
Adapting Futures: Scalability for Real-World Computing 
 

Johannes Helander 
Microsoft Research 

Redmond 
jvh@microsoft.com 

 

Risto Serg 
Tallinn University of 

Technology 
risto.serg@dcc.ttu.ee 

Margus Veanes 
Microsoft Research 

Redmond 
margus@microsoft.com 

 

Pritam Roy 
University of 

California, Santa Cruz 
pritam@soe.ucsc.edu 

 
Abstract 

Creating robust real-time embedded software is 
critical in combining the physical world with 
computing, such as in consumer electronics or 
robotics. One challenge is the complexity of dealing 
with time together with implementation details that 
often end up implicitly determining the temporal 
behavior of the program. 

In this paper we suggest deconstructing a program 
into two separate aspects, the functional implementa-
tion and a temporal pattern, each expressed separately 
in a different language.  This separation enables inde-
pendent specification, analysis and prediction of the 
temporal behavior without regard to the implementa-
tion. Meanwhile the implementation is optimized for 
platforms with different capabilities through a scalable 
programming model that automatically adapts the 
execution to the level of concurrency a platform can 
support. Finally the aspects are put together to create 
a working system. 

This paper presents the use of futures and partitures 
to achieve predictability and performance in embedded 
systems. A new real-time scheduler for partiture based 
futures execution is introduced, along with multiple 
implementations, including one for an 8-bit micro-
controller. The paper explains how to create, model, 
and execute futures and partitures.  

1. Introduction 
Computing devices that interact with the physical 

world and with other computers are at the core of new 
consumer applications, such as games, appliances, 
medical devices, and communications gadgets. 
Applications of computing combined with the real 
physical world also include robotics, industry, and 
civic infrastructure. Multiple devices are often needed 
to achieve a single goal. They must interoperate and 
adapt to an often chaotic environment. 

Scheduling activities on a computer for real-time 
and energy efficiency requires maximal information 
about the temporal behavior of a program. The 

information on timing of different phases of a program, 
as well as dependencies between different parts of a 
program are traditionally implicitly encoded into the 
implementation of the program, mixed in with other 
program logic and related details. Static analysis can 
sometimes extract some of the information, but reverse 
engineering the programmer intent from an 
implementation is an unnecessary indirection. It would 
be better if the programmer simply would declare her 
intent directly. 

In this paper we propose using two programming 
paradigms new to embedded systems design to let the 
programmer easily express the intent of sequential 
dependencies and temporal parameters. 

1) The future, originally proposed in 1976 [14] and 
was the principal synchronization construct in 
MultiLisp [15]. It is used to express concurrency and 
potentially parallelism or sequentiality between 
program components. By letting the programmer freely 
and lightly express parallelism in the program it is 
possible for the runtime system to adjust the level of 
parallelism to the level that is optimal for the target 
system. This means increased parallelism on a multi-
core or multiprocessor, where it is advantageous to 
keep the cores as busy as possible with the aim of 
maximizing the gaps between executions where the 
processor can be put into a power saving mode. On the 
other hand it means decreased parallelism, even 
completely sequential execution on a small 
microcontroller that does not have room for multiple 
execution stacks—often the biggest single RAM 
footprint cost. 
The future allows a common programming paradigm 
for cyber-physical programs across virtually the entire 
spectrum of programmable devices. We will examine 
in further detail in section 2 how futures are created, 
how they are executed, and how they and the program 
code can be optimized to different size computing 
devices.  

2) The partiture, analogous to the score of a 
symphony orchestra, is a separate program that 
describes the temporal aspect of an application, leaving 



 
 

implementation details to the regular programming 
language, such as C or Java/C#. The partiture is a 
collection of scores, where each score describes the 
expected sequence of events and message pattern of a 
single task as a collection of bars. Each bar prescribes 
the estimated time and duration when something should 
happen, as well as where messages are sent and what 
other bars are triggered. The partiture does not 
prescribe what the content of messages is, what 
functions are called, or what the implementation does. 
The analogue is the conductor of an orchestra who may 
be most interested in when and at what tempo 
instruments play but not so much what the actual notes 
are. 

The partiture is an estimate of the temporal behavior. 
It may be authored by hand, generated from an 
execution log, or generated by analysis tools, or as a 
combination of the above. If the partiture is based on 
solid worst-case analysis, it is a hard real-time partiture. 
If it is based on statistical analysis, as shown in section 
6, it is a stochastic real-time partiture. The partiture can 
be updated and adapted during run-time if so desired 
[2][3], or hard-coded for the life of the device. 
Examples of both cases are shown in the results section. 

1.1 Modeling and adapting partitures 
A partiture consists of a number of scores, each 

describing the temporal behavior of one task. Bars 
within a score are usually related and form a 
dependency graph, where one bar triggers another. 
Separate scores meanwhile are unrelated but a process 
represented by one score may send messages to 
processes represented by other scores. In the current 
implementation the partiture is expressed in XML 
syntax but could obviously be expressed in a different 
syntax as well. The partiture could also be written into 
e.g. C# attributes and separated and collected using the 
regular C# metadata tools into a separate file. 

 
A partiture can be viewed as either a program or as 

data. When viewed as data it is natural that the 
partitures can be sent around in messages, combined 
into a database, converted to model programs, etc. The 
ability to combine multiple partitures with each other 
and data from traces with existing partitures, makes it 
relatively easy to analyze and adapt the partitures. An 

example of the description can be seen in figure 1.1. 
Once the partiture has been adapted, it can be sent back 
to the scheduler of the worker machine, where it is 
executed by the scheduler, as will be seen later in this 
paper.  

