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ABSTRACT 
 In order to enable extensibility, modern query optimizers 
typically leverage a transformation rule based framework. Testing 
individual rule correctness as well as correctness of rule 
interactions is crucial in verifying the functionality of a query 
optimizer. While there has been a lot of work on how to architect 
optimizers for extensibility using a rule based framework, there 
has been relatively little work on how to test such optimizers. In 
this paper we present a framework for testing query 
transformation rules which enables: (a) efficient generation of 
queries that exercise a particular transformation rule or a set of 
rules and (b) efficient execution of corresponding test suites for 
correctness testing. 

Categories and Subject Descriptors 
H.2.4 [Database Systems]: Query Processing 

General Terms 
Algorithms, Measurement, Performance. 

Keywords 
Database Testing, Query Optimization, Transformation rules 

1. INTRODUCTION 
Query optimizers in today’s DBMSs are responsible for obtaining 
a good execution plan for a given query. Since a query optimizer 
plays a crucial role in determining the performance of a query, it 
is very important to rigorously test the optimizer to ensure that it 
functions correctly. There has been extensive work on how to 
architect query optimizers in order to make them extensible (e.g., 
[12][13][16]) using a rule based framework. However, there has 
been relatively little work on how to effectively test such query 
optimizers. It is well recognized that testing is an integral part of 
any development cycle and typically more than 50% of the entire 
development cycle is spent in testing [2].  
Testing the query optimizer has several dimensions which include 
accuracy of cardinality estimation and costing modules, the search 
space of the optimizer etc. In this paper we focus on query 
optimizers that use a rule-based architecture. Examples include 
industrial query optimizers such as IBM Starbust [16], Microsoft 
SQL Server [13], Tandem’s NonStopSQL [7] as well as academic 
prototypes such as the Volcano optimizer [12]. Such optimizers 
use transformation rules as the basic primitive in order to generate 

different alternative plans for a query. The set of transformation 
rules (e.g., join commutativity and associativity, pushing Group-
By below join etc.) used by an optimizer largely determines the 
search space of plans considered by the optimizer and thus is a 
key factor in determining the quality of the final plan. While 
problems related to testing the components of the optimizer such 
as the cardinality estimation and costing modules remain pertinent 
for a rule based optimizer, in this paper we focus on issues related 
to testing the transformation rules. 
One way to broadly categorize the issues that arise in the context 
of rule testing is as follows: 1) Coverage: Ensure that a 
transformation rule has been exercised  during query optimization 
in several different queries. 2) Correctness: Ensure that when a 
transformation rule is exercised for a query, it does not alter the 
results returned when the query is executed. 3) Performance: 
Analyze how the transformation rule impacts the performance of a 
query/workload. In this paper, we focus on the first two aspects, 
namely coverage and correctness. 
From the perspective of rule coverage, it is desirable to have tests 
cases in the form of SQL queries such that when the queries are 
optimized, they exercise all rules. In addition to ensuring that each 
rule is exercised, it can also be important to test that pairs of rules 
(in general, a set of rules) are exercised together in a query – to   
help capture rule interactions. Although the rule coverage problem 
is important, there is little previous work in this area. The state-of-
the-art approach is to use stochastic methods to generate SQL 
queries (e.g. [1][17]) until we find a query that exercises the 
desired rule or rule pair. Such a trial-and-error approach has the 
problem that it can take many trials to even find a single query 
that exercises the given rule or rule pair, and rule coverage testing 
requires finding several such queries. This is compounded by the 
fact that such randomly generated queries tend to be rather 
complex, and thus optimizing the query in each trial can take a 
large amount of time. Another alternative is to build APIs that 
support manual generation of SQL queries [9]; however this 
approach can be too time-consuming and simply does not scale to 
crucial scenarios such as pair wise (or larger) rule interactions..  
We note that in general the above problem of generating a query 
such that a given rule (or set of rules) is exercised, is very 
challenging. This is because it is hard to precisely capture the 
sufficient conditions for a rule to be exercised by the optimizer. 
For example, modern optimizers use pruning steps in the 
optimizer’s search algorithm that discards a rule based on 
constraints or heuristics. As one illustrative example, consider the 
rule that pushes down a Group-By Aggregate over a join [3]. This 
rule is exercised only if certain functional dependencies are 
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guaranteed to hold in the join result (e.g., the Group-By must 
include the joining columns). 
An important contribution of this paper is a technique for query 
generation that can address some of the above limitations. Our 
technique leverages the intuition that for a particular rule to be 
exercised during query optimization, the input logical query tree 
must contain a “pattern” corresponding to that rule ([12][16]). In 
other words, existence of such a pattern in the logical query tree is 
a necessary (but not a sufficient) condition for the rule to the 
exercised. For instance, for the rule that pulls up a Group-By 
operator above a join operator, we know that a necessary 
condition for the rule to be exercised is that the input logical tree 
should contain a join operator with a Group-By operator in one of 
its subtrees. We leverage the above intuition by extending the 
DBMS with a new API that exports such patterns. This in turn, 
enables the query generation method to directly leverage these 
rule patterns while generating the SQL query. Although the above 
technique does not guarantee that the generated query will 
exercise the rule, our experiments indicate that our technique can 
dramatically improve the number of trials (and hence the time) 
required to create test cases for rule coverage.  
Another important scenario is correctness testing of rules. One 
approach for testing the correctness of the rules uses the following 
methodology. For each randomly generated query, check which 
rules were exercised during query optimization. For each such 
rule: (a) execute the original query and obtain the results and (b) 
execute the plan obtained for the original query with the 
corresponding rule turned off (i.e. disabled), and then check if the 
results of the query are identical or not. Naturally, if the results are 
not identical, it indicates a correctness bug. In order to have 
sufficient confidence in the correctness of a rule, we may need to 
perform this validation over several (say k) such randomly 
generated queries for each rule. Since this methodology requires 
executing queries for correctness validation, the time taken to run 
these test suites can be significant. Thus the key challenge in such 
correctness validation is efficiency, i.e. improving the time taken 
to execute the test suites.  
A second contribution of this paper is that we show how to 
significantly reduce the time taken to execute a test suite for 
correctness testing of transformation rules. We exploit the 
following key observations: (a) When a query is optimized, often 
multiple rules are exercised. (b) The cost of a query when a rule is 
turned off can sometimes be much higher than the cost of the 
query when the rule is turned on. We introduce the novel problem 
of test suite compression: Given an initial set of randomly 
generated queries, we identify the best way to map queries to rules 
such that the time taken to run the entire test-suite is minimized 
(while maintaining certain invariants). In this paper, we study one 
version of this problem (where the constraint that the number of 
distinct queries (k) validated for each rule remains the same, we 
discuss another version of the problem in Section 7). We show 
that the test suite compression problem is NP-Hard, and present 
algorithms for it including a constant factor approximation of the 
optimal solution. Our experimental evaluation confirms our 
intuition that the above optimization can indeed help significantly 
reduce the time required for correctness testing of rules. 
In Section 2, we present a brief overview of rule based query 
optimizers and introduce our framework for transformation rule 
testing. In Section 3, we discuss our approach to the query 
generation problem. In Section 4, we introduce the test suite 
compression problem; and present algorithms for it in Section 5. 

We present experimental results in Section 6, discuss extensions 
in Section 7, related work in Section 8, and conclude in Section 9. 

