

A Framework for Testing Query Transformation Rules

Hicham G. Elmongui*
Purdue University

elmongui@cs.purdue.edu

Vivek Narasayya
Microsoft Research

viveknar@microsoft.com

Ravi Ramamurthy

 Microsoft Research
ravirama@microsoft.com

ABSTRACT
 In order to enable extensibility, modern query optimizers
typically leverage a transformation rule based framework. Testing
individual rule correctness as well as correctness of rule
interactions is crucial in verifying the functionality of a query
optimizer. While there has been a lot of work on how to architect
optimizers for extensibility using a rule based framework, there
has been relatively little work on how to test such optimizers. In
this paper we present a framework for testing query
transformation rules which enables: (a) efficient generation of
queries that exercise a particular transformation rule or a set of
rules and (b) efficient execution of corresponding test suites for
correctness testing.

Categories and Subject Descriptors
H.2.4 [Database Systems]: Query Processing

General Terms
Algorithms, Measurement, Performance.

Keywords
Database Testing, Query Optimization, Transformation rules

1. INTRODUCTION
Query optimizers in today’s DBMSs are responsible for obtaining
a good execution plan for a given query. Since a query optimizer
plays a crucial role in determining the performance of a query, it
is very important to rigorously test the optimizer to ensure that it
functions correctly. There has been extensive work on how to
architect query optimizers in order to make them extensible (e.g.,
[12][13][16]) using a rule based framework. However, there has
been relatively little work on how to effectively test such query
optimizers. It is well recognized that testing is an integral part of
any development cycle and typically more than 50% of the entire
development cycle is spent in testing [2].
Testing the query optimizer has several dimensions which include
accuracy of cardinality estimation and costing modules, the search
space of the optimizer etc. In this paper we focus on query
optimizers that use a rule-based architecture. Examples include
industrial query optimizers such as IBM Starbust [16], Microsoft
SQL Server [13], Tandem’s NonStopSQL [7] as well as academic
prototypes such as the Volcano optimizer [12]. Such optimizers
use transformation rules as the basic primitive in order to generate

different alternative plans for a query. The set of transformation
rules (e.g., join commutativity and associativity, pushing Group-
By below join etc.) used by an optimizer largely determines the
search space of plans considered by the optimizer and thus is a
key factor in determining the quality of the final plan. While
problems related to testing the components of the optimizer such
as the cardinality estimation and costing modules remain pertinent
for a rule based optimizer, in this paper we focus on issues related
to testing the transformation rules.
One way to broadly categorize the issues that arise in the context
of rule testing is as follows: 1) Coverage: Ensure that a
transformation rule has been exercised during query optimization
in several different queries. 2) Correctness: Ensure that when a
transformation rule is exercised for a query, it does not alter the
results returned when the query is executed. 3) Performance:
Analyze how the transformation rule impacts the performance of a
query/workload. In this paper, we focus on the first two aspects,
namely coverage and correctness.
From the perspective of rule coverage, it is desirable to have tests
cases in the form of SQL queries such that when the queries are
optimized, they exercise all rules. In addition to ensuring that each
rule is exercised, it can also be important to test that pairs of rules
(in general, a set of rules) are exercised together in a query – to
help capture rule interactions. Although the rule coverage problem
is important, there is little previous work in this area. The state-of-
the-art approach is to use stochastic methods to generate SQL
queries (e.g. [1][17]) until we find a query that exercises the
desired rule or rule pair. Such a trial-and-error approach has the
problem that it can take many trials to even find a single query
that exercises the given rule or rule pair, and rule coverage testing
requires finding several such queries. This is compounded by the
fact that such randomly generated queries tend to be rather
complex, and thus optimizing the query in each trial can take a
large amount of time. Another alternative is to build APIs that
support manual generation of SQL queries [9]; however this
approach can be too time-consuming and simply does not scale to
crucial scenarios such as pair wise (or larger) rule interactions..
We note that in general the above problem of generating a query
such that a given rule (or set of rules) is exercised, is very
challenging. This is because it is hard to precisely capture the
sufficient conditions for a rule to be exercised by the optimizer.
For example, modern optimizers use pruning steps in the
optimizer’s search algorithm that discards a rule based on
constraints or heuristics. As one illustrative example, consider the
rule that pushes down a Group-By Aggregate over a join [3]. This
rule is exercised only if certain functional dependencies are

* Work done while visiting Microsoft Research. The author is also

affiliated with Alexandria University, Egypt.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’09, June 29-July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06…$5.00.

257

guaranteed to hold in the join result (e.g., the Group-By must
include the joining columns).
An important contribution of this paper is a technique for query
generation that can address some of the above limitations. Our
technique leverages the intuition that for a particular rule to be
exercised during query optimization, the input logical query tree
must contain a “pattern” corresponding to that rule ([12][16]). In
other words, existence of such a pattern in the logical query tree is
a necessary (but not a sufficient) condition for the rule to the
exercised. For instance, for the rule that pulls up a Group-By
operator above a join operator, we know that a necessary
condition for the rule to be exercised is that the input logical tree
should contain a join operator with a Group-By operator in one of
its subtrees. We leverage the above intuition by extending the
DBMS with a new API that exports such patterns. This in turn,
enables the query generation method to directly leverage these
rule patterns while generating the SQL query. Although the above
technique does not guarantee that the generated query will
exercise the rule, our experiments indicate that our technique can
dramatically improve the number of trials (and hence the time)
required to create test cases for rule coverage.
Another important scenario is correctness testing of rules. One
approach for testing the correctness of the rules uses the following
methodology. For each randomly generated query, check which
rules were exercised during query optimization. For each such
rule: (a) execute the original query and obtain the results and (b)
execute the plan obtained for the original query with the
corresponding rule turned off (i.e. disabled), and then check if the
results of the query are identical or not. Naturally, if the results are
not identical, it indicates a correctness bug. In order to have
sufficient confidence in the correctness of a rule, we may need to
perform this validation over several (say k) such randomly
generated queries for each rule. Since this methodology requires
executing queries for correctness validation, the time taken to run
these test suites can be significant. Thus the key challenge in such
correctness validation is efficiency, i.e. improving the time taken
to execute the test suites.
A second contribution of this paper is that we show how to
significantly reduce the time taken to execute a test suite for
correctness testing of transformation rules. We exploit the
following key observations: (a) When a query is optimized, often
multiple rules are exercised. (b) The cost of a query when a rule is
turned off can sometimes be much higher than the cost of the
query when the rule is turned on. We introduce the novel problem
of test suite compression: Given an initial set of randomly
generated queries, we identify the best way to map queries to rules
such that the time taken to run the entire test-suite is minimized
(while maintaining certain invariants). In this paper, we study one
version of this problem (where the constraint that the number of
distinct queries (k) validated for each rule remains the same, we
discuss another version of the problem in Section 7). We show
that the test suite compression problem is NP-Hard, and present
algorithms for it including a constant factor approximation of the
optimal solution. Our experimental evaluation confirms our
intuition that the above optimization can indeed help significantly
reduce the time required for correctness testing of rules.
In Section 2, we present a brief overview of rule based query
optimizers and introduce our framework for transformation rule
testing. In Section 3, we discuss our approach to the query
generation problem. In Section 4, we introduce the test suite
compression problem; and present algorithms for it in Section 5.

We present experimental results in Section 6, discuss extensions
in Section 7, related work in Section 8, and conclude in Section 9.