1.2 Scheduling futures 
Futures are encapsulated method calls that are 

evaluated (executed) at some point in time from when 
they were created until when the result is used. The 
difference to a thread is that 1) it is assumed that 
futures are cheap to create and terminate; 2) the 
method called can take any arguments; 3) the call site 
of a future looks roughly like a regular method call; 4) 
there is no inherent guarantee that the futures will in 
fact run concurrently and fairly. Another related term is 
a delegate (an anonymous function call); the difference 
is that the future is evaluated at any time at the 
discretion of the scheduler. Creating delegates usually 
also requires special syntax and support in a 
programming language. 

 
A future can be created in a number of ways: 1) 

from a local method call, where the object has been 
replaced with an interposition agent object that turns a 
regular method call into a delegate and hands it off to 
the scheduler; 2) from a local call into a futures factory 
(part of runtime) with the stack frame replaced by a 
structure; 3) from a pre-initialized structure; 4) 
deserialized from a message that matches the method 
call; or 5) from a string or file that contains the 
serialized representation of the call. In all cases some 
metadata is required: (1-3) can get by with the size of 
the stack frame, the object the method is applied to, 
and the correct method. Cases (4-5) instead require 
complete metadata for serialization and deserialization 
of all the parameters. In our implementation the 
methods of any abstract class, native or managed, can 
be turned into a future, given that it is a subclass of one 
of the known base classes. 

A future does not require a stack until it is ready to 
execute, thus to save memory the stack allocation can 

<partiture> 
  <score name="simple-sample"> 
    <bar name="dosome" duration="PT0.002S"/> 
  </score> 
</partiture> 

Figure 1.1: A very simple score in a partiture 
stating that dosome will take two milliseconds to 
complete. 

ISimpleService *proxy; 
status = Factory->v->Create(Factory, 
         actual_object, “ISimpleService”, 
         “simplescore/dosome”, completion, 
         &proxy); 
status = proxy->v->print(proxy, “test”); 
DoOtherWork(); 
status = completion->v->Wait(completion); 

Figure 1.2. Invoking a method as a future 
through a proxy object. The Wait on the 
optional completion object returns after the 
future has completed. 



 
 

be deferred until the actual execution. This means that 
stacks can be efficiently recycled thus significantly 
decreasing the cost of creating a future and the RAM 
footprint of an application. 

Since futures can be executed when the scheduler 
decides to do so they can be executed in a serial 
fashion one at a time, providing low memory utilization, 
or many at once, providing high CPU utilization. Since 
futures are cheap to create, it is expected that 
programmers will not hesitate to use them to express 
inherent concurrency present in their application.  

1.3 Putting them together 
When and in what order futures are executed is part 

of the temporal behavior of the program and is 
expressed in the partiture. The partiture also contains 
information on dependencies between the bars. A 
dependency will determine a partial ordering between 
bars and consequently the execution order of the 
futures that are matched with the bars. If there is a 
cycle in the dependency graph then the futures cannot 
be run serially, since there is no partial ordering; 
consequently multiple stacks and pre-emptive 
scheduling is required—unless the cycle indicates a 
deadlock in which case there is no valid schedule at all. 
The dependency graph is currently created manually 
but will eventually be produced by the analysis tools. 
If the method that implements a future blocks during its 
execution, for instance waiting on a timeout or some 
other execution to complete, the future moves from one 
bar to another (or another incarnation of a repetitive 
bar). The blocking operation or the blocking object 
needs to be tagged to demarcate the correct bar to 
switch to. 

The scheduling model and algorithm are further 
explained in section 4. 

1.4 Scenarios 
Let us consider three sample systems that serve as 

examples later in the paper. #1, simpleservice, 
implements a simple object that can print a string; #2 
hardsample, is a basic sensor application that does 
periodic sampling of a microphone, some filtering and 
correlation of the data, and finally outputs a result on a 
serial line. It also listens to commands, such as reset, 
from a host computer on the same serial line; #3 is a 
distributed system that does sensor reading and then 
sends the result to another device over a wireless 
network with variable performance and thus the need 
for adaptation. 

The rest of this paper is organized as follows: 
Section 2 explains how to turn an application into a 
scalable program that uses futures and partitures. 

Sections 3 and 4 detail the execution and scheduling of 
partitures and shows how the system can be optimized 
for extremely small embedded microcontroller 
applications (measurements included). Section 5 
introduces an abstract model of the scheduling that can 
be used for robust systems development (results 
included). Section 6 shows how the partiture can be 
used for distributed scheduling (measurements 
included). Finally section 7 looks at related work. 

2. Programming with futures 
On the client side (the caller) a future looks like a 

regular method call. The future can represent either a 
remote call, a call to another runtime (e.g. C to C#), or 
a local call. The caller may wait for the call to 
complete at a later time as required. The programmer 
needs to be aware that any return values (out argument) 
will become valid only after the call has completed. 
The client side can create multiple futures and then 
wait for them to complete. If the method calls in the 
futures are not expected to return values there is no 
need to wait for them. 

On the server side (the callee), the future looks like 
a regular method call. When the call returns it is 
considered complete and any waiters will be woken up. 
When a future is created (such as in figure 1.2 above), 
it should be associated with a bar in the partiture. The 
shared label lets the scheduler match the future with the 
correct temporal description and use the right temporal 
parameters for scheduling its execution. 

