRR) is the problem
in which a substitution is sought which simultaneously solves each member of
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a system of reachability constraints (R;, s;,t;). A special case of [simultaneous]
rigid reachability arises when the R; are symmetric, containing for each rule
s — t also its converse t — s. Such systems arise for example by orienting a set
of equations in both directions. The latter problem was introduced by Gallier,
Raatz & Snyder [1987] as “simultaneous rigid F-unification” (SREU) in the
context of extending tableaux or matrix methods in automated theorem proving
to logic with equality. Rigid reachability was initially studied in the context of
second-order unification [Farmer 1991, Levy 1998].

Even though the non-simultaneous case of SREU (rigid E-unification) was
proved NP-complete by Gallier, Narendran, Plaisted & Snyder [1988], SREU
in general was shown by Degtyarev & Voronkov [1995] to be undecidable. Fur-
ther implications of the latter result are discussed in [Degtyarev, Gurevich &
Voronkov 1996]. In a series of papers, SREU has been studied extensively and
several sharp boundaries have been laid between its decidable and undecid-
able fragments. Most recent developments are discussed by Voronkov [1998] and
Veanes [1998]. Rigid reachability was shown undecidable by Ganzinger, Jacque-
mard & Veanes [1998].

The, arguably, most difficult remaining open problem regarding SREU is the
decidability of “monadic” SREU, or SREU restricted to signatures where all
nonconstant function symbols are unary. The importance of this fragment stems
from its close relation to word equations [Degtyarev, Matiyasevich & Voronkov
1996], and to fragments of intuitionistic logic [Degtyarev & Voronkov 1996].
What is known about monadic SREU in general, is that it reduces to a non-
trivial extension of word equations [Gurevich & Voronkov 1997]. In the case of
ground rules, the decidability of monadic SREU was established in [Gurevich &
Voronkov 1997] by reducing it to “word equations with regular constraints”. The
decidability of the latter problem is an extension of Makanin’s [1977] result by
Schulz [1990]. Conversely, word equations reduce in polynomial time to monadic
SREU [Degtyarev, Matiyasevich & Voronkov 1996]. The first main result of this
paper (in Section 3), is that monadic SRR with ground rules is in PSPACE,
improving the EXPTIME result in Ganzinger et al. [1998]. Hence, it is unlikely
that there is a simple reduction, if any reduction at all, from monadic SREU
to monadic SREU with ground rules, or else one would get a considerable sim-
plification of Makanin’s [1977] proof. The PSPACE-hardness of monadic SREU
with ground rules was shown by Goubault [1994].

To obtain the PSPACE result we use an extension of the intersection non-
emptiness problem of a sequence of finite automata that we prove to be in
PSPACE. Moreover, using the same proof technique, we can show that simul-
taneous rigid reachability with ground rules remains in PSPACE, even when
just the rules are required to be monadic. Furthermore, in this case PSPACE-
hardness holds already for a single constraint with one variable, contrasting the
fact that SREU with one variable is solvable in polynomial time [Degtyarev,
Gurevich, Narendran, Veanes & Voronkov 19985].

Our second main result concerns (nonmonadic) SRR with ground rules. In
section 4, we show that SRR with ground rules is EXPTIME-complete for “bal-



anced” systems of reachability constraints. Under balanced systems fall for ex-
ample systems where all occurrences of each variable are at the same depth. It
is possible to obtain undecidability of (nonsimultaneous) rigid reachability with
ground rules where all but one occurrence of all variables occur at the same
depth [Ganzinger et al. 1998]. Moreover, this result generalizes the decidabil-
ity result by Degtyarev, Gurevich, Narendran, Veanes & Voronkov [1998a] of
the largest known decidable fragment of SREU with ground rules and implies
EXPTIME-completess of the complexity of this fragment (which is left open
in [Degtyarev et al. 1998q]). The key characteristic of solving balanced systems
involves finite tree automata techniques over product languages, where it is not
necessary to search for solutions encoding a product of a term with its proper
subterm. This property is also important in decision procedures for “automata
with constraints between brothers” [see, e.g. Comon, Dauchet, Gilleron, Lugiez,
Tison & Tommasi 1998].

