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Abstract. We study the complexity of the isomorphism and auto-
morphism problems for finite rings. We show that both integer fac-
torization and graph isomorphism reduce to the problem of counting
automorphisms of a ring. This counting problem is shown to be in the
functional version of the complexity class AM ∩ coAM and hence is not
NP-complete unless the polynomial hierarchy collapses. As a “positive”
result we show that deciding whether a given ring has a non-trivial
automorphism can be done in deterministic polynomial time. Finding
such an automorphism is, however, shown to be randomly equivalent to
integer factorization.
Keywords. Ring, isomorphism, automorphism, polynomial hierarchy,
graph isomorphism, integer factorization.
Subject classification. Computer Science, Algebra.

1. Introduction

A ring consists of a set of elements together with addition and multiplication
operations. These structures are fundamental objects of study in mathematics
and particularly so in algebra and number theory. It has long been recognized
that the group of automorphisms of a ring provides valuable information about
the structure of the ring. Galois (1846) initiated the study of the group of auto-
morphisms of a field and it was later applied by Abel (Rosen 1995) to prove the
celebrated theorem that there does not exist any formula for finding the roots
of a quintic (degree 5) polynomial. However, to the best of our knowledge, the
computational complexity of the ring isomorphism and automorphism related
problems has not been investigated so far. In this paper, we initiate such a
study and show interesting connections to some well known problems.

We will restrict our attention to finite rings with unity. We assume that the
rings are given in terms of the basis of their additive group and the multiplica-
tion table of basis elements. Given two rings in this form, the ring isomorphism
problem is to test if the rings are isomorphic. We show that this problem is in
NP ∩ coAM and is at least as hard as the graph isomorphism problem. Thus,
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ring isomorphism is a natural algebraic problem whose complexity status is
similar to that of graph isomorphism. The search version of the isomorphism
problem is to find an isomorphism between two given rings. We show that
integer factoring reduces to the search version of the problem.

Another variant of the problem is to count the number of isomorphisms
between two rings. We show that both integer factorization and graph isomor-
phism reduce to this problem. We also show that this problem is equivalent
to that of counting the number of automorphisms in a ring and lies in the
class FPAM∩coAM. This implies that the problem is not NP-hard unless the
polynomial hierarchy collapses to Σ2 (Schöning 1988).

The ring automorphism problem is to test if a ring has a non-trivial au-
tomorphism. We prove that this problem is in P. This is in contrast to the
corresponding problem for graphs whose status is still open. On the other hand
we show that the problem of finding a nontrivial automorphism of a given ring
is equivalent to integer factoring. This implies that the search version of the
problem is likely to be strictly harder than the decision version. We also show
a connection of polynomial factorization to finding a nontrivial automorphism
of a ring.

The most general problem here is to compute the automorphism group of
a given ring, in terms of a small set of generators. It is easy to see that all
the above problems reduce to it. Also, the proof of upper bound on counting
automorphisms can be adapted to exhibit an AM protocol for it implying that
this problem too is not NP-hard unless PH = ΣP

2 .

We start with a warm up of groups, rings and complexity theory notions in
Sections 2 and 3. We present upper and lower bounds on the complexity of Ring
Isomorphism, Counting Ring Automorphisms, finding a Ring Isomorphism,
deciding Ring Automorphism and finding a nontrivial Ring Automorphism in
the subsequent sections respectively. Some basic structural properties of rings
can be found in the Appendix together with brief proofs.

The reduction from Graph Isomorphism to Ring Isomorphism given in this
paper was improved by Agrawal & Saxena (2005, 2006). Using the new reduc-
tion they were able to prove that Graph Isomorphism can also be reduced to
the problem of Cubic Forms Equivalence.

2. Basics of groups and rings

In this section we give the basics of rings, see the appendix for more details.
A group is a set of elements with a suitably defined operation of multiplication
while a ring is a set of elements with two operations of addition (+) and mul-



Complexity of ring morphism problems 3

tiplication (·) defined. There are two useful groups living in a ring R. Firstly,
(R,+) is a group with respect to addition called the additive group. If R∗ is
the set of elements in R having multiplicative inverses then (R∗, ·) is the second
group called the multiplicative group.

2.1. Representing rings. For concreteness we first fix the way we are going
to present the finite rings and their homomorphisms in the input or the output.

Definition 2.1. Basis representation of rings: A finite ring R is given by
first describing its additive group in terms of n additive generators and then
specifying multiplication by giving for each pair of generators, their product as
an element of the additive group. More concretely, R is presented as:

(R,+, .) := 〈(d1, d2, d3, . . . , dn), ((ai,j,k))1≤i,j,k≤n〉 ,
where, for all 1 ≤ i, j, k ≤ n, 0 ≤ ai,j,k < dk and ai,j,k ∈ Z.

This specifies a ring R generated by n elements b1, b2, . . . bn with each bi
having additive order di and (R,+) = (Z/d1Z)b1 ⊕ (Z/d2Z)b2 · · · ⊕ (Z/dnZ)bn.
Moreover, multiplication inR is defined by specifying the product of each pair of
generators as an integer linear combination of the generators: for 1 ≤ i, j ≤ n,
bi · bj =

∑n
k=1 ai,j,kbk.

Definition 2.2. Representation of maps on rings: Suppose R1 is a ring
given in terms of its additive generators b1, . . . , bn and ring R2 given in terms
of c1, . . . , cn. In this paper maps on rings would invariably be homomorphisms
on the additive group. Then to specify any map φ : R1 → R2, it is enough
to give the images φ(b1), . . . , φ(bn). So we represent φ by an n × n matrix of
integers A, such that for all 1 ≤ i ≤ n:

φ(bi) =
n∑

j=1

Aijcj

and for all 1 ≤ i, j ≤ n, 0 ≤ Aij < additive order of cj .

Example 2.3. Consider the ring R := (Z/3Z)[x]/(x2 − x+ 1). Here, 1 and x
can be taken as basis elements and (R,+) = (Z/3Z) ·1⊕(Z/3Z) ·x. Multiplica-
tion on the basis elements is defined as: 1·1 = 1·1+0·x, x·1 = 1·x = 0·1+1·x
and x · x = 2 · 1 + 1 · x. Note that the map φ sending 1 �→ 1 and x �→ −1 is a
homomorphism from R to itself and wrt to the basis 1, x it can be represented

as: A =

(
1 0
2 0

)

. ♦
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2.2. The problems. Firstly, we define the ring isomorphism and related
problems that we are going to explore.

◦ The ring isomorphism problem is to decide whether two given rings are
isomorphic. The corresponding language we define as:

RI :=
{
(R1, R2) | rings R1, R2 are given in the

basis representation and R1
∼= R2

}
.

◦ Given two rings R1, R2 in basis form, FRI is the functional problem of
computing an isomorphism from R1 → R2 (if one exists).

◦ #RI is defined as the functional problem of computing the number of
isomorphisms between two rings given in basis form.

◦ RA is defined as the problem of deciding whether a given ring has a
nontrivial ring automorphism. The corresponding language is:

RA :=
{
R | R is a ring in basis form s.t. #Aut(R) > 1

}
.

◦ FRA is the functionl problem of computing a nontrivial automorphism of
a ring R given in the basis form.

◦ #RA is defined as the functional problem of computing the number of
automorphisms of a given ring. Its decision version can be viewed as the
language:

(2.4) cRA :=
{
(R, k) | R is a ring in basis form s.t. #Aut(R) ≥ k

}
.

2.3. The preliminaries. If G,H are two groups then we use H ≤ G to
denote that H is a subgroup of G. If G is finite then the size of a subgroup
of G divides #G. A converse does not hold in general but if for a prime p,
pk|#G then there always exist a subgroup of size pk. If pk is the highest power
of p dividing #G then a subgroup of size pk is called a p-Sylow subgroup of G.
A p-Sylow subgroup Sp of size pk can be broken into a composition series, i.e.,
there are groups Gi of size pk−i such that:

Sp = G0 > G1 > G2 > · · · > Gk = {1} .

In analysing a ring R we use special subsets of R called ideals.
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Definition 2.5. A subset I ⊆ R is an ideal of R if:

◦ (I,+) is a subgroup of (R,+), and

◦ for all i ∈ I, r ∈ R, both i · r and r · i are in I. This can also be stated
as: ∀r ∈ R both r · I, I · r ⊆ I.

Ideals can be multiplied together to give new (smaller) ideals.

Definition 2.6. Let I,J be two ideals of a ring R. We define their product
as

I · J := ring generated by the elements {ij | i ∈ I, j ∈ J } .
Powering of ideals, It for positive integer t, is defined similarly. It is easy

to see that I · J is again an ideal of R.
Algebraic structures mostly break into simpler objects. In the case of rings

we get the following simpler rings.

Definition 2.7. Indecomposable or local ring: A ring R is said to be
indecomposable or local if there do not exist rings R1, R2 such that R ∼= R1×R2,
where × denotes the natural composition of two rings with component wise
addition and multiplication.

Commutative local rings have nice properties (see the appendix and the
text McDonald 1974). For instance, if R is a commutative local ring then for
all r ∈ R either r is invertible or r is a nilpotent, i.e., ∃k, rk = 0. This makes
M := R \R∗ an ideal of R and it can be shown that M is the unique maximal
ideal of R.

Example 2.8. Let n = p2q where p, q are distinct primes and define a natural
ring R := (Z/nZ,+, ·). Then observe that R decomposes as (Z/p2

Z,+, ·) ×
(Z/qZ,+, ·) where the two component rings are local. ♦

Example 2.9. Consider a ring R := F[x, y]/(x3, y2). The subset yR, denoted
as (y), is an ideal of R. Similarly, xR + yR, denoted by (x, y), is also an ideal
of R. Note that the product of these two ideals is (y) · (x, y) = (xy, y2) = (xy).
Similarly in R, (x, y)2 = (x2, xy), (x, y)3 = (x2y) and (x, y)4 = 0. Moreover,
it can be shown that R is a local ring with M = (x, y) as its unique maximal
ideal. ♦
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Example 2.10. It is an interesting exercise to show that R1 := F[x, y]/(x3, y
(x + y)) is a nonzero local ring while R2 := F(y)[x]/(x3, y(x + y)) is the zero
ring. ♦

We collect some of the known results about rings. Their proofs can be found
in algebra texts, for example Lang (1994); McDonald (1974).

There is a classification known for finite commutative groups. Basically,
each such group completely decomposes into a bunch of cyclic groups.

Proposition 2.11 (Structure theorem for abelian groups). If R is a finite
ring then its additive group (R,+) can be uniquely (up to permutations) ex-
pressed as:

(R,+) ∼=
⊕

i

(Z/pi
αiZ) ,

where pi’s are primes (not necessarily distinct) and αi ∈ Z
≥1.

Remark 2.12. This theorem can be used to check in polynomial time whether
for two rings, given in basis form, the additive groups are isomorphic or not.
Suppose the two additive groups are G := (Z/d1Z) ⊕ · · · ⊕ (Z/dnZ) and G′ :=
(Z/d′1Z)⊕· · ·⊕(Z/d′nZ). Consider the set D = {di | i ∈ [n]}∪{d′i | i ∈ [n]}. We
take gcds of all pairs of integers from the set D and expand D in each such gcd-
operation as: if α, β ∈ D have a nontrivial gcd then replace them by α

gcd(α,β)
,

β
gcd(α,β)

and gcd(α, β). We can keep repeating this process on the new expanded
D till all the elements of D become mutually coprime. It is guaranteed to stop
in polynomial time, for D can expand to a maximum size of log(#G · #G′) as
the number of prime factors of a number N are less than logN . Now factor di

’s and d′j ’s as much as possible using the numbers from D. Say, di = de1
i,1 . . . d

ek
i,k

where di,1, . . . , di,k ∈ D are mutually coprime. We can refine the decomposition
of G by breaking (Zdi

,+) as:

(Z/de1
i,1Z) ⊕ · · · ⊕ (Z/dek

i,kZ) .

At the end of all this refining of di’s and d′j’s using D, let the finer structural
decompositions be: G ∼= (Z/m1Z) ⊕ · · · ⊕ (Z/mn′Z) and G′ ∼= (Z/m′

1Z) ⊕
· · ·⊕ (Z/m′

n′Z). Now by invoking the structure theorem: G will be isomorphic
to G′ if and only if the multi-sets (i.e., elements with repetition) {mi}i∈[n′] and
{m′

i}i∈[n′] are equal.

Using the structure theorem of abelian groups, we can compute #Aut(R,+)
of a ring R given in basis form and having a prime-power size.
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Proposition 2.13. Given a ring R in terms of additive generators, all having
prime-power additive orders, we can compute the number of automorphisms of
the additive group of R, #Aut(R,+), in polynomial time.