2. PRELIMINARIES

2.1 Transformation based Query Optimizers
In this paper we consider query optimizers that use a
transformation rule based architecture as described in [12] [13].
Such a framework has been used to build both industrial query
optimizers (e.g. Tandem’s NonStop SQL [7] and Microsoft SQL
Server) as well as optimizers used in academic prototypes (e.g. the
Volcano optimizer [12] and the Columbia optimizer [4]). In this
section we give a brief overview of a ruled-based framework for
query optimization (see [13] for more details).

Transformation rule-based optimizers use a top-down approach to
query optimization. The optimizer is initialized with a logical tree
of relational operators corresponding to the input query. The goal
of the optimizer is to transform the input logical tree to an
efficient physical operator tree that can be used to implement the
query. For this purpose, transformation rules are used to generate
different alternative plans for executing a query. The set of rules
that are available to the optimizer essentially determines the
search space of plans considered by the optimizer and thus is a
key factor in determining the quality of the final plan.

There are two main kinds of transformation rules. Exploration
rules or logical transformation rules, when exercised, transform
logical operator trees into equivalent logical operator trees. Some
examples of exploration rules include join commutativity and
pushing group by below join. Implementation rules or physical
transformation rules, when exercised, transform logical operator
trees into hybrid logical/physical trees. Example implementation
rules include rules that transform a logical join into a physical
hash join.

We note that other extensible optimizers such as Starburst [16]
also leverage the idea of transformation rules during the query
rewrite phase to generate alternative logical representations of the
input query. In principle, the techniques described in this paper
can be extended to such optimizers even though they are not
based on the Cascades framework.

2.2 Definitions
We use the following definitions and notations in the paper:
Set of transformation rules: We denote the set of transformation
rules for the optimizer by R = {r1, ... rn}.
RuleSet for a query: When a query q is optimized, we denote the
subset of transformation rules that are exercised as RuleSet(q).
Execution plan and cost: For a given query q, we use Plan(q),
and Cost(q) to refer to the execution plan chosen by the optimizer
and its cost respectively. Let R ⊆ R be a set of rules. We denote
the execution plan and cost of a query q when the set of rules R is
disabled (i.e. turned off) by Plan(q, ¬R) and Cost(q, ¬R).

Logical query tree: A logical query tree is a tree of logical
relational operators where each operator has been instantiated
with its arguments.

Figure 1 shows an example of a logical query tree, where the two
leaf operators Get(T1), Get(T2) refer to accessing relations T1 and
T2 respectively. Similarly, the join and projection operators also
contain the respective arguments.

258

2.3 A Framework for Testing Rules
Since transformation rules are a critical component of the query
optimizer, testing individual transformation rules and their
interaction is an important part of testing the overall query
optimizer. In this paper we assume that we are given as input a
test database, i.e., the database is fixed. The techniques we present
are therefore general in the sense that they can be invoked against
any database.

There are at least two key aspects to rule testing. One important
aspect is from the perspective of rule coverage i.e. we would like
to have test cases in the form of SQL queries where a given rule
(or a given set of rules) is exercised. This is important for code
coverage which can ensure that the code corresponding to the
rules have been covered. Observe that this does not require
execution of the query. It relies on optimizing the query and
requires the ability to track which rules are exercised during query
optimization.
A second aspect is correctness testing of the rule. While testing
cannot in general, prove that a transformation rule has been
correctly implemented in the DBMS, it is possible to find test
cases where the rule has not been correctly implemented. One
methodology for finding such correctness bugs for a rule is to
check that the results produced by a query when the rule is
exercised are identical to the results of the same query when the
rule is not exercised. This requires: (a) The ability to turn on/off a
given rule during query optimization; (b) Executing the two plans
(when they are different). By repeating this methodology for
several different randomly generated queries (e.g. generated via a
stochastic method), we can increase confidence in the correctness
of the rule. Unlike the case of code coverage, the queries used for
validating correctness need to be executed. Thus, efficiency of
executing the above queries for correctness testing is a key
challenge.

Figure 2. Overiew of architecture

In this paper, we describe an initial framework for testing
transformation rules that can address the above scenarios. The key

components of our framework are shown in Figure 2. We now
provide an overview of each of the components.

Query Optimizer Extensions: We assume a query optimizer with
support for the following functionality. First, is the ability to track
which rules are exercised during query optimization. Using this
extension allows us to determine RuleSet(Q) for any query Q.

Second, we support the ability to optimize (and execute) a query
when a given set of transformation rules is turned off. In other
words, this extension enables obtaining Plan(Q, ¬R) for any Q
and set of rules R. We note that many existing optimizers may
already have support for one or both of these extensions.

Query Generation: The query generation component takes as
input a set of rules R, and generates a SQL query such that all
rules in R are exercised when that query is optimized. Such a
module is useful for both code coverage as well as correctness
validation. We identify two key modules for query generation.
The first module, which we refer to as Generate Logical Query
Tree generates a logical query tree that can potentially exercise a
given rule or rule pair. This is shown as the shaded box in Figure
2, and is the focus of Section 3. The second module, which we
refer to as Generate SQL, takes as input a logical query tree (see
Figure 1 for an example) and generates a SQL statement
corresponding to the query tree. We use a module whose
functionality is similar to one presented in [9], and therefore we
do not focus on it in this paper.

Generate Logical Query Tree: Observe that the problem of
generating a logical query tree such that a given rule or rule pair is
exercised is non-trivial. Manually generating a logical tree that is
guaranteed to exercise a rule or rule pair is both difficult and time-
consuming, and does not scale with the number of rules. For
example, if there are 25 transformation rules, generating test cases
for all 25C2 rule pairs manually is not feasible. The alternative
trial-and-error approach of using randomly generated queries (e.g.
as in [1][17]) is also not adequate since: (a) It is inefficient, i.e., it
can require many trials before a randomly generated query
exercises a given rule (or rule pair). (b) Randomly generated
queries can be hard to interpret. For debugging and
understandability purposes, it is desirable to generate a query with
a small number of logical operators such that the rules in R are
exercised. Thus a key challenge is to efficiently generate a logical
query tree with a small number of operators that exercises a given
rule. The efficiency of this module can be measured by the
number of trials (and/or time) required to find a query that
exercises the rule. Logical query tree generation for exercising
rules is the subject of Section 3.

Finally, note that logical query tree generation module can also be
extended for generating more complex queries that exercise a
given rule. To enable such scenarios, the above module exposes
the ability to add an additional the number of (random) operators
to an existing logical query tree as a constraint (e.g., generate a
logical query tree with 10 operators that exercises a given rule).
For instance, such queries are useful for correctness testing.

Correctness Testing: Correctness testing can be performed for
singleton rules, rule pairs or in general over any subsets of rules.
In this paper, we focus on singleton rule and rule pairs since these
are the most fundamental cases that need to be covered. We
present the discussion below for singleton rules, but the arguments
carry over to rule pairs as well. To validate correctness of each
rule, we need to generate k distinct queries, each of which

Figure 1. Example of a logical query tree.

259

exercises (at least) that rule. We refer to these queries as the test
suite for a singleton rule {ri}, denoted by TSi. If there n singleton
rules, we require k distinct queries for each of the n rules. Thus,
the overall test suite for all rules is: TSTS

ni iU ..1=
=

The Test Suite Generation module generates a test suite as
described above for a given set of rules (k is a parameter to this
module). Queries in the test suite can be generated by invoking
the Query Generation module described previously.

