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t. In this paper we prove de
idability results of restri
ted frag-ments of simultaneous rigid rea
hability or SRR, that is the nonsym-metri
al form of simultaneous rigid E-uni�
ation or SREU. The absen
eof symmetry enfor
es us to use di�erent methods, than the ones thathave been su

essful in the 
ontext of SREU (for example word equa-tions). The methods that we use instead, involve �nite (tree) automatate
hniques, and the de
idability proofs provide pre
ise 
omputational
omplexity bounds. The main results are 1) monadi
 SRR with groundrules is PSPACE-
omplete, and 2) balan
ed SRR with ground rules isEXPTIME-
omplete. These upper bounds have been open already for
orresponding fragments of SREU, for whi
h only the hardness resultshave been known. The �rst result indi
ates the di�eren
e in 
omputa-tional power between fragments of SREU with ground rules and non-ground rules, respe
tively, due to a straightforward en
oding of wordequations in monadi
 SREU (with nonground rules). The se
ond resultestablishes the de
idability and pre
ise 
omplexity of the largest knownsubfragment of nonmonadi
 SREU.1 Introdu
tionRigid rea
hability (RR) is the problem, given a rewrite system R and two termss and t, whether there exists a substitution � su
h that s�, t�, and R� areground, and s� rewrites in some number of steps via R� into t�. The term\rigid" stems from the fa
t that for no rule more than one instan
e 
an be usedin the rewriting pro
ess. Simultaneous rigid rea
hability (SRR) is the problemin whi
h a substitution is sought whi
h simultaneously solves ea
h member of? Full version of this paper is available as: Resear
h Report MPI-I-1999-2-004, Max-Plan
k-Institut f�ur Informatik.



a system of rea
hability 
onstraints (Ri; si; ti). A spe
ial 
ase of [simultaneous℄rigid rea
hability arises when the Ri are symmetri
, 
ontaining for ea
h rules! t also its 
onverse t! s. Su
h systems arise for example by orienting a setof equations in both dire
tions. The latter problem was introdu
ed by Gallier,Raatz & Snyder [1987℄ as \simultaneous rigid E-uni�
ation" (SREU) in the
ontext of extending tableaux or matrix methods in automated theorem provingto logi
 with equality. Rigid rea
hability was initially studied in the 
ontext ofse
ond-order uni�
ation [Farmer 1991, Levy 1998℄.Even though the non-simultaneous 
ase of SREU (rigid E-uni�
ation) wasproved NP-
omplete by Gallier, Narendran, Plaisted & Snyder [1988℄, SREUin general was shown by Degtyarev & Voronkov [1995℄ to be unde
idable. Fur-ther impli
ations of the latter result are dis
ussed in [Degtyarev, Gurevi
h &Voronkov 1996℄. In a series of papers, SREU has been studied extensively andseveral sharp boundaries have been laid between its de
idable and unde
id-able fragments. Most re
ent developments are dis
ussed by Voronkov [1998℄ andVeanes [1998℄. Rigid rea
hability was shown unde
idable by Ganzinger, Ja
que-mard & Veanes [1998℄.The, arguably, most diÆ
ult remaining open problem regarding SREU is thede
idability of \monadi
" SREU, or SREU restri
ted to signatures where allnon
onstant fun
tion symbols are unary. The importan
e of this fragment stemsfrom its 
lose relation to word equations [Degtyarev, Matiyasevi
h & Voronkov1996℄, and to fragments of intuitionisti
 logi
 [Degtyarev & Voronkov 1996℄.What is known about monadi
 SREU in general, is that it redu
es to a non-trivial extension of word equations [Gurevi
h & Voronkov 1997℄. In the 
ase ofground rules, the de
idability of monadi
 SREU was established in [Gurevi
h &Voronkov 1997℄ by redu
ing it to \word equations with regular 
onstraints". Thede
idability of the latter problem is an extension of Makanin's [1977℄ result byS
hulz [1990℄. Conversely, word equations redu
e in polynomial time to monadi
SREU [Degtyarev, Matiyasevi
h & Voronkov 1996℄. The �rst main result of thispaper (in Se
tion 3), is that monadi
 SRR with ground rules is in PSPACE,improving the EXPTIME result in Ganzinger et al. [1998℄. Hen
e, it is unlikelythat there is a simple redu
tion, if any redu
tion at all, from monadi
 SREUto monadi
 SREU with ground rules, or else one would get a 
onsiderable sim-pli�
ation of Makanin's [1977℄ proof. The PSPACE-hardness of monadi
 SREUwith ground rules was shown by Goubault [1994℄.To obtain the PSPACE result we use an extension of the interse
tion non-emptiness problem of a sequen
e of �nite automata that we prove to be inPSPACE. Moreover, using the same proof te
hnique, we 
an show that simul-taneous rigid rea
hability with ground rules remains in PSPACE, even whenjust the rules are required to be monadi
. Furthermore, in this 
ase PSPACE-hardness holds already for a single 
onstraint with one variable, 
ontrasting thefa
t that SREU with one variable is solvable in polynomial time [Degtyarev,Gurevi
h, Narendran, Veanes & Voronkov 1998b℄.Our se
ond main result 
on
erns (nonmonadi
) SRR with ground rules. Inse
tion 4, we show that SRR with ground rules is EXPTIME-
omplete for \bal-