2. PRELIMINARIES 

2.1 Transformation based Query Optimizers 
In this paper we consider query optimizers that use a 
transformation rule based architecture as described in [12] [13]. 
Such a framework has been used to build both industrial query 
optimizers (e.g. Tandem’s NonStop SQL [7] and Microsoft SQL 
Server) as well as optimizers used in academic prototypes (e.g. the 
Volcano optimizer [12] and the Columbia optimizer [4]). In this 
section we give a brief overview of a ruled-based framework for 
query optimization (see [13] for more details). 

Transformation rule-based optimizers use a top-down approach to 
query optimization. The optimizer is initialized with a logical tree 
of relational operators corresponding to the input query. The goal 
of the optimizer is to transform the input logical tree to an 
efficient physical operator tree that can be used to implement the 
query. For this purpose, transformation rules are used to generate 
different alternative plans for executing a query. The set of rules 
that are available to the optimizer essentially determines the 
search space of plans considered by the optimizer and thus is a 
key factor in determining the quality of the final plan. 

There are two main kinds of transformation rules. Exploration 
rules or logical transformation rules, when exercised, transform 
logical operator trees into equivalent logical operator trees. Some 
examples of exploration rules include join commutativity and 
pushing group by below join. Implementation rules or physical 
transformation rules, when exercised, transform logical operator 
trees into hybrid logical/physical trees. Example implementation 
rules include rules that transform a logical join into a physical 
hash join.  

We note that other extensible optimizers such as Starburst [16] 
also leverage the idea of transformation rules during the query 
rewrite phase to generate alternative logical representations of the 
input query. In principle, the techniques described in this paper 
can be extended to such optimizers even though they are not 
based on the Cascades framework.  

2.2 Definitions 
We use the following definitions and notations in the paper: 
Set of transformation rules: We denote the set of transformation 
rules for the optimizer by R = {r1, ... rn}. 
RuleSet for a query: When a query q is optimized, we denote the 
subset of transformation rules that are exercised as RuleSet(q).  
Execution plan and cost: For a given query q, we use Plan(q), 
and Cost(q) to refer to the execution plan chosen by the optimizer 
and its cost respectively. Let R ⊆ R be a set of rules. We denote 
the execution plan and cost of a query q when the set of rules R is 
disabled (i.e. turned off) by Plan(q, ¬R) and Cost(q, ¬R).  

Logical query tree: A logical query tree is a tree of logical 
relational operators where each operator has been instantiated 
with its arguments.  

Figure 1 shows an example of a logical query tree, where the two 
leaf operators Get(T1), Get(T2) refer to accessing relations T1 and 
T2 respectively. Similarly, the join and projection operators also 
contain the respective arguments.  
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2.3 A Framework for Testing Rules 
Since transformation rules are a critical component of the query 
optimizer, testing individual transformation rules and their 
interaction is an important part of testing the overall query 
optimizer. In this paper we assume that we are given as input a 
test database, i.e., the database is fixed. The techniques we present 
are therefore general in the sense that they can be invoked against 
any database.   

There are at least two key aspects to rule testing.  One important 
aspect is from the perspective of rule coverage i.e. we would like 
to have test cases in the form of SQL queries where a given rule 
(or a given set of rules) is exercised. This is important for code 
coverage which can ensure that the code corresponding to the 
rules have been covered. Observe that this does not require 
execution of the query. It relies on optimizing the query and 
requires the ability to track which rules are exercised during query 
optimization.  
A second aspect is correctness testing of the rule. While testing 
cannot in general, prove that a transformation rule has been 
correctly implemented in the DBMS, it is possible to find test 
cases where the rule has not been correctly implemented. One 
methodology for finding such correctness bugs for a rule is to 
check that the results produced by a query when the rule is 
exercised are identical to the results of the same query when the 
rule is not exercised. This requires: (a) The ability to turn on/off a 
given rule during query optimization; (b) Executing the two plans 
(when they are different). By repeating this methodology for 
several different randomly generated queries (e.g. generated via a 
stochastic method), we can increase confidence in the correctness 
of the rule. Unlike the case of code coverage, the queries used for 
validating correctness need to be executed. Thus, efficiency of 
executing the above queries for correctness testing is a key 
challenge. 

 
Figure 2. Overiew of architecture 

In this paper, we describe an initial framework for testing 
transformation rules that can address the above scenarios. The key 

components of our framework are shown in Figure 2. We now 
provide an overview of each of the components. 

Query Optimizer Extensions: We assume a query optimizer with 
support for the following functionality. First, is the ability to track 
which rules are exercised during query optimization. Using this 
extension allows us to determine RuleSet(Q) for any query Q.  

Second, we support the ability to optimize (and execute) a query 
when a given set of transformation rules is turned off. In other 
words, this extension enables obtaining Plan(Q, ¬R) for any Q 
and set of rules R. We note that many existing optimizers may 
already have support for one or both of these extensions.   

Query Generation: The query generation component takes as 
input a set of rules R, and generates a SQL query such that all 
rules in R are exercised when that query is optimized. Such a 
module is useful for both code coverage as well as correctness 
validation. We identify two key modules for query generation. 
The first module, which we refer to as Generate Logical Query 
Tree generates a logical query tree that can potentially exercise a 
given rule or rule pair. This is shown as the shaded box in Figure 
2, and is the focus of Section 3. The second module, which we 
refer to as Generate SQL, takes as input a logical query tree (see 
Figure 1 for an example) and generates a SQL statement 
corresponding to the query tree. We use a module whose 
functionality is similar to one presented in [9], and therefore we 
do not focus on it in this paper. 

Generate Logical Query Tree: Observe that the problem of 
generating a logical query tree such that a given rule or rule pair is 
exercised is non-trivial. Manually generating a logical tree that is 
guaranteed to exercise a rule or rule pair is both difficult and time-
consuming, and does not scale with the number of rules. For 
example, if there are 25 transformation rules, generating test cases 
for all 25C2 rule pairs manually is not feasible. The alternative 
trial-and-error approach of using randomly generated queries (e.g. 
as in [1][17]) is also not adequate since: (a) It is inefficient, i.e., it 
can require many trials before a randomly generated query 
exercises a given rule (or rule pair). (b) Randomly generated 
queries can be hard to interpret. For debugging and 
understandability purposes, it is desirable to generate a query with 
a small number of logical operators such that the rules in R are 
exercised. Thus a key challenge is to efficiently generate a logical 
query tree with a small number of operators that exercises a given 
rule. The efficiency of this module can be measured by the 
number of trials (and/or time) required to find a query that 
exercises the rule. Logical query tree generation for exercising 
rules is the subject of Section 3.  

Finally, note that logical query tree generation module can also be 
extended for generating more complex queries that exercise a 
given rule. To enable such scenarios, the above module exposes 
the ability to add an additional the number of (random) operators 
to an existing logical query tree as a constraint (e.g., generate a 
logical query tree with 10 operators that exercises a given rule). 
For instance, such queries are useful for correctness testing.  

Correctness Testing:  Correctness testing can be performed for 
singleton rules, rule pairs or in general over any subsets of rules. 
In this paper, we focus on singleton rule and rule pairs since these 
are the most fundamental cases that need to be covered. We 
present the discussion below for singleton rules, but the arguments 
carry over to rule pairs as well. To validate correctness of each 
rule, we need to generate k distinct queries, each of which 

Figure 1.  Example of a logical query tree. 