For a given test suite, the Test Suite Execution module executes
the test suite as follows. For each query q in TSi, we execute
Plan(q) and Plan (q, ¬{ri}) (the plan obtained when we disable
rule ri) and check if the results of executing the two plans are
identical. Thus, the total cost of executing a test suite is1:

∑ ∑
= ∈

¬+=
n

i TSiq
irqCostqCostCostTotal

1
}){,()(

We refer to the above technique of generation and execution of a
test suite, where k distinct queries are generated and executed for
each rule independently, as the BASELINE method. Since the
queries have to be executed, the time taken for the BASELINE
method can be significant. Thus a key question is whether the
efficiency of correctness testing can be improved significantly
while still ensuring that each rule is validated for k distinct
queries. The Test Suite Compression module (in Figure 2)
addresses this problem. In particular, the test suite compression
step identifies a subset TS’ ⊆ TS, while satisfying the constraint
that TS’ contains for each rule, k distinct queries where that rule
is exercised. The objective is to minimize the cost of executing the
test suite thereby substantially improving upon the BASELINE
method. Test suite compression is the focus of Sections 4 and 5.

We begin by first discussing the query generation problem in
Section 3; in particular the logical query tree generation problem.

3. LOGICAL QUERY TREE GENERATION
As mentioned earlier, the problem of testing that a rule has been
exercised can be viewed as a query generation problem: Given a
transformation rule, we need to generate a SQL query which
exercises the rule when optimized. In this section, we first
highlight some of the challenges, and then present our approach to
the query generation problem.
The key challenge in generating a query that exercises a particular
rule is that it is difficult to precisely capture the sufficient
conditions for the rule to be exercised. In general, the exact
preconditions necessary for a rule to be exercised can be
arbitrarily complex. For example, the search algorithm used by
the optimizer could discard a rule based on constraints/heuristics.
There could also be cases of rule dependencies, where the
exercising of one rule occurs only when one or more other rules
are first exercised. For example, consider the input logical query
tree: R Join (S LOJ T), where LOJ stands for left outer-join.
Consider the following two rules: (1) Associativity of Join and
Outer-join. (2) Join commutativity. We know that in general

1 Note that if Plan(q) and Plan(q, ¬{ri}) are identical, it is not

necessary to execute the query since the results are guaranteed
to be the same.

outer-joins and joins do not commute. However, if the join
predicate is between R and S, then the first rule can be exercised,
which results in a logical tree (R Join S) LOJ T. Observe that the
second rule can now be applied on (R Join S).
The state-of-the-art approach for query generation (e.g., [1][17])
is to keep generating queries using a stochastic process until one
finds a query that exercises the required transformation rule. Note
that we can track which optimizer rules actually were exercised
during query optimization by using the RuleSet interface (Section
2.2). We note that none of the previous work has however focused
on generating queries that exercise a certain transformation rule in
the query optimizer. As discussed earlier, the above trial-and-error
approach can require many trials before it finds a query that
exercises the given rule. For instance, consider a transformation
rule that pulls up a Group-By operator over a left outer-join.
Obviously, a randomly generated query is not likely to succeed
unless it happens by chance to include a Group-By and a left
outer-join in the same query. Thus, the random generation
approach can require a large number of trials before it finds an
appropriate query.
In this section, we study how we can significantly improve upon
the state-of-the-art for this problem. Our key observation is that
we can leverage rule patterns that serve as a necessary (although
not sufficient) condition for a transformation rule to be exercised
in the query optimizer for the purpose of query generation. In
most cases, this significantly reduces the number of trials needed
to find a query that exercises the given rule(s). We present the
discussion below for the case of a singleton rule. We discuss
extensions to support rule pairs in Section 3.2.

3.1 Exploiting Rule Patterns
Rules in a transformation based optimizer can be in general be
represented by the triple (Rule Name, Rule Pattern, Substitution)
[13]. During query optimization, the rule engine checks if the
input logical tree matches the Rule Pattern. If so, it invokes the
Substitution function that generates a new logical tree that should
be included as part of its search. Thus a necessary condition for a
rule to be exercised is that the logical tree considered during the
search contains the pattern of the corresponding rule.

π

⋈

Figure 3. Example Rule Patterns

Figure 3 illustrate examples of rule patterns for two
transformation rules: the join commutativity rule, and a rule for
pulling a Group-By Aggregate above a join operator.
As the figure indicates, the rule patterns include operators that
must be present (such as the Join and the GBAgg operator in the
second example) as well as placeholders for generic operators
(represented by circles in the patterns). These generic operators
can match any logical operator. Thus, for the first rule pattern (for
the join commutativity rule) to be exercised, the input logical

260

query tree that should have a join operator (irrespective of what its
children are).
Recollect that the Generate Logical Query Tree module (Section
2.3) takes as input a rule and outputs a logical query tree. Below,
we described how this is achieved. We have extended the
database server with an API through which it returns the rule
pattern tree for a rule in a XML format. To generate a query that
exercises a particular transformation rule, the query generation
module first builds a logical query tree starting with the rule
pattern and: (a) instantiates actual operators in place of the generic
operators. For example, for the join commutativity rule, we can
instantiate each of the generic operators with Get operators. These
are leaf operators that correspond to accessing base relations. (b)
Once the operators are instantiated, we select the arguments for
each operator. For example, the Get operators can be instantiated
with relations T1 and T2 respectively as their arguments.
Similarly, the join operator can be instantiated with a join
predicate such as T1.a = T2.b as its argument. Thus, at the end of
this step we have generated a valid logical query tree (e.g. a tree
such the one shown in Figure 1). Finally, the Generate SQL
module (Section 2.3) is invoked with the above logical query tree
to generate a valid SQL statement. Note that rule patterns can also
provide sufficient conditions for implementation rules to be
exercised. For example, for the hash join implementation rule to
be exercised, the input pattern would need to include a join
operator node. Thus, the idea of leveraging rule patterns from the
optimizer can enable us to automatically generate queries that
exercise a particular rule.
As mentioned above, in general, a logical query tree that contains
a rule pattern is not sufficient to guarantee that the particular rule
is exercised during optimization. For example, for the rule that
pulls up the Group-By Aggregate over a join, some additional
conditions are required to hold (for e.g., the join predicate does
not reference the aggregate results). However, observe that if such
constraints are well abstracted in the database engine, they can
potentially be added as additional preconditions on the input
pattern and leveraged by the query generation module. Certain
rules may also require that certain constraints on the schema or
the data instance hold in order to guarantee that it is exercised; we
discuss such cases in Section 7.
Despite the fact that leveraging a rule pattern does not guarantee
that a rule is exercised, for the set of transformation rules used in
our experiments (Section 6), we observed that by exploiting the
basic rule patterns in query generation, we can significantly
reduce the number of trials required compared to the random
query generation method.
Finally, it is interesting to note that if despite the use of the rule
pattern we are not able to find a query that exercises that rule, it
could be an indication that the rule is dependent on other rules
being exercised. We plan to study such handling such rule
dependencies as part of future work.