an
ed" systems of rea
hability 
onstraints. Under balan
ed systems fall for ex-ample systems where all o

urren
es of ea
h variable are at the same depth. Itis possible to obtain unde
idability of (nonsimultaneous) rigid rea
hability withground rules where all but one o

urren
e of all variables o

ur at the samedepth [Ganzinger et al. 1998℄. Moreover, this result generalizes the de
idabil-ity result by Degtyarev, Gurevi
h, Narendran, Veanes & Voronkov [1998a℄ ofthe largest known de
idable fragment of SREU with ground rules and impliesEXPTIME-
ompletess of the 
omplexity of this fragment (whi
h is left openin [Degtyarev et al. 1998a℄). The key 
hara
teristi
 of solving balan
ed systemsinvolves �nite tree automata te
hniques over produ
t languages, where it is notne
essary to sear
h for solutions en
oding a produ
t of a term with its propersubterm. This property is also important in de
ision pro
edures for \automatawith 
onstraints between brothers" [see, e.g. Comon, Dau
het, Gilleron, Lugiez,Tison & Tommasi 1998℄.2 PreliminariesRigid Rea
hability. A rea
hability 
onstraint, or simply a 
onstraint, in a signa-ture �, is a triple (R; s; t) where R is a set of rules in �, and s and t are �-terms.We refer to R, s and t as the rule set, the sour
e term and the target term, respe
-tively, of the 
onstraint. A substitution � in �, solves (R; s; t) if � is groundingfor R, s and t, and s���!�R� t�: The problem of solving 
onstraints is 
alled rigidrea
hability. A system of 
onstraints is solvable if there exists a substitution thatsolves all 
onstraints in that system. Simultaneous rigid rea
hability or SRRis the problem of solving systems of 
onstraints. Monadi
 (simultaneous) rigidrea
hability is (simultaneous) rigid rea
hability for monadi
 signatures.Rigid E-uni�
ation is rigid rea
hability for 
onstraints (E; s; t) with sets ofequations E. Simultaneous Rigid E-uni�
ation or SREU is de�ned a

ordingly.Finite tree automata. Finite bottom-up tree automata, or simply, tree automata,from here on, are a generalization of 
lassi
al automata [Doner 1970, That
her& Wright 1968℄. Using a rewrite rule based de�nition [e.g. Coquid�e, Dau
het,Gilleron & V�agv�olgyi 1994, Dau
het 1993℄, a tree automaton (or TA) A is aquadruple (Q;�;R; F ), where (i) Q is a �nite set of 
onstants 
alled states, (ii)� is a �nite signature that is disjoint from Q, (iii) R is a system of rules of theform f(q1; : : : ; qn)! q, where f 2 � has arity n � 0 and q; q1; : : : ; qn 2 Q, and(iv) F � Q is the set of �nal states. The size of a TA A is kAk = jQj+ j�j+kRk.We denote by L(A; q) the set ft 2 T� �� t�!�R qg of ground terms a