 
A common pattern for a sensor processing 

application is to wait until it is time to sample a sensor, 
read a value from hardware, apply a digital filter, then 
send the result somewhere, e.g. over a serial line 
(figure 2.1). The same pattern in general is common in 
almost any program, in a loop wait for something, 
process it, and then wait some more. The loop 
construct is inefficient as it forces a separate thread to 
be created for each such task, meaning a separate stack, 
meaning a lot of memory. Instead with the futures the 
loop is removed altogether and instead replaced by a 
partiture with a score that has the loop encoded as a 
temporal pattern. The application just creates the 
futures, providing a method call template (figure 2.2). 
The futures are associated with the right score by 

for (;i < 100;) { 
    wait(); 
    obj->read(obj, 0x1000200); 
    obj->filter(obj); 
    obj->output(obj, “com2”); 
} 

Figure 2.1: A simple sensor application control 
loop. 



 
 

naming the score while creating the future. The method 
name is here used to match the label in the score rather 
than specifying the label explicitly. The wildcard 
matches the same future with all incarnations of a bar. 
The score contains the dependencies between the bars 
(the triggers) as well as the estimated execution times 
of each bar and the loop count. In figure 2.3 the 
sending of the response is in addition split into multiple 
chunks so as to process one byte at a time. 

 
The conversion of the loop into a partiture allows 

more efficient memory use since a stack is not needed 
between the calls to the methods as the implementation 
code of the loop has been removed. The score also 
contains much more precise timing information 
allowing the schedule to be analyzed and massaged to a 
given platform and circumstances. The server side (the 
implementation of the methods) stays exactly the same 
and does not need to be revised for the purpose of 
becoming a future. However, for further performance 
enhancement purposes it may later be desirable to 
revise the code, such as the byte sending code sending 
just one byte at a time rather than internally waiting for 
the serial line to drain. This allows the stack to be taken 
away also during the sending phase of the program. 

 
One important concept is in fact the incremental 

nature of developing code for various platforms, 
allowed by the futures. Instead of having to 
immediately completely redesign an application to run 
on a small device and then again having to redesign it 
for a more powerful platform in the second revision of 
a product, such as would happen with so-called split-

phase operation [22], the same program can be run on 
multiple platforms and be optimized one step at a time. 

It would be feasible, and practical, for instance, to 
take a legacy multithreaded program that has a few 
threads, each doing loops with blocking operation, and 
turn them into futures. Since the native futures only 
work for abstract classes the program would first have 
to be written in an object-oriented fashion.  The 
program could initially be run on a larger platform that 
can handle multiple execution stacks. To adapt the 
system to run on fewer execution stacks to save 
memory, the blocking points would be converted to 
futures one at a time, all the while the application 
would continue to work. In the extreme case all 
blocking points could be converted into futures, 
meaning the application could run on a single stack, 
shared perhaps with other applications, without any 
pre-emption or even interrupts. 

The same application would still continue to run on 
more powerful computers, however. In fact given a 
multicore computer, the scheduler would automatically 
be able to run the futures in parallel, thus increasing the 
utilization of the processors. Since the score contains 
dependency information the parallelism would be 
scaled to the extent there is inherent parallelism in the 
program and hardware resources are available. 
Surprisingly the optimizations done for the 8-bit 
microcontrollers are useful also for the high-
performance multicore processors. This conclusion is 
in line with prior use of futures in parallel languages, 
where the purpose is specifically to increase parallel-
ism; as well as with preliminary experiences with our 
alternate implementation of futures on threads, when 
run on multiprocessors. 

3. The execution of futures 
To execute futures and partitures, some system 

support is required. We split the scheduling into two 
sub-problems: 1) the execution of futures; and 2) the 
interpretation of partitures, and then make the two 
work together. 

The futures can be executed on top of threads, 
where one thread executes one future at a time; or they 
can be implemented natively directly by the scheduler 
without the need of threads. A future can be viewed as 
progressing through temporal phases, with interaction 
points delimiting the phases. The interaction points are 
where the future blocks on a resource, waits for a 
timeout, or signals a resource potentially unblocking 
another future. A simple future has just one phase, and 
runs to completion. If all futures are simple single-
phase futures then no pre-emption is required. The 
execution state machine for a single-phase future is 

<score name="hardsample"> 
  <bar name="read" duration="PT0.001S" 
       slack=”PT0.0005S”> 
    <repeats count="1000" offset="PT0.02S"/> 
    <trigger name="filter" />  
  </bar> 
 
  <bar name="filter" duration="PT0.001S"> 
    <trigger name="output" mode="1/100"/> 
  </bar> 
 
  <bar name="output" duration="PT0.0002S" 
       slack=”PT0.0001S”> 
    <repeats count="4" offset="PT0.001S"/> 
  </bar> 
</score> 

Figure 2.3: A score that replaces the control loop. 

future=create(...,”hardsample/*/*”); 
future->read(future, 0x1000200); 
future->filter(future); 
future->output(future, “com2”); 

Figure 2.2: Creating futures for the sensor 
example. 



 
 

depicted in Figure 3.1. In this case the state machine of 
the future execution matches that of the corresponding 
bar in the score. The pre-wait state is where the future 
is ready to execute but it has not yet been assigned a 
stack. To move from the pre-wait to the ready or run 
state a stack is allocated and the frame copied from the 
template in the future to the actual execution stack. 

 
Figure 3.1: Future execution state machine 
with a single temporal phase (run-to-
completion semantics). 

When a future looks more like a thread and in fact 
blocks and otherwise interacts at multiple points with 
other futures, the state machine is more complicated. 
Each temporal phase corresponds to a bar—thus the 
bar keeps changing during the execution and the state 
machines are more loosely coupled. Figure 3.2 depicts 
the state machine for a multi-phase future. Rematch 
transitions the future from one bar to another. 