3.2 Extensions for Rule Pairs
So far, we have focused on the query generation problem for
singleton rules. In addition to testing single rules, it is also
important to test pairs (in general, a set) of rules to cover rule
interactions. In Section 3.1, we outlined how to leverage the rule
patterns that are used during optimization for query generation. In
this section, we look at the corresponding problem for rule pairs
i.e. given a pair of transformation rules (r1, r2) we need to
generate a SQL query which can exercise both the rules when

optimized. The rule patterns for individual rules can also be
leveraged for generating necessary conditions (as in Section 3.1)
to exercise a pair of rules by using the idea of rule pattern
composition.
Consider the two rule patterns shown in Figure 3 for the join
commutativity rule and the rule for pulling up the Group-By
Aggregate over a join. In order to generate a query that can
exercise both the rules, we can combine the rule patterns in the
following ways: (1) Create a new pattern with a root operator as
join or UNION and both the initial patterns as the corresponding
children. (2) Substitute any generic operators in a pattern
(represented as circles in the patterns in Figure 3) with the other
pattern to create a composite pattern.
We have extended the query generation module to handle query
generation for a pair of rules as follows. We compose the two rule
patterns as described and generate a query corresponding to each
of the composite patterns and pick the query with the least
number of operators that exercises both the rules. Note that rule
composition captures an important interaction between rules; rule
r1 is exercised on an expression which is an input to the
expression on which rule r2 is exercised. Of course, there are
potentially other interesting patterns of rule interactions. We
discuss other variants of the query generation problem in Section
7.

4. TEST SUITE COMPRESSION
PROBLEM
One approach for testing rule correctness is to leverage stochastic
testing (e.g. as in [1][11][17]). The idea is to generate a complex
random query that exercises a given rule. We then: 1) Execute the
original query. 2) Execute the plan obtained for the query with the
rule turned off. 3) Check if the results of (1) and (2) are the same
or not. In order to have sufficient confidence in the correctness of
a rule, we may need to repeat the above validation step for several
such randomly generated queries. Thus, for each transformation
rule we need to validate its correctness for k distinct queries
(where k is an input parameter that we refer to as the test suite
size). Since the queries generated are potentially complex and
need to be executed, the time taken to run these test suites can be
significant. In this section, we formally present the problem of test
suite compression (first described in Section 2.3), which can
significantly improve the efficiency of correctness testing. We
first show that this problem is NP-Hard. In Section 5, we present
two algorithms for solving the test suite compression problem.

4.1 Problem Statement
Let R = {r1, ... rn} denote the set of transformation rules. Let the
test suite size be k, and let TS denote the overall test suite for all
rules (Section 2.3), i.e. TS = ∪i TSi. The relationship between the
rules and the queries in the test suites can be represented by a
bipartite graph (see Figure 4). An edge between a rule ri and a
query qj denotes the fact that rule ri is exercised when query qj is
optimized. Note that a query belonging to TSi (the test suite
generated for rule ii) can potentially exercise other transformation
rules as well. By exploiting this information, we can improve the
efficiency of test suite execution, illustrated by the following
example.
Example 1- Consider the case when R = {r1, r2} . Let the rule test
suite size (k) be 1, and the corresponding test suite for the rules
are TS1 = {q1} and TS2 = {q2}. Thus, TS = {q1, q2}. Assume that
r1 is the only rule triggered when q1 is optimized, whereas both

261

rules are triggered when q2 is optimized. Suppose the costs
associated with the queries are as follows: Cost(q1) = Cost(q2) =
100. Cost(q1, ¬{r1}) = 180. Cost(q2, ¬{r2}) = 120. Cost(q2, ¬{r1})
= 120.
 The BASELINE method for test suite execution (Section 2.3)
would be as follows:

• Execute Plan(q1) and Plan(q1, ¬{r1}).

• Execute Plan(q2) and Plan(q2, ¬{r2}).
The cost of the BASELINE method for this example is:
(100+180) + (100+120) = 500.
One alternative is to use query q2 for validating both rules. The
cost of this strategy would include:

• Execute Plan(q2) and Plan(q2, ¬{r1})

• Execute Plan(q2, ¬{r2})
Note that we do not need to execute Plan(q2) when validating r2
since we have executed it when validating r1 (and thus its results
are already available) Thus, the cost of this strategy is (100+120)
+ (120) = 340, which is less expensive than the BASELINE
method.
From the above example, we note that there are two important
observations that can be leveraged in test suite compression. First,
when a query q exercises multiple rules, Plan(q) (with all rules
enabled) needs to be executed only once. Second, since the
randomly generated queries can have widely varying costs, we
can leverage this fact to reduce the cost by choosing queries with
lower cost. Finally, the cost of the query with the rules disabled
could be significantly higher than when the rules are enabled (e.g.
if the rule is responsible for pushing selection below a join,
disabling that rule can dramatically increase the cost of the query).
Therefore, ideally this also needs to be factored in during test suite
compression. We now formally define the test suite compression
problem. We describe it for the singleton rule case, although the
formulation extends in the obvious way for the case of rule pairs.

Test Suite Compression Problem: Consider the bipartite graph
G = (V,E), where V = (R ∪ TS) and E, the set of edges in the
graph, is defined as follows: add an edge between a rule ri ∈ R,
and query q ∈TS if optimizing q exercises rule ri. Each node ri in
R is assigned a cost 0, and each node q ∈ TS is assigned a cost
equal to Cost(q). For each edge (ri, q) assign the cost equal to
Cost(q, ¬{ri}) i.e. the cost of executing the query q with the rule ri
disabled (see Figure 4). The test compression problem is to find a
subgraph G’ = (V’,E’) of the above bipartite graph such that:

1) V’ = (R ∪ TS’) and TS’ ⊆ TS. In other words, the
subgraph contains all rules from G and a subset of the
queries from G.

2) Each node r ∈ R in G’ has degree equal to the test suite
size k.

3) The sum of the edge and node costs in G’ is minimized.
Intuitively, we intend to find the mapping of queries to rules with
the minimum cost (condition 3) such that every rule is accounted
for (condition 1) while ensuring that each rule is mapped to
exactly k queries which is the size of the test suite (condition 2).
Note that any subgraph of the bipartite graph that satisfies
property 1) and 2) is a valid test suite. The node cost for the query
nodes is used to model the fact that for queries shared between
multiple rules, the original Plan(q) needs to be executed only
once. The execution of the test-suite would proceed as follows.
For each q ∈ TS’, we execute Plan(q) once. For each edge (q, r),
we execute the Plan(q, ¬{r}) and compare the results with those
obtained from Plan(q). Thus, the sum of the edge and node costs
is equal to the cost of executing the test suite. Since the out-degree
of each node r ∈ R in the subgraph is known to be k, we are
guaranteed to execute k distinct queries for each rule in the set R.

4.2 Hardness
Claim: The Test Suite Compression Problem is NP-Hard.
Proof: See Appendix A for the proof. We show hardness by
reducing an arbitrary instance of the Set Cover problem [10] to a
simplified version of the Test Suite Compression (TSC) problem.

5. ALGORITHMS FOR TEST SUITE
COMPRESSION PROBLEM
In Section 4, we introduced the Test Suite Compression (TSC)
problem, and why it can be important in significantly improving
the efficiency of correctness testing of rules. We also showed that
TSC is computationally hard. In this section, we present two
algorithms for this problem. In Section 6, we study the
effectiveness of these two algorithms via an empirical evaluation,
and compare them with the BASELINE method (described in
Section 2.3).