epted byA in state q. The set of terms re
ognized by the TA A is the set Sq2F L(A; q).A set of terms is 
alled re
ognizable or regular if it is re
ognized by some TA. Amonadi
 TA is a TA with a monadi
 signature.Finite string automata. For monadi
 signatures, we use the traditional, equiv-alent 
on
epts of alphabets, strings (or words), �nite automata, and regularexpressions. We will identify an NFA A with alphabet � with the set of all rules



a(q) ! p, also written as q�!aA p, where there is a transition with label a 2 �from state q to state p in A, and we denote this set of rules also by A. A monadi
term a1(a2(: : : an(q))) is written, using the reversed Polish notation, as the stringqan : : : a1.Then A a

epts a string a1a2 � � �an if and only if, for some �nal state q andthe initial state q0 of A, an(� � � a2(a1(q0)) � � �)�!�A q, i.e.,q0�!Aa1 q1�!Aa2 � � � ��!Aan q:The set of all strings a

epted by A is denoted by L(A).Produ
t automata. Let � be a signature, m a positive integer, and ? a new
onstant. We write �? for � [ f?g and �m? denotes the signature 
onsistingof, for all f1; f2; : : : ; fm 2 �?, a unique fun
tion symbol hf1f2 � � � fmi with arityequal to the maximum of the arities of the fi's.Let ti 2 T� [ ?, ti = fi(ti1; : : : ; tiki), where ki � 0, for 1 � i � m. Letk be the maximum of all the ki and let tij = ? for ki < j � k. The produ
tt1 
 � � � 
 tm of t1; : : : ; tm is de�ned by re
ursion on the subterms:t1 
 � � � 
 tm = hf1f2 � � � fmi(t11 
 � � � 
 t1k; : : : ; tm1 
 � � � 
 tmk) (1)For example:f(
; g(
))
 f(g(d); f(
; g(
))) = hffi(

 g(d); g(
)
 f(
; g(
)))= hffi(h
gi(?
 d); hgfi(

 
;?
 g(
)))= hffi(h
gi(h?di; hgfi(h

i; h?gi(?
 
)))= hffi(h
gi(h?di; hgfi(h

i; h?gi(h?
i)))We write T m� for the set of all t in T�m? su
h that t = t1 
 � � � 
 tm for somet1; : : : ; tm 2 T� [ ?. If s 2 T m� and t 2 T n� , where s = s1 
 � � � 
 sm andt = t1 
 � � � 
 tn, then s 
 t denotes the term s1 
 � � � 
 sm 
 t1 
 � � � 
 tn inT m+n� . Given a sequen
e t = t1; : : : ; tm of terms in T� [?, we writeN t for theprodu
t term t1 
 � � � 
 tmGiven two automata A1 and A2 over �m? and �n?, respe
tively, the produ
tof A1 and A2 is an automaton A1 
A2 over �m+n? su
h thatL(A1 
A2) = L(A1)
 L(A2) = ft1 
 t2 : t1 2 L(A1); t2 2 L(A2)gThe 
onstru
tion of A1
A2 is straightforward, with a state q(q1;q2) for all statesq1 in A1 and q2 in A2, [see e.g. Comon et al. 1998℄. In general,Nni=1Ai is de�neda

ordingly.We will use the following 
onstru
tion of Dau
het, Heuillard, Les
anne &Tison [1990℄ in our proofs.Lemma 1. Let R be a ground rewrite system over a signature �. There is aTA A su
h that L(A) = fs 
 t : s; t 2 T� ; s�!�R tg that 
an be 
onstru
ted inpolynomial time from R and �.