Proof. Automorphisms of the additive group (R,+) are nothing but the
invertible linear maps on the additive generators of R. Thus, to compute
#Aut(R,+) we compute the number of invertible linear maps or the number
of invertible matrices.

Let (R,+) be given as ∼= ⊕l
i=1

⊕
j(Z/pi

αi,j Z), where pi’s are distinct primes

and αi,j ∈ Z
≥1. For 1 ≤ i ≤ l define subrings Ri of R as:

Ri := {r ∈ R | r has power-of-pi additive order} .

Observe that
R ∼= R1 × · · · × Rl ;

this is because if ri ∈ Ri and rj ∈ Rj (i �= j) then for some ci, cj ∈ Z
≥0, pci

i rirj =
p

cj

j rirj = 0 which implies that rirj = 0 (since ∃a, b ∈ Z such that apci
i +bp

cj

j = 1)
and by a similar argument r1 ∈ R1, . . . , rl ∈ Rl are linearly independent.

This decomposition of R gives us:

#Aut(R,+) =

l∏

i=1

#Aut(Ri,+) .

Thus, it suffices to show how to compute #Aut(R,+) when (R,+) is given
as ∼= ⊕n

i=1(Z/p
αiZ) where p is a prime and αi ∈ Z

≥1.
Suppose we are given R in terms of the following additive basis:

(R,+) = (Z/pβ1Z)e1,1 ⊕ · · · ⊕ (Z/pβ1Z)e1,n1 ⊕ · · ·
· · · ⊕ (Z/pβmZ)em,1 ⊕ · · · ⊕ (Z/pβmZ)em,nm ,

where n1 + · · ·+ nm = n and 1 ≤ β1 < · · · < βm.
Observe that φ ∈ Aut(R,+) iff the matrix A describing the map φ is in-

vertible (mod p) and preserves the additive orders of ei,j ’s. Our intention is to
count the number of all such matrices A. To do that let us see how A looks:

A =

⎛

⎜
⎜
⎜
⎝

B1,1 B1,2 . . . B1,m

B2,1 B2,2 . . . B2,m
... . . .

. . .
...

Bm,1 Bm,2 . . . Bm,m

⎞

⎟
⎟
⎟
⎠

n×n
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where the block matrices Bi,j’s are integer matrices of size ni×nj . The proper-
ties of these block matrices which make A describe an automorphism of (R,+)
are:

◦ for 1 ≤ j < i ≤ m: entries in Bij are from {0, 1, . . . , pβj − 1},
◦ for 1 ≤ i ≤ m: entries in Bii are from {0, 1, . . . , pβi − 1} and Bii is

invertible (mod p),

◦ for 1 ≤ i < j ≤ m: entries in Bij are from {0, 1, . . . , pβj − 1} and
Bij ≡ 0 (mod pβj−βi).

It is not difficult to see that the number of matrices satisfying these conditions
can be found in time polynomial in (n1β1 + · · ·+ nmβm)(log p), and hence the
number of A’s which describe an automorphism of (R,+). �

Remark 2.14. When a ring R, given in basis form, is of composite size then
computing #Aut(R,+) entails factoring integers. For example, suppose n = pq
where p �= q are primes and ring R is given as (Z/nZ,+, ·). Then #Aut(R,+) =
(p − 1)(q − 1) = φ(n) and if we compute φ(n) then we can factorize n in
randomized polynomial time (Miller 1976).

Unlike commutative groups, a classification of commutative rings is not
known yet. But as a first step rings can be decomposed uniquely into indecom-
posable rings.

Proposition 2.15 (Structure theorem for rings). If R is a finite ring with
unity then it can be uniquely (up to permutations) decomposed into inde-
composable rings R1, . . . , Rs such that

R = R1 × · · · × Rs .

Remark 2.16. In fact, for a commutative ring R its decomposition can be
found in polynomial time given oracles to integer and polynomial factorizations
(see McDonald 1974 and Lemma 9.6). Observe that any commutative ring R
with characteristic n can be expressed as:

R ∼= (Z/nZ)[x1, . . . , xm]/
(
f1(x), . . . , f�(x)

)
,

where x = (x1, x2, . . . , xm) and f1, . . . , f� are polynomials in xi’s capturing the
multiplicative relations in the ring R. The above expression hints that if we
can factor n into its prime factors and polynomials into irreducible factors
(over local rings) then we can effectively factor ring R into its indecomposable
components.



Complexity of ring morphism problems 9

Example 2.17. Consider the ring R := (Z/p2q3
Z)[x, y]/(x4, px, y2 − y). By

factoring the characteristic p2q3 we get:

R ∼= (Z/p2
Z)[x, y]/(x4, px, y2 − y) × (Z/q3

Z)[x, y]/(x4, px, y2 − y) .

Further, by factoring y2 − y into coprime irreducibles over the respective local
rings in x we get:

R ∼= (Z/p2
Z)[x, y]/(x4, px, y) × (Z/p2

Z)[x, y]/(x4, px, y − 1)

× (Z/q3
Z)[x, y]/(x4, px, y) × (Z/q3

Z)[x, y]/(x4, px, y − 1) . ♦

3. Basics of complexity theory

A decision problem in computer science is represented by a language L ⊆ {0, 1}∗
which is the set of all ‘yes’ strings. We say that L is in the complexity class NP
if there is a polynomial time deterministic Turing Machine M and a positive
number c such that:

L =
{
x | ∃y ∈ {0, 1}|x|c, M(x, y) accepts

}
.

x is the input and y is called as witness, membership proof or nondeterministic
guess. L is said to be in coNP iff L ∈ NP.

Example 3.1. Consider the problem of satisfiability of boolean formulas:

3-SAT :=
{
φ(x1, . . . , xn) | φ = ∧m

i=1 (xi1 ∨ xi2 ∨ xi3) and has a satisfying

assignment
}
.

3-SAT is in NP as given a formula φ and a satisfying assignment v it can be
verified in polynomial time whether φ(v) is ‘true’. ♦

We can also define a “randomized” version of the class NP called AM (for
Arthur–Merlin protocol). We will say a language L is in AM if there is a positive
number c and a polynomial time deterministic Turing Machine M such that:

x ∈ L⇒ Proby∈{0,1}|x|c
[∃z ∈ {0, 1}|x|c, M(x, y, z) accepts

] ≥ 2

3
,

x �∈ L⇒ Proby∈{0,1}|x|c
[∃z ∈ {0, 1}|x|c, M(x, y, z) accepts

] ≤ 1

3
.

Typically, the proof of showing an L ∈ AM goes through by giving a proto-
col between the Verifier (named Arthur – the ‘king’) who can do randomized
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polynomial time computations and the Prover (named Merlin – the ‘advisor’
to the king) who has unlimited computational resources. Arthur is interested
in determining whether the input x ∈ L and he sends (x, y) to Merlin who
responds with a witness z. Arthur does some computations on (x, y, z) follow-
ing M and decides whether x ∈ L with high confidence.

A classic example of a problem in AM is that of checking whether a set is
large. We keep referring to its AM protocol in this paper.

Proposition 3.2. Suppose S is a set whose membership can be tested in
nondeterministic polynomial time and its size is either m or 2m. Then the
decision problem of testing whether S is of size 2m is in AM.

Proof. The idea of the AM protocol is that if S is large then for a random
hash function h there will be an x ∈ S such that h(x) = 0 with high probability.

Suppose that the elements of S are represented as binary strings of length s.
Arthur first increases the ‘gap’ in the size of S by defining a new set T = S4.
Now #T is either m4 or 16m4. Also, the elements of T are binary strings of
length 4s and view them as a column vector. Arthur then chooses a random
0/1 matrix A of size �log 3m4� × 4s and sends it to Merlin. Merlin returns a
column vector t ∈ {0, 1}4s with a membership (in T ) proof t′. Arthur accepts
iff t ∈ T and A · t = 0 (mod 2).

To analyse this AM protocol note that for a given x ∈ {0, 1}4s \ {0}4s:

Prob
A∈{0,1}�log 3m4�×4s

[
A · x = 0 (mod 2)

]
=

1

2�log 3m4� .

Thus by linearity of expectation:

E
A∈{0,1}�log 3m4�×4s

[
#
{
t ∈ T | A · t = 0 (mod 2)

}]
=

#T

2�log 3m4� .

Now Markov inequalities give us that:

#T = 16m4 ⇒ Prob
A∈{0,1}�log 3m4�×4s

[∃t ∈ T, A · t = 0 (mod 2)
] ≥ 5

8
,

#T = m4 ⇒ Prob
A∈{0,1}�log 3m4�×4s

[∃t ∈ T, A · t = 0 (mod 2)
] ≤ 1

3
.

This shows that with high probability Arthur accepts only when set S is large.
Also, note that this AM protocol uses O(s logm) random bits (for A) and

O(s+ |t′|) nondeterministic bits (for t and t′). �
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If a problem L is in NP∩coNP then intuition suggests that it should not be
“hard”. Similarly, if a problem L is in NP ∩ coAM (or AM ∩ coAM) then L is
‘unlikely’ to be NP-hard. What makes these classes interesting is that there are
many problems in NP ∩ coAM that are not known to be in P. Such problems
are called problems of “intermediate” complexity. To make these notions more
precise we need to form a polynomial-time hierarchy.

Let us denote NP by Σ1 and define Σ2 = NPNP, where by NPC we mean
set of languages L such that there is a polynomial time deterministic Turing
Machine M using an oracle to C and a positive number c such that:

L =
{
x | ∃y ∈ {0, 1}|x|c, M(x, y) accepts

}
.

Similarly, Σk := NPΣk−1 . The union of all these Σ’s is called the polynomial-
time hierarchy: PH = ∪k≥1Σk.

It is mostly believed that Σ1,Σ2, . . . are all distinct complexity classes and
hence there is no k such that PH collapses to Σk. Coming back to the inter-
mediate complexity classes, it is easy to see that if NP ∩ coNP has a NP-hard
problem then PH = Σ1. Also, if NP ∩ coAM (or AM ∩ coAM) has a NP-hard
problem then it was shown in Boppana et al. (1987); Schöning (1988) that
PH collapses to the second level Σ2. The proof goes through by showing that
AM ∩ coAM is low for Σ2, i.e., ΣAM∩coAM

2 = Σ2 and thus, NP ⊆ AM ∩ coAM
implies Σ3 = ΣNP

2 ⊆ ΣAM∩coAM
2 = Σ2 which eventually results in collapsing PH

to Σ2.
This notion of intermediate complexity can be generalized to functional

problems. We define FP to be the set of functional problems computable in
polynomial time. Now the functional problems in FPAM∩coAM are of intermedi-
ate complexity. If a function f ∈ FPAM∩coAM is NP-hard (i.e., NP ⊆ Pf) then
the techniques of Schöning (1988) essentially show that PH collapses to Σ2, an
‘unlikely’ event. Further, define functional AM – denoted by fnAM – to contain
functions f : {0, 1}∗ → {0, 1}∗ such that there is a deterministic polynomial
time Turing machine M (that outputs a string) and a positive number c such
that, for all x, t ∈ {0, 1}∗:

(3.3) f(x) = t iff Proby∈{0,1}|x|c
[∃z ∈ {0, 1}|x|c M(x, y, z) = t

] ≥ 2

3
.

Remark 3.4. The above definition says that for “most” of the y ’s there is
a z such that M(x, y, z) outputs the correct value of f(x). On the other hand,
for “most” of the y ’s there is no z such that M(x, y, z) outputs an incorrect
value.
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Again the techniques of Schöning (1988) essentially show that fnAM is low
for Σ2, i.e., ΣfnAM

2 = Σ2. Thus, if a function f ∈ fnAM is NP-hard (i.e.,
NP ⊆ Pf) then PH collapses to Σ2. We sketch the proof here for the sake of
completeness. Define for all k ≥ 1, Πk := co-Σk.

Proposition 3.5. ΣfnAM
2 = Σ2.

Proof. Let a language L ∈ ΠfnAM
2 . Then, by definition, there is a posi-

tive number c and a polynomial time deterministic Turing Machine A using
functions from fnAM as oracles such that:

L =
{
x | (∀y ∈ {0, 1}|x|c)(∃z ∈ {0, 1}|x|c) [

A{f1,...,fm}(x, y, z) accepts
]

where, f1, . . . , fm ∈ fnAM and m ≤ |x|c
}
.(3.6)

Suppose on input x, A queries fi at strings wi,j ∈ {0, 1}|x|c where i, j are upper-
bounded by |x|c. Now from defining (3.3) we have that there is a deterministic
polynomial time Turing machine Mi (that outputs a string) and a positive
number ci such that:
(3.7)

fi(wi,j) = ti,j iff Proby∈{0,1}|x|ci

[∃z ∈ {0, 1}|x|ci Mi(wi,j, y, z) = ti,j
] ≥ 2

3
.