259



 

exercises (at least) that rule. We refer to these queries as the test 
suite for a singleton rule {ri}, denoted by TSi. If there n singleton 
rules, we require k distinct queries for each of the n rules. Thus, 
the overall test suite for all rules is:  TSTS

ni iU ..1=
=  

The Test Suite Generation module generates a test suite as 
described above for a given set of rules (k is a parameter to this 
module). Queries in the test suite can be generated by invoking 
the Query Generation module described previously.  

For a given test suite, the Test Suite Execution module executes 
the test suite as follows. For each query q in TSi, we execute 
Plan(q) and Plan (q, ¬{ri}) (the plan obtained when we disable 
rule ri) and check if the results of executing the two plans are 
identical. Thus, the total cost of executing a test suite is1:  

∑ ∑
= ∈

¬+=
n

i TSiq
irqCostqCostCostTotal

1
}){,()(  

We refer to the above technique of generation and execution of a 
test suite, where k distinct queries are generated and executed for 
each rule independently, as the BASELINE method. Since the 
queries have to be executed, the time taken for the BASELINE 
method can be significant. Thus a key question is whether the 
efficiency of correctness testing can be improved significantly 
while still ensuring that each rule is validated for k distinct 
queries. The Test Suite Compression module (in Figure 2) 
addresses this problem. In particular, the test suite compression 
step identifies a subset TS’ ⊆ TS, while satisfying the constraint 
that TS’ contains for each rule, k distinct queries where that rule 
is exercised. The objective is to minimize the cost of executing the 
test suite thereby substantially improving upon the BASELINE 
method. Test suite compression is the focus of Sections 4 and 5. 

We begin by first discussing the query generation problem in 
Section 3; in particular the logical query tree generation problem.  

3. LOGICAL QUERY TREE GENERATION 
As mentioned earlier, the problem of testing that a rule has been 
exercised can be viewed as a query generation problem: Given a 
transformation rule, we need to generate a SQL query which 
exercises the rule when optimized. In this section, we first 
highlight some of the challenges, and then present our approach to 
the query generation problem. 
The key challenge in generating a query that exercises a particular 
rule is that it is difficult to precisely capture the sufficient 
conditions for the rule to be exercised. In general, the exact 
preconditions necessary for a rule to be exercised can be 
arbitrarily complex. For example, the search algorithm used by 
the optimizer could discard a rule based on constraints/heuristics. 
There could also be cases of rule dependencies, where the 
exercising of one rule occurs only when one or more other rules 
are first exercised. For example, consider the input logical query 
tree: R Join (S LOJ T), where LOJ stands for left outer-join. 
Consider the following two rules: (1) Associativity of Join and 
Outer-join. (2) Join commutativity. We know that in general 

                                                                 
 
1 Note that if Plan(q) and Plan(q, ¬{ri}) are identical, it is not 

necessary to execute the query since the results are guaranteed 
to be the same. 

outer-joins and joins do not commute. However, if the join 
predicate is between R and S, then the first rule can be exercised, 
which results in a logical tree (R Join S) LOJ T. Observe that the 
second rule can now be applied on (R Join S).   
The state-of-the-art approach for query generation (e.g., [1][17]) 
is to keep generating queries using a stochastic process until one 
finds a query that exercises the required transformation rule. Note 
that we can track which optimizer rules actually were exercised 
during query optimization by using the RuleSet interface (Section 
2.2). We note that none of the previous work has however focused 
on generating queries that exercise a certain transformation rule in 
the query optimizer. As discussed earlier, the above trial-and-error 
approach can require many trials before it finds a query that 
exercises the given rule. For instance, consider a transformation 
rule that pulls up a Group-By operator over a left outer-join. 
Obviously, a randomly generated query is not likely to succeed 
unless it happens by chance to include a Group-By and a left 
outer-join in the same query. Thus, the random generation 
approach can require a large number of trials before it finds an 
appropriate query. 
In this section, we study how we can significantly improve upon 
the state-of-the-art for this problem. Our key observation is that 
we can leverage rule patterns that serve as a necessary (although 
not sufficient) condition for a transformation rule to be exercised 
in the query optimizer for the purpose of query generation. In 
most cases, this significantly reduces the number of trials needed 
to find a query that exercises the given rule(s). We present the 
discussion below for the case of a singleton rule. We discuss 
extensions to support rule pairs in Section 3.2.  

3.1 Exploiting Rule Patterns 
Rules in a transformation based optimizer can be in general be 
represented by the triple (Rule Name, Rule Pattern, Substitution) 
[13]. During query optimization, the rule engine checks if the 
input logical tree matches the Rule Pattern. If so, it invokes the 
Substitution function that generates a new logical tree that should 
be included as part of its search. Thus a necessary condition for a 
rule to be exercised is that the logical tree considered during the 
search contains the pattern of the corresponding rule.  

π

⋈

 
Figure 3. Example Rule Patterns 

Figure 3 illustrate examples of rule patterns for two 
transformation rules:  the join commutativity rule, and a rule for 
pulling a Group-By Aggregate above a join operator. 
As the figure indicates, the rule patterns include operators that 
must be present (such as the Join and the GBAgg operator in the 
second example) as well as placeholders for generic operators 
(represented by circles in the patterns). These generic operators 
can match any logical operator. Thus, for the first rule pattern (for 
the join commutativity rule) to be exercised, the input logical 
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query tree that should have a join operator (irrespective of what its 
children are).  
Recollect that the Generate Logical Query Tree module (Section 
2.3) takes as input a rule and outputs a logical query tree. Below, 
we described how this is achieved. We have extended the 
database server with an API through which it returns the rule 
pattern tree for a rule in a XML format. To generate a query that 
exercises a particular transformation rule, the query generation 
module first builds a logical query tree starting with the rule 
pattern and: (a) instantiates actual operators in place of the generic 
operators. For example, for the join commutativity rule, we can 
instantiate each of the generic operators with Get operators. These 
are leaf operators that correspond to accessing base relations. (b) 
Once the operators are instantiated, we select the arguments for 
each operator. For example, the Get operators can be instantiated 
with relations T1 and T2 respectively as their arguments. 
Similarly, the join operator can be instantiated with a join 
predicate such as T1.a = T2.b as its argument. Thus, at the end of 
this step we have generated a valid logical query tree (e.g. a tree 
such the one shown in Figure 1). Finally, the Generate SQL 
module (Section 2.3) is invoked with the above logical query tree 
to generate a valid SQL statement. Note that rule patterns can also 
provide sufficient conditions for implementation rules to be 
exercised. For example, for the hash join implementation rule to 
be exercised, the input pattern would need to include a join 
operator node. Thus, the idea of leveraging rule patterns from the 
optimizer can enable us to automatically generate queries that 
exercise a particular rule. 
As mentioned above, in general, a logical query tree that contains 
a rule pattern is not sufficient to guarantee that the particular rule 
is exercised during optimization. For example, for the rule that 
pulls up the Group-By Aggregate over a join, some additional 
conditions are required to hold (for e.g., the join predicate does 
not reference the aggregate results). However, observe that if such 
constraints are well abstracted in the database engine, they can 
potentially be added as additional preconditions on the input 
pattern and leveraged by the query generation module. Certain 
rules may also require that certain constraints on the schema or 
the data instance hold in order to guarantee that it is exercised; we 
discuss such cases in Section 7. 
Despite the fact that leveraging a rule pattern does not guarantee 
that a rule is exercised, for the set of transformation rules used in 
our experiments (Section 6), we observed that by exploiting the 
basic rule patterns in query generation, we can significantly 
reduce the number of trials required compared to the random 
query generation method.  
Finally, it is interesting to note that if despite the use of the rule 
pattern we are not able to find a query that exercises that rule, it 
could be an indication that the rule is dependent on other rules 
being exercised. We plan to study such handling such rule 
dependencies as part of future work. 