5.1 Applying the Set Cover Heuristic
In section 4.2 we showed that the test suite compression problem
is NP-Hard. The reduction (see Appendix A for details)
demonstrated that the Set Cover problem is isomorphic to a
simplified version of the test suite compression problem (that uses
a test suite size k =1). Since good approximation algorithms exist
for the set cover problem [19], a natural question is whether such
an algorithm can be leveraged for the test suite compression
problem.
Observe that the simplified version of the test suite compression
problem (that was shown to be isomorphic to the set cover
problem) uses a test suite size k = 1. To incorporate this parameter
we therefore adapt an algorithm for the corresponding general
version of the set cover problem, which is called the Constrained
Set Multicover problem [19]. The constrained set multicover
problem takes as input a set U, a number me for each e ∈ U, and a
set of subsets S of elements in U. Each s ∈ S has a cost C(s). The
goal is to find the subset with the minimal cost such that:

• Each element e of U is covered me times

• Each s ∈ S can be picked at most once

Figure 4. Bipartite Graph Representation

262

The test suite compression problem can be mapped to it as
follows. The set of rules R maps to input set U. For each query q,
we map RuleSet(q) to the corresponding subset s ∈ S, the node
cost Cost(q) to the corresponding C(s). For all rules r ∈R, we set
mr to k. Figure 5 shows how we can adapt the greedy algorithm
for the Set Multicover problem [19] to compute the set of queries
with minimal cost such that each rule is mapped to exactly k
distinct queries in the test suite. The algorithm collects queries to
be picked in the set TS’. It tracks the set of rules that have already
been covered in R’. In Step 2 we check if the set of rules that have
been covered in R’ is complete. Note that this step includes the
check that each rule in R has been covered k times. In Step 3, we
compute the “benefit” of each query that has not been picked. We
define a rule to be remaining if it exercised by less than k of the
queries already picked. The benefit of a query is defined as the
number of remaining rules that are covered normalized by the cost
of the query. For example consider a query q with RuleSet(q) =
{r1, r2, r3}. Let the test suite size k be set to 2. Assume that the
rule r1 has already been covered by 2 queries in the set TS’. The
remaining rules for query q are thus {r2, r3}. The greedy algorithm
picks at any point the query with the highest “benefit” (Step 4).

Consider Example 1 (see Section 4.1) where query q1 exercises
the rule {r1} and q2 exercises the rules {r1, r2}. Since Cost(q1) =
Cost(q2), q2 has the higher benefit and as a result the greedy
algorithm in Figure 5 would find the optimal solution for the
example. In general, however this algorithm tries to minimize the
total cost of the query nodes in the subgraph and does not model
the edge costs (see Section 4) which accounted for the costs of
executing queries with the corresponding rules disabled. Since, in
general, the edge costs could be potentially significant, we now
present another algorithm that takes into account the edge costs.

5.2 A Constant Factor Approximation
Algorithm
In this section, we present a heuristic for the test suite
compression problem that takes into account the edge costs. We
also show that our algorithm is a factor 2 approximation of the
optimal solution to the test suite compression problem. Intuitively,
the algorithm selects for each rule, the k queries with the lowest
cost with that rule disabled (i.e. edge cost). Unlike the
SetMultiCover algorithm (Section 5.1), this algorithm assumes
independence between the rules, thereby ignoring the benefits

obtained from potentially sharing queries between the test suites
of different rules (see Example 1).
The algorithm (we refer to it as TopKIndependent) is shown in
Figure 6. For each rule r in the set R, we first obtain the set of all
queries in TS that exercise rule r. (Step 4). The loop (lines 5-11)
picks the k queries with the lowest edge cost, i.e. the cost of the
query when the rule r is disabled. This step is repeated for all the
rules in the set R.
Referring once again to Example 1 (Section 4) where q1 exercises
{r1} and q2 exercises the rules {r1, r2}. Since k is 1, the
TopKIndependent algorithm would choose the query that has the
minimum edge cost for each rule. For both the rules, q2 has the
smaller edge cost when compared to q1. Thus, for Example 1 the
algorithm in Figure 6 would also find the optimal solution.

Although the TopKIndependent algorithm ignores query node
costs, we can show that it provides a solution that is guaranteed to
be within a factor 2 of the optimal solution. Note that the
SetMultiCover algorithm, on the other hand does not provide a
constant factor approximation.
Claim: TopKIndependent algorithm is a factor 2 approximation
algorithm for the test suite compression problem.

Proof: Consider any rule r ∈ R. For rule r, the TopKIndependent
algorithm chooses the k queries with the least expensive edge
costs (i.e. cost of query with rule r disabled). Let us denote this set
of queries by TS(r). Note that the maximum cost of any solution
obtained by TopKIndependent over all rules in R cannot exceed:

 r}){,()(
)(

∑ ∑
∈ ∈

¬+=
Rr rTSq

qCostqCostMaxCost

The above (upper bound) occurs when for each rule, there is no
query chosen for that rule which is shared with any other rule in
R.
Now we present a lower bound for any solution to the test suite
compression problem. This lower bound occurs when: (a) The k
cheapest queries (in terms of edge costs) are chosen for each rule
r, and (b) For each rule, all the queries picked for the rule r are
shared with some other rule.

Input: Bipartite Graph G = ((R ∪ TS), E), Test Suite Size k

Output: A bipartite graph G’ = ((R ∪ TS’), E’), a subgraph of G
with outdegree of each node in R = k
1. TS’ = {}, R’ = {}, E’ = {}
2. While (R’ != R) Do
3. For each q ∈(TS – TS’), compute

 Benefit(q) = number of remaining rules covered / Cost(q)
4. Pick q ∈(Q – Q’) with the largest Benefit value
5. TS’ = TS’ ∪ {q}; R’ = R’ ∪ RuleSet(q);
6. Add edges corresponding to q and the remaining rules it

covers, to E’.
7. End While
8. Return G’ = ((R ∪ TS’),E’)

Figure 5. Greedy Algorithm based on the Set MultiCover
problem.

Input: Bipartite Graph G = ((R ∪ TS), E),Test Suite Size k

Output: A bipartite graph G’ = ((R ∪ TS’), E’), a subgraph of
G with outdegree of each node in R = k
1. TS’ = {}, R’ = {}, E’ = {}
2. For each rule r in R Do
3. count = 0
4. Let W = Subset of queries in TS that includes rule r

 in its RuleSet
5. While (count < k) Do
6. Pick q ∈ W with minimal value Cost(q, ¬{r}) value
7. W = W - {q}
9. TS’ = TS’ ∪ {q}; count = count+1
10. Add edge corresponding to (r,q) to E’
11. End While
12. R’ = R’ ∪ RuleSet(q);
13. End For
14. Return G’ = ((R ∪ TS’),E’)

Figure 6. TopKIndependent Algorithm

263

 {r}),(
R)(
∑ ∑
∈ ∈

¬=
r rTSq

qCostMinCost

Observe that the above cost does not correspond to any valid
solution since it ignores Cost(q) entirely. However, it is a valid
lower bound on the cost of any solution.
Notice that for any rule r and query q, Cost(q) ≤ Cost(q,¬{r})
since for a well behaved optimizer disabling a rule can only
increase the cost of the resulting plan. This is because when a rule
is disabled, one of the following two possibilities can occur: (1) It
may not impact the plans considered by the optimizer, in which
case the resulting plan (and hence the cost) is the same, or (2) It
can reduce the number of plans considered by the optimizer, in
which case the cost of the plan chosen can only be higher.
Now consider the ratio f = (MaxCost / MinCost). Since Cost(q) ≤
Cost(q,¬{r}), f ≤ 2. Note that f=2 occurs when Cost(q) =
Cost(q,¬{r}). Since the optimal solution has a cost higher than
MinCost, and actual cost of the solution picked by
TopKIndependent is no higher than MaxCost, we know that the
solution picked by TopKIndependent has a cost that is within a
factor of 2 of the optimal solution.