Now combining (3.7) for various i, j (after probability amplification) and then
plugging in (3.6) we get that there is a deterministic polynomial time Turing
machine B (that basically simulates Mi ’s to compute fi ’s and then runs A to
decide L) and a positive number d such that:

L =

{

x | (∀y ∈ {0, 1}|x|c)(∃z ∈ {0, 1}|x|c)

Prob
u∈{0,1}|x|d

[∃v ∈ {0, 1}|x|d, B(u, v, x, y, z) accepts
] ≥ 2

3

}

=

{

x | (∀y ∈ {0, 1}|x|c) Prob
u∈{0,1}|x|d′

[(∃z ∈ {0, 1}|x|c)

(∃v ∈ {0, 1}|x|d) B′(u, v, x, y, z) accepts
]
≥ 2

3

}

[
∵ By Swapping Lemma 9.14 there is a d′ and B′ s.t. the above holds

]
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=
{
x | (∀y ∈ {0, 1}|x|c)(∀u1 ∈ {0, 1}|x|e)(∃u2 ∈ {0, 1}|x|e)(∃z ∈ {0, 1}|x|c)
(∃v ∈ {0, 1}|x|d) [

B′′(u1, u2, v, x, y, z) accepts
]}

[
∵ e and B′′ exists by Lemma 9.14

]

∈ Π2 .

Consequently, ΠfnAM
2 = Π2 and hence, ΣfnAM

2 = Σ2. �

The definitions of ring isomorphism problems are inspired from graph iso-
morphism (GI) problems that have been open for a long time. But the graph
isomorphism problems are not believed to be NP-hard. The AM protocol for
graph nonisomorphism was one of the first interactive protocols (see Goldwasser
et al. 1989) proving that GI ∈ NP ∩ coAM.

The results in this paper mostly reduce one problem L to another prob-
lem L′. If there is a function f : {0, 1}∗ → {0, 1}∗ in class C such that
x ∈ L iff f(x) ∈ L′ then we say that L is many-one reducible to L′ and denote
it by L ≤C

m L′.
If a problem L can be solved in class C by using L′ as an oracle then we say

that L is Turing reducible to L′ and denote it by L ≤C
T L

′.
In the reductions given in this chapter C is either P or ZPP – the set of

languages (functions) that can be decided (computed) in expected polynomial
time.

4. The complexity of ring isomorphism problem

In this section we prove upper and lower bounds on the complexity of Ring
Isomorphism problem. Specifically, we show that RI is in NP ∩ coAM and the
Graph Isomorphism problem reduces to RI.

4.1. An upper bound. This work has been unable to solve the ring isomor-
phism problem in polynomial time or even subexponential time. But we show
in this section that atleast the problem is unlikely to be NP-hard. Thus, RI
becomes a natural example of an intermediate problem which also has a rich
algebraic flavor to it.

Theorem 4.1. RI ∈ NP ∩ coAM.

Proof. We start with the easier part.
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Claim 4.2. RI ∈ NP.

Proof (Claim 4.2). Suppose we are given two rings R and R′ together with
a map φ : R → R′. Following the remark of Proposition 2.11, we have an
algorithm that gives us a description of the rings R,R′ over the same additive
basis, say,

(Z/m1Z) ⊕ · · · ⊕ (Z/mnZ) .

Thus, we can assume without loss of generality that the rings R,R′ are provided
as:

(R,+) = (Z/m1Z)b1 ⊕ · · · ⊕ (Z/mnZ)bn ,

(R′,+) = (Z/m1Z)b′1 ⊕ · · · ⊕ (Z/mnZ)b′n .

Now φ is an isomorphism from R → R′ iff it satisfies the following conditions:

◦ φ preserves addition: check whether for all 1 ≤ i ≤ n, mi · φ(bi) = 0.

◦ φ preserves multiplication: check whether for all 1 ≤ i, j ≤ n, φ(bi) ·
φ(bj) =

∑n
k=1 ai,j,kφ(bk), where ((ai,j,k))i,j,k∈[n] is the same matrix as given

in the description of R.

◦ φ is an invertible map from (R,+) to (R′,+): check whether det(A) ∈
(Z/(m1m2 . . .mn)Z)∗, where A is the n×n integer matrix describing the
map φ : R → R′.

The first two conditions above imply that φ is a homomorphism between
the two rings. The third condition ensures that φ is bijective. All these three
conditions can be checked in polynomial time. �

The next question is whether there are short certificates to prove that two
given rings are nonisomorphic, i.e., is RI ∈ coNP? We are able to tweak the
AM protocol for graph nonisomorphism to show that RI is in the randomized
version of coNP.

Claim 4.3. RI ∈ coAM.

Proof (Claim 4.3). Arthur has two rings R1, R2 in basis forms and he wants
a proof of their non-isomorphism from Merlin. Arthur checks whether (R1,+) ∼=
(R2,+) (see the remark of Proposition 2.11), if not then Arthur already has a
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proof of non-isomorphism. So assume that (R1,+) ∼= (R2,+) and now Merlin
can provide the descriptions of (R1,+), (R2,+) in the form:

(R1,+) =

n⊕

i=1

(Z/pαi
i Z)bi and

(R2,+) =
n⊕

i=1

(Z/pαi
i Z)ci, where pi’s are primes and αi ∈ Z

≥1 .

Arthur checks the primality of pi’s and that the above is a basis representation
of the rings R1 and R2. Let us define sets C(R1), C(R2) that we will be using
to give an AM protocol for ring non-isomorphism. They will have the nice
property that their sizes can be computed easily and that C(R1) = C(R2) if
and only if R1

∼= R2.

C(R1) :=

{
〈
((ai,j,k))i,j,k∈[n], Aφ

〉 | ∃π ∈ Aut(R1,+) s.t.

for all i, j ∈ [n], π(bi) · π(bj) =
n∑

k=1

ai,j,kπ(bk) ;

for all i, j, k ∈ [n], 0 ≤ ai,j,k < pαk
k ;

Aφ is an integer matrix describing some φ ∈ Aut(R1)

with respect to the additive basis
{
π(bi)

}n

i=1
of R1

}

.

C(R2) is defined similarly by replacing the bi’s above by the ci’s and R1 by
R2. (Note that in the case of graph isomorphism we consider all permutations
on the vertices, here we consider all automorphisms of the additive group.)

Observe that:

#C(R1) =

(

number of representations ((ai,j,k))i,j,k∈[n] of ring R1

over

n⊕

i=1

Z/pαi
i Z

)

· #Aut(R1)

=
#Aut(R1,+)

#Aut(R1)
· #Aut(R1)

= #Aut(R1,+)

that can be computed in polynomial time when (R1,+) is given in terms of
basis elements all having prime-power additive orders (see Proposition 2.13).
Thus, Arthur can compute s := #C(R1) = #C(R2).
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Define C(R1, R2) := C(R1) ∪ C(R2). Note that:

R1
∼= R2 ⇒ C(R1) = C(R2)

⇒ #C(R1, R2) = #C(R1) = s .

R1 �∼= R2 ⇒ C(R1) ∩ C(R2) = ∅
⇒ #C(R1, R2) = #C(R1) + #C(R2) = 2s .

Thus, the size of the set C(R1, R2) has a gap factor of 2 between the cases
of R1

∼= R2 and R1 �∼= R2, which can be distinguished by the AM protocol of
Proposition 3.2.

Note that this AM protocol for ring nonisomorphism requires:

O
(
(log4 #R1) · (log s)

)
= O(log7 #R1)

random bits, and O(log4 #R1) nondeterministic bits. �

The two claims show that RI is in NP ∩ coAM. �

This shows that the ring isomorphism problem cannot be NP-hard (unless
polynomial hierarchy collapses to Σ2, Schöning 1988).

4.2. A lower bound: Reduction from graph isomorphism. The proofs
above were all similar in spirit to those for graph isomorphism which hints a
connection to graph isomorphism. Indeed, we can lower bound the complexity
of RI by graph isomorphism (GI). The reduction gives a way to construct a
local commutative ring out of a given graph.

Theorem 4.4. GI ≤P
m RI.

Proof. The proof involves constructing a commutative local ring that cap-
tures the “adjacency” of a given graph. We associate variables to each vertex
(v-variable) and pair of vertices (a-variable). The additive order of a variable
encodes whether the variable corresponds to a vertex or an edge or a non-edge
of the graph. The product of two vertex-variables is defined to be an a-variable
while the other type of products are defined to be zero.

Given a graph G with n vertices and m edges. Choose an odd prime p and
let � :=

(
n
2

)
. Let {ak}k be a set of � variables indexed by k ∈ {(i, j) | 1 ≤ i <

j ≤ n}. Define the following commutative ring:

R(G) := (Z/p3
Z)[v1, . . . , vn, a1, . . . , a�]/I ,

where ideal I has the following relations:
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1. for all 1 ≤ i ≤ n: v2
i = 0,

2. for all 1 ≤ i < j ≤ n: vjvi = vivj = ae where, e = (i, j),

3. for all i, j: ajvi = viaj = 0, aiaj = 0,

4. for all 1 ≤ i < j ≤ n: if e = (i, j) ∈ E(G) then pae = 0 else p2ae = 0.

The vi’s represent the n vertices and have an additive order of p3. The
ai’s with additive order p are for the m edges. Finally, the ai’s with additive
order p2 represent the (�−m) non-edges.

The additive structure of the ring is:

(
R(G),+

)
= (Z/p3

Z) ⊕
n⊕

i=1

(Z/p3
Z)vi ⊕

⊕

e∈E(G)

(Z/pZ)ae ⊕
⊕

e 	∈E(G)

(Z/p2
Z)ae .

Multiplication satisfies the associative law simply because the product of any
three variables (in any order) is zero.

Observe that if G ∼= G′ then any graph isomorphism φ induces a natural
isomorphism between rings R(G) and R(G′). So we only have to prove the
converse:

Claim 4.5. For any two undirected graphs (having no self-loops) G and G′, if
R(G) ∼= R(G′) then G ∼= G′.

Proof (Claim 4.5). Suppose φ is an isomorphism from R(G) → R(G′). Let

(4.6) φ(v1) = c1,0 + c1,1v
′
1 + · · ·+ c1,nv

′
n + (linear combination of a′is) ,

where all coefficients are in Z/p3
Z.

Since, φ(v1)
2 = 0 we get:

c21,0 + (2c1,0c1,1)v
′
1 + · · ·+ (2c1,0c1,n)v′n + (linear combination of a′is) = 0 .

As 1, v′is and a′js form an additive basis of R(G′), we conclude:

c21,0 = 2c1,0c1,1 = · · · = 2c1,0c1,n = 0 (mod p3) .

Since p is an odd prime, if c1,0 �= 0(mod p3) then p|c1,0, c1,1, . . . , c1,n. But
then by (4.6), p2φ(v1) = 0 which is a contradiction to the fact that φ is an
isomorphism. Thus, c1,0 = 0(mod p3). Now at least one of the c1,i’s has to be
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a unit (i.e., coprime to p) otherwise again by (4.6), p2φ(v1) = 0. Say, c1,i0 is a
unit. From the equation:

(4.7) 0 = φ(v1)
2 =

∑

1≤i<j≤n

(2c1,ic1,j)v
′
iv

′
j

it follows that if (i0, j) ∈ E(G), for some j �= i0, then p|c1,j else p2|c1,j. Thus,
we have shown that exactly one of the c1,1, . . . , c1,n is a unit. So we can define
a map π : [n] → [n] with π(1) = i0 and satisfying the following condition for
all 1 ≤ i ≤ n:

(4.8) φ(vi) = ci,π(i)v
′
π(i) + p.

n∑

j=1
j 	=π(i)

di,jv
′
j + (linear combination of a′ks) ,

where all coefficients are in Z/p3
Z and ci,π(i) is a unit.

Now observe that φ(vi)
2 = 0 and φ(vj)

2 = 0 means that (simply by squar-
ing (4.8)):

p.

n∑

k=1
k 	=π(i)

di,kv
′
kv

′
π(i) = 0

and

p.
n∑

k=1
k 	=π(j)

dj,kv
′
kv

′
π(j) = 0 .(4.9)

Thus, if π(i) = π(j) then calculation shows (using (4.8) and (4.9)) that
φ(vi)φ(vj) = 0 implying that φ(vivj) = 0 which forces i = j. Hence, π is
a permutation on [n].