3.2 Extensions for Rule Pairs 
So far, we have focused on the query generation problem for 
singleton rules. In addition to testing single rules, it is also 
important to test pairs (in general, a set) of rules to cover rule 
interactions. In Section 3.1, we outlined how to leverage the rule 
patterns that are used during optimization for query generation. In 
this section, we look at the corresponding problem for rule pairs 
i.e. given a pair of transformation rules (r1, r2) we need to 
generate a SQL query which can exercise both the rules when 

optimized. The rule patterns for individual rules can also be 
leveraged for generating necessary conditions (as in Section 3.1) 
to exercise a pair of rules by using the idea of rule pattern 
composition.  
Consider the two rule patterns shown in Figure 3 for the join 
commutativity rule and the rule for pulling up the Group-By 
Aggregate over a join. In order to generate a query that can 
exercise both the rules, we can combine the rule patterns in the 
following ways: (1) Create a new pattern with a root operator as 
join or UNION and both the initial patterns as the corresponding 
children. (2) Substitute any generic operators in a pattern 
(represented as circles in the patterns in Figure 3) with the other 
pattern to create a composite pattern. 
We have extended the query generation module to handle query 
generation for a pair of rules as follows. We compose the two rule 
patterns as described and generate a query corresponding to each 
of the composite patterns and pick the query with the least 
number of operators that exercises both the rules. Note that rule 
composition captures an important interaction between rules; rule 
r1 is exercised on an expression which is an input to the 
expression on which rule r2 is exercised. Of course, there are 
potentially other interesting patterns of rule interactions. We 
discuss other variants of the query generation problem in Section 
7. 

4. TEST SUITE COMPRESSION 
PROBLEM 
One approach for testing rule correctness is to leverage stochastic 
testing (e.g. as in [1][11][17]). The idea is to generate a complex 
random query that exercises a given rule. We then: 1) Execute the 
original query. 2) Execute the plan obtained for the query with the 
rule turned off. 3) Check if the results of (1) and (2) are the same 
or not. In order to have sufficient confidence in the correctness of 
a rule, we may need to repeat the above validation step for several 
such randomly generated queries. Thus, for each transformation 
rule we need to validate its correctness for k distinct queries 
(where k is an input parameter that we refer to as the test suite 
size). Since the queries generated are potentially complex and 
need to be executed, the time taken to run these test suites can be 
significant. In this section, we formally present the problem of test 
suite compression (first described in Section 2.3), which can 
significantly improve the efficiency of correctness testing. We 
first show that this problem is NP-Hard. In Section 5, we present 
two algorithms for solving the test suite compression problem.  

4.1 Problem Statement 
Let R = {r1, ... rn} denote the set of transformation rules. Let the 
test suite size be k, and let TS denote the overall test suite for all 
rules (Section 2.3), i.e. TS = ∪i TSi. The relationship between the 
rules and the queries in the test suites can be represented by a 
bipartite graph (see Figure 4). An edge between a rule ri and a 
query qj denotes the fact that rule ri is exercised when query qj is 
optimized. Note that a query belonging to TSi (the test suite 
generated for rule ii) can potentially exercise other transformation 
rules as well. By exploiting this information, we can improve the 
efficiency of test suite execution, illustrated by the following 
example. 
Example 1- Consider the case when R = {r1, r2} . Let the rule test 
suite size (k) be 1, and the corresponding test suite for the rules 
are TS1 = {q1} and TS2 = {q2}. Thus, TS = {q1, q2}. Assume that 
r1 is the only rule triggered when q1 is optimized, whereas both 
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rules are triggered when q2 is optimized. Suppose the costs 
associated with the queries are as follows: Cost(q1) = Cost(q2) = 
100. Cost(q1, ¬{r1}) = 180. Cost(q2, ¬{r2}) = 120. Cost(q2, ¬{r1}) 
= 120. 
 The BASELINE method for test suite execution (Section 2.3) 
would be as follows: 

• Execute Plan(q1) and Plan(q1, ¬{r1}). 

• Execute Plan(q2) and Plan(q2, ¬{r2}). 
The cost of the BASELINE method for this example is: 
(100+180) + (100+120) = 500. 
One alternative is to use query q2 for validating both rules. The 
cost of this strategy would include: 

• Execute Plan(q2) and Plan(q2, ¬{r1})  

• Execute Plan(q2,  ¬{r2}) 
Note that we do not need to execute Plan(q2) when validating r2 
since we have executed it when validating r1 (and thus its results 
are already available) Thus, the cost of this strategy is (100+120) 
+ (120) = 340, which is less expensive than the BASELINE 
method. 
From the above example, we note that there are two important 
observations that can be leveraged in test suite compression. First, 
when a query q exercises multiple rules, Plan(q) (with all rules 
enabled) needs to be executed only once. Second, since the 
randomly generated queries can have widely varying costs, we 
can leverage this fact to reduce the cost by choosing queries with 
lower cost. Finally, the cost of the query with the rules disabled 
could be significantly higher than when the rules are enabled (e.g. 
if the rule is responsible for pushing selection below a join, 
disabling that rule can dramatically increase the cost of the query). 
Therefore, ideally this also needs to be factored in during test suite 
compression. We now formally define the test suite compression 
problem. We describe it for the singleton rule case, although the 
formulation extends in the obvious way for the case of rule pairs.  
  

 
 
Test Suite Compression Problem: Consider the bipartite graph 
G = (V,E), where V = (R ∪ TS) and E, the set of edges in the 
graph, is defined as follows: add an edge between a rule ri ∈ R, 
and query q ∈TS if optimizing q exercises rule ri.  Each node ri in 
R is assigned a cost 0, and each node q ∈ TS is assigned a cost 
equal to Cost(q). For each edge (ri, q) assign the cost equal to 
Cost(q, ¬{ri}) i.e. the cost of executing the query q with the rule ri 
disabled (see Figure 4). The test compression problem is to find a 
subgraph G’ = (V’,E’) of the above bipartite graph such that: 

1) V’ = (R ∪ TS’) and TS’ ⊆ TS. In other words, the 
subgraph contains all rules from G and a subset of the 
queries from G.  

2) Each node r ∈ R in G’ has degree equal to the test suite 
size k.  

3) The sum of the edge and node costs in G’ is minimized. 
Intuitively, we intend to find the mapping of queries to rules with 
the minimum cost (condition 3) such that every rule is accounted 
for (condition 1) while ensuring that each rule is mapped to 
exactly k queries which is the size of the test suite (condition 2). 
Note that any subgraph of the bipartite graph that satisfies 
property 1) and 2) is a valid test suite. The node cost for the query 
nodes is used to model the fact that for queries shared between 
multiple rules, the original Plan(q) needs to be executed only 
once. The execution of the test-suite would proceed as follows. 
For each q ∈ TS’, we execute Plan(q) once. For each edge (q, r), 
we execute the Plan(q, ¬{r}) and compare the results with those 
obtained from Plan(q). Thus, the sum of the edge and node costs 
is equal to the cost of executing the test suite. Since the out-degree 
of each node r ∈ R in the subgraph is known to be k, we are 
guaranteed to execute k distinct queries for each rule in the set R. 