 
 Figure 3.2: Future execution state machine 
with multiple temporal phases. 

Once a future has been given a stack it cannot 
relinquish the stack until it has completed. Thus pre-
emption is intrinsically required for scheduling multi-
phased futures. If the dependency graph in the score, as 
defined by who triggers whom, has cycles then full pre-
emption and multithreaded execution including 
multiple stacks is required for the program to be 
runnable—assuming any cycle does not indicate an 
outright deadlock. If the dependency graph is acyclic 
then a half-pre-emptive scheduler will suffice. The 
following four execution modes are possible: 

1)  Run-to-completion: all futures are single-phased. 

2)  Half-pre-emptive: the dependency graph is acyclic. 

3)  Pre-emptive single-core: there are no temporal 
overlaps. 

4)  Multicore: the dependency graph does not fully 
dictate the execution order but parallelism is available. 

The execution modes possible can be deduced from 
the score by means of graph analysis. Section 5 shows 
how the dependency and scheduling graph can be 
created and analyzed from the score using the nModel 
modeling framework. 

4. Scheduling the score 
The scheduler is essentially an interpreter of the 

partiture, a domain-specific reactive programming 
language. A bar contains the information of the timing 
as well as triggers at completion. The scheduler acts on 
bars and drives them through the state machine in 
figure 4.1. In order to run a bar must be triggered, have 
an associated (matched) future, and the current time be 
between the earliest and the latest start times. If the bar 
is not ready by latest start time, it will move to the 
expired state. The score may contain a predefined 
alternate future (delegate) that is executed as a result of 
expiration, providing a timeout exception handler and 
causes the bar to transition to the executing state. Of all 
the bars that are in the run state the scheduler will 
assign hardware resources to the bars as appropriate. In 
a hard real-time scenario there can never be any 
contention—the score has been analyzed ahead of time. 
In a soft real-time scenario the score is adapted at run-
time and is executed on a best effort basis.  

 
Figure 4.1: The state machine of a single bar. 

When futures are implemented on top of threads, the 
low-level thread scheduler handles the execution 
machinery, leaving only the partiture interpretation and 
admission test to be implemented by the messaging 
system or other middleware. Results from applying this 
technique to distributed web services messaging are 
showed in section 6. When the thread scheduler works 
on multiple processors, the schedule becomes auto-
matically multicore. A native multicore implementation 
has not yet been attempted at the time of the writing of 
this paper. 

Perhaps more interestingly the futures scheduling 
can natively be implemented in a very small footprint. 
In a hard real-time scenario, such as the score 
“hardsample” presented earlier in this paper, the 
schedule needs to be completely analyzed ahead of 
execution to ensure that execution is possible and that 
the estimated durations are correct worst case values. If 
scheduling is possible in a run-to-completion fashion, 

Waiting 

Expired 

Executing 

Completed 

make runnable

Init 

Prewait Deferred 

Ready 

Completed 

match

Run 

Wait 
rematch

Init 

Prewait Deferred 

Run 
Completed 

match



 
 

as determined by the model analysis (see the following 
section) there will be one or more scheduling 
sequences that are a valid implementation of the 
partiture. Picking one of the valid sequences yields a 
sequence of instantiated bars and times. 

In the hard real-time example there is typically very 
little dynamicity in any single application. Thus the 
futures that are to be executed are in fact known ahead 
of time. This means that they do not need to be created 
at run-time from either e.g. C code or XML messages 
[1] but can be declared ahead of time. For this purpose 
we have added an extension to the partiture language 
that allows inserting the expected message directly into 
the score, just as if the message would have arrived 
during run-time. Now instead of deserializing the 
message at run-time into a future and then matching the 
future against the correct bars in the score, the 
deserialization and matching is done at compile time. 
An example is shown in figure 4.2.  

 
Since almost everything is constant, most things can 

be put in read-only memory, usually much cheaper and 
more abundant in embedded systems. The notable 
exceptions are the execution stack and the sensor 
object itself. The sensor object is the implicit this 
argument to all method calls and is used to hold the 
states of the sensor reading, filtering, and output 
processes, in a typical object oriented fashion. 

The actual score is a sequence of bars to be 
executed at given relative times. The scheduler simply 
keeps an index to the current bar. When it gets to the 
end it goes back to the beginning. The scheduling and 
execution proceeds as follows: 

1)  The scheduler picks the next bar. 

2)  The scheduler compares the earliest start time with 
the current time. If the time has not yet arrived the 
processor will be put to sleep mode until the latest start 
time. 

3)  The future to be executed is pointed to in the 
instantiated bar (pre-matched). The future contains the 
count of parameters to the method call. 

4)  The parameter count is compared to the maximum 
allowed for register arguments. Any overflow 
parameters are copied to the execution stack. 

5)  The remaining parameters are copied to the 
argument registers. The function pointer is copied to a 
temporary register. 

6)  A subroutine call is made to the location of the 
temporary register. The method call in the future is thus 
called with the correct arguments. 

7)  When the future completes it returns back to the 
scheduler, which repeats the loop from #1. 

The control loop is very small. However, due to 
stack and register manipulations it will have to be 
written in assembly code, although steps 1-3 can be 
done in a C subroutine. Since the loop never returns the 
scheduler index counter can be kept in a callee saved 
register. There is zero bytes of RAM used by the 
scheduler that is not mandated by the machine calling 
convention. The implementation of the hard real-time 
futures scheduler uses 516 bytes of ROM on an AVR 
microcontroller. Figure 4.3 has the size breakdown of 
the sample application and OS support on an Atmel 
ATmega169P microcontroller. It was possible to find a 
fixed schedule for the sample application and 
consequently store the bars and futures into ROM. The 
code size of the scheduler is fixed and not application 
dependent. The memory required for futures, bars and 
the application itself, depends on the complexity of the 
application. 