2 Preliminaries

Rigid Reachability. A reachability constraint, or simply a constraint, in a signa-
ture X, is a triple (R, s,t) where R is a set of rules in X', and s and t are X'-terms.
We refer to R, s and t as the rule set, the source term and the target term, respec-
tively, of the constraint. A substitution 6 in X, solves (R, s,t) if § is grounding
for R, s and ¢, and s0 £5>t6. The problem of solving constraints is called rigid
reachability. A system of constraints is solvable if there exists a substitution that
solves all constraints in that system. Simultaneous rigid reachability or SRR
is the problem of solving systems of constraints. Monadic (simultaneous) rigid
reachability is (simultaneous) rigid reachability for monadic signatures.

Rigid E-unification is rigid reachability for constraints (F, s, t) with sets of
equations F. Simultaneous Rigid E-unification or SREU is defined accordingly.

Finite tree automata. Finite bottom-up tree automata, or simply, tree automata,
from here on, are a generalization of classical automata [Doner 1970, Thatcher
& Wright 1968]. Using a rewrite rule based definition [e.g. Coquidé, Dauchet,
Gilleron & Viégvolgyi 1994, Dauchet 1993], a tree automaton (or TA) A is a
quadruple (@, ¥, R, F'), where (i) @ is a finite set of constants called states, (ii)
Y is a finite signature that is disjoint from @, (iii) R is a system of rules of the
form f(q1,...,qn) — g, where f € X has arity n > 0 and ¢,q1,...,qn € @, and
(iv) F C Q is the set of final states. The size of a TA Ais ||A|| = |Q|+ | X|+]|R]|-

We denote by L(A,q) the set {t € Tx ‘ t %> q} of ground terms accepted by
A in state gq. The set of terms recognized by the TA A is the set quF L(A,q).
A set of terms is called recognizable or regular if it is recognized by some TA. A
monadic TA is a TA with a monadic signature.

Finite string automata. For monadic signatures, we use the traditional, equiv-
alent concepts of alphabets, strings (or words), finite automata, and regular
expressions. We will identify an NFA A with alphabet X' with the set of all rules



a(q) — p, also written as ¢ §>p, where there is a transition with label a € ¥
from state g to state p in A, and we denote this set of rules also by A. A monadic
term aq (as(...an(q))) is written, using the reversed Polish notation, as the string
qay ... Qa1.-

Then A accepts a string aias - - - a, if and only if, for some final state ¢ and
the initial state go of A, ay(---a2(ai(q))---) g, ie.,

0 o 2
The set of all strings accepted by A is denoted by L(A).

Product automata. Let X be a signature, m a positive integer, and 1 a new
constant. We write X'; for ¥ U {1} and X" denotes the signature consisting
of, for all f1, fa,..., fm € X1, a unique function symbol {f; fo - - f,) with arity
equal to the maximum of the arities of the f;’s.

Lett; € Ts U L, t; = fi(tila---,tiki), where k; > 0, for 1 < i < m. Let
k be the maximum of all the k; and let ¢;; = L for k; < j < k. The product
t1 ®--- Rty of t1,...,t,, is defined by recursion on the subterms:

t1®"'®tm:<f1f2'--fm>(t11®"'®t1k,...,tm1®"'®tmk) (1)

For example:

We write 73 for the set of all ¢ in TET such that t = t; ® --- ® t,,, for some
t1y..ytm € T U L. If s € T and t € T, where s = $1 ® --+ ® sy, and
t=t ® - Qty, then s ® ¢t denotes the term s ® --- R 8, 1 Q-+ R £y, In
7'2"”'". Given a sequence t = t1,...,t, of terms in 75, U L, we write Q) ¢ for the
product term t; ® - - - ® £,

Given two automata A; and A, over X" and X7, respectively, the product
of A; and A, is an automaton A; ® A, over Z’T+" such that

L(A1 X Ag) = L(Al) ® L(Ag) = {tl ® t2 . tl S L(Al),tz S L(AQ)}

The construction of A; ® A is straightforward, with a state q(,, ,,) for all states
q1 in A; and ¢» in As, [see e.g. Comon et al. 1998]. In general, Q);_; A; is defined
accordingly.