4.2 Hardness 
Claim: The Test Suite Compression Problem is NP-Hard. 
Proof: See Appendix A for the proof. We show hardness by 
reducing an arbitrary instance of the Set Cover problem [10] to a 
simplified version of the Test Suite Compression (TSC) problem.  

5. ALGORITHMS FOR TEST SUITE 
COMPRESSION PROBLEM 
In Section 4, we introduced the Test Suite Compression (TSC) 
problem, and why it can be important in significantly improving 
the efficiency of correctness testing of rules. We also showed that 
TSC is computationally hard. In this section, we present two 
algorithms for this problem. In Section 6, we study the 
effectiveness of these two algorithms via an empirical evaluation, 
and compare them with the BASELINE method (described in 
Section 2.3).  

5.1 Applying the Set Cover Heuristic 
In section 4.2 we showed that the test suite compression problem 
is NP-Hard. The reduction (see Appendix A for details) 
demonstrated that the Set Cover problem is isomorphic to a 
simplified version of the test suite compression problem (that uses 
a test suite size k =1). Since good approximation algorithms exist 
for the set cover problem [19], a natural question is whether such 
an algorithm can be leveraged for the test suite compression 
problem. 
Observe that the simplified version of the test suite compression 
problem (that was shown to be isomorphic to the set cover 
problem) uses a test suite size k = 1. To incorporate this parameter 
we therefore adapt an algorithm for the corresponding general 
version of the set cover problem, which is called the Constrained 
Set Multicover problem [19]. The constrained set multicover 
problem takes as input a set U, a number me for each e ∈ U, and a 
set of subsets S of elements in U. Each s ∈ S has a cost C(s). The 
goal is to find the subset with the minimal cost such that:  

• Each element e of U is covered me times 

• Each s ∈ S can be picked at most once 

Figure 4.  Bipartite Graph Representation  
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The test suite compression problem can be mapped to it as 
follows. The set of rules R maps to input set U. For each query q, 
we map RuleSet(q) to the corresponding subset s ∈ S, the node 
cost Cost(q) to the corresponding C(s). For all rules r ∈R, we set 
mr to k. Figure 5 shows how we can adapt the greedy algorithm 
for the Set Multicover problem [19] to compute the set of queries 
with minimal cost such that each rule is mapped to exactly k 
distinct queries in the test suite. The algorithm collects queries to 
be picked in the set TS’. It tracks the set of rules that have already 
been covered in R’. In Step 2 we check if the set of rules that have 
been covered in R’ is complete. Note that this step includes the 
check that each rule in R has been covered k times. In Step 3, we 
compute the “benefit” of each query that has not been picked. We 
define a rule to be remaining if it exercised by less than k of the 
queries already picked. The benefit of a query is defined as the 
number of remaining rules that are covered normalized by the cost 
of the query. For example consider a query q with RuleSet(q)  = 
{r1, r2, r3}. Let the test suite size k be set to 2. Assume that the 
rule r1 has already been covered by 2 queries in the set TS’. The 
remaining rules for query q are thus {r2, r3}. The greedy algorithm 
picks at any point the query with the highest “benefit” (Step 4).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider Example 1 (see Section 4.1) where query q1 exercises 
the rule {r1} and q2 exercises the rules {r1, r2}. Since Cost(q1) = 
Cost(q2), q2 has the higher benefit and as a result the greedy 
algorithm in Figure 5 would find the optimal solution for the 
example. In general, however this algorithm tries to minimize the 
total cost of the query nodes in the subgraph and does not model 
the edge costs (see Section 4) which accounted for the costs of 
executing queries with the corresponding rules disabled. Since, in 
general, the edge costs could be potentially significant, we now 
present another algorithm that takes into account the edge costs.  

5.2 A Constant Factor Approximation 
Algorithm 
In this section, we present a heuristic for the test suite 
compression problem that takes into account the edge costs. We 
also show that our algorithm is a factor 2 approximation of the 
optimal solution to the test suite compression problem. Intuitively, 
the algorithm selects for each rule, the k queries with the lowest 
cost with that rule disabled (i.e. edge cost). Unlike the 
SetMultiCover algorithm (Section 5.1), this algorithm assumes 
independence between the rules, thereby ignoring the benefits 

obtained from potentially sharing queries between the test suites 
of different rules (see Example 1).   
The algorithm (we refer to it as TopKIndependent) is shown in 
Figure 6. For each rule r in the set R, we first obtain the set of all 
queries in TS that exercise rule r. (Step 4). The loop (lines 5-11) 
picks the k queries with the lowest edge cost, i.e. the cost of the 
query when the rule r is disabled. This step is repeated for all the 
rules in the set R.  
Referring once again to Example 1 (Section 4) where q1 exercises 
{r1} and q2 exercises the rules {r1, r2}. Since k is 1, the 
TopKIndependent algorithm would choose the query that has the 
minimum edge cost for each rule. For both the rules, q2 has the 
smaller edge cost when compared to q1. Thus, for Example 1 the 
algorithm in Figure 6 would also find the optimal solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Although the TopKIndependent algorithm ignores query node 
costs, we can show that it provides a solution that is guaranteed to 
be within a factor 2 of the optimal solution. Note that the 
SetMultiCover algorithm, on the other hand does not provide a 
constant factor approximation.  
Claim: TopKIndependent algorithm is a factor 2 approximation 
algorithm for the test suite compression problem. 

Proof: Consider any rule r ∈ R.  For rule r, the TopKIndependent 
algorithm chooses the k queries with the least expensive edge 
costs (i.e. cost of query with rule r disabled). Let us denote this set 
of queries by TS(r). Note that the maximum cost of any solution 
obtained by TopKIndependent over all rules in R cannot exceed: 

                  r}){,()(
)(

∑ ∑
∈ ∈

¬+=
Rr rTSq

qCostqCostMaxCost  

The above (upper bound) occurs when for each rule, there is no 
query chosen for that rule which is shared with any other rule in 
R.   
Now we present a lower bound for any solution to the test suite 
compression problem. This lower bound occurs when: (a) The k 
cheapest queries (in terms of edge costs) are chosen for each rule 
r, and (b) For each rule, all the queries picked for the rule r are 
shared with some other rule.  

Input:  Bipartite Graph G = ((R ∪ TS), E), Test Suite Size k
  

Output: A bipartite graph G’ = ((R  ∪ TS’), E’), a subgraph of G 
with outdegree of each node in R = k 
1. TS’ = {}, R’ = {}, E’ = {} 
2. While (R’ != R) Do 
3.   For each q ∈(TS – TS’), compute  

  Benefit(q) =  number of remaining rules covered / Cost(q) 
4.   Pick q ∈(Q – Q’) with the largest Benefit value 
5.   TS’ = TS’ ∪ {q}; R’ = R’ ∪  RuleSet(q); 
6.    Add edges corresponding to q and the remaining rules it 

covers, to E’. 
7. End While 
8. Return G’ = ((R ∪ TS’),E’) 

Figure 5. Greedy Algorithm based on the Set MultiCover 
problem. 