 

5. Modeling the partiture 
A partiture may in general contain multiple scores. 

Each score is a set of bars that implies various causal 
relations between the bars that have to be maintained 
during execution. In this section we provide a 
behavioral model of a single score of bars, called a 

<score name="hardsample"> 
  <bar name="read" …> 

    <future> 

      <wsa:To>object:sensor</wsa:To> 

      <sensor:read> 

        <sensor:memoryaddr>0x1000200 

        </sensor:memoryaddr> 

       </sensor>read> 

    </future> 
  </bar> 

Figure 4.2: A predefined future within a bar in the 
partiture. The future is a method call to the 
sensor object with parameters included, i.e. 
sensor->read(sensor, 0x1000200). 

bytes Scheduler Futures Bars Application 

RAM 0 0 0 145 

ROM 516 25 28 3638 

 
Figure 4.3: Size breakdown of sample app-
lication with scheduler fixed overhead, and 
application dependent overhead included. The 
scheduler does not use any RAM. 



 
 

score model. The score model can be used for runtime 
analysis and for static analysis of the scheduler. 

As our modeling language we use model programs 
written in C# within the NModel framework [4] that is 
freely available for download [7]. The score model is 
divided into separate partial models that are composed 
into the complete score model using (parallel) 
composition [6] of model programs. The three partial 
models we are considering here are: Triggering, 
Counting, Timing. 

Each of the partial models is given by an 
independent model program that describes a set of 
valid traces of bars or schedules that takes into account 
only part of the information in the bars. Thus one 
partial model may allow schedules that are not possible 
in another partial model, whereas their composition 
enables only schedules that are possible in all of them. 
In other words, the composition does not cause 
emergent behavior in form of traces that were not 
possible in any of the partial models, but preserves 
trace intersection.  

5.1 Triggering 
The triggering model specifies the aspect of a score 

that deals with one bar “triggering” another bar. For 
example, in the score in Figure 2.3, the bar named 
“read” triggers the bar named “filter”. It is assumed 
that no two bars have the same name within a score. 

In NModel, a model program is scoped and 
identified by a namespace and by default all the fields 
of all the classes in it constitute the state variables of 
that model program. In the remainder of this subsection 
all the definitions are assumed to be given within the 
scope of the Triggering namespace. 
namespace Triggering { … } 

There is a main class Contract that has a state variable 
triggers that is assumed to be initialized from a given 
score (such as the one in Figure 2.3, that will be used 
as an example) with a map from bar names to a set of 
triggers. Each trigger has a bar name that is being 
triggered and mode information telling whether this bar 
is triggered always, only initially, or with a certain 
frequency (after each time the triggering bar has 
occurred a certain number of times). This initialization 
step is done through an Init action from a given score 
(the details of which are omitted here for brevity). Note 
that, a bar may, in general, trigger several other bars. 
partial static class Contract { static Map<string, Set<Trigger>> triggers; } 
public class Trigger : CompoundValue  
{ public string name;   
  public Mode mode;  
  public int frequency;} 
public enum Mode { Always, Initially, Frequently } 

There is a state variable readyBars that includes the 
names of the bars that are ready to be executed by the 
scheduler. The value of readyBars is initialized by the Init 
action. We say that a bar is ready in a given state if 
readyBars contains it. 
public static Set<string> readyBars;  

In NModel each model program has a set of actions. 
An action is a term that may take arguments and is 
associated with a guarded update rule. The guard or 
the enabling condition determines if the action is 
enabled in the give state, and the update rule describes 
the state transition caused by executing that action. 

The Triggering model program has an Execute action that 
takes the name of a bar as an argument. The action is 
enabled in a given state if the bar is ready. The guard is 
given by the Boolean function whose name starts with 
the name of the update rule method and ends with 
Enabled. (Guards are similar to preconditions in 
SpecExplorer [8].) The update rule removes the 
triggering bar from readyBars and, depending on the 
mode, adds the triggered ones to readyBars. It also 
updates the state variable occurrences, which keeps track 
of the number of times each bar has been executed so 
far. The number of occurrences of all bars is initialized 
to 0 by the Init action. 
class Contract { 
  static Map<string, int> occurrences;  
  [Action] 
  static void Execute(string b)  { 
    readyBars = readyBars.Remove(b); 
    foreach (Trigger t in triggers[b])  
      if (t.mode == Mode.Always ||  
          (t.mode == Mode.Initially && occurrences[t.name] == 0) || 
          (t.mode == Mode.Frequently &&  
           occurrences[b] == t.frequency * (occurrences[t.name] + 1))) 
        readyBars = readBars.Add(t.name); 
    occurrences = occurrences.Override(b, occurrences[b] + 1); } 
  static bool ExecuteEnabled(string b) { return readyBars.Contains(b); }} 

 
Figure 5.1: Triggering Model Scenario. 



 
 

A partial exploration of the triggering model is 
illustrated in Figure 5.1 that has been created with the 
model program viewer utility of NModel. The action 
name Execute has been abbreviated by E. The state 
variables are initialized according to a score similar to 
the one in Figure 2.3, where it is assumed that the Init 
action sets readyBars to the set containing “read”, 
“read” triggers itself and “filter”.  Here triggers maps 
“filter” to a set containing the trigger with name 
“output”, mode Mode.Frequently, and, instead of 100, 
frequency has been initialized to 2. A path from the initial 
state shows a prefix of a schedule that is possible 
according to the triggering model. 