We will use the following construction of Dauchet, Heuillard, Lescanne &
Tison [1990] in our proofs.

Lemma 1. Let R be a ground rewrite system over a signature Y. There is a
TA A such that L(A) = {s®1 : s,t € T, s5t} that can be constructed in
polynomial time from R and X.



3 Monadic SRR

We prove that monadic SRR with ground rules is PSPACE-complete. Qur main
tool is a decision problem of NFAs, that we define next. In this section we
consider only monadic signatures.

3.1 Constrained product nonemptiness of NFAs

Given a signature Y and a positive integer m, we want to select only a cer-
tain subset from X" through selection constraints (bounded by m), these are
unordered pairs of indices written as i ~ j, where 1 <i,7 < m, i # j. Given a
signature X' and a set I of selection constraints, we write ™ |I for the following
subset of X

I = {{aiaz--ram) € X™ 0 (Vimjel)a =aj}

For an automaton A, let A|I denote the reduction of A to the alphabet X |[.
We write also L(A)|I for L(A|I). The automaton A|I has the same states as A,
and the transitions of A|I are precisely all the transitions of A with labels from
Xmir.

We consider the following decision problem, that is closely related to the
nonemptiness problem of the intersection of a sequence of NFAs. Consider an
alphabet X. Let (A4;)1<i<n, n > 1, be a sequence of (string product) NFAs over
the alphabets X" for 1 < ¢ < n, respectively. Let m be the sum of all the m;
and let I be a set of selection constraints. The constrained product nonemptiness
problem of NFAs is, given (A;)1<i<n, and I, to decide if (Q)_; L(A4;))|I is
nonempty. Our key lemma is the following one. Its proof is a straightforward
extension of the inclusion part of Kozen’s [1977] PSPACE-completess result of
the intersection nonemptiness problem of DFAs: given a sequence (A;)1<;<n of
DFAs, is (N, L(A;) nonempty?

Lemma 2. Constrained product nonemptiness of NFAs (or monadic TAs) is in
PSPACE.

The proof of Lemma 2 can be extended in a straightforward manner to finite
tree automata. The only difference will be that the algorithm will do “universal
choices” when the arity of function symbols (letters) in the component automata
is > 1. This leads to alternating PSPACE, and thus, by the result of Chandra,
Kozen & Stockmeyer [1981], to EXPTIME upper bound for the constrained
product nonemptiness problem of TAs.

Although we will not use this fact, it is worth noting that the constrained
product nonemptiness problem is also PSPACE-hard, and this so already for
DFAs (or monadic DTAs). It is easy to see that ()}, L(A;) is nonempty if and
only if L(Q;, Ai)|{i i+ 1:1<1i < n} is nonempty.
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Figure 1: A DFA (or monadic DTA) A that recognizes {f(s) ® s : s € Tz},
where Y consists of the unary function symbols f, g, and h, and the con-
stant c. For example A recognizes the string (cL)(gc){gg)(hg){fh), i.e., the term

(Fh)((hg)({99)({gc)((cL))))) that is the same as f(h(g(g(c)))) ® h(g(g(c)))-

(gh)
(hg)
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3.2 Reduction of monadic SRR with ground rules to constrained
product nonemptiness of NFAs

We need the following notion of normal form of a system of reachability con-
straints. We say that a system S of reachability constraints is flat, if each con-
straint in S is either of the form

— (R, z,t), R is nonempty, z is a variable, and ¢ is a ground term or a variable
distinct from z, or of the form

— (0, z, f(y)), where = and y are distinct variables and f is a unary function
symbol.

Note that solvability of a reachability constraint with empty rule set is simply
unifiability of the source and the target. The following simple lemma is useful.

Lemma 3. Let S be a system of reachability constraints. There is a flat system
that can be obtained in polynomial time from S, that is solvable if and only if S
s solvable.

By using Lemma 2 and Lemma 3 we can now show the following theorem,
that is the main result of this section.

Theorem 1. Monadic SRR with ground rules is PSPACE-complete.