Input:  Bipartite Graph G = ((R ∪ TS), E),Test Suite Size k  

Output: A bipartite graph G’ = ((R  ∪ TS’), E’), a subgraph of 
G with outdegree of each node in R = k 
1.     TS’ = {}, R’ = {}, E’ = {} 
2.      For each rule r in R Do 
3.        count = 0 
4.        Let W = Subset of queries in TS that includes rule r  

                 in its RuleSet 
5.        While (count < k) Do 
6.           Pick q ∈ W with minimal value Cost(q, ¬{r}) value 
7.           W = W  - {q} 
9.      TS’ = TS’ ∪ {q}; count = count+1 
10.       Add edge corresponding to (r,q) to E’ 
11.    End While 
12.    R’ = R’ ∪  RuleSet(q); 
13. End For 
14. Return  G’ = ((R ∪ TS’),E’) 

Figure 6. TopKIndependent Algorithm  
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Observe that the above cost does not correspond to any valid 
solution since it ignores Cost(q) entirely. However, it is a valid 
lower bound on the cost of any solution.  
Notice that for any rule r and query q, Cost(q) ≤ Cost(q,¬{r}) 
since for a well behaved optimizer disabling a rule can only 
increase the cost of the resulting plan. This is because when a rule 
is disabled, one of the following two possibilities can occur: (1) It 
may not impact the plans considered by the optimizer, in which 
case the resulting plan (and hence the cost) is the same, or (2) It 
can reduce the number of plans considered by the optimizer, in 
which case the cost of the plan chosen can only be higher.  
Now consider the ratio f = (MaxCost / MinCost). Since Cost(q) ≤ 
Cost(q,¬{r}), f ≤ 2. Note that f=2 occurs when Cost(q) = 
Cost(q,¬{r}). Since the optimal solution has a cost higher than 
MinCost, and actual cost of the solution picked by 
TopKIndependent is no higher than MaxCost, we know that the 
solution picked by TopKIndependent has a cost that is within a 
factor of 2 of the optimal solution.  

5.3 Extensions for Rule Pairs 
In this section, we discuss how the algorithms we described in 
Sections 5.1 and 5.2 for the test suite compression problem can be 
extended for testing pair-wise rule interactions. 
The test suite compression problem for testing rule pairs is very 
similar to the original formulation, with the key difference being 
that the input is a set of rule pairs rather than a set of individual 
rules. We denote the set of all rule pairs by P, i.e. P = {{r1, r2}, 
{r1, r3}, …{rn-1, rn}}. Thus, for each element p ∈ P, we need to 
find the mapping of k distinct queries such that the cost of 
executing the test suite is minimized. An example of the bipartite 
graph corresponding to the test suite compression problem for rule 
pairs is shown in Figure 7.  Note that we add an edge between a 
rule node and a query node (q) only if both the corresponding 
rules are exercised when query q was optimized. In the example 
bipartite graph shown in Figure 7, all the queries exercise both 
rule pairs. For an edge between a rule node {ri, rj} and a query q, 
the edge cost is the cost of executing q with both rules disabled 
i.e. Cost(q, ¬{ri,rj}). Thus the cost of executing q1 when both r1 
and r2 are disabled is 150.  

 
 
 
The algorithms presented in Section 5 extend in a straightforward 
manner for the case of rule pairs. However, the main difference is 
that the cost of creating the bipartite graph which is an input to 
both algorithms itself can become significant. Consider a query q 
that exercises five rules. In the original formulation of the 

problem, we need to add five edges to the corresponding rule 
nodes. For the case of pairs, we need to add 5C2 edges 
corresponding to all the pairs of the rules. Recall that the edge 
costs model the cost of turning off a particular pair of rules. In 
general for a query that exercises n rules, we need nC2 invocations 
of the query optimizer to compute the edge costs corresponding to 
that query node. For complex queries, the number of rules 
exercised could potentially be high and thus the cost of building 
the initial bipartite graph could be significantly higher when 
compared to the case of singleton rules. Thus, scalability of the 
algorithms with number of rules becomes a significant issue. 

5.3.1 Exploiting Monotonicity to Reduce Optimizer 
Invocations 
We observe that the increase in the cost of constructing the 
bipartite graph only affects the TopKIndependent algorithm 
(Section 5.2). This is the because the SetMultiCover algorithm 
described in Section 5.1 does not model the edge costs and uses 
only the query node costs as a basis for picking nodes.  
For the TopKIndependent algorithm, we present a technique that 
can help reduce the number of edges for which the cost needs to 
be determined by the algorithm (in Steps 5-10 of Figure 6).  Our 
idea is to exploit the observation that for any query Cost(q) ≤ 
Cost(q, ¬R), where R is any subset of rules in RuleSet(q).  
Suppose for a rule pair p ∈ P the queries that exercise the rule 
pair is TS(p). Our goal is to find the k edges (with lowest cost) 
from p to queries in TS(p). We sort queries in TS(p) in increasing 
order of the original node cost, i.e. by Cost(q). We also maintain a 
priority queue of size k of edges for which we have computed the 
actual cost (by invoking the optimizer). Initially, the priority 
queue is empty. Each time we consider the next edge (say e) from 
TS(p) we check if the node cost corresponding to that edge has a 
higher value than the edge with the kth highest cost in the priority 
queue. If so, we can terminate since we know that the cost of the 
edge e (and all remaining edges for p) must have a higher cost. If 
not, we compute the actual cost and add the edge to the priority 
queue (potentially evicting an existing edge with the highest cost 
to maintain the size of k in the priority queue). Our experimental 
results (Section 6) indicate that this optimization can significantly 
reduce the costs of creating the bipartite graph for testing rule 
pairs. 
The following example illustrates the above optimization. 
Consider the bipartite graph shown in Figure 7 and let the test 
suite size k be 1. For the node {r1, r2}, we need to find the edge 
with minimum cost. We illustrate how we can potentially achieve 
this without having to compute all the edge costs. Consider the set 
of all queries with edges to {r1, r2}. In our case this is {q1, q2, q3}. 
We order the queries in the increasing order of node costs. We 
first compute the edge cost for query q1, i.e. (Cost (q1, ¬{r1, r2}) 
by invoking the query optimizer. As shown in the figure, suppose 
this edge cost is 150 units. Note that the original query cost of 
q2(200) and q3(300) are higher than this value. This implies that 
the corresponding edge costs can only be higher (since disabling a 
pair of rules can only increase the cost of the resulting plan). 
Thus, we can stop enumerating the edges at this point and return 
the current edge (corresponding to q1) as the minimal cost edge.  
In this paper, we have primarily focused on testing single 
transformation rules and the interactions of rule pairs because 
these are the most common scenarios for testing transformation 
rules. We discuss interesting extensions to study as part of future 
work in Section 7. 

Figure 7. Bipartite Graph for Rule Pairs 
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5.4 Summary 
In this section, we presented two algorithms for solving the test 
suite compression problem. We first showed how to leverage the 
greedy heuristic for the SetMultiCover problem (which ignores the 
edge costs). Next we presented the TopKIndependent algorithm 
that ignored the benefits of using the same query for different 
rules (i.e. the query node costs). However, this algorithm 
guarantees a constant factor approximation to the optimal 
solution. We have implemented both these algorithms, and we 
describe results of our experimental comparison in Section 6. 