3 Monadi
 SRRWe prove that monadi
 SRR with ground rules is PSPACE-
omplete. Our maintool is a de
ision problem of NFAs, that we de�ne next. In this se
tion we
onsider only monadi
 signatures.3.1 Constrained produ
t nonemptiness of NFAsGiven a signature � and a positive integer m, we want to sele
t only a 
er-tain subset from �m through sele
tion 
onstraints (bounded by m), these areunordered pairs of indi
es written as i � j, where 1 � i; j � m, i 6= j. Given asignature � and a set I of sele
tion 
onstraints, we write �m⇂I for the followingsubset of �m:�m⇂I = fha1a2 � � � ami 2 �m : (8i � j 2 I) ai = ajgFor an automaton A, let A⇂I denote the redu
tion of A to the alphabet �m⇂I .We write also L(A)⇂I for L(A⇂I). The automaton A⇂I has the same states as A,and the transitions of A⇂I are pre
isely all the transitions of A with labels from�m⇂I .We 
onsider the following de
ision problem, that is 
losely related to thenonemptiness problem of the interse
tion of a sequen
e of NFAs. Consider analphabet �. Let (Ai)1�i�n, n � 1, be a sequen
e of (string produ
t) NFAs overthe alphabets �mi? for 1 � i � n, respe
tively. Let m be the sum of all the miand let I be a set of sele
tion 
onstraints. The 
onstrained produ
t nonemptinessproblem of NFAs is, given (Ai)1�i�n, and I , to de
ide if (Nni=1 L(Ai))⇂I isnonempty. Our key lemma is the following one. Its proof is a straightforwardextension of the in
lusion part of Kozen's [1977℄ PSPACE-
ompletess result ofthe interse
tion nonemptiness problem of DFAs : given a sequen
e (Ai)1�i�n ofDFAs, is Tni=1 L(Ai) nonempty?Lemma 2. Constrained produ
t nonemptiness of NFAs (or monadi
 TAs) is inPSPACE.The proof of Lemma 2 
an be extended in a straightforward manner to �nitetree automata. The only di�eren
e will be that the algorithm will do \universal
hoi
es" when the arity of fun
tion symbols (letters) in the 
omponent automatais > 1. This leads to alternating PSPACE, and thus, by the result of Chandra,Kozen & Sto
kmeyer [1981℄, to EXPTIME upper bound for the 
onstrainedprodu
t nonemptiness problem of TAs.Although we will not use this fa
t, it is worth noting that the 
onstrainedprodu
t nonemptiness problem is also PSPACE-hard, and this so already forDFAs (or monadi
 DTAs). It is easy to see that Tni=1 L(Ai) is nonempty if andonly if L(Nni=1 Ai)⇂fi � i+ 1 : 1 � i < ng is nonempty.



q0 qg qf
qh

h
?i hg
i hfgihgfihghi hhgi hfhi hhfihh
i
hf
ihggi hffi
hhhiFigure 1: A DFA (or monadi
 DTA) A that re
ognizes ff(s) 
 s : s 2 T�g,where � 
onsists of the unary fun
tion symbols f , g, and h, and the 
on-stant 
. For example A re
ognizes the string h
?ihg
ihggihhgihfhi, i.e., the termhfhi(hhgi(hggi(hg
i(h
?i)))) that is the same as f(h(g(g(
))))
 h(g(g(
))).3.2 Redu
tion of monadi
 SRR with ground rules to 
onstrainedprodu
t nonemptiness of NFAsWe need the following notion of normal form of a system of rea
hability 
on-straints. We say that a system S of rea
hability 
onstraints is 
at, if ea
h 
on-straint in S is either of the form{ (R; x; t), R is nonempty, x is a variable, and t is a ground term or a variabledistin
t from x, or of the form{ (;; x; f(y)), where x and y are distin
t variables and f is a unary fun
tionsymbol.Note that solvability of a rea
hability 
onstraint with empty rule set is simplyuni�ability of the sour
e and the target. The following simple lemma is useful.Lemma 3. Let S be a system of rea
hability 
onstraints. There is a 
at systemthat 
an be obtained in polynomial time from S, that is solvable if and only if Sis solvable.By using Lemma 2 and Lemma 3 we 
an now show the following theorem,that is the main result of this se
tion.Theorem 1. Monadi
 SRR with ground rules is PSPACE-
omplete.The 
ru
ial step in the proof of Theorem 1 is the 
onstru
tion of an automa-ton that re
ognizes the language ff(s)
s : s 2 T�g. (See Figure 1.) The reasonwhy the proof does not generalize to TAs is that the language ff(s)
s : s 2 T�gis not regular for nonmonadi
 signatures. The next example illustrates how theredu
tion in the proof of Theorem 1 works.Example 1. Consider a 
at system S = f�1; �2; �3g with �1 = (R; y; x), �2 =(;; y; f(z)) and �3 = (;; z; g(x)), over a signature � = ff; g; 
g, where 
 is a