5.3 Extensions for Rule Pairs
In this section, we discuss how the algorithms we described in
Sections 5.1 and 5.2 for the test suite compression problem can be
extended for testing pair-wise rule interactions.
The test suite compression problem for testing rule pairs is very
similar to the original formulation, with the key difference being
that the input is a set of rule pairs rather than a set of individual
rules. We denote the set of all rule pairs by P, i.e. P = {{r1, r2},
{r1, r3}, …{rn-1, rn}}. Thus, for each element p ∈ P, we need to
find the mapping of k distinct queries such that the cost of
executing the test suite is minimized. An example of the bipartite
graph corresponding to the test suite compression problem for rule
pairs is shown in Figure 7. Note that we add an edge between a
rule node and a query node (q) only if both the corresponding
rules are exercised when query q was optimized. In the example
bipartite graph shown in Figure 7, all the queries exercise both
rule pairs. For an edge between a rule node {ri, rj} and a query q,
the edge cost is the cost of executing q with both rules disabled
i.e. Cost(q, ¬{ri,rj}). Thus the cost of executing q1 when both r1
and r2 are disabled is 150.

The algorithms presented in Section 5 extend in a straightforward
manner for the case of rule pairs. However, the main difference is
that the cost of creating the bipartite graph which is an input to
both algorithms itself can become significant. Consider a query q
that exercises five rules. In the original formulation of the

problem, we need to add five edges to the corresponding rule
nodes. For the case of pairs, we need to add 5C2 edges
corresponding to all the pairs of the rules. Recall that the edge
costs model the cost of turning off a particular pair of rules. In
general for a query that exercises n rules, we need nC2 invocations
of the query optimizer to compute the edge costs corresponding to
that query node. For complex queries, the number of rules
exercised could potentially be high and thus the cost of building
the initial bipartite graph could be significantly higher when
compared to the case of singleton rules. Thus, scalability of the
algorithms with number of rules becomes a significant issue.

5.3.1 Exploiting Monotonicity to Reduce Optimizer
Invocations
We observe that the increase in the cost of constructing the
bipartite graph only affects the TopKIndependent algorithm
(Section 5.2). This is the because the SetMultiCover algorithm
described in Section 5.1 does not model the edge costs and uses
only the query node costs as a basis for picking nodes.
For the TopKIndependent algorithm, we present a technique that
can help reduce the number of edges for which the cost needs to
be determined by the algorithm (in Steps 5-10 of Figure 6). Our
idea is to exploit the observation that for any query Cost(q) ≤
Cost(q, ¬R), where R is any subset of rules in RuleSet(q).
Suppose for a rule pair p ∈ P the queries that exercise the rule
pair is TS(p). Our goal is to find the k edges (with lowest cost)
from p to queries in TS(p). We sort queries in TS(p) in increasing
order of the original node cost, i.e. by Cost(q). We also maintain a
priority queue of size k of edges for which we have computed the
actual cost (by invoking the optimizer). Initially, the priority
queue is empty. Each time we consider the next edge (say e) from
TS(p) we check if the node cost corresponding to that edge has a
higher value than the edge with the kth highest cost in the priority
queue. If so, we can terminate since we know that the cost of the
edge e (and all remaining edges for p) must have a higher cost. If
not, we compute the actual cost and add the edge to the priority
queue (potentially evicting an existing edge with the highest cost
to maintain the size of k in the priority queue). Our experimental
results (Section 6) indicate that this optimization can significantly
reduce the costs of creating the bipartite graph for testing rule
pairs.
The following example illustrates the above optimization.
Consider the bipartite graph shown in Figure 7 and let the test
suite size k be 1. For the node {r1, r2}, we need to find the edge
with minimum cost. We illustrate how we can potentially achieve
this without having to compute all the edge costs. Consider the set
of all queries with edges to {r1, r2}. In our case this is {q1, q2, q3}.
We order the queries in the increasing order of node costs. We
first compute the edge cost for query q1, i.e. (Cost (q1, ¬{r1, r2})
by invoking the query optimizer. As shown in the figure, suppose
this edge cost is 150 units. Note that the original query cost of
q2(200) and q3(300) are higher than this value. This implies that
the corresponding edge costs can only be higher (since disabling a
pair of rules can only increase the cost of the resulting plan).
Thus, we can stop enumerating the edges at this point and return
the current edge (corresponding to q1) as the minimal cost edge.
In this paper, we have primarily focused on testing single
transformation rules and the interactions of rule pairs because
these are the most common scenarios for testing transformation
rules. We discuss interesting extensions to study as part of future
work in Section 7.

Figure 7. Bipartite Graph for Rule Pairs

264

5.4 Summary
In this section, we presented two algorithms for solving the test
suite compression problem. We first showed how to leverage the
greedy heuristic for the SetMultiCover problem (which ignores the
edge costs). Next we presented the TopKIndependent algorithm
that ignored the benefits of using the same query for different
rules (i.e. the query node costs). However, this algorithm
guarantees a constant factor approximation to the optimal
solution. We have implemented both these algorithms, and we
describe results of our experimental comparison in Section 6.

6. EXPERIMENTS
We have prototyped the framework described in this paper (see
Figure 2) on Microsoft SQL Server. In this section, we present the
results of our experiments for evaluating the effectiveness of the
techniques presented in this paper. In particular, the goals of our
experiments are:

• Compare the efficiency of query generation using rule
patterns (Section 3) with the randomized query generation
approach. We do this for singleton rules as well as rule pairs.

• Compare the effectiveness of the SetMultiCover algorithm
(Section 5.1) and TopKIndependent algorithm (Section 5.2)
for the Test Suite Compression problem for both singleton
rules as well as rule pairs.

• Study the importance of exploiting monotonicity (Section
5.3.1)

6.1 Databases
As described in Section 2, we are given as input a test database.
For our experiments, we use tables from the TPC-H [21] database.
We focus on logical transformation rules (see Section 2.1) in this
evaluation, these rules are by and large exercised regardless of the
data size or distribution. We use a set of around 30 logical
transformation rules of the optimizer (that cover the most
commonly used operators including selections, joins, outer joins,
semi-joins, group-by etc.). We have also evaluated our tests on
other databases with different schemas and sizes, and the results
are similar to those presented below, so we do not report those
results here. We defer a more thorough evaluation (that includes
implementation rules) to future work.

6.2 Results
6.2.1 Leveraging Rule Patterns for Query
Generation
In our first experiment, we study the impact of rule patterns for
query generation (see Section 3). We report our results both for
singleton rules as well as rule pairs.
Figure 8 shows the number of trials required to generate a query
for each singleton rule. Observe that our technique of pattern
based generation of logical query trees (Section 3) is able to
generate a query that exercises the given rule in a very small
number of iterations (typically 1 or 2, and never more than 4).
This is a significant improvement relative to random query
generation, where generating for certain rules it takes close to 40
attempts before a query which exercises that rule can be
generated. For the entire set of 30 rules, the total number of trials
for RANDOM is 234 whereas for PATTERN it is 38.