We are now almost done, we just have to show that π is indeed an isomor-
phism from the graph G→ G′.

Suppose e = (i, j) ∈ E(G). Thus, (using (4.8))

φ(ae) = φ(vivj) = (ci,π(i)cj,π(j))v
′
π(i)v

′
π(j) + p · (linear combination of a′ks) .

Since, p · φ(ae) = 0 and ci,π(i)cj,π(j) is a unit we get:

p · v′π(i)v
′
π(j) = 0 .

Whence, we conclude that v′π(i)v
′
π(j) is of additive order p implying, by the

definition of R(G′), that (π(i), π(j)) ∈ E(G′).
By symmetry this shows that π is an isomorphism from G→ G′. �
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The theorem follows from the claim. �

Note that even if graph G is rigid (i.e., G has only trivial automorphism) the
ring R(G) has lots of nontrivial automorphisms, for example, φ : xi �→ xi+x1x2.
Thus, unfortunately, this reduction does not reduce the problem of testing
rigidity of graphs to testing rigidity of rings.

4.3. Table representation: Is it any easier?. One can also consider a
different, exponentially larger, representation for rings: when the rings are
given in terms of the addition and multiplication tables of all its elements. We
do not know if the ring isomorphism problem even under this representation
can be solved in time polynomial in the size of the representation. However,
there is a feeling that this version of ring isomorphism should be easier as there
is a simple subexponential algorithm: Suppose rings R1, R2 are of size n. Then
the additive group of R1 will have O(logn) generators and there are nO(log n)

ways to map these generators into R2. Thus, a brute-force search over all these
maps yields a nO(log n) time algorithm for ring isomorphism.

Here we give another theoretical evidence that the problem is easy by show-
ing that it is “almost” in NP ∩ coNP.

Let us give this problem a name:

RITF :=
{
(R1, R2) | R1, R2 are given in terms of tables, R1

∼= R2

}
.

It is easy to see that RITF ∈NP. The nontrivial part is to show:

Theorem 4.10. There exists an NP-machine that decides all but 2log11 n in-
stances of RITF of length n and is always correct when the input rings are
nonisomorphic.

Proof. The proof is basically the one given in Arvind & Torán (2004) ap-
plied to the case of rings.

We showed in Claim 4.3 that RITF ∈ AM(log7 n), where the parameter
bounds the number of random bits used by Arthur. We interpret this result to
mean that there is an advice-taking NP machine M(·, ·) for RITF such that:

∀ input x ∈ {0, 1}n, Prob
y∈{0,1}log7 n

[
M(x, y) is correct

] ≥ 2

3
.

Notice that since a ring is completely defined once we specify the multipli-
cation on the additive generators, we have that the number of binary strings of
length n that define a ring, in table form, is no more than 2log4 n. Thus, using
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probability amplification we modify M to get an advice-taking NP machine M ′

for RITF such that:

Prob
y∈{0,1}log11 n

[∀x ∈ {0, 1}n, M ′(x, y) is correct
] ≥ 2

3
.

Since we are using only a “small” number of random bits we can apply
techniques of Goldreich & Wigderson (2002) to get an NP-machine for RITF

that fails for at most 2log11 n inputs of size n and is always correct when the
input rings are nonisomorphic. �

5. The complexity of counting ring automorphisms

This section will explore the complexity of the problem of counting ring au-
tomorphisms. We will show that this problem is unlikely to be NP-hard but
both graph isomorphism and integer factoring reduce to it.

5.1. An upper bound. We will show that given a finite ring R there is
an AM protocol in which Merlin sends a number � and convinces Arthur that
#Aut(R) = �. The ideas in the proof are basically from Babai & Szemerédi
(1984).

Theorem 5.1. #RA ∈ FPAM∩coAM.

Proof. Let R be a finite ring given in its basis form. We will first show how
Merlin can convince Arthur that #Aut(R) ≥ k. Recall that in (2.4) we defined
this problem as cRA.

Claim 5.2. cRA ∈ AM.

Proof (Claim 5.2). Merlin can give Sylow subgroups Sp1 , . . . ,Spm of Aut(R),
in terms of generators, to Arthur such that p1, . . . , pm are distinct primes and
the product |Sp1|. · · · .|Spm| ≥ k. Arthur now has to verify whether for a givenDo you mean

|Sp1|, . . . ,
|Spm| ≥ k
instead of
|Sp1|. · · · .
|Spm| ≥ k?

Sylow subgroup Sp, |Sp| = pt or not. So Merlin can further provide the com-
position series of Sp:

Sp = Gt > Gt−1 > · · · > G1 > G0 = {1} .
Suppose, by induction, that Arthur is convinced about |Gi| = pi. Then to
prove |Gi+1| = pi+1, Merlin will provide xi+1 ∈ Gi+1 to Arthur with the claim
that xi+1 �∈ Gi but xp

i+1 ∈ Gi. Latter can be verified easily by Arthur as Merlin
can give the way to produce xp

i+1 from the generators of Gi. Finally, the only
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nontrivial thing left for Arthur to verify is whether xi+1 �∈ Gi, which can be
verified by a standard AM protocol (Proposition 3.2) as there is a gap in the
size of the set X := (group generated by xi+1 and Gi):

xi+1 �∈ Gi ⇒ #X = pi+1 ,

xi+1 ∈ Gi ⇒ #X = pi .

To avoid too many rounds, Merlin first provides x0 = 1, x1, . . . , xt ∈ Aut(R) and
the proof of: for all 1 ≤ i ≤ t, xp

i ∈ Gi−1 := (group generated by x0, . . . , xi−1)
to Arthur and then provides the proof of: for all 1 ≤ i ≤ t, xi �∈ Gi−1 in the
second round for Arthur to verify. �

Now we give the AM protocol that convinces Arthur of #Aut(R) ≤ k.

Claim 5.3. cRA ∈ coAM.

Proof (Claim 5.3). Arthur has a finite ring R and he wants a proof of
#Aut(R) ≤ k. As in the proof of Claim 4.3, we can assume that R is given in
terms of generators having prime-power additive orders. For concreteness let
us assume:

(R,+) =

n⊕

i=1

(Z/pαi
i Z)bi .

Merlin sends Arthur a number � ≤ k as a candidate value for #Aut(R) and
also provides some Sylow subgroups, the product of their sizes being equal to �,
with the AM-proofs for their sizes (as used in Claim 5.2). Let

X :=

{
〈
((ai,j,k))i,j,k∈[n]

〉 | ∃π ∈ Aut(R,+) s.t. π(bi) · π(bj) =
n∑

k=1

ai,j,kπ(bk) ;

for all 1 ≤ i, j, k ≤ n, 0 ≤ ai,j,k < pαk
k

}

.

Observe that #X = #Aut(R,+)
#Aut(R)

and #Aut(R,+) can be computed in polyno-

mial time when (R,+) is given in terms of generators having prime-power ad-
ditive orders (see Proposition 2.13). Thus, Arthur computes s := #Aut(R,+).
Arthur is already convinced that �|#Aut(R) and he now wants to verify whether
#Aut(R) ≤ �. A standard AM protocol (see Proposition 3.2) now follows by
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utilizing the gap in the size of X in the two cases:

#Aut(R) ≤ �⇒ #X ≥ s

�
.

#Aut(R) > �⇒ #Aut(R) ≥ 2� [∵ #Aut(R) has a subgroup of size �]

⇒ #X ≤ s

2�
. �

The claims above show that #RA ∈ FPcRA ⊆ FPAM∩coAM. �
Note that the AM protocols that we give for #RA not only count the num-

ber of automorphisms but give a lot more information about the automorphism
group. In fact, these AM protocols compute the full automorphism group of
a ring R in terms of the generators of the Sylow subgroups of Aut(R). Let us
denote the functional problem of computing the group of automorphisms of a
ring given in basis form by GroupRA.

Corollary 5.4. Function GroupRA ∈ fnAM and hence is low for Σ2.

Proof. Let f be the function, corresponding to GroupRA, that maps a
ring R (given in basis form) to the tuple (#Aut(R), Aut(R)). Since cRA is in
both AM and coAM there are deterministic polynomial time Turing Machines A
and B, and positive constants c, d such that:

#Aut(R) ≤ k iff Proby∈{0,1}logc #R

[(∃z ∈ {0, 1}logc #R
)
A(R, k, y, z) accepts

]

≥
(

1 − 1

2logd #R

)

,

#Aut(R) ≥ k iff Proby∈{0,1}logc #R

[(∃z ∈ {0, 1}logc #R
)
B(R, k, y, z) accepts

]

≥
(

1 − 1

2logd #R

)

.(5.5)

The parameter d above will be chosen large enough so that all the subsequent
arguments go through. To show that f ∈ fnAM we plan to run A and B in
parallel. We can modify A slightly to A′ by requiring that A(R, k, y, z) outputs
(�, G) where, � is the number and G is the group, given by the generators of
the (intended) Sylow subgroups, as occurred in the proof of the Claim 5.3. It
is easy to see that:

f(R) = (m,H)

⇒ Proby∈{0,1}2 logc #R

[(∃�′zz′ ∈ {0, 1}3 logc #R
)
, both A′(R, �′, y, z)

and B(R, �′, y, z′) accept and A′(R, �′, y, z) = (m,H)
]
≥ 3

4
.(5.6)
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The above holds because Merlin can simply send �′ as equal to #G and a part
of the string z and z′ having the group Aut(R) in terms of the generators of
Sylow subgroups (see the proof of Claim 5.3). Then (5.5) give us the probability
lower bound of 3

4
. Also, the output of A′(R, �′, y, z) for such �′, z will trivially

be (m,H).
To show the converse assume that there is a number m and a group H such

that:

Proby∈{0,1}2 logc #R

[(∃�′zz′ ∈ {0, 1}3 logc #R
)
, both A′(R, �′, y, z)

and B(R, �′, y, z′) accept and A′(R, �′, y, z) = (m,H)
]
≥ 3

4
.(5.7)

Now if (m,H) �= (#Aut(R), Aut(R)) then the way A′ outputs, it is clear that
Merlin tried to “fool” Arthur and so by the (5.5) we get that for some positive d′:

Proby∈{0,1}2 logc #R

[(∃�′zz′ ∈ {0, 1}3 logc #R
)
, both A′(R, �′, y, z) and

B(R, �′, y, z′) accept | A′(R, �′, y, z) �= (
#Aut(R), Aut(R)

)] ≤ 1

2logd′ #R
.

which together with the large probability lower bound of (5.7) means that:
(m,H) = (#Aut(R), Aut(R)). Thus,

Proby∈{0,1}2 logc #R

[(∃�′zz′ ∈ {0, 1}3 logc #R
)
, both A′(R, �′, y, z)

and B(R, �′, y, z′) accept and A′(R, �′, y, z) = (m,H)
]
≥ 3

4
⇒ f(R) = (m,H).(5.8)

Recall (3.3) for the definition of fnAM, clearly, (5.6) and (5.8) tell us that:
f ∈ fnAM. �

5.2. A lower bound: Reduction from graph isomorphism and integer
factoring. This section shows that #RA is a fairly interesting intermediate
problem as two well known problems – one of graphs and another of integers –
reduce to it.

In the case of graphs it is easy to show that graph isomorphism (or counting
graph isomorphisms) reduces to counting graph automorphisms. The same
result continues to hold for rings with a slightly more involved proof. In the
case of graphs we take disjoint union of graphs to construct a new graph, here
we take direct product of rings to construct a new ring. It turns out that the
number of automorphisms of this new ring can be used to find out whether the
original rings were isomorphic or not.



24 Kayal & Saxena

Lemma 5.9. #RI ≡P
T #RA.

Proof. Suppose we are given a ring R. Clearly we can compute #Aut(R)
by giving (R,R) as input to the oracle of #RI.

Conversely, let R1, R2 be the two rings given in basis form. Let us assume
the following about their decomposability into distinct local rings S1, . . . , Sk:

R1
∼= S1 × · · · × S1 × · · · × Sk × · · · × Sk ,

where, for all 1 ≤ i ≤ k, indecomposable ring Si occurs ai ≥ 0 times and
#Aut(Si) = mi.

R2
∼= S1 × · · · × S1 × · · · × Sk × · · · × Sk ,

where, for all 1 ≤ i ≤ k, indecomposable ring Si occurs bi ≥ 0 times.
The following claim relates the (non)isomorphism of the rings to counting

ring automorphisms:

Claim 5.10. R1 �∼= R2 ⇒ #Aut(R1×R1)·#Aut(R2×R2) > (#Aut(R1×R2))
2.