onstant. (This system is solvable if and only if the 
onstraint (R; f(g(x)); x) issolvable.)The 
onstru
tion in the proof of Theorem 1 gives us the monadi
 TAs A1,A2 and A3 su
h that L(A1) = fs
 t : s�!�R t; s; t 2 T�g;L(A2) = ff(s)
 s : s 2 T�g;L(A3) = fg(s)
 s : s 2 T�g;and a set I = f1 � 3; 5 � 4; 6 � 2g of sele
tion 
onstraints. So L(N3i=1 Ai)⇂I isas follows.L(A1 
A2 
A3)⇂I = fs
 t
 f(u)
 u
 g(v)
 v :s; t; u; v 2 T� ; s�!�R tg⇂f1 � 3; 5 � 4; 6 � 2g= fs
 t
 f(u)
 u
 g(v)
 v :s; t; u; v 2 T� ; s�!�R t; s = f(u); g(v) = u; v = tg= ff(g(t))
 t
 f(g(t))
 g(t)
 g(t)
 t :t 2 T� ; f(g(t))�!�R tgSo, solvability of S is equivalent to nonemptiness of L(A1 
A2 
A3)⇂I .3.3 Some de
idable extensions of the monadi
 
aseSome restri
tions imposed by only allowing monadi
 fun
tion symbols 
an be re-laxed, without losing de
idability of SRR for the resulting 
lasses of 
onstraints.One de
idable fragment of SRR is obtained by requiring only the rules to beground and monadi
. It 
an be shown that SRR for this 
lass is still in PSPACE.Furthermore, an easy argument using the interse
tion nonemptiness problem ofDFAs shows that PSPACE-hardness of this fragment holds already for a single
onstraint with one variable. This is in 
ontrast with the fa
t that SREU withone variable and a �xed number of 
onstraints 
an be solved in polynomial time[Degtyarev et al. 1998b℄.4 A de
idable nonmonadi
 fragmentIn this se
tion, we 
onsider general signatures and give a 
riteria on the sour
eand target terms of a system of rea
hability 
onstraints for the de
idability ofSRR when the rules are ground. Moreover, we prove that SRR is EXPTIME-
omplete in this 
ase. Our de
ision algorithm involves essentially tree automatate
hniques. Let � be a signature �xed for the rest of the se
tion.4.1 Semi-linear sequen
es of termsWe say that a sequen
e of terms (t1; t2; : : : ; tm) of (possibly non ground) �-termsor ? is semi-linear if one of the following 
onditions holds for ea
h ti:



1. ti is a variable, or2. ti is a linear term and no variable in ti o

urs in tj for i 6= j.Note that if ti is ground then it satis�es the se
ond 
ondition trivially.Lemma 4. Let (s1; s2; : : : ; sk) be a semi-linear sequen
e of �-terms. Then thesubset �s1� 
 s2� 
 � � � 
 sk� : � is a grounding �-substitution	 � T m� is re
og-nized by a TA the size of whi
h is in O((ks1k+ k�k)� : : :� (kskk+ k�k)).Proof. Let � and s = s1; s2; : : : ; sk be given. Let Ai be the TA that re
ognizesfsi� : si� 2 T�g for 1 � i � k. The desired TA is (NAi)⇂I , where I is the setof all sele
tion 
onstraints i � j su
h that si and sj are identi
al variables. ⊠We shall also use the following lemma.Lemma 5. Let A = (�;Q;R; F ) be a TA, s 2 T�, and p1; : : : ; pk parallel po-sitions in s. Then there is a TA A0, with kA0k 2 O�kAk2k�, that re
ognizes theset �s1 
 � � � 
 sk : s1; : : : ; sk 2 T� ; s[p1  s1; : : : ; pk  sk℄ 2 L(A)	4.2 Parallel de
omposition of sequen
es of termsFor te
hni
al reasons, we generalize the notion of a produ
t of m terms byallowing nonground terms. The resulting term is in an extended signature with
 as an additional variadi
 fun
tion symbol. The de�nition is the same as forground terms (see (1)), with the additional 
ondition that if one of the ti's is avariable then t1 
 � � � 
 tm = 
(t1; : : : ; tm):Consider a sequen
e s = s1; : : : ; sm of terms and let (
(ti))1�i�k be thesequen
e of all the subterms of the produ
t termN s whi
h have head symbol
.The parallel de
omposition of s = s1; : : : ; sm or pd (s) is the sequen
e (ti)1�i�k ,i.e., we forget the symbol 
. We need the following te
hni
al notion in the proofof Lemma 6: pdp(s) is the sequen
e (pi)1�i�k, where pi is the position of 
(ti)in N s.The following example illustrates these new de�nitions and lemmas and howthey are used.Example 2. Let s = f(g(z); g(x)) and t = f(y; f(x; y)) be two �-terms, andlet R be a ground rewrite system over �. We will show how to 
apture allthe solutions of the rea
hability 
onstraint (R; s;t) as a 
ertain regular set of�2?-terms. First, 
onstru
t the produ
t s
 t.s
 t = f(g(z); g(x))
 f(y; f(x; y))= hffi(g(z)
 y; g(x)
 f(x; y))= hffi(
(g(z); y); hgfi(x
 x;?
 y))= hffi(
(g(z); y); hgfi(
(x; x);
(?; y)))