The difference in efficiency between RANDOM and PATTERN
is even more significant for rule pairs, as can be seen in Figure 9.
Note that the y-axis uses a logarithmic scale. We show the results
when the number of rules (n) = 15, 30, and therefore number of
rule pairs = 15C2 and 30C2 respectively. For n=15, RANDOM
requires 1187 trials, whereas PATTERN requires only 383 trials.
For n=30, PATTERN shows a 13x improvement (RANDOM
requires over 13,000 trials whereas PATTERN requires less than
1,000 trials). This is because in general, the chance that a query
generated using a random generation procedure exercises a set of
rules drops rapidly as the cardinality of that set increases. For
example, we observe rule pairs for which it takes close to 100
trials to generate a valid query. On the other hand, with
PATTERN, most queries were again generated within 1 or 2
trials, and the maximum number of trials we observed for a rule
pair was 5.

Figure 10 shows the time required to generate the queries for the
same data points as in Figure 9 (once again the y-axis uses a log
scale). This figure shows that the efficiency of PATTERN over
RANDOM in number of trials also extends directly to a reduction
in the time required to generate the test cases.
Together, these results clearly show the importance of rule pattern
based query generation for singleton rules as well as rule pairs.

Figure 8. Random vs. Pattern based generation for
singleton rules.

Figure 9. Random vs. Pattern based generation for rule pairs.

265

6.2.2 Test Suite Compression
Recall that the test suite compression problem (presented in
Section 4) is important for the efficiency of correctness testing of
rules. In this experiment we compare the three approaches for the
test suite compression problem: BASELINE (Section 2.2);
SetMultiCover (Section 5.1), which we refer to as SMC in the
graphs; and TopKIndependent (Section 5.2), which we refer to as
TOPK in the graphs (we use a test suite size k of 10). We show
results for singleton rule as well as rule pairs. Note that for all
graphs in this section, we use a log scale for the y-axis, which
represents the total cost (we use the optimizer estimated cost) of
the solution, as the number of rules is varied.

For singleton rules (see Figure 11), we observe that both SMC and
TOPK obtain solutions that are significantly better than
BASELINE (anywhere between one and three orders of
magnitude). This shows that unlike BASELINE, both SMC and
TOPK are able to take advantage of using a single query for
validating multiple rules.
For the case of rule pairs (see Figure 12) however, the results are
somewhat different. While TOPK continues to produce the lowest
cost solutions, SMC’s solution vary between good to significantly
worse than BASELINE. The reason for this is that SMC does not
take into account the edge costs (i.e., the cost of a query when a
set of rules is disabled). Therefore in certain cases, it selects
queries that have low cost when optimized with all rules, but
whose cost is significantly higher when certain rule pairs are
turned off. We observe that although this phenomenon occurs
even in the singleton rule case, it is much more pronounced in the
case of rule pairs since there are many more opportunities for such

queries to arise. On the other hand since TOPK always picks the k
edges with lowest cost, it is more robust to this problem when
compared to SMC.

In our next experiment, we fix the number of rules n=15 (and thus
the number of rule pairs to 15C2), and vary k, the test suite size.
The result of this experiment is shown in Figure 13. We see that
TOPK is again the best algorithm across all values of k. We note
that for very low values of k, (e.g. k=1) SMC produces good
solutions, but at larger values of k, its quality drops significantly.
Once again, this is due to the fact that as k increases, it becomes
more likely to find queries where turning off a rule pair causes the
cost to rise sharply (this cost is ignored by SMC).

Figure 11. Test suite compression for singleton rules.

Figure 12. Test suite compression for rule pairs.

Figure 13. Impact of varying the test suit size on
quality of solution.

Figure 14. Exploiting Monotonicity

Figure 10. Random vs. Pattern based generation for rule pairs.

266

In our final experiment, we measure the importance of exploiting
monotonicity for the TOPK algorithm (see Section 5.3.1). Recall
that this optimization can potentially save the algorithm from
making a large number of invocations of the query optimizer to
compute the edge costs. Figure 14 shows the impact of using this
optimization for the case of rule pairs. We see that exploiting
monotonicity saves between a factor of 6x to 9x of the optimizer
calls without affecting the actual quality of the result (i.e., it is a
sound technique).
From these experiments we see that TOPK is consistently the best
approach. When coupled with the observation that TOPK is
guaranteed to be a factor 2 approximation (Section 5.2) of the
optimal solution, we conclude that TOPK is an attractive approach
for correctness testing.

7. DISCUSSION
In this paper we outlined a framework for testing transformation
rules. We presented techniques for query generation (Section 3)
for evaluating code coverage of rules as well as techniques for
optimizing the execution of test suites (Section 5) for validating
the correctness of rules. In this section, we discuss some
interesting extensions and potential directions for future work for
rule testing.
Variants of Query Generation Problem: The query generation
problem as studied in this paper was as follows: Given a rule (or a
pair of rules), generate a SQL query such that the rule (or rule
pair) is exercised. While tracking if a rule is exercised is indeed
important, note that a rule that is exercised may not influence the
final plan choice of the optimizer. Intuitively, a rule is relevant for
a query if turning off the rule results in the optimizer picking a
different plan. It is interesting to study the following variant of the
query generation problem: Given a rule, generate a SQL query
such that the rule is relevant for the query.
In Section 3.2, we looked at rule composition for rule pairs which
captures an important interaction between rules; rule r1 is
exercised on an expression which is an input to the expression on
which rule r2 is exercised. Similarly, there are other potential
definitions of rule interactions, for example a rule r2 is exercised
on an expression which was obtained as a result of exercising rule
r1. We intend to extend the query generation techniques to handle
such variants as part of future work.
In this paper we assume that we are given as input a database, i.e.,
the database is fixed. While this assumption is reasonable for a
large class of transformation rules, there are certain rules whose
exercising is dependent on the properties of the schema as well as
the database instance. For example, consider a transformation rule
that optimizes star join queries. For this rule to be exercised,
certain foreign key constraints must be defined in the schema. In
order to capture such rules, it may be necessary to augment our
query generation module to modify the schema and/or the
database instance.
Variants of Test-Suite Compression Problem: We introduced
the test-suite compression problem in Section 4.1. Given the
original test-suite, the problem is to find the least-cost mapping of
queries to rules while preserving the invariant that each rule is
mapped to k distinct queries. Note that in this version, we can
potentially reuse queries for validating different rules. A stronger
invariant is one that still preserves all the distinct queries in the
original test suite (i.e. there is no sharing of queries across rules).
The corresponding problem then is to find the least-cost mapping

of queries to rules such that each query in the original test suite is
mapped to exactly one rule. We can show that this problem
reduces to bipartite matching and thus can be solved efficiently;
we omit details due to lack of space.