Proof (Claim 5.10). Due to the uniqueness of decomposition of a ring into
indecomposable rings (see Proposition 2.15):

#Aut(R1 × R2) = #Aut(

a1+b1︷ ︸︸ ︷
S1 × · · · × S1 ) · · ·#Aut(

ak+bk︷ ︸︸ ︷
Sk × · · · × Sk )

= (a1 + b1)!m
a1+b1
1 · · · (ak + bk)!m

ak+bk
k ,

Similarly,

#Aut(R1 × R1) = #Aut(

2a1︷ ︸︸ ︷
S1 × · · · × S1 ) · · ·#Aut(

2ak︷ ︸︸ ︷
Sk × · · · × Sk )

= (2a1)!m
2a1
1 · · · (2ak)!m

2ak
k ,

#Aut(R2 × R2) = #Aut(

2b1︷ ︸︸ ︷
S1 × · · · × S1 ) · · ·#Aut(

2bk︷ ︸︸ ︷
Sk × · · · × Sk )

= (2b1)!m
2b1
1 · · · (2bk)!m2bk

k .

Notice that
(
2ai+2bi

ai+bi

) ≥ (
2ai+2bi

2ai

)
which implies (2ai)! · (2bi)! ≥ (ai + bi)!

2. This
clearly shows:

#Aut(R1 × R1) · #Aut(R2 × R2) ≥
(
#Aut(R1 × R2)

)2
.
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Now since R1 �∼= R2, there exists an i0 ∈ [k] such that ai0 �= bi0 in which
case (2ai0)! · (2bi0)! � (ai0 + bi0)!

2. Thus,

#Aut(R1 × R1) · #Aut(R2 × R2) > (#Aut(R1 ×R2))
2. �

�
As a corollary of this we get:

Theorem 5.11. Graph Isomorphism ≤P
T #RA.

Proof. Immediate from Theorem 4.4 and Lemma 5.9. �
Another interesting open problem that reduces to #RA is integer factor-

ization (IF).

Theorem 5.12. IF ≤ZPP
T #RA.

Proof. Let n be the odd integer to be factored. Consider the ring

R := (Z/nZ)[x]/(x2)

We will show that #Aut(R) = ϕ(n) := |(Z/nZ)∗| (ϕ is called the Euler’s
Totient function). The theorem is then immediate as n can be factored in
expected polynomial time if we are given ϕ(n), see Miller (1976).

Suppose ψ ∈ Aut(R) and let ψ(x) = ax+ b, for some a, b ∈ Z/nZ. Since ψ
is an automorphism; a, b should satisfy the following two conditions:

(ax+ b)2 = 0 in R ⇒ ab = b2 = 0 (mod n) , and

a ∈ (Z/nZ)∗ .

These two conditions force b = 0 and any a ∈ (Z/nZ)∗ will work. Thus,
#Aut(R) = |(Z/nZ)∗| = ϕ(n). �

6. The complexity of finding a ring isomorphism

We have seen by now that ring isomorphism and its counting version are both
of intermediate complexity and some well known problems – integer factoring
and graph isomorphism – reduce to them. Another interesting variant of RI
is its search version – FRI – finding an isomorphism between two rings given
in basis form. First question that arises here is whether we can find a ring
isomorphism given oracles to RI or #RI. This is still open but in this section
we show that FRI seems to have a complexity similar to that of RI and #RI.
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6.1. An upper bound. FRI is unlikely to be NP hard as we show that
it reduces to the problem of computing the automorphism group of a ring –
GroupRA. The idea is that if we want to find an isomorphism from a ring R
to R′ then we consider the ring S = R × R′ and compute the generator set T
of Aut(S). Now if R ∼= R′ then there will be a generator φ ∈ T that sends
some elements of R to those of R′. We construct an isomorphism from R → R′

using this automorphism φ of R× R′.

Theorem 6.1. FRI ∈ FPGroupRA ⊆ fnAM.

Proof. Let R,R′ be the two isomorphic rings given in basis form. Let their
decomposition into indecomposable components be:

R = R1 × · · · ×Rs ,

R′ = R′
1 × · · · ×R′

s ,

Suppose an oracle to GroupRA queried on S := R × R′ gives the group
Aut(S) in terms of a generator set T . For concreteness, let us fix an additive
basis of S: {b1, . . . , bn, b′1, . . . , b′n} where {b1, . . . , bn} are the basis elements of R
and {b′1, . . . , b′n} are those of R′. Furthermore, as S is a direct product of R
and R′ we have: for all i, j ∈ [n], bi · b′j = b′i · bj = 0. If R ∼= R′ then there has
to be an element φ ∈ T that maps some basis elements of R outside R. Fix
such an automorphism φ. For i ∈ [n], let:

φ(bi) =
n∑

j=1

ai,jbj +
n∑

j=1

a′i,jb
′
j ,

where ai,j’s and a′i,j’s are integers modulo the characteristic of S, say N .
Now using linear algebra (over Z/NZ) we can compute an additive basis of

the following subring of R:

K :=
{
r ∈ R | φ(r) ∈ R

}
.

Note that K is a (proper) subring of R simply because φ is a ring homomor-
phism. Now since φ is an automorphism and the decomposition of a ring into
indecomposable rings is unique (see Lemma 9.4 for details) we get that φ ap-
plied on S permutes R1, . . . , Rs, R

′
1, . . . , R

′
s up to isomorphism. This means

that there are {i1, . . . , it} � [s] such that:

K = Ri1 × · · · ×Rit .
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Again by linear algebra we can compute the ‘other’ component ring:

K⊥ := {r ∈ R | K · r = r ·K = 0} ,
which can be shown to satisfy:

R = K ×K⊥

Now what is the action of φ on these? Observe that φ(K) ⊆ R while φ(K⊥) ⊆
R′. To get a decomposition of R′ too, define L := φ(K⊥) and compute:

L⊥ := {r ∈ R′ | L · r = r · L = 0} ,
which can again be shown to satisfy:

R′ = L× L⊥

(as φ is an isomorphism from K⊥ → L and R ∼= R′).
Now recursively find an isomorphism ψ from K to L⊥ using GroupRA as

oracle. φ and ψ together give us an isomorphism from R to R′.
Thus, FRI ∈ FPGroupRA. �

6.2. A lower bound: Reduction from integer factoring. It turns out
that solving FRI would mean solving integer factoring (IF).

Theorem 6.2. IF ≤ZPP
T FRI.

Proof. Suppose n is an odd number to be factored and it is not a prime
power. Pick a random a ∈ (Z/nZ)∗ and define the rings:

R1 := (Z/nZ)[x]/(x2 − a2) and R2 := (Z/nZ)[x]/(x2 − 1) .

Query the oracle of FRI on (R1, R2) to get an isomorphism φ : R1 → R2. Let
φ(x) = bx+ c, b, c ∈ Z/nZ.

Firstly, observe that if b is a zero divisor i.e., there is a b′ ∈ (Z/nZ)\{0} with
bb′ = 0 then φ(b′x− b′c) = b′(bx + c) − b′c = 0 in R2. As φ is an isomorphism
this means that (b′x − b′c) = 0 in R1 implying that b′ = 0 in Z/nZ which is a
contradiction. Thus, b should be in (Z/nZ)∗.

Secondly, φ(x2 − a2) should be zero in R2 which means that:

a2 = φ(x)2 = (bx+ c)2 (mod n, x2 − 1)

⇒ 2bc = 0(mod n) and b2 + c2 − a2 = 0(mod n)

⇒ c = 0(mod n) and b2 = a2(mod n)
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This means that b is a square-root of a2 modulo n. It is easily seen that
when n has two or more prime factors then every square in (Z/nZ)∗ has 4 or
more square-roots. Thus,

Proba∈(Z/nZ)∗

[
b �= ±a(mod n) | b =

√
a2(mod n)

]
≥ 1

2
.

Now once we have a b �= ±a(mod n) such that b2 = a2(mod n) we can factor n
by using the standard trick of computing gcd(b− a, n).

Thus, we can factor n in expected polynomial time given an oracle to FRI.
�

This reduction from integer factoring shows an interesting aspect of RI. If
we modify RI to RIboundedIso – decision problem of checking whether there is
an isomorphism φ : R1 → R2 such that the corresponding matrix A, which
transforms the basis of (R1,+) to that of (R2,+), has elements smaller than a
given size bound – then it turns out that RIboundedIso is NP-complete.

RIboundedIso :=
{(
R1, R2, ((bi,j))n×n

) | R1, R2 are rings given in basis form,

having additive dimension n and there is an integer matrix A,

such that ∀i, j 0 ≤ Ai,j ≤ bi,j , that defines an isomorphism.
}

Theorem 6.3. RIboundedIso is NP-complete.

Proof. Clearly, RIboundedIso is in NP by Claim 4.2.
Suppose we are given R1 := (Z/nZ)[x]/(x2−a2), R2 := (Z/nZ)[x]/(x2−1),

β ∈ Z and we want to find out whether there is an isomorphism φ(x) = bx s.t.
0 ≤ b ≤ β. Now as in the proof of Theorem 6.2, b2 ≡ a2(mod n). Thus, the
question at hand is equivalent to asking whether the quadratic equation (in y):
y2 ≡ a2(mod n) has a solution 0 ≤ y ≤ β, and this is an NP-complete problem
by Manders & Adleman (1976). �

7. The complexity of deciding ring automorphism

This section studies the problem of checking whether a given ring is rigid (i.e.,
has no nontrivial automorphism). We will show that RA can be decided in
deterministic polynomial time but as the next section shows finding a nontrivial
automorphism (FRA) is as hard as integer factoring. Thus, there appears to be
a difference in the complexity of decision, search and counting versions of ring
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automorphism problems. Note the contrast that we (currently) have with the
complexity of the corresponding versions for graph automorphism problems,
for instance GA is not known to be in P.

Theorem 7.1. RA ∈ P.

We first derive a classification of finite rigid rings and then use that classification
to devise an efficient algorithm for RA.

7.1. A classification of finite rigid rings. In this subsection, we shall
show that those finite rings which do not have nontrivial automorphisms (rigid
rings) have a nice mathematical description which will later be used to test
rigidity in polynomial time.

Theorem 7.2. Let R be any finite ring with identity. R can be expressed as
the direct sum of two rings:

R = R2pow × Rodd ,

where, R2pow is a power-of-2 sized ring while Rodd is an odd-sized ring. Then R
is rigid if and only if the following conditions hold:

(i) R2pow is of the form:

Z/2α1Z × · · · × Z/2αnZ

or

(Z/2Z)[x]/(x2) × Z/2α1Z × · · · × Z/2αnZ

where, 1 ≤ α1 < α2 < · · · < αn .

(ii) Rodd is of the form:

×i×j(Z/p
αi,j

i Z)

where pi’s are distinct odd primes and 1 ≤ αi,1 < αi,2 < · · · .

Proof. It is easy to verify the following claim:

Claim 7.3. A ring R is rigid if and only if each one of its indecomposable
component rings is rigid and no two of these indecomposable components are
isomorphic.
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This means that any arbitary rigid ring is just a direct sum of a set of non-
isomorphic indecomposable rigid rings. Thus, to get a classification of finite
rigid rings, it is sufficient to get a classification of finite indecomposable rigid
rings. In the rest of this proof we give such a characterization of indecomposable
rigid rings.

Let R be a ring given in basis form. Let us first dispose off the case when R
is non-commutative.

Claim 7.4. If R is a non-commutative ring then it has a nontrivial automor-
phism.

Proof (Claim 7.4). It can be shown (Lenstra 2004) that if the units in a
ring R commute with the whole of R then R is generated by its units, and
consequently R will be commutative. Thus, if R is a non-commutative ring
then there is a unit r ∈ R that doesn’t commute with the whole of R. Then
clearly the map φ : x �→ rxr−1 gives a nontrivial automorphism of R. �

When R is commutative we first consider the case of odd sized component
subring Rodd of R.

Classification of Rodd. We will show that indecomposable components of a
rigid commutative odd-sized ring Rodd are isomorphic to Z/pm

Z, for some odd
prime p:

Claim 7.5. If Rodd is an indecomposable rigid commutative odd-sized ring
then ∃ prime p and m ∈ N such that, Rodd

∼= Z/pm
Z.

Proof (Claim 7.5). It is known (McDonald 1974) that any indecomposable
commutative ring Rodd contains an associated Galois ring G such that:

G = (Z/pm
Z)[x]/

(
f(x)

)
,

where f(x) is square-free and irreducible over Z/pZ and,

Rodd = G[x1, . . . , xk]/(x
n1
1 , . . . , x

nk
k , g1, . . . , g�) ,

where x1, . . . , xk form an irredundant generating set for Rodd over G and the
gi’s are polynomials in (x1, . . . , xk).