The preorder traversal of s
 t yields the sequen
e 
(g(z); y), 
(x; x), 
(?; y).Finally, pd(s; t) is the semi-linear sequen
e g(z); y; x; x;?; y. (Note that thesequen
e pdp(s; t) is 1; 21; 22.) It follows from Lemma 4 that there is a TA A1 su
hthat L(A1) = �g(z�)
y�
x�
x�
?
y� : � is a grounding �-substitution	.Now, 
onsider a TA AR that re
ognizes the produ
t of �!�R , see Lemma 1,i.e., L(AR) = fu
 v : u�!�R v; u; v 2 T�g: From AR we 
an, by using Lemma 5,
onstru
t a TA A2 su
h thatL(A2) = �s1 
 s21 
 s22 : s1; s21; s22 2 T 2� ; hffi(s1; hgfi(s21; s22)) 2 L(AR)	Let A re
ognize L(A1) \ L(A2). We get thatL(A) = L(A1) \ L(A2)= 8<:s1 
 s21 
 s22 : (9x�; y� 2 T�)s1 = x� 
 y�; s21 = x� 
 x�; s22 = ?
 y�;hffi(s1; gf(s21; s22)) 2 L(AR)= f� : hffi(x� 
 y�; gf(x� 
 x�;?
 y�)) 2 L(AR)g= f� : � solves (R; s; t)gHen
e L(A) 6= ; if and only if (R; s; t) is solvable.The 
ru
ial property that is needed in the example to prove the de
idability ofthe rigid rea
hability problem is that the parallel de
omposition of the sequen
e
onsisting of its sour
e and target terms is semi-linear. This observation leads tothe following de�nition.4.3 Balan
ed systems with ground rulesA system �(R1; s1; t1); : : : ; (Rn; sn; tn)� of rea
hability 
onstraints is 
alled bal-an
ed if the parallel de
omposition pd(s1; t1; s2; t2; : : : ; sn; tn) is semi-linear. Theproof of Lemma 6 is a generalization of the 
onstru
tion in Example 2.Lemma 6. From every balan
ed system S of rea
hability 
onstraints with groundrules, we 
an 
onstru
t in EXPTIME a TA A su
h L(A) 6= ; i� S is satis�able.Theorem 2. Simultaneous rigid rea
hability is EXPTIME-
omplete for balan-
ed systems with ground rules.Proof. The EXPTIME-hardness follows from [Ganzinger et al. 1998℄, where wehave proved that one 
an redu
e the emptiness de
ision for interse
tion of n treeautomata to the satis�ability of a rigid rea
hability 
onstraint �R; f(x; : : : ; x);f(q1; : : : ; qn)�, where R is ground and q1,. . . ,qn are 
onstants. ⊠The balan
ed 
ase embeds the 
ase where for ea
h variable x with multipleo

urren
es in sour
e and target terms, there exists an integer dx su
h that xo

urs only at positions of length dx, e.g. with s1 = f(x; g(y)), t1 = f(f(y; y); x),s2 = g(x) and t2 = g(f(a; z)). Note that this is a stri
t sub
ase of the balan
ed
ase, for instan
e, the system des
ribed in example 2, though balan
ed, does notful�ll this 
ondition.
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