The crucial step in the proof of Theorem 1 is the construction of an automa-
ton that recognizes the language {f(s)®s : s € Tx}. (See Figure 1.) The reason
why the proof does not generalize to TAs is that the language { f(s)®s : s € Tz}
is not regular for nonmonadic signatures. The next example illustrates how the
reduction in the proof of Theorem 1 works.

Ezample 1. Consider a flat system S = {p1, p2, p3} with py = (R,y,z), p2 =
(0,y, f(2)) and p3 = (0,2, g(x)), over a signature X = {f,g,c}, where c is a



constant. (This system is solvable if and only if the constraint (R, f(g(z)),z) is
solvable.)

The construction in the proof of Theorem 1 gives us the monadic TAs A,
A, and Az such that

L(A)={s®t: s%t,s,t € Ts},
L(A2) ={f(s)®s:s € Ts},
L(A3) = {g(s)®s:5 € Ts},

and a set I = {1 ~ 3,5~ 4,6 ~ 2} of selection constraints. So L(®?:1 AT is
as follows.

LA @ A ® A) [T = {501 ® f(u) B u g(v) B0
s,t,u,v € Ty, s%)t}L{l ~3,5~4,6~2}
={s®t® f(u)Quag(v)®uv:
s, t,u,v € Tx, s%)t, s = f(u), g(v) =u, v="_t}
={f(g(t)) ®t® f(g(t)) ® g(t) ® g(t) ® ¢ :
teTs, f(g(t) >t}

So, solvability of S is equivalent to nonemptiness of L(A4; ® As ® As)|1.

3.3 Some decidable extensions of the monadic case

Some restrictions imposed by only allowing monadic function symbols can be re-
laxed, without losing decidability of SRR for the resulting classes of constraints.
One decidable fragment of SRR is obtained by requiring only the rules to be
ground and monadic. It can be shown that SRR for this class is still in PSPACE.
Furthermore, an easy argument using the intersection nonemptiness problem of
DFAs shows that PSPACE-hardness of this fragment holds already for a single
constraint with one variable. This is in contrast with the fact that SREU with
one variable and a fixed number of constraints can be solved in polynomial time
[Degtyarev et al. 19985].

4 A decidable nonmonadic fragment

In this section, we consider general signatures and give a criteria on the source
and target terms of a system of reachability constraints for the decidability of
SRR when the rules are ground. Moreover, we prove that SRR is EXPTIME-
complete in this case. Our decision algorithm involves essentially tree automata
techniques. Let X be a signature fixed for the rest of the section.

4.1 Semi-linear sequences of terms

We say that a sequence of terms (1, to, . . ., t,,) of (possibly non ground) X¥-terms
or | is semi-linear if one of the following conditions holds for each ¢;:



1. t; is a variable, or
2. t; is a linear term and no variable in ¢; occurs in t; for ¢ # j.

Note that if ¢; is ground then it satisfies the second condition trivially.

Lemma 4. Let (s1,82,...,8;) be a semi-linear sequence of X'-terms. Then the
subset {319 Q820 Q- Q s0: 0 is a grounding Z’—substitution} C T is recog-
nized by a TA the size of which is in O((||s1|| + | Z]]) x ... x (||se|l + | Z1]))-

Proof. Let X and s = s1, 82, ..., 5, be given. Let A; be the TA that recognizes
{sif : s;0 € Tx} for 1 <i < k. The desired TA is (Q 4;)|I, where I is the set
of all selection constraints ¢ ~ j such that s; and s; are identical variables. X

We shall also use the following lemma.