Let M be the ring generated by x1, . . . , xk. This is an ideal of Rodd, it
will be nonzero if we assume k ≥ 1. Let t > 0 be the least integer such that
Mt = 0.
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Consider the case when t > 2. We can assume without loss of generality
that x1 cannot be expressed as a polynomial in x2, . . . , xk in the ring Rodd. Now
choose an α ∈ Mt−1 such that no term in α is linear in x1 and consider the
map:

φ :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 �→ x1 + α

x2 �→ x2

...

xk �→ xk

φ is injective: otherwise a polynomial h(x1, . . . , xk) maps to 0, in Rodd,
under φ. This means that h(x1+α, . . . , xk)= 0 inRodd. Now if h(x1, . . . , xk) had
no linear occurrence of x1 then h(x1+α, x2, . . . , xk)= 0 implies h(x1, . . . , xk)= 0
(as α · M = 0). On the other hand if h(x1, . . . , xk) has a linearly occurring x1

then h(x1 + α, x2, . . . , xk) = 0 implies that x1 =(an expression containing no
linear term in x1). This combined with xn1

1 = 0 means that x1 = 0 which is a
contradiction.

φ is onto: it is enough to show that in the ring Rodd we can obtain x1 from
x1 + α, x2, . . . , xk. Since α is generated by x1, . . . , xk it can be expressed as
a polynomial in x1, . . . , xk. Let α = x1 · h(x1, . . . , xk) + g(x2, . . . , xk), where
h(x1, . . . , xk) has no constant term. Then

x1 + α− g(x2, . . . , xk) = x1 + x1 · h(x1, . . . , xk)

= x1 + x1 · h(x1 + α, x2, . . . , xk) (as α · M = 0)

= x1 ·
(
1 + h(x1 + α, x2, . . . , xk)

)
.

Now h(x1 + α, x2, . . . , xk) ∈ M, and therefore by the property of local rings,
(1 + h(x1 + α, x2, . . . , xk)) has to be invertible in Rodd and thus,

x1 =
[
(x1 + α) − g(x2, . . . , xk)

] · [1 + h(x1 + α, x2, . . . , xk)
]−1

in Rodd .

Thus, φ induces a nontrivial automorphism of Rodd. This means that for
Rodd to be rigid, we must have that the number of variables k is zero im-
plying that R is just a Galois ring – Rodd = G. If f(x) is of degree > 1
then (Z/pZ)[x]/(f(x)) has a nontrivial automorphism, the Frobenius automor-
phism sending x �→ xp, which can be Hensel lifted (see Lemma 9.13) to a
nontrivial automorphism of (Z/pm

Z)[x]/(f(x)) too. Thus, the only way that
Rodd has no nontrivial automorphism is when degree of f(x) is 1 meaning
Rodd = G = Z/pm

Z.
Now suppose t = 2. If k ≥ 2 then taking α = x2 in the above discussion

gives us a nontrivial automorphism φ of Rodd. If k = 1 then the map φ : x1 �→
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2x1 is a nontrivial automorphism of Rodd. If k = 0 then Rodd = G and as
shown before the only way that Rodd has no nontrivial automorphism is when
Rodd = G = Z/pm

Z.
The last case of t = 1 means M = 0 implying Rodd = G which as before

yields Rodd = G = Z/pm
Z. �

As a consequence of the above observations we have that any rigid commu-
tative odd-sized ring Rodd looks:
(7.6)
×i ×j Z/p

αi,j

i Z where, pi’s are distinct odd primes and 1 ≤ αi,1 < αi,2 < · · · .

Classification of R2pow. Let us now take up the case of the power-of-2 sized
component subring R2pow of R. We will show that R2pow is rigid only if the
indecomposable rings that appear in the decomposition of R2pow are isomorphic
to either Z/2m

Z or (Z/2Z)[x]/(x2).

Claim 7.7. If R2pow is an indecomposable rigid commutative power-of-2 sized
ring then R2pow is either Z/2m

Z or (Z/2Z)[x]/(x2).

Proof (Claim 7.7). Recall the proof of the Claim 7.5. The only case which
needs to be handled in the case of even sized ring is when t = 2 and k = 1.
The rigidity of R2pow implies that the characteristic of R2pow is 2 for otherwise
φ : x1 �→ 3x1 gives a nontrivial automorphism of R2pow. Thus, the rigid ring
with t = 2, k = 1 is R = (Z/2Z)[x1]/(x

2
1). �

It follows from the above claim that a commutative power-of-2 sized ring is
rigid iff it is isomorphic to one of the following:

Z/2α1Z × · · · × Z/2αnZ

or

(Z/2Z)[x]/(x2) × Z/2α1Z × · · · × Z/2αnZ(7.8)

where, 1 ≤ α1 < α2 < · · · < αn.

Collecting these two classifications, we get the classification Theorem 7.2
for finite rigid rings.

�

7.2. The algorithm for RA. We now give the algorithm referred to in
Theorem 7.1 for testing the rigidity of a ring. Our algorithm for RA will test
whether a given ring R is of the form given in the classification Theorem 7.2
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or not. As in the classification Theorem 7.2, suppose that the decomposition
of a given input ring R is:

R = R2pow × Rodd ,(7.9)

where R2pow is a power-of-2 sized ring and Rodd is an odd-sized ring. Note that
since it is easy to factor out powers of 2 from any integer, we can compute
the decomposition of the additive group (R,+) of R as the direct sum of two
subgroups – one having power-of-2 size and another having odd size. This
decomposition of (R,+) then readily gives a decomposition of the form (7.9) of
the input ring R. Note that now R is rigid if and only if both R2pow and Rodd

are rigid rings. In this way our problem boils down into the cases – testing
rigidity of R2pow and that of Rodd.

Testing rigidity of R2pow. Since we can factor polynomials over Z/2m
Z we

can compute the decomposition of R2pow into indecomposable rings and check
whether they are of the forms: Z/2m

Z, (Z/2Z)[x]/(x2) or not. Hence, we can
check the rigidity of power-of-2-sized rings in polynomial time.

Testing rigidity of Rodd. Let Rodd be given as:

(Rodd,+) = (Z/m1Z)e1 ⊕ · · · ⊕ (Z/mnZ)en .

Here we can assume that (m1, . . . , mn) = (d
α1,1

1 , d
α1,2

1 , . . . , d
α2,1

2 , d
α2,2

2 , . . . , d
αt,1

t ,
d

αt,2

t , . . .) where d1, . . . , dt are mutually coprime. For otherwise ∃i �= j s.t.
gcd(mi, mj) =: g > 1 and can be used to break mi or mj into coprime factors
a, b ∈ Z

>1, hence, breaking (Rodd,+) further by applying:

(
(Z/abZ)ek,+

) ∼= (Z/aZ)(bek) ⊕ (Z/bZ)(aek) .

We can repeatedly apply this process of refining the basis to get basis repre-
sentations of the ring Rodd over:

Z/d
α1,1

1 Z ⊕ Z/d
α1,2

1 Z ⊕ · · · ⊕ Z/d
α2,1

2 Z ⊕ · · · ⊕ Z/d
αt,1

t Z ⊕ · · ·

for some coprime d1, d2, . . . , dt ∈ Z
>1.

Let us define for all 1 ≤ i ≤ t,

Ri := {r ∈ Rodd | r has a power-of-di additive order} .

Now since the di’s are mutually coprime Rodd
∼= ×t

i=1Ri (as in the proof of
Proposition 2.13). Thus, Rodd has a nontrivial automorphism iff ∃i ∈ [t], Ri
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has a nontrivial automorphism. Consequently, we can assume without loss of
generality that the additive basis of the rings Rodd is given in the form:

(7.10) (Rodd,+) = (Z/dα1Z)e1 ⊕ · · · ⊕ (Z/dαnZ)en .

We can also assume that αi’s are distinct (say, 1 ≤ α1 < α2 < · · · < αn) other-
wise Rodd would not be rigid as it would not be of the form in the classification
Theorem 7.2. Thus, we need to check if a given ring Rodd is of the form:

(7.11) Z/dα1Z × · · · × Z/dαnZ .

Remark 7.12. There do exist rings whose additive group is of the form (7.10)
but the rings themselves are not of the form (7.11). For example, the ring

R
def
= (Z/d2

Z)[x]/〈x2, dx〉 has additive group isomorphic to Z/d2
Z ⊕ Z/dZ but

R is not isomorphic to Z/d2
Z × Z/dZ.

Overview of the algorithm. Now we sketch an algorithm to check whether
Rodd is isomorphic to:

Z/dα1Z × · · · × Z/dαnZ for α1 < · · · < αn .

Our algorithm proceeds by decomposing Rodd into Z/dα1Z × R′ and then re-
cursively verifying that the component ring R′ is of the form

Z/dα2Z × · · · × Z/dαnZ for α1 < α2 · · · < αn .

The key observation behind obtaining the decomposition of Rodd into Z/dα1Z×
R′ is the following claim which is easy to verify:

Claim 7.13. If
ψ : Rodd → Z/dα1Z × · · · × Z/dαnZ

is an isomorphism and

(Rodd,+) = (Z/dα1Z)e1 ⊕ · · · ⊕ (Z/dαnZ)en ,

then ψ(e1) = (β1, β2, . . . , βn) where β1 ∈ (Z/dZ)∗ and d|β2, . . . , βn, so that if
f(x) ∈ Z[x] is the minimal polynomial of e1 in Rodd then

f(x) (mod d) = x� ·
(
x− (

β1 (mod d)
))

for some � ∈ Z
≥0 .

Following the above claim, we compute β1 ∈ Z/dα1Z and thereby obtain the
zero divisor (e1 − β1) of Rodd and this zero divisor is then used in the standard
way to decompose Rodd.
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Algorithm. To determine if Rodd is of the form (7.11).

S-1. Compute f(x) := minpoly of e1 over Z/dαnZ. This can be found out by
checking whether ei

1 can be written as a linear combination of 1, e1, . . . ,e
i−1
1

which amounts to doing linear algebra (mod dαn).

S-2. If Rodd
∼= Z/dα1Z × · · · × Z/dαnZ then say e1 = (β1, . . . , βn) where βi ∈

Z/dαiZ. Also, since e1 has characteristic dα1 and α1 � α2, . . . , αn we can
deduce: β1 is coprime to d and d|β2, . . . , βn.

These observations mean that:

f(x) = lcmn
i=1 {minpoly of βi over Z/dαiZ}

≡ (x− β1)x
l (mod d), for some l ∈ Z

≥0

or else Rodd is not of the form (7.11). So we have a non-repeating root
β1(mod d) of f(x)(mod d) and we can use Hensel lifting (see Lemma 9.13)
to find a root of f(x)(mod dα1), which gives β1(mod dα1).

S-3. Consider e1−β1 = (0, β2−β1, . . . , βn−β1). Note that β2−β1, . . . , βn−β1

are all coprime to d. So if we compute (using linear algebra)

R1 :=
{
γ ∈ Rodd | (e1 − β1)γ = 0

}
,

then R1
∼= Z/dα1Z or else Rodd is not of the form (7.11).

S-4. Let ê1 ∈ Rodd be the unity of R1. Compute R⊥
1 := {γ ∈ Rodd | ê1γ = 0}.

Check that Rodd = R1 × R⊥
1 otherwise Rodd is not of the form (7.11).

S-5. Recursively check whether R⊥
1
∼= Z/dα2Z × · · · × Z/dαnZ or not.

8. The complexity of finding a nontrivial ring
automorphism

We just saw that deciding whether a ring has a nontrivial automorphism is in P.
Here, we give evidence that the search version of this problem is apparently
harder. We show that FRA is as (randomly) hard as Integer Factoring (IF). We
also show that if FRA is in P then Polynomial Factoring is also in P (assuming
the ERH).
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8.1. Reduction from integer factoring to FRA.

Theorem 8.1. IF ≡ZPP
T FRA.

Proof. Let us first see how we can find a nontrivial ring automorphism if
we can do integer factoring. Suppose the given ring R is non-commutative
then we know from the proof of Claim 7.4: there is a unit of R that does not
commute with the whole of R and thus defines a nontrivial automorphism. So
we compute the multiplicative generators of R∗ in randomized polynomial time
and surely one of the generators will not commute with the whole of ring R.

Now assume the given ring R is commutative. It can be decomposed into
local rings, as remarked after Proposition 2.15, in expected polynomial time
using randomized methods for polynomial factorization and oracle of integer
factorization. Once we have local rings we can output nontrivial automorphisms
like φ in the proof of Claim 7.5.