5.2 Counting 
The counting model has a single state variable 

barCounter that specifies the number of times that each 
bar in the score is to be executed. The initial value is 
set by the Init action for a given score. Each time a bar is 
executed, the count of that bar is decremented by one. 
 
namespace Counting { 
  static class Contract { 
    static Map<string, int> barCounter; 
    [Action] 
    static void Execute(string b) 
    { 
      if (barCounter[b] == 1) barCounter = barCounter.RemoveKey(b); 
      else barCounter = barCounter.Override(b, barCounter[b] - 1); 
    } 
    static bool ExecuteEnabled(string b)  
    { return barCounter.ContainsKey(b); } 
  } 
} 

 
Figure 5.2: Counting Model Scenario. 

 
Figure 5.2 illustrates a partial exploration of the 

counting model initialized with the same score as 
above. Notice that for example the scenario (“output”, 
“output”) that is possible here, cannot happen in the 
triggering model.  

5.3 Timing 
The timing model takes the timing related 

constraints of the bars into account. Each bar has an 
offset, duration, a deadline and a slack period that are 
defined as state variables. All these values determine 

the earliest start time and the latest start time of a bar 
and how the corresponding values are set for a 
triggered bar. This model program also keeps the set of 
triggers that is set by the Init action; here the mode 
information is not used, so the triggers map only 
specifies which bar names are being triggered. 
namespace Timing { 
  partial static class Contract { 
    static Map<string, Set<string>> triggers; 
    static Set<string> readyBars; 
    static double time = 0.0; 
    static Map<string, double> offset; 
    static Map<string, double> duration ; 
    static Map<string, double> deadline; 
    static Map<string, double> slack;  
  } 
} 

The Execute action for a bar is enabled if the current 
time is in between the earliest and the latest start times 
of the bar. The definitions below are assumed to be in 
the Timing.Contract class. 
[Action] 
static void Execute(string b) 
{ 
  time = time + duration[b]; 
  readyBars =  readyBars.Remove(b).Union(triggers[b]); 
  foreach (string a in readyBars) deadline = deadline.Override(a, time); 
} 
static bool ExecuteEnabled(string b) 
{ 
  if (!readyBars.Contains(b)) return false; 
  double latest = deadline[b] + offset[b] - duration[b]; 
  double earliest = latest - slack[b];  
  return (earliest <= time && time < latest); 
} 

Since triggered bars cannot start before their earliest 
start time, there is an Idle action which “fast forwards” 
the time when no triggered action is ready to execute. 
[Action] 
static void Idle() 
{ 
  double ff = (readyBars.IsEmpty ? time : double.MaxValue);  
  foreach (string b in readyBars) 
    ff = Math.Min(ff, deadline[b] + offset[b] - duration[b] - slack[b]); 
  time = ff; 
} 
static bool IdleEnabled() 
{ 
  foreach (string b in readyBars) 
    if (time >= deadline[b] + offset[b] - duration[b] - slack[b]) return false; 
  return true; 
}    

A timing model scenario is illustrated in Figure 5.3. 
The initial values are taken from the sample score used 
earlier. Notice for example that the first enabled action 
after Init is Idle, because the time is 0 in this state and the 
earliest start time for “read” is nonzero. 



 
 

  
Figure 5.3: Timing Model Scenario. 

5.4 Composition of Models 
When two model programs A and B are composed 

into A||B, the action vocabulary of A||B is the union of 
the action vocabularies of A and B. The state of A||B is 
the disjoint product of the states of A and B. In other 
words, the state of A||B has state variables of both A 
and B. The model programs A and B synchronize 
through the common actions and interleave all the other 
actions. When an action a is present in the vocabulary 
of A, but not in the vocabulary of B, then a changes 
only the state variables in A.  

The composition of model programs is syntactic. It 
is effectively a program transformation that combines 
two or more model programs into a new model 
program. The composed model program has useful 
algebraic properties.  The set of traces of the composed 
model program is the intersection of the set of traces of 
the constituent model programs. In particular, one can 
reason about the action traces and use classical theory 
of labeled transition systems [10][11]. 

Figure 5.4 illustrates a partial exploration of the 
composed model program Triggering||Counting||Timing for the 
initial values set according to the sample score 
introduced before. The three model programs 
synchronize on the Explore and Init actions. The Idle action 
appears only in the Timing model and is considered as a 
self-loop in the other models. While the partial model 
programs can be analyzed separately for conditions 
related to the corresponding aspects of the scheduler, 

the composed model program can be analyzed for 
feature interaction and global safety and liveness 
conditions. 

 

 
Figure 5.4: Composition Scenario. 

6. Adapting distributed partitures 
Since the partiture can be viewed as data it is 

possible to send partitures around the network in 
messages. This makes it possible for one device to 
coordinate related activities that involve multiple 
devices. A partiture that has been adapted on one 
machine is sent to a worker node that does an 
admission check and then feeds it to its own scheduler.  

 Figure 6.1: Scheme of the stochastic planner 
in action. 

We apply simple stochastic methods to measured 
execution times. The planning node (the conductor in 
figure 6.1) predicts the time required to perform a 
simple program based on past performance. This was 

Conductor 

Producer 

Consumer 

Audio data 
Scheduling 

Scheduling 

Sampling 



 
 

demoed on a test platform equipped with a 25 MHz 
Arm7 microcontroller with 256KB of ROM and 32KB 
of RAM. In the core of the demo was a stochastic 
planner that used the monitored execution times of 
scheduled functions to make adjustments to the 
scheduling pattern of the functions.  