6. EXPERIMENTS 
We have prototyped the framework described in this paper (see 
Figure 2) on Microsoft SQL Server. In this section, we present the 
results of our experiments for evaluating the effectiveness of the 
techniques presented in this paper. In particular, the goals of our 
experiments are: 

• Compare the efficiency of query generation using rule 
patterns (Section 3) with the randomized query generation 
approach. We do this for singleton rules as well as rule pairs. 

• Compare the effectiveness of the SetMultiCover algorithm 
(Section 5.1) and TopKIndependent algorithm (Section 5.2) 
for the Test Suite Compression problem for both singleton 
rules as well as rule pairs. 

• Study the importance of exploiting monotonicity (Section 
5.3.1) 

6.1 Databases 
As described in Section 2, we are given as input a test database. 
For our experiments, we use tables from the TPC-H [21] database. 
We focus on logical transformation rules (see Section 2.1) in this 
evaluation, these rules are by and large exercised regardless of the 
data size or distribution. We use a set of around 30 logical 
transformation rules of the optimizer (that cover the most 
commonly used operators including selections, joins, outer joins, 
semi-joins, group-by etc.). We have also evaluated our tests on 
other databases with different schemas and sizes, and the results 
are similar to those presented below, so we do not report those 
results here. We defer a more thorough evaluation (that includes 
implementation rules) to future work. 

6.2 Results 
6.2.1 Leveraging Rule Patterns for Query 
Generation  
In our first experiment, we study the impact of rule patterns for 
query generation (see Section 3). We report our results both for 
singleton rules as well as rule pairs.  
Figure 8 shows the number of trials required to generate a query 
for each singleton rule. Observe that our technique of pattern 
based generation of logical query trees (Section 3) is able to 
generate a query that exercises the given rule in a very small 
number of iterations (typically 1 or 2, and never more than 4). 
This is a significant improvement relative to random query 
generation, where generating for certain rules it takes close to 40 
attempts before a query which exercises that rule can be 
generated. For the entire set of 30 rules, the total number of trials 
for RANDOM is 234 whereas for PATTERN it is 38. 

 
 
 
The difference in efficiency between RANDOM and PATTERN 
is even more significant for rule pairs, as can be seen in Figure 9. 
Note that the y-axis uses a logarithmic scale. We show the results 
when the number of rules (n) = 15, 30, and therefore number of 
rule pairs = 15C2 and 30C2 respectively. For n=15, RANDOM 
requires 1187 trials, whereas PATTERN requires only 383 trials. 
For n=30, PATTERN shows a 13x improvement (RANDOM 
requires over 13,000 trials whereas PATTERN requires less than 
1,000 trials). This is because in general, the chance that a query 
generated using a random generation procedure exercises a set of 
rules drops rapidly as the cardinality of that set increases. For 
example, we observe rule pairs for which it takes close to 100 
trials to generate a valid query. On the other hand, with 
PATTERN, most queries were again generated within 1 or 2 
trials, and the maximum number of trials we observed for a rule 
pair was 5.  

 
 
Figure 10 shows the time required to generate the queries for the 
same data points as in Figure 9 (once again the y-axis uses a log 
scale). This figure shows that the efficiency of PATTERN over 
RANDOM in number of trials also extends directly to a reduction 
in the time required to generate the test cases.  
Together, these results clearly show the importance of rule pattern 
based query generation for singleton rules as well as rule pairs. 
 

Figure 8. Random vs. Pattern based generation for 
singleton rules. 

Figure 9. Random vs. Pattern based generation for rule pairs. 

265



 

 
 

6.2.2 Test Suite Compression 
Recall that the test suite compression problem (presented in 
Section 4) is important for the efficiency of correctness testing of 
rules. In this experiment we compare the three approaches for the 
test suite compression problem: BASELINE (Section 2.2); 
SetMultiCover (Section 5.1), which we refer to as SMC in the 
graphs; and TopKIndependent (Section 5.2), which we refer to as 
TOPK in the graphs (we use a test suite size k of 10). We show 
results for singleton rule as well as rule pairs. Note that for all 
graphs in this section, we use a log scale for the y-axis, which 
represents the total cost (we use the optimizer estimated cost) of 
the solution, as the number of rules is varied.  

 
 
For singleton rules (see Figure 11), we observe that both SMC and 
TOPK obtain solutions that are significantly better than 
BASELINE (anywhere between one and three orders of 
magnitude). This shows that unlike BASELINE, both SMC and 
TOPK are able to take advantage of using a single query for 
validating multiple rules.  
For the case of rule pairs (see Figure 12) however, the results are 
somewhat different. While TOPK continues to produce the lowest 
cost solutions, SMC’s solution vary between good to significantly 
worse than BASELINE. The reason for this is that SMC does not 
take into account the edge costs (i.e., the cost of a query when a 
set of rules is disabled). Therefore in certain cases, it selects 
queries that have low cost when optimized with all rules, but 
whose cost is significantly higher when certain rule pairs are 
turned off.  We observe that although this phenomenon occurs 
even in the singleton rule case, it is much more pronounced in the 
case of rule pairs since there are many more opportunities for such 

queries to arise. On the other hand since TOPK always picks the k 
edges with lowest cost, it is more robust to this problem when 
compared to SMC. 

 
 
In our next experiment, we fix the number of rules n=15 (and thus 
the number of rule pairs to 15C2), and vary k, the test suite size. 
The result of this experiment is shown in Figure 13. We see that 
TOPK is again the best algorithm across all values of k. We note 
that for very low values of k, (e.g. k=1) SMC produces good 
solutions, but at larger values of k, its quality drops significantly. 
Once again, this is due to the fact that as k increases, it becomes 
more likely to find queries where turning off a rule pair causes the 
cost to rise sharply (this cost is ignored by SMC).  

 
 
 

 
 

Figure 11. Test suite compression for singleton rules. 

Figure 12. Test suite compression for rule pairs. 

Figure 13. Impact of varying the test suit size on 
quality of solution. 

Figure 14.  Exploiting Monotonicity  

Figure 10. Random vs. Pattern based generation for rule pairs. 
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In our final experiment, we measure the importance of exploiting 
monotonicity for the TOPK algorithm (see Section 5.3.1). Recall 
that this optimization can potentially save the algorithm from 
making a large number of invocations of the query optimizer to 
compute the edge costs. Figure 14 shows the impact of using this 
optimization for the case of rule pairs. We see that exploiting 
monotonicity saves between a factor of 6x to 9x of the optimizer 
calls without affecting the actual quality of the result (i.e., it is a 
sound technique). 
From these experiments we see that TOPK is consistently the best 
approach. When coupled with the observation that TOPK is 
guaranteed to be a factor 2 approximation (Section 5.2) of the 
optimal solution, we conclude that TOPK is an attractive approach 
for correctness testing. 