Conversely, suppose we can find nontrivial automorphisms of rings and n is
a given number. We can assume that n has no small (≤ (logn)3 ) prime fac-
tor p for clearly we can find such small prime factors in polynomial-time. Let
n = pa ·m where, pa is the highest power of the prime p which divides n and m
is coprime to p. Randomly choose a monic cubic polynomial f(x) ∈ (Z/nZ)[x].
Define R := (Z/nZ)[x]/(f(x)) and suppose we can find a nontrivial automor-
phism φ of R. It follows from the distribution of irreducible polynomials over
finite fields (Lidl & Niederreiter 1994) that with probability ∼ 1

9
, f (mod n)

satisfies the following properties:

◦ f(mod n) is squarefree. Equivalently, n is coprime to the discriminant,
∆f , of f .

◦ f(mod m) is irreducible. That is, there exists a prime q|m such that
f(mod q) is irreducible.

◦ f(mod p) has exactly two irreducible factors f1, f2, say f1 is linear.

Thus,

R ∼= (Z/pa
Z) × (Z/pa

Z)[x]/
(
f2(x)

)× (Z/mZ)[x]/
(
f(x)

)
.

Note that we can compute Rφ, the set of elements of R fixed by φ, using linear
algebra (if at any point we cannot invert an element (mod n), we get a factor
of n). As φ is a nontrivial automorphism of R we have that φ is identity on
atmost one of the component rings (Z/pa

Z)[x]/(f2(x)) or (Z/mZ)[x]/(f(x)).
Thus, we have three cases:
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C-1). If φ fixes (Z/pa
Z)[x]/(f2(x)):

Then Rφ ∼= (Z/pa
Z)× (Z/pa

Z)[x]/(f2(x))× ((Z/mZ)[x]/(f(x)))φ. Thus,
|Rφ| = p3am1 where m1 �= m3 as φ moves (Z/mZ/(f(x))) .

C-2). If φ fixes (Z/mZ)[x]/(f(x)):
Then Rφ ∼= (Z/pa

Z)×(Z/pa
Z)×(Z/mZ)[x]/(f(x)). Thus, |Rφ| = p2am3.

C-3). If φ moves both (Z/pa
Z)[x]/(f2(x)) and (Z/mZ)[x]/(f(x)):

Then Rφ ∼= (Z/pa
Z) × (Z/pa

Z) × (Z/mZ)[x]/(f(x))φ. Thus, |Rφ| =
p2a ·m1, where m1 �= m2 because f(mod m) is irreducible. (if q is a prime
such that qb|m and f(mod q) is irreducible, then (Z/qb

Z)[x]/(f(x))φ has
size precisely qb.)

Since, the size of Rφ is in no case of the form n, n2 or n3, the process of
finding Rφ by doing linear algebra (mod n) is going to yield a factor of n. In
particular, this means that if the matrix describing φ over the natural additive
basis {1, x, x2} is:

A :=

⎛

⎝
1 0 0
a0 a1 a2

b0 b1 b2

⎞

⎠ ,

then the determinant of one of the submatrices of (A−I) will have a nontrivial
gcd with n.

Thus, the two problems: finding nontrivial automorphisms of commutative
rings and integer factoring have the same complexity (with respect to random-
ized polynomial time reductions). �

8.2. Reduction from polynomial factoring to FRA. Polynomial factor-
ization over finite fields is still not known to have a deterministic polynomial
time algorithm. The randomized algorithms known for this problem (Gathen
& Gerhard 1999; Lidl & Niederreiter 1994) invariably use automorphisms of
rings as a tool (Agrawal & Saxena 2005).

Here, we give a specific relation of polynomial factorization to FRA assum-
ing the extended Riemann hypothesis (ERH). ERH needs to be invoked as it
gives us a deterministic polynomial time algorithm to find kth roots in a finite
field (Gathen & Gerhard 1999). The reduction we give here uses the main idea
of Evdokimov’s algorithm (Evdokimov 1994).

Theorem 8.2. Assuming the ERH, Polynomial Factoring ≤P
m FRA.
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Proof. Suppose we want to factor a polynomial f(x) over the finite field Fq.
We could assume wlog that f(x) is square free and splits completely over Fq.
Let us define a ring R := Fq[x]/(f(x)) and let d be the degree of f(x). Suppose
an oracle of FRA gives a nontrivial automorphism φ of the ring R. We will
show how to find a factor of f(x) assuming ERH.

We can first easily compute the subring Rφ of elements in R which are fixed
by φ. If x, φ(x), φ2(x), . . . , φd(x) are all distinct modulo f(x) then we have
(d + 1) roots of degree-d-polynomial f(x) which implies that ∃i �= j s.t.
gcd(φi(x)−φj(x), f(x)) factors f(x). So we can assume that for some 2 ≤ k ≤ d,
φk(x) = x.

Let us now invoke ERH and assume that we have a k-th root of unity
ζk ∈ Fq. Consider the element:

β :=

k−1∑

i=0

ζ i
kφ

i(x) ∈ R,

which satisfies φ(β) = ζ−1
k β. Thus, βk ∈ Rφ but β �∈ Rφ. Also, note that βk

has a k-th root y in the ring Rφ for βk has a k-th root in R ∼= ⊗d
i=1 Fq and

Rφ is just a subring of R where we impose equality constraints on some of the
components. Also, we can compute y ∈ Rφ as we are assuming ERH (the k-th
root finding algorithm either gives a k-th root of βk in Rφ or factors f(x)).
But then we have (k + 1) k-th roots of βk which are all distinct modulo f(x),
namely: β, ζkβ, . . . , ζ

k−1
k β, y; thus, the difference of two of these roots is a zero

divisor of the ring R and hence will have a nontrivial gcd with f(x). �

9. Conclusion and open problems

The following figure shows the various relations we proved in this paper. The
arrows are labelled by the type of reduction or relation and the dotted arrow
signifies a conditional result (assuming ERH). The well-known problems are
in the central circle and labelled as: IF for integer factoring, GI for graph
isomorphism and PF for polynomial factoring.



Complexity of ring morphism problems 39

RI

FRI

#RI

GI

IF

PF RA

FRA

#RA

GroupRA

Σ2

P

≤P T

≤P T

P
m ≥

ZPP
T ≥ ≡ZPP

T

≤ZPP

T

≤P
T

≤P T

≡P
T

is low for

is in

≤P
T

This paper studied the automorphism and isomorphism problems of rings. Do you want
to provide a
caption for
the figure?

The problems were all inspired from those of graphs. The rings considered
in this work were assumed to be finite which was used in showing that these
problems are of intermediate complexity and unlikely to be NP-hard. This
paper showed that the automorphism problems of finite rings are related to the
classical problems – like, graph isomorphism, integer factoring and polynomial
factoring – and the most general automorphism problem is computing the group
of automorphisms of a finite ring.

The complexity of all the morphism problems, except RA and testing au-
tomorphism/isomorphism problems, that we considered in this paper remain
open. A solution to any one of them will be very interesting as it would solve
some of the classical problems as well! To understand these problems more we
would like to ask the following questions:

◦ We have seen two well-known problems of intermediate complexity reduce
to #RA. Can one reduce some other such problem, e.g., finding discrete
logarithm?

◦ The ring problems differ from the graph ones in their (in)ability to ef-
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ficiently “fix” part of the automorphisms. This property allows one to
prove the equivalence between computing automorphism groups, count-
ing automorphisms, finding isomorphisms, and testing isomorphisms in
the case of graphs. For rings, we cannot prove such equivalence. Does
there exist some way of doing such “fixing” for rings which will allow us
to prove similar equivalences?

◦ As #RA is an algebraic problem is there a polynomial time quantum
algorithm for it, i.e., is #RA ∈ BQP?

◦ Consider the ring isomorphism problem over rationals: RIQ. It is not
even clear if this problem is decidable.

Appendix: Facts about rings

A ring is a set R equipped with two binary operations + and ·, called addition
and multiplication, such that (a, b, c are general elements in R):

1). (R,+) is an abelian group with identity element 0:

◦ Associativity: (a+ b) + c = a+ (b+ c)

◦ Commutativity: a + b = b+ a

◦ Identity: 0 + a = a + 0 = a

◦ Inverse: ∀a ∃(−a) such that a + −a = −a+ a = 0

2). (R, ·) is a monoid with identity element 1:

◦ Identity: 1 · a = a · 1 = a

◦ Associativity: (a · b) · c = a · (b · c)

3). Multiplication distributes over addition:

◦ a · (b+ c) = (a · b) + (a · c)
◦ (a + b) · c = (a · c) + (b · c)

If (R \ {0}, ·) is an abelian group too then R becomes a field.
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Example 9.1. R0 := (Z/nZ,+, ·) is a ring, it is a field iff n is prime. R1 :=
R0[x]/(x

r − 1) is a commutative ring but never a field for r > 1. The set
R2 :=

{
A | A ∈ R2×2

0

}
is a noncommutative ring under matrix addition and

multiplication in R0. ♦

We first collect some results related to decomposition of rings into simpler
rings. A ring R is said to be decomposable if there are subrings R1, R2 such
that:

◦ R1 ·R2 = R2 · R1 = 0, i.e., for all r1 ∈ R1, r2 ∈ R2, r1 · r2 = r2 · r1 = 0.

◦ R1 ∩R2 = {0}.
◦ R = R1 + R2, i.e., for every r ∈ R there are r1 ∈ R1, r2 ∈ R2 such that
r = r1 + r2.

Such a ring decomposition has been denoted by R = R1×R2 in this work. The
subrings R1, R2 are called component rings of R.

Example 9.2. The ring R := F[x]/(x2 − x) decomposes as: R = Rx×R(1 −
x) ∼= F × F. Here, Rx is a short-hand for the set {r · x | r ∈ R}. Note that
Rx,R(1 − x) are subrings of R and have x, (1 − x) as their (multiplicative)
identity elements respectively. ♦

An element r ∈ R is called an idempotent if r2 = r. The following lemma
shows how idempotents help in decomposing a commutative ring.

Lemma 9.3. A commutative ring R decomposes iff R has an idempotent ele-
ment other than 0, 1.

Proof. Suppose R = R1 × R2 is a nontrivial decomposition and let the
identity element 1 of R be expressible as 1 = s+ t where s ∈ R1, t ∈ R2. Then
by the definition of decomposition we have:

1 · 1 = (s+ t) · (s+ t)

⇒ 1 = s2 + t2 [∵ s · t = 0]

⇒ s+ t = s2 + t2

⇒ s− s2 = t2 − t

⇒ s− s2 = 0
[

∵ s− s2 ∈ R1 ∩ R2 = {0}]

⇒ s is an idempotent.
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Note that if s = 0 then t = 1 and then R1 = 0 (as for all r1 ∈ R1, r1 · R2 = 0)
and similarly, if s = 1 then R2 = 0. As R1, R2 are nonzero subrings of R we
deduce that s �= 0, 1 and hence s is an idempotent other than 0, 1.

Conversely, suppose that s �= 0, 1 is an idempotent of R. Then consider the
subrings R · s and R · (1 − s). Note that s, (1 − s) are the identity elements of
Rs,R(1 − s) respectively. For any two elements rs ∈ Rs, r′(1 − s) ∈ R(1 − s):
rs ·r′(1−s) = rr′(s−s2) = 0. If r ∈ Rs∩R(1−s) then rs = 0 and r(1−s) = 0
implying that r = 0. Finally, we can express any r ∈ R as: r = rs+ r(1 − s).
Thus, R decomposes as: R = Rs× R(1 − s). �

The following lemma shows that a decomposition of a ring into indecom-
posable rings is unique.

Lemma 9.4. Let R be a ring and R1, . . . , Rk be indecomposable nonzero rings
such that:

R = R1 ×R2 × · · · × Rk .

Then this decomposition is unique up to ordering, i.e., if we have indecompos-
able nonzero Sj ’s such that:

R = R1 × · · · × Rk = S1 × · · · × Sl ,

then k = l and there exists a permutation π such that for all i ∈ [k], Ri =
Sπ(i).

Proof. Assume wlog that k ≥ l. Let φ1 be a homomorphism of the ring R
such that φ1 is identity on S1 and φ1(S2) = · · · = φ1(Sl) = 0. φ1 is well defined
simply because R = S1 × · · · × Sl.

Clearly, φ1(R1), φ1(R2), . . . , φ1(Rk) are all subrings of S1 and:

φ1(R) = φ1(R1) + φ1(R2) + · · ·+ φ1(Rk) = S1.