Initially the planner uses an application supplied 
fixed schedule for scheduling the jobs on the worker 
nodes. The schedule is adjusted according to the 
information on the actual execution times received 
from worker nodes. Figure 6.2 visualizes the schedule 
at different points in time, where newer schedules are 
above older ones. Each line shows the bars for the 
producer and the consumer, with message transmission 
times in-between. The schedule is adapted until it 
reaches a steady state. Once a steady state has been 
reached the schedule will remain the same until the 
environment changes. 
 

 
Figure 6.2: Adaptation of bar durations from 
initial defaults to a near optimal steady state. 

6.1 Performance of distributed scheduling 
The working of the stochastic planning conductor 

was estimated through sampling. A simple test method 
does 20000 multiplications. Starting with no context 
information the conductor uses an application provided 
guess. 

Once the conductor receives samples from the 
measured execution times it uses the information with 
smoothing between each step. The calculation times 
include formatting and sending the reply message. The 
table below (figure 6.3) contains the relevant numbers. 
The estimate is produced by the live conductor, while 
the mean and deviation have been calculated offline for 
reference from the raw measurements.  

 
Since the low-level RTOS scheduler did not 

produce much jitter, the test was also executed on a PC 
running Windows XP with the XML communications 
middleware stack on top. Running without an 
underlying real-time scheduler introduces more 
uncertainty but the conductor still deals with it 
correctly and produces a larger confidence allocation to 
cope with the increased jitter. As the CPU is faster a 
million multiplications is done each time. From a 
steady state the number of calculations is dropped to 
half. The table below (figure 6.4) shows how the 
prediction adapts to the drop. The conductor adapts to 
the larger jitter by padding the estimates. 

Step 
Estimate 
99% conf 

Measured 
mean 

Standard 
deviation 

Confidence 
 95%    99% 

1 126 123 6.4% 1.9 2.5 

2 124 120 14% 4.2 5.5 

3 69 55 2.1% 2.8 3.7 

4 58 55 2.9% 3.9 5.2 

Figure 6.4: Time measurement on PC in milli-
seconds.  After the steady state at step 2, the 
workload is cut in half and the estimate adapts 
to the new load. 

7. Related work 
Futures [12] were originally proposed in the Lisp 

community as a way of deferring evaluation and 
increasing performance. They were used as a primary 
construct for concurrency and synchronization in 
MultiLisp [15]. Later futures have been implemented in 
mid-level languages, such as Java [21] or C#. To our 
best knowledge ours is the first native implementation 
of futures in C on microcontrollers. As an underlying 

Step 
Estimate 
95% conf 

Measured 
mean 

Standard 
deviation 

Confidence 
95%  99% 

1 339 337 1.7% 1.0 1.4 

2 341 337 1.6% 1.0 1.4 

3 346 337 1.8% 1.0 1.4 

Figure 6.3: Time measurement and prediction 
of a CPU intensive task – times in milli-
seconds, 32 samples per iteration on embed-
ded microcontroller board. The confidence 
number indicates the extra time allocated for 
jitter. Fixed point integer arithmetic rounds the 
number up slightly. 

 
  

 

 

Period k Fixed deadline 

Steady State 



 
 

abstraction for RPC mechanisms it is mentioned in [16], 
even though not as a primary mechanism. 

The partiture idea is first mentioned in [2] by the 
first author for the purposes of orchestrating distributed 
embedded web services [1]. The bar is modeled after 
constraint-based scheduling [19], itself an extension of 
earliest deadline first [20]. We extend the constraint 
scheduling by allowing arbitrary schedules and do not 
limit the resource management to rate-monotonic [17] 
tasks. We have automated the adaptation of estimates 
and lifted the chore from application programs. 
Applying control theory has certainly been used in 
scheduling, e.g. in Spring [18] but using stochastic 
processes with constraint scheduling and distributed 
scheduling is new to our model. The level of 
parallelism required by an application has been 
explored in [13] in terms of the Q model. Temporal 
behavior is also studied in [24] in terms of logical 
execution time, the recurring time from the beginning 
to an end of a process as seen by an independent 
observer. A separation of a scheduling virtual machine 
and an execution virtual machine is used in [23], where 
schedule-carrying code allows some scheduling to be 
done offline, such as verification for non-preemptive 
scheduling on a given platform. Schedulability for pre-
emptive and serialized schedulers is analyzed in 
preemption threshold scheduling [25][26]. 

As our modeling language we use model programs 
written in C# within the NModel framework [4] that is 
freely available for download [7]. Model programs 
written in this style are also used in model-based 
testing and analysis tools like SpecExplorer [9][8], see 
also [5] for an overview of such modeling techniques 
and related tools. 

8. Conclusion 
This paper presented a systematic way to write 

embedded applications using high-level abstractions, 
allowing the implementation to be automatically scaled 
to the resources and level parallelism available on a 
device, with negligible overhead. On the low end the 
resulting system is extremely small, a few hundred 
bytes of ROM and no RAM, while on the high end the 
program runs on multiple cores in parallel. An applica-
tion is split into two programs: an implementation and 
a temporal process description, called a partiture. 
Futures are used as the programming subtrate for 
expressing concurrency. The model programs enable 
safety analysis through bounded exploration and make 
it possible to derive valid schedules from a given score. 
The models also facilitate visualization, testing, and 
conformance checking of various aspects of the 
expected behavior. 