8. RELATED WORK
The architecture of a transformation rule based framework for
query optimization is described in detail in [12]. Transformation
rules have been adopted in many commercial systems including
Tandem’s Non-Stop SQL [7], IBM DB2 [16] and Microsoft SQL
Server [13].The authors in [11] present an overview of issues
related to testing a commercial query optimizer. One of the
earliest papers to talk about query optimizer testing is [18]; it
focuses on tools that can help generate data having certain
characteristics (such as correlations between attributes) as well as
generate queries whose join graph has certain properties.
A stochastic testing scheme for SQL is described in [17]. They
present a tool (RAGS) in order to generate random complex SQL
queries that are valid and use it for stress testing the SQL parser
and to check if the results of these queries are the same across
different database systems. The work in [1] extends the random
query generator using genetic algorithms to ensure certain
properties of the generated queries (such as nonempty results).
There has been some recent work on the problem of query
generation [6][5][15], this work is primarily concerned with
generating queries and database instances such that certain
cardinality constraints (e.g. the cardinality of a particular join
result is 1000) are satisfied. None of the previous work on query
generation has been concerned with generating queries such that
certain transformation rules are exercised.
The work in [9] describes an interface that can generate a SQL
tree from a logical expression (corresponding to the Generate
SQL component in Figure 2). It is largely to facilitate the manual
creation of unit tests, where the developer can design a particular
logical tree and then use the techniques in [9] to generate the
corresponding SQL. We note that the techniques in [9] do not
address how to generate an appropriate logical tree for generating
queries that exercise certain rules. While we use a similar
component as part of our query generation module, our idea of
leveraging rule patterns from the optimizer engine and rule
composition is the key difference that enables us to efficiently
generate queries that exercise a particular rule (or rule pair).
There has been previous work on the problem of efficiently
executing test runs for database applications [14] which also study
algorithms to minimize the total time to execute the tests. For the
problem setting in [14], the key point was carefully factoring the
cost of resetting the state of the database, which is not relevant for
the problem of executing test suites that is studied in this paper.
Finally, while there has been previous work on compressing
workloads [8][20], this has been in the context of physical
database design. The aim is to obtain a subset of queries from the
original workload such that the physical database design for the
compressed workload is similar to the physical database design
that would have been generated for the original workload. Since
the compression techniques are used are specific to the problem of
physical database design, they are not applicable to our problem
of test suite compression.

9. CONCLUSION
Transformation rules play a crucial part in the ability of modern
query optimizers to find a good query execution plan. Despite

267

their obvious importance there has been relatively little work
focused on testing rule based query optimizers. In this paper, we
present an initial framework for testing transformation rules. We
show how to leverage rule patterns for efficient query generation
to generate test cases that exercise specific rules. We also
introduce the novel problem of test suite compression and present
a solution that can significantly reduce the time required for
correctness testing of these rules. As part of future work we intend
to extend our framework to efficiently test rule interactions
beyond rule pairs and also examine issues in testing other
components of the query optimizer.

10. REFERENCES
[1] H. Bati, L. Giakoumakis, S.Herbert, A.Surna. A genetic

approach for random testing of database systems.
Proceedings of VLDB 2007.

[2] B.Beizer. Software Testing Techniques (2nd ed.) Van
Nostrand Reindhold Co.1990.

[3] S. Chaudhuri. An Overview of Query Optimization in
Relational Systems. In Proceedings of PODS 1998.

[4] K.Billings. A TPC-D Model for Database Query
Optimization in Cascades. Ms. Thesis. Portland State
University. 1996

[5] C.Binning, D.Kossman, E.Lo, T.Ozsu. QAGen: Generating
Query-Aware Test Databases. Proceedings of ACM
SIGMOD 2007.

[6] N.Bruno, S.Chaudhuri, D.Thomas. Generating Queries with
Cardinality Constraints for DBMS Testing. IEEE TKDE
18(12) 2006.

[7] P.Celis. The Query Optimizer in Tandem’s new ServerWare
SQL Product. Proceeding of VLDB 1996.

[8] S.Chaudhuri, A.Gupta, V.Narasayya. Compressing SQL
Workloads. Proceedings of SIGMOD 2002.

[9] M.Elhemali, L.Giakoumakis. Unit Testing Query
Transformation Rules. Proceedings of DBTest Workshop
2008.

[10] M.R. Garey, and D.S. Johnson. Computers and Intractability.
A Guide to the Theory of NP-Completeness. W.H. Freeman
and Company, New York, 1979.

[11] L.Giakoumakis, C. Galindo-Legaria. Testing SQL Server’s
Query Optimizer: Challenges, Techniques and Experiences.
IEEE Data Engineering Bulletin 2008 vol. 31 (1).

[12] G.Graefe, W.McKenna. The Volcano Optimizer Generator.
Extensibility and Efficient Search. Proceeding of ICDE
1993.

[13] G.Graefe. The Cascades Framework for Query Optimization.
Data Engineering Bulletin, 18(3), 1995.

[14] F.Haftmann, D.Kossmann, A.Kreutz. Efficient Regression
Tests for Database Applications. Proceedings of CIDR 2005.

[15] C.Mishra, N.Koudas, C.Zuzarte. Generating Targeted
Queries for Database Testing. Proceedings of SIGMOD
2008.

[16] H.Pirahesh, J.Hellerstein, W.Hasan. Extensible Rule Based
Query Rewrite Optimization in Starburst. Proceedings of
SIGMOD 1992.

[17] D.Slutz, Massive Stochastic Testing of SQL. Proceeding of
VLDB 1998.

[18] M.Stillger, J.C.Freytag. Testing the quality of a query
optimizer. Data Engineering Bulletin, 18(3), 1995.

[19] V.Vazirani. Approximation Algorithms. Springer-Verlag
2003.

[20] D.Zilio et al. DB2 Design Advisor: Integrated Automatic
Physical Database Design. Proceedings of VLDB 2004.

[21] TPC Benchmark H. Decision Support. http://www.tpc.org

APPENDIX A
Claim: The Test Suite Compression Problem (Section 4.1) is NP-
Hard.
Proof: We show hardness by reducing an arbitrary instance of the
Set Cover problem [10] to a simplified version of the Test Suite
Compression (TSC) problem. Consider a simplified version of the
TSC problem (we refer to it as S-TSC) where the edge and the
query node weights are assigned the same unit weight and the test
suite size k is 1. Observe that any valid solution for S-TSC has the
following characteristics. Since we require every rule node to be
part of the output subgraph, and k=1, there are exactly |R| edges
in the subgraph, and hence total cost of the edges is |R|. Thus,
finding the lowest cost solution in S-TSC is equivalent to
minimizing |TS’|, i.e. finding the smallest subset of queries in TS
that results in exercising each rule.
We now reduce the Set Cover problem to S-TSC. The Set Cover
problem takes as input a set U and a set S of subsets of U. The
goal is to find the smallest subset of S that covers all the elements
in U. We can map an arbitrary instance of the Set Cover problem
to the S-TSC problem as follows. The set U maps to the set of
rules R. Thus, each element s ∈ S maps to a subset of the rules.
Recall that RuleSet(q) (Section 2.2) denotes the set of rules that
are exercised when query q is optimized. For each s ∈ S, we
generate a corresponding query q such that RuleSet(q) = s. This
can be done as follows. Note that for each individual rule r, we
can generate a query that exercises rule r (e.g. using the method
described in Section 3). Therefore, we can then generate one
query expression for each rule in s and construct a single query
that is a UNION of each of the individual query expressions
(including additional NULL columns to make the expressions
union-compatible if required). Observe that by this construction
the UNION query that is guaranteed to exercise all the rules in s.
The set of query nodes in TS is the union of all queries generated
in this manner. We add edges between a query q in TS and the
nodes corresponding to RuleSet(q) in R.
From the above construction, it is easy to see that Set Cover for U,
S) is isomorphic to the S-TSC problem. Thus S-TSC is NP-Hard.
Since S-TSC is a strict simplification of TSC, we conclude that
the TSC problem is NP-Hard.

268

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