Can these subrings have nontrivial intersection? Say, s1 ∈ φ1(Ri) ∩ φ1(Rj) for
some i �= j then there are some s, s′ ∈ S2 + · · ·+ Sl such that s1 + s ∈ Ri and
s1 + s′ ∈ Rj . Let a be the (multiplicative) identity of R1 + · · ·+Ri−1 +Ri+1 +
· · ·+Rk and b be the identity of Ri. Then:

(s1 + s)a = 0 and (s1 + s′)b = 0 [∵ R = R1 × · · · × Rk]

⇒ (s1 + s)a + (s1 + s′)b = 0

⇒ s1(a + b) + sa+ s′b = 0

⇒ s1 + (sa + s′b) = 0 [∵ 1 = a+ b]

⇒ s1 = (sa+ s′b) = 0 [∵ s1 ∈ S1 and sa, s′b ∈ S2 + · · · + Sl]

⇒ φ1(Ri) ∩ φ1(Rj) = {0} for all i �= j ∈ [k].
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Also, for any ri ∈ Ri, rj ∈ Rj , rirj = 0 implying that φ1(ri) · φ1(rj) = 0. The
properties above together mean that:

S1 = φ1(R1) × φ1(R2) × · · · × φ1(Rk) .

Since S1 was assumed to be indecomposable we have that exactly one of the
subrings above is nonzero. Wlog say, φ1(R2) = · · · = φ1(Rk) = 0 and then it is
implied that φ1(R1) = S1.

Similarly, we can define φi to be a homomorphism of the ring R such that φi

is identity on Si and φi(Sj) = 0 for all j ∈ [l] \ {i}. Then the above argument
says that there is an injective map τ : [l] → [k] such that for all i ∈ [l]:

(9.5) φi(Rτ(i)) = Si and φi(Rj) = 0 for all j ∈ [k] \ {τ(i)} .

Now consider an l × k matrix D = ((δi,j)) where δi,j = 1 if φi(Rj) = Si else
δi,j = 0. Equation (9.5) tells us that each row of D has exactly one 1. Now if
k > l then D has more columns than rows and hence there is a zero column,
say j-th, implying that φi(Rj) = 0 for all i ∈ [l]. But this means that Rj = 0
which is a contradiction. Hence, k = l and D has exactly one 1 in each row
and column, thus making τ a permutation.

So now we have that for any j ∈ [k], φτ−1(j)(Rj) = Sτ−1(j) and φi(Rj) = 0
for all i ∈ [k] \ {τ−1(j)}. In other words for any j ∈ [k], Rj = Sτ−1(j).

This completes the proof of unique decomposition of rings into indecom-
posable subrings. �

So what is the structure of these indecomposable rings that appear in the
decomposition? Here, we sketch the form of indecomposable rings that are
finite and commutative.

Lemma 9.6. Let R be a finite commutative indecomposable ring. Then,

(i) R has a prime-power characteristic, say pm for some prime p.

(ii) R can be expressed in the form:

R =
(
(Z/pm

Z)[z]/
(
h(z)

))
[y1, . . . , yk]/

(
ye1

1 , . . . , y
ek
k , h1(z, y1, . . . , yk), . . . ,

. . . , hl(z, y1, . . . , yk)
)
,

where h(z) is irreducible over Z/pZ and hi’s are multivariate polynomials
over Z/pm

Z.
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Remark 9.7. The ring (Z/pm
Z)[z]/(h(z)), where h(z) is irreducible over

Z/pZ, is called Galois ring. It is a finite field if m = 1.

Notice that the form of R claimed in (2) above says that the generators Do you mean
(ii) instead of
(2)? Please
check.

y1, . . . , yk of R are nilpotents, i.e., they vanish when raised by a suitable integer.

Proof (i). Suppose R is a finite commutative indecomposable ring with
characteristic n. If n nontrivially factors as: n = ab, where a, b ∈ Z

>1 are
coprime, then by Chinese remaindering R factors too:

R = aR × bR .

(Convince yourself that this is a decomposition.) This contradiction shows
that n is a prime power, say n = pm. �

Proof (ii). We assume m = 1 for simplicity of exposition. These ideas carry
forward to largerm’s (McDonald 1974). So suppose that R is an Fp-algebra and
is given in terms of basis elements b1, . . . , bn. Let g1(b1, . . . , bn), . . . , gl(b1, . . . , bn)
be the multivariate polynomials that define the multiplication operation of the
ring R. Thus, we have an expression for R as:

(9.8) R ∼= Fp[x1, . . . , xn]/
(
g1(x1, . . . , xn), . . . , gl(x1, . . . , xn)

)
.

Since R is of dimension n, {1, x1, x
2
1, . . . , x

n
1} cannot all be linearly independent

and hence there is a polynomial f1(z) ∈ Fp[z] of degree atmost n such that
f1(x1) = 0 in R. Further, assume that f1 is of lowest degree. Now if f1

nontrivially factors as: f1(z) = f11(z)f12(z), where f11, f12 are coprime, then
by Chinese remaindering R decomposes as:

R ∼= R · f11(x1) ×R · f12(x1) .

As R is assumed to be indecomposable we deduce that f1 is a power of an irre-
ducible polynomial. Say, f1(z) = f11(z)

e1 where f11 is an irreducible polynomial
over Fp of degree d1. Now we claim that there are g′1, . . . , g

′
l ∈ Fpd1 [x1, . . . , xn]

such that:

(9.9) R ∼= Fpd1 [x1, . . . , xn]/
(
xe1

1 , g
′
1(x1, . . . , xn), . . . , g′l(x1, . . . , xn)

)
.

To prove the above claim we need the following fact:
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Claim 9.10. If f(x) is an irreducible polynomial, of degree d, over a finite
field Fq then

S = Fq[x]/
(
f(x)e

) ∼= Fqd[u]/(ue) .

Proof (Claim 9.10). Consider the ring S ′ := (Fq[x]/(f(x)))[u]/(ue) ∼=
Fqd[u]/(ue). We claim that the map φ : S → S ′ which fixes Fq and maps
x �→ (x+ u), is an isomorphism.

Note that f(x+u)e = 0 in the ring S ′ simply because f(x+u)−f(x) = u·q(x)
for some q(x) ∈ Fq[x]. Thus, φ is a ring homomorphism from S to S ′. Next we
show that the minimum polynomial that φ(x) satisfies over S ′ is of degree de,
thus the dimension of φ(S) is the same as that of S ′ over Fq and hence φ is an
isomorphism.

Suppose g(z) :=
∑d′

j=0 ajx
j is the least degree polynomial over Fq such that

g(x+ u) = 0 in S ′. This means that in S ′:

0 = g(x+ u) = g(x) + u · g(1)(x) + u2 · g
(2)(x)

2!
+ · · ·+ ue−1 · g

(e−1)(x)

(e− 1)!
,

where g(i)(x)
i!

=
∑d′

j=i
j(j−1)···(j−i+1)

i!
ajx

j−i. But since 1, u, . . . , ue−1 are linearly
independent over Fq[x]/(f(x)). We have:

g(x) = g(1)(x) = · · · = g(e−1)(x) = 0 over Fq[x]/
(
f(x)

)
.

Whence we get, f(z)e|g(z) which by the definition of g means that g(z) = f(z)e.
Thus, φ is an isomorphism from S to S ′. �

From the above claim we now deduce:

R ∼= Fp[x1, . . . , xn]/
(
f11(x1)

e1 , g1(x1, . . . , xn), . . . , gl(x1, . . . , xn)
)

∼= Fpd1 [u, x2, . . . , xn]/
(
ue1, g′1(u, x2, . . . , xn), . . . , g′l(u, x2, . . . , xn)

)

∼= Fpd1 [x1, x2, . . . , xn]/
(
xe1

1 , g
′
1(x1, x2, . . . , xn), . . . , g′l(x1, x2, . . . , xn)

)
.

This new ring which we obtained has x1 as a nilpotent. We can now consider
the lowest degree polynomial f2(z) ∈ Fpd1 [z] such that f2(x2) = 0 in R. The
above process when repeated on f2, x2 in place of f1, x1 gives us that there are
d2, e2 ∈ Z

≥1 and g′′1 , . . . , g
′′
l ∈ Fpd1d2 [x1, . . . , xn] such that:

R ∼= Fpd1d2 [x1, . . . , xn]/
(
xe1

1 , x
e2
2 , g

′′
1(x1, . . . , xn), . . . , g′′l (x1, . . . , xn)

)
.

Continuing this way we get that there is a d ∈ Z
≥1 and polynomials h1, . . . , hl ∈

Fpd[x1, x2, . . . , xn] such that:

R ∼= Fpd[x1, . . . , xn]/
(
xe1

1 , . . . , x
en
n , h1(x1, . . . , xn), . . . , hl(x1, . . . , xn)

)
. �
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Remark 9.11. Note that the above proof can be viewed as an algorithm to
decompose a finite dimensional commutative ring, given in basis form, into
indecomposable rings. It is indeed a deterministic polynomial time algorithm
given oracles to integer and polynomial factorization.

Let us now see a structural property of commutative indecomposable rings.

Lemma 9.12. For a field F, consider a ring R of the form:

R = F[x1, . . . , xn]/
(
xe1

1 , . . . , x
en
n , h1(x1, . . . , xn), . . . , h�(x1, . . . , xn)

)
.

Then,

(i) R is indecomposable.

(ii) R has a unique maximal ideal M and M = set of nilpotents of R.

Proof (i). Any element r of R looks like a0 +a1(x)x1 + · · ·+an(x)xn where,
a0 ∈ F and a1(x), . . . , an(x) ∈ F[x1, . . . , xn].

Suppose a0 = 0. Since, xe1
1 = · · · = xen

n = 0 we have that:

re1+···+en =
(
a1(x)x1 + · · ·+ an(x)xn

)e1+···+en

= 0 .

Suppose a0 �= 0. Let r0 := r − a0 and e := e1 + · · ·+ en. Then we have:

(a0 + r0)
(
ae

0 − ae−1
0 r0 + · · ·+ (−1)e−1a0r

e−1
0 + (−1)ere

0

)
= ae+1

0 − (−r0)e+1

= ae+1
0 [∵ re

0 = 0]

∈ F
∗

⇒ r ∈ R∗ .

Thus, every element r of R is either a nilpotent or a unit depending upon
whether a0 = 0 or not.

Now suppose R is decomposable. By Lemma 9.3 there has to be a nontrivial
idempotent t ∈ R. But we have:

t2 = t

⇒ t(t− 1) = 0

⇒ t = 0 or 1
[

∵ t or (t− 1) is a unit
]
.

This contradiction shows that R is indecomposable. �
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Proof (ii). Define a set M := R \ R∗. As shown above M is the set of
nilpotents of R and hence is an ideal. M is maximal because any element
outside it is a unit. M is unique because it contains all the non-units of R. �

Suppose R is a ring, I is an ideal of R and f ∈ R[z]. Then a factorization of
f(z) modulo I can be “lifted” to one modulo I2 by a well known trick in algebra
called Hensel’s Lifting. This is a useful trick in many situations, for example,
given a root of f(x) modulo p we can lift it to a root of f(x) modulo p2.

Lemma 9.13 (Hensel’s Lifting). Let R be a ring and I be an ideal. Let f(z) ∈
R[z] and f = gh (mod I) be a factorization of f over R/I such that there exists
a, b ∈ R[z], ag + bh = 1 (mod I). Then,

◦ There are easily computable g∗, h∗, a∗, b∗ ∈ R[z] satisfying:

f = g∗h∗ (mod I2)

g∗ = g (mod I) and h∗ = h (mod I)

a∗g∗ + b∗h∗ = 1 (mod I2).

◦ Also, g∗, h∗ above are unique in the sense that for any other g′, h′ satis-
fying the above conditions we have some u ∈ I such that:

g′ = g∗(1 + u) (mod I2)

h′ = h∗(1 − u) (mod I2).

Proof. See Lidl & Niederreiter (1994) for the proof. �
The following lemma lists two useful results regarding the polynomial hier-

archy (PH): BPP is low for Σ2 and the Swapping lemma.

Lemma 9.14. ◦ ΣBPP
2 = Σ2.

◦ Let M be a polynomial time deterministic Turing machine then for any
positive constant c there is a positive c′ such that:

L =

{

x | Proby∈{0,1}c

[(∃z ∈ {0, 1}c
)
M(x, y, z) accepts

]
≥ 2

3

}

=

{

x | (∃z ∈ {0, 1}c
)
Proby∈{0,1}c′

[
M(x, y, z) accepts

] ≥ 2

3

}

Proof. See Schöning (1988). �
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