 The combination of high-level program expression 
with tight implementations and sophisticated offline 
tools created a system that is practical and efficient, 
while setting up the stage for vastly increased 
programmer productivity and code reuse. The paper 
included scenarios for hard real-time programming, 
distributed adaptive real-time, and expressions of 
concurrency. The system has been implemented on 
multiple platforms and measurements were included. 

9. References 
[1] Helander J., Deeply Embedded XML Communication: 
Towards an Interoperable and Seamless World, Proceedings 
of the 5th ACM international conference on Embedded 
software, Jersey City, NJ, September 2005. 
[2] Helander J., Sigurdsson S., Self-Tuning Planned 
Actions: Time to Make Real-Time SOAP Real, Proceedings 
of the Eighth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, Seattle, May 
2005. 
[3] Helander, J., Interoperation and Adaptation for Real-
World Computing, National Workshop on Cyber-Physical 
Systems, Alexandria, Virginia, 2006. 
[4] Jacky, J., Veanes, M., Campbell, C., and Schulte, W., 
Model-based Software Testing and Analysis with C#, 
Cambridge University Press, 2007. 
[5] Utting, M., and Legeard, B., Practical Model-Based 
Testing - A tools approach, Morgan and Kaufmann, 2006. 
[6] Veanes, M., Campbell, C., and Schulte, W., 
Composition of Model Programs, FORTE 2007, LNCS, vol. 
4574, pp. 128-142, 2007. 
[7] NModel, http://www.codeplex.com/NModel, 2007. 
[8] SpecExplorer, 
http://research.microsoft.com/specexplorer, 2006. 
[9] Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., 
Tillmann, N., and Nachmanson, L., Model-Based Testing of 
Object-Oriented Reactive Systems with Spec Explorer, 
chapter in Formal Methods and Testing, Hierons, Bowen and 
Harman (Eds.), Springer, 2007 (Forthcoming, preliminary 
version: MSR technical report MSR-TR-2005-59). 
[10] Keller, R., Formal verification of parallel programs, 
Communications of the ACM, July, pp. 371—384, 1976. 
[11] Lynch, N., and Tuttle, M., Hierarchical correctness 
proofs for distributed algorithms, Proceedings of the sixth 
annual ACM Symposium on Principles of distributed 
computing, pp. 137--151, ACM Press, 1987. 
[12] Forin, A. (1990) “Futures” in book “Topics in 
Advanced Language Implementation” Peter Lee ed., MIT 
Press, Cambridge MA. ISBN: 0-262-12151-4 
[13] Mõtus, L. and Rodd, M. “Timing Analysis of Real-time 
Software”, Elsevier Science/Pergamon, 1994, 212pp 
[14]  Friedman, D., and Wise, D., Technical Report TR44: 
CONS should not Evaluate its Arguments (Jan 1976), 26 



 
 

pages plus appendix [I. S. Michaelson and R. Milner (eds. ), 
Automata, Languages and Programming, Edinburgh 
University Press, Edinburgh (1976), 256--284] 
[15] Halstead, R., Multilisp: A Language for Concurrent 
Symbolic Computation ACM Transactions on Programming 
Languages and Systems, Vol 7, No. 4, October 1985 
[16] Walker, E., Floyd, R., Neves, P., Asynchronous remote 
operation execution in distributed systems, 10th International 
Conference on Distributed Computing Systems, Paris, 
France, 1990 
[17] Mercer, C., Rajkumar, R., and Tokuda, H., Applying 
hard real-time technology to multimedia systems. In 
Proceedings of the Workshop on the Role of Real-Time in 
Multimedia/Interactive Computing Systems, November 
1993. 
[18] Stankovic, J., Lu, C., Son, S., Tao, G., The case for 
feedback control real-time scheduling, Proceedings of the 
11th Euromicro Conference on Real-Time Systems,York, 
UK, 1999. 
[19] Jones, M., Roşu, D., Roşu, M., CPU reservations and 
time constraints: efficient, predictable scheduling of 
independent activities, Proceedings of the sixteenth ACM 
symposium on Operating systems principles, Saint Malo, 
France, 1997. 

[20] Liu, C., Layland, J., Scheduling Algorithms for 
Multiprogramming in a Hard-Real-Time Environment, 
Journal of the ACM, New York, USA, 1973. 
[21] Cugola, G. and C. Ghezzi, CJava: Introducing 
concurrent objects in Java, in 4th International Conference 
on Object Oriented Information Systems, 1997. 
[22] Agrawal, G., Acharya, A., and Saltz, J. An 
interprocedural framework for placement of asynchronous 
I/O operations. In Proceedings of the 10th international 
Conference on Supercomputing, Philadelphia, USA, May 
1996. 
[23] Henzinger, T., Kirsch, C., and Matic, S., Schedule-
carrying code. In Proceedings of EMSOFT, Philadelphia, 
USA, October 2003. LNCS 2855, pp. 241--256, Springer, 
2003. 
[24] Farcas, E., Farcas, C., Pree, W., and Templ J., 
Transparent distribution of real-time components based on 
logical execution time, SIGPLAN Notices,  Volume 40 Issue 
7, pp. 31-39, 2005. 
[25] Wang, Y., Saksena, M., Scheduling fixed-priority tasks 
with preemption threshold, Real-Time Computing Systems 
and Applications (RTCSA), Hong Kong, December, 1999. 
[26] Regehr, J., Scheduling Tasks with Mixed Preemption 
Relations for Robustness to Timing Faults, RTSS 2002, 
Austin, USA, December, 2002. 
 

 