Lemma 5. Let A = (¥,Q,R,F) be a TA, s € T, and p1,...,pr parallel po-
sitions in s. Then there is a TA A, with ||A'|| € O(||Al|**), that recognizes the

set{sl®---®sk:sl,...,skETg, s[p1<—sl,...,pk<—sk]EL(A)}

4.2 Parallel decomposition of sequences of terms

For technical reasons, we generalize the notion of a product of m terms by
allowing nonground terms. The resulting term is in an extended signature with
® as an additional variadic function symbol. The definition is the same as for
ground terms (see (1)), with the additional condition that if one of the ¢;’s is a
variable then

11 ® Rty = Qt1,-- -y tm)-

Consider a sequence s = si,..., S, of terms and let (®(¢;))1<i<x be the
sequence of all the subterms of the product term ) s which have head symbol ®.
The parallel decomposition of s = s1,...,sm or pd(s) is the sequence (¢;)1<i<k,

i.e., we forget the symbol ®. We need the following technical notion in the proof
of Lemma 6: pdp(s) is the sequence (p;)1<i<k, where p; is the position of ®(t;)

in @ s.
The following example illustrates these new definitions and lemmas and how
they are used.

Ezample 2. Let s = f(g(z),9(z)) and t = f(y, f(z,y)) be two X-terms, and
let R be a ground rewrite system over Y. We will show how to capture all
the solutions of the reachability constraint (R, s t) as a certain regular set of
X2 -terms. First, construct the product s ® ¢.

s®t=f(9(2),9(z)) @ f(y, f(z,y))
= (f)(9(z) @y, 9(z) & f(z,y))
= (f)(@(9(2),9), (9f)(z @ 2, L ®y))
= (f)(®(9(2), ), (/) (@(z, 2), ®(L, y)))



The preorder traversal of s ® ¢ yields the sequence ®(g(z),y), ®(z,z), ®(L,y).
Finally, pd(s,t) is the semi-linear sequence g(z),y,z,z, L,y. (Note that the
sequence pdp(s,t) is 1, 21, 22.) It follows from Lemma 4 that there is a TA A; such
that L(A;) = {g(20) @y Q20 ® 26 ® L. ®y0 : 0 is a grounding Y-substitution}.
Now, consider a TA Ag that recognizes the product of %>, see Lemma 1,
ie, L(Ar) ={u®v:uipv, u,v € To}. From Ag we can, by using Lemma 5,
construct a TA A, such that

L(Ay) = {81 ® S21 ® S22 & 81,821, S22 € T22, (fF)(s1,(gf)(s21,822)) € L(AR)}
Let A recognize L(A1) N L(Az2). We get that

L(A) = L(A1) N L(A»)
51 ® 821 ® 892 : (Fzb,yb € Tsx)
= s1 =20 @ yb, s91 =20 ® 6, s90 = L ® yb,
(ff)(s1,9f(s21,822)) € L(AR)
{0:(fH(z0R®yb,9f (20 ® 20, L @ yb)) € L(Ar)}
= {6 : 0 solves (R, s,t)}

Hence L(A) # 0 if and only if (R, s,t) is solvable.

The crucial property that is needed in the example to prove the decidability of
the rigid reachability problem is that the parallel decomposition of the sequence
consisting of its source and target terms is semi-linear. This observation leads to
the following definition.

4.3 Balanced systems with ground rules

A system ((Rl, $1581)y oy (Rny Sns tn)) of reachability constraints is called bal-
anced if the parallel decomposition pd(s1,t1, s2,ta,. .., Sn, ty) is semi-linear. The
proof of Lemma 6 is a generalization of the construction in Example 2.

Lemma 6. From every balanced system S of reachability constraints with ground
rules, we can construct in EXPTIME a TA A such L(A) # 0 iff S is satisfiable.

Theorem 2. Simultaneous rigid reachability is EXPTIME-complete for balan-
ced systems with ground rules.

Proof. The EXPTIME-hardness follows from [Ganzinger et al. 1998], where we
have proved that one can reduce the emptiness decision for intersection of n tree
automata to the satisfiability of a rigid reachability constraint (R, flz,..., z),
flar,-.., qn)), where R is ground and ¢,. ..,q, are constants. X

The balanced case embeds the case where for each variable z with multiple
occurrences in source and target terms, there exists an integer d, such that z
occurs only at positions of length d,, e.g. with s1 = f(z,9(y)), t1 = f(f(y,y), z),
s2 = g(z) and ta = g(f(a, z)). Note that this is a strict subcase of the balanced
case, for instance, the system described in example 2, though balanced, does not
fulfill this condition.
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