7. DISCUSSION 
In this paper we outlined a framework for testing transformation 
rules. We presented techniques for query generation (Section 3) 
for evaluating code coverage of rules as well as techniques for 
optimizing the execution of test suites (Section 5) for validating 
the correctness of rules. In this section, we discuss some 
interesting extensions and potential directions for future work for 
rule testing. 
Variants of Query Generation Problem: The query generation 
problem as studied in this paper was as follows: Given a rule (or a 
pair of rules), generate a SQL query such that the rule (or rule 
pair) is exercised. While tracking if a rule is exercised is indeed 
important, note that a rule that is exercised may not influence the 
final plan choice of the optimizer. Intuitively, a rule is relevant for 
a query if turning off the rule results in the optimizer picking a 
different plan. It is interesting to study the following variant of the 
query generation problem: Given a rule, generate a SQL query 
such that the rule is relevant for the query.  
In Section 3.2, we looked at rule composition for rule pairs which 
captures an important interaction between rules; rule r1 is 
exercised on an expression which is an input to the expression on 
which rule r2 is exercised. Similarly, there are other potential 
definitions of rule interactions, for example a rule r2 is exercised 
on an expression which was obtained as a result of exercising rule 
r1. We intend to extend the query generation techniques to handle 
such variants as part of future work. 
In this paper we assume that we are given as input a database, i.e., 
the database is fixed. While this assumption is reasonable for a 
large class of transformation rules, there are certain rules whose 
exercising is dependent on the properties of the schema as well as 
the database instance. For example, consider a transformation rule 
that optimizes star join queries. For this rule to be exercised, 
certain foreign key constraints must be defined in the schema. In 
order to capture such rules, it may be necessary to augment our 
query generation module to modify the schema and/or the 
database instance. 
Variants of Test-Suite Compression Problem: We introduced 
the test-suite compression problem in Section 4.1. Given the 
original test-suite, the problem is to find the least-cost mapping of 
queries to rules while preserving the invariant that each rule is 
mapped to k distinct queries. Note that in this version, we can 
potentially reuse queries for validating different rules. A stronger 
invariant is one that still preserves all the distinct queries in the 
original test suite (i.e. there is no sharing of queries across rules). 
The corresponding problem then is to find the least-cost mapping 

of queries to rules such that each query in the original test suite is 
mapped to exactly one rule. We can show that this problem 
reduces to bipartite matching and thus can be solved efficiently; 
we omit details due to lack of space. 

8. RELATED WORK 
The architecture of a transformation rule based framework for 
query optimization is described in detail in [12]. Transformation 
rules have been adopted in many commercial systems including 
Tandem’s Non-Stop SQL [7], IBM DB2 [16] and Microsoft SQL 
Server [13].The authors in [11] present an overview of issues 
related to testing a commercial query optimizer. One of the 
earliest papers to talk about query optimizer testing is [18]; it 
focuses on tools that can help generate data having certain 
characteristics (such as correlations between attributes) as well as 
generate queries whose join graph has certain properties. 
A stochastic testing scheme for SQL is described in [17]. They 
present a tool (RAGS) in order to generate random complex SQL 
queries that are valid and use it for stress testing the SQL parser 
and to check if the results of these queries are the same across 
different database systems. The work in [1] extends the random 
query generator using genetic algorithms to ensure certain 
properties of the generated queries (such as nonempty results). 
There has been some recent work on the problem of query 
generation [6][5][15], this work is primarily concerned with 
generating queries and database instances such that certain 
cardinality constraints (e.g. the cardinality of a particular join 
result is 1000) are satisfied. None of the previous work on query 
generation has been concerned with generating queries such that 
certain transformation rules are exercised. 
The work in [9] describes an interface that can generate a SQL 
tree from a logical expression (corresponding to the Generate 
SQL component in Figure 2). It is largely to facilitate the manual 
creation of unit tests, where the developer can design a particular 
logical tree and then use the techniques in [9] to generate the 
corresponding SQL. We note that the techniques in [9] do not 
address how to generate an appropriate logical tree for generating 
queries that exercise certain rules. While we use a similar 
component as part of our query generation module, our idea of 
leveraging rule patterns from the optimizer engine and rule 
composition is the key difference that enables us to efficiently 
generate queries that exercise a particular rule (or rule pair). 
There has been previous work on the problem of efficiently 
executing test runs for database applications [14] which also study 
algorithms to minimize the total time to execute the tests. For the 
problem setting in [14], the key point was carefully factoring the 
cost of resetting the state of the database, which is not relevant for 
the problem of executing test suites that is studied in this paper. 
Finally, while there has been previous work on compressing 
workloads [8][20], this has been in the context of physical 
database design. The aim is to obtain a subset of queries from the 
original workload such that the physical database design for the 
compressed workload is similar to the physical database design 
that would have been generated for the original workload. Since 
the compression techniques are used are specific to the problem of 
physical database design, they are not applicable to our problem 
of test suite compression. 

9. CONCLUSION 
Transformation rules play a crucial part in the ability of modern 
query optimizers to find a good query execution plan. Despite 
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their obvious importance there has been relatively little work 
focused on testing rule based query optimizers. In this paper, we 
present an initial framework for testing transformation rules. We 
show how to leverage rule patterns for efficient query generation 
to generate test cases that exercise specific rules. We also 
introduce the novel problem of test suite compression and present 
a solution that can significantly reduce the time required for 
correctness testing of these rules. As part of future work we intend 
to extend our framework to efficiently test rule interactions 
beyond rule pairs and also examine issues in testing other 
components of the query optimizer. 
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APPENDIX A 
Claim: The Test Suite Compression Problem (Section 4.1) is NP-
Hard. 
Proof: We show hardness by reducing an arbitrary instance of the 
Set Cover problem [10] to a simplified version of the Test Suite 
Compression (TSC) problem. Consider a simplified version of the 
TSC problem (we refer to it as S-TSC) where the edge and the 
query node weights are assigned the same unit weight and the test 
suite size k is 1. Observe that any valid solution for S-TSC has the 
following characteristics. Since we require every rule node to be 
part of the output subgraph, and k=1, there are exactly |R| edges 
in the subgraph, and hence total cost of the edges is |R|. Thus, 
finding the lowest cost solution in S-TSC is equivalent to 
minimizing |TS’|, i.e. finding the smallest subset of queries in TS 
that results in exercising each rule.  
We now reduce the Set Cover problem to S-TSC. The Set Cover 
problem takes as input a set U and a set S of subsets of U. The 
goal is to find the smallest subset of S that covers all the elements 
in U. We can map an arbitrary instance of the Set Cover problem 
to the S-TSC problem as follows.  The set U maps to the set of 
rules R. Thus, each element s ∈ S maps to a subset of the rules. 
Recall that RuleSet(q) (Section 2.2) denotes the set of rules that 
are exercised when query q is optimized. For each s ∈ S, we 
generate a corresponding query q such that RuleSet(q) = s. This 
can be done as follows. Note that for each individual rule r, we 
can generate a query that exercises rule r (e.g. using the method 
described in Section 3). Therefore, we can then generate one 
query expression for each rule in s and construct a single query 
that is a UNION of each of the individual query expressions 
(including additional NULL columns to make the expressions 
union-compatible if required). Observe that by this construction 
the UNION query that is guaranteed to exercise all the rules in s. 
The set of query nodes in TS is the union of all queries generated 
in this manner. We add edges between a query q in TS and the 
nodes corresponding to RuleSet(q) in R.  
From the above construction, it is easy to see that Set Cover for U, 
S) is isomorphic to the S-TSC problem. Thus S-TSC is NP-Hard. 
Since S-TSC is a strict simplification of TSC, we conclude that 
the TSC problem is NP-Hard